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Abstract
The growing interest in cryptocurrencies has brought this new means of
exchange to the attention of the financial world. This study aims to investigate
the effects that a cryptocurrency can have when it is considered as a financial
asset. The analysis is carried out from an ex-post perspective, evaluating the
performance achieved in a certain period by three different portfolios. These
are the one composed only of equities, bonds and commodities, the second
one only of cryptocurrencies, and the third one is a combination of these both
ones and thus made up of all considered “traditional” assets and the most
performing cryptocurrency of the second portfolio. For these purposes, the
classic variance-covariance approach is applied where the calculation of the risk
structure is done via the GARCH-Copula and GARCH-Vine Copula approaches.
The optimal weights of the assets in the optimized portfolios are determined
through Markowitz optimization problem. The analysis mainly showed that
the portfolio composed of cryptocurrency and traditional assets has a higher
Sharpe index, from an ex-post perspective, and more stable performances, from
an ex-ante perspective. We justify our selection of the Markowitz approach over
conditional VaR and expected shortfall due to their heightened sensitivity to
unsystematic extreme events in crypto markets.
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1 INTRODUCTION

Introduction of cryptocurrencies in financial system
becomes a hot issue of investment among worldwide
investors. Like traditional currencies, the cryptocurrencies
also offer the holder of currency the purchase of goods
and services. However, contrary to legal tender payment
methods, the cryptocurrency system is based exclusively
on the trust of the parties in cryptocurrencies and crypto
tokens since there is no law yet that obliges to accept cryp-
tocurrencies as a means of payment (Gogo, 2019). A public
register of filing of the exchanges (called blockchain) to
which everyone can access, is the base of the fiduciary sys-
tem; all the operations occurring between the holders of
cryptocurrencies are therefore validated by aminer, whose
task is to guarantee and encrypt the transactions that
have taken place by entering them in the public register
(Tuwiner, 2019).
Despite the absence of regulatory requirements, the

acceptability of cryptocurrency as a medium of exchange
got tremendous attention among investors and its volume
of trade has also gone up by leaps and bounds in a very
small period of time. The reason behind this success is the
financial crisis of 2008 that not only resulted in the loss
of hard-earned investments of people across the globe, but
also forced them to look for protection against such cri-
sis and alternatives for safer investment (Pinudom et al.,
2018). Further, cryptocurrencies may be unrelated to the
prevailing economic situation of any country, and as an
alternative investment also provide the opportunity for
financial diversification (Bodie et al., 2014; Krueckeberg &
Scholz, 2018; Trimborn et al., 2017). Moreover, adding the
cryptocurrency to the portfolio also benefits the investor
against the various monetary policy-related risks attached
with traditional currency and thus finally improve the
performance of portfolio (Anyfantaki & Topaloglou, 2018;
Briere et al., Szafarz, 2015; Elendner et al., 2018; Mayer,
2018). Financial diversification, in addition to being a risk-
reducing instrument, is also a motive for achieving greater
profit. The investors with such motives are called “risk-
seekers,” that is, those who manage to make a profit from
the high volatility of the markets.
Since investor has started opting the cryptocurrency as

an integral part of their portfolio and capital allocation,
thus here a question arises that, whether cryptocurren-
cies result in the more beneficial optimization of their
portfolio or not? Portfolio optimization can be defined
as the maximum benefit that can derive from an alloca-
tion of financial resources in relation to the risk-return
profile of the investor. Markowitz (1952), used average,
variance, covariance and Pearson’s linear correlation for
construction of optimal portfolio. However, construction
of Markowitz theory of optimal portfolio selection does

not consider that distribution of historical returns of finan-
cial assets may not be Gaussian. While, his point of view
is widely rejected in financial literature with empirical
evidence that financial historical series are very often char-
acterized by phenomena of asymmetry and leptokurtosis
(Sheikh &Qiao, 2009) or evenmore dramatic stylized facts
(Cont, 2001). Assuming that financial returns are normally
distributed lead to their underestimation and inaccurate
quantification of risk (Pinudom et al., 2018). Similarly,
under the Markowitz portfolio selection, measuring risk
only by variance of historical returns is very general for
specific asset and also incorrect. Moreover, Markowitz
used Pearson´s linear correlation as a tool to measure
the association among assets for construction of portfo-
lio, however, Pearson’s correlation ignores the non-linear
association among the assets and thus conceal their depen-
dency structure (Rachev et al., 2009). To overcome above
mentioned issues conditional autoregressive and gener-
alized heteroscedastic models (GARCH) are also widely
used to predict the future evolution of variance in research
related to virtual currencies (Ardia et al. 2018b; Chen et al.,
2016; Chu et al., 2017; Katsiampa, 2017; Saha, 2018). While,
the study of Caporale and Zekokh (2019) has extended
the analysis of Ardia et al. (2018b) on Bitcoin, Ethereum,
Ripple and Litecoin, he considered a Model Confidence
Set (MCS) procedure to select the GARCH models for the
Markov regime-switching for each cryptocurrency.
Further, the linear correlation coefficient may also be

inadequate in identifying the structure of interdependence
of the assets (Embrechts et al., 1999; Szegö, 2005). Thus
related literature suggests that financial association among
the financial assets should be determined by Copula mod-
els as it facilitates to model for each asset, the marginal
probability distribution and to evaluate separately, and suc-
cessively, the multivariate dependence of all assets in a
portfolio (Cherubini et al., 2004; Nelsen, 2007; Sklar, 1959).
The Copulas therefore focus on determining a correlation
structure between the univariate distributions of the assets
and aremore flexible than the standardmultivariate distri-
butions (Kakouris & Rustem, 2014). This in turn makes it
possible to break the link with the Gaussian distribution
(Bai & Sun, 2007).
As GARCH-Copula models provide a better forecast

some mutual properties future returns than bootstrapping
methods, they are frequently applied in the field of port-
folio diversification (Bouoiyour et al., 2017; Kresta, 2015;
Osterrieder et al., 2016). However, the Copula models are
often applied only in bivariate contexts due to the fact
that the multivariate Copula has a kind of complexity
that increases as the size increases, tending to lose preci-
sion of fitting on the tails (Deng et al., 2011). Considerable
efforts have been made to increase the flexibility of the
multivariate Copula models. The Vine-Copulas models
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are the result of this endeavor and it was further mod-
ified into its subclasses of C-Vine and D-Vine (Bedford
& Cooke, 2001; Joe, 1996). Later on, many studies have
not only used these Copulas and their subclasses into
their research on financial returns, portfolio management,
exchange rate management, but also proved empirically
that Vine Copula approach outperforms the multivariate
t-Copula, especially when returns have asymmetry and a
different dependency structure between pairs of financial
assets (Aas et al., 2009; Fischer et al. 2007; Mendes et al.,
2010; Saha, 2018; Schirmacher & Schirmacher, 2008).
In the light of relationship of risk and return, this

study aims to explore the impact on risk and return struc-
ture of portfolio if cryptocurrencies as financial assets are
considered as a part of optimized portfolios. The study
uses GARCH models to quantify the variance of returns
whereas among Copula Models Vine Copula models are
applied to capture the correlation structure between the
different assets. The use of a GARCH process combined
with a Copula model allows to divide the risk due to sev-
eral factors (standard deviation, skewness and kurtosis
and co-movements between assets), in different mathe-
matical steps trying to specify the risk of portfolio in the
best possible way. In this paper, the analysis is based on
a comparative perspective. Three portfolios are evaluated
on the basis of the performance achieved: the first one
composed only by traditional assets, we call it “Traditional
portfolio,” the second one composed by the same assets
with the inclusion of a cryptocurrency, thus “Traditional
Crypto portfolio,” and the third one makes up by only
cryptocurrencies—“Cryptos portfolio”. The three portfo-
lios are constructed under consideration of three different
specifications regarding returns’ distribution: the first one
assumes a normal distribution of the historical returns;
the second one and third one combine both multivariate
Copula model and Vine Copula model, respectively, with
the GARCH modeling of the variance. Our results show
that combining the traditional assets with the cryptoas-
sets may lead to higher gains in terms of reward-risk ratio,
and thus should be considered in themore intensive future
work. The final contribution of the study is also to evaluate
that, which of the model among proposed models provide
the better performance and stability of portfolio over time
considering different optimality criteria.
In this context, we wish to emphasize our deliberate

choice of the Markowitz approach over methods based
on Conditional Value at Risk—CVaR and its counterpart
Expected Shortfall—ES (see, e.g., Krokhmal et al., 2002;
Rockafellar & Uryasev, 2002; Stoyanov et al., 2007; Ziemba
&Vickson, 2006). In this sense, the related papers are given
by Ben Osman et al. (2023) However, there are several
compelling reasons behind this decision pro-Markowitz.
The CVaR and ES methods take into account the so-called
fat tails in the return distribution of the underlying asset,

effectively measuring the risk of significant losses when
optimizing portfolios. However, it’s important to note that
returns in regulated markets stem primarily from the fun-
damental value and the trading process of the asset. In
contrast, the prices of cyberassets can be heavily influ-
enced by a multitude of negative exogenous events that
are not directly linked to their fundamental values or trad-
ing processes. These events can include cyber-attacks and
their media coverage, the impact of influential figures on
social media (such as Elon Musk’s effect on Dogecoin),
failures in implementing mainnet and significant proto-
col upgrades, and more. Researchers often overlook this
distinction and treat these events as if they were endoge-
nous, which can lead to misleading investment strategies
for cryptoassets. To summarize, while extreme events in
traditional financial markets are rare but systematic and
tend to recur, the world of crypto markets witnesses a vast
number of extreme events that are often unique and do not
repeat. Furthermore, within the crypto investing commu-
nity, a commonmantra prevails: “trend is your friend,” and
investors tend to follow the principle of “buying on the dip
and selling on the peak.” This implies that investors are
more focused on identifying and capitalizing on positive
trends, where the middle of the return distribution holds
greater importance than isolated extreme events at the
tails. Consequently, our choice of the Markowitz approach
aligns with the needs of medium and long-term investors
rather than those with a very short-term perspective.
In conclusion, our decision has been to utilize data pre-

dating the emergence of the COVID-19 pandemic and the
Ukraine conflict. These events have given rise to recent
economic and energy crises, as well as exceptional market
conditions. Our rationale is rooted in the belief that using
data from periods prior to these crises provides a more
faithful representation of the ordinary and stable economic
environment, which we deem to be the prevailing state for
the majority of the time.
The remaining sections of the paper are structured as fol-

lows. In Section II, we introduce Copula models and their
relevance to our analysis. Section III provides a detailed
explanation of themethodology employed for data analysis
and optimization.Moving forward to Section IVwepresent
the examined data and report the results obtained from
each portfolio. SectionVpresents results. Section IV is ded-
icated to a comprehensive discussion of the main findings
followedby sectionVII for conclusion an outlook for future
research and implications.

2 METHODOLOGY

2.1 Location-scale model

The Location-Scale model (or Location-Scale Family) is
the theoretical basis on which the entire mathematical
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system of the GARCH-Copula model is based. A random
variable 𝑋 is said to belong to the location-scale family
when its cumulative distribution (CDF).
Is a function only of 𝑥 − 𝑎

𝑏
:

𝐹𝑋(𝑥 | 𝑎, 𝑏) = 𝐹
(𝑥 − 𝑎

𝑏

)
; 𝑎 ∈ 𝑅, 𝑏 > 0; (1)

The two parameters 𝑎, 𝑏, are respectively the location
and the scale parameters.1 The variable

𝑍 ∶
𝑋 − 𝑎

𝑏
(2)

is called the reduced or standardized variable, where 𝑧 is
a realization of 𝑍. The reduced variable 𝑍 has 𝑎 = 0 and
𝑏 = 1. If𝑌 has a cumulative distribution function𝐹𝑍(𝑧) =

𝑃(𝑍 ≤ 𝑧), then 𝑋 = 𝑎 + 𝑏𝑍 has a cumulative distribution
function𝐹𝑋(𝑥) = 𝐹𝑧 (

𝑥−𝑎

𝑏
). In others worlds, “For any ran-

dom variable 𝑍 whose CDF belongs to such a family, the
CDF of 𝑋 = 𝑎 + 𝑏 𝑍 also belongs to the family.”2 The
use of this model in finance can certainly be traced back
to the studies of Azzalini (1985), with the introduction of a
third parameter 𝑐, that is a parameter of “shape,” so:

Lemma 1. If 𝑓0 is a one-dimensional probability density
function symmetric about 0, and 𝐺 is a one-dimensional
distribution function such that 𝐺′ exists and is a density
symmetric about 0, then

𝑓 (𝑧) = 2𝑓0 (𝑧) 𝐺 {𝑤 (𝑧)} (−∞ < 𝑧 < ∞) (3)

Is a density function for any odd function 𝑤(⋅).
On the basis of the Lemma 1 and the respective demon-

stration (see Azzalini 1985), assuming 𝑓0 = 𝜙, 𝐺 = Φ

(respectively the PDF, and the CDF of the normal Stan-
dard distribution) and 𝑤(𝑧) = 𝑐 ⋅ 𝑧 (𝑐 is a constant), the
author is able to affirm that: if Z is Skewed normal dis-
tributed (𝑍 ∼ 𝑆𝑁(𝑐)) and𝑋 = 𝑎 + 𝑏𝑍, where 𝑎 ∈ 𝑅, 𝑏 >

0, then it is possible state that 𝑋 ∼ 𝑆𝑁(𝑎, 𝑏2, 𝑐). He for-
malizes also the case of Skewed t-distribution (Azzalini
2005).
Thanks to this contribute, other authors have been

able to give important reflections: Arellano-Valle et al.
(2004) extended the number of parameters through which
it is possible to represent the distribution that remains
from a process of “standardization”: the location-scale
skew-generalized normal distribution (SGN) is defined
as that 𝑋 = 𝑎 + 𝑏𝑍, where 𝑍 ∼ 𝑆𝐺𝑁(𝑐, 𝑑) and 𝑋 ∼

𝑆𝐺𝑁(𝑎, 𝑏2, 𝑐, 𝑑). Only in more recent studies Kumar et al.
(2018) have demonstrated the possibility of representing
a reduced variable through a 3-factor parameterization of
the shape, keeping the connection with the Location-Scale
model.

2.2 Autoregressive model

A necessary but not sufficient condition is to accept the
assumption that the studies underlying the Location-Scale
model are valid, considering that returns are the vari-
able under the microscope for this analysis. Empirical
evidences (Engle, 1982) show that it is possible to consider
the variance variant over time. This logic assumption, com-
bined with the Location-Scale model, allows to describe
the evolutionary process of returns as:

𝑅𝑡 = 𝑎𝑡 + 𝑏𝑡𝑍𝑡 (4)

where 𝑎𝑡, 𝑏2𝑡 ,𝑍𝑡 are respectively the conditionalmean, con-
ditional variance and the innovation of 𝑅𝑡 process. This
type of formulation allows therefore to model the loca-
tion process, as an autoregressive moving average process
ARMA (m, n):

𝒂𝒕 = 𝒂 +

𝒎∑
𝒋=1

𝜙𝒋
(
𝑹𝒕−𝒋 − 𝒂

)
+

𝒏∑
𝒋=1

𝜽𝒋
(
𝑹𝒕−𝒋 − 𝒂𝒕−𝒋

)
(5)

and parameter of scale process, using generalized autore-
gressive conditional heteroscedastic process GARCH(q,p):

𝑏2𝑡 = 𝜔 +

𝑞∑
𝑗=1

𝜑𝑗

(
𝑅𝑡−𝑗 − 𝑎𝑡−𝑗

)2
+

𝑝∑
𝑗=1

𝜓𝑗𝑏
2
𝑡−𝑗

(6)

Equation (7) shows the formulation provided by Boller-
slev (1986), for the first GARCH model (simple GARCH).
After this first model the research has proposed until today
many GARCHmodels capable in different ways of captur-
ing effects of asymmetry and intensity of the conditional
variance.
The integratedGARCHmodel (Engle&Bollerslev 1986),

denoted by IGARCH (p,q), is a particular case of the simple

GARCH, because
𝑞∑

𝑗=1

𝜙𝑖 +
𝑝∑

𝑗=1

𝛽𝑖 = 1. The condition makes

the model strictly stationary.
The exponential GARCHmodel (Nelson, 1991), denoted

by EGARCH (q, p), has:

ln
(
𝑏2𝑡
)
= 𝜔 +

𝑞∑
𝑗=1

(
𝜑𝑗𝑍𝑡−𝑗 + 𝛾𝑗

(|||𝑍𝑡−𝑗
||| − 𝐸

|||𝑍𝑡−𝑗
|||))

+

𝑝∑
𝑗=1

𝜓𝑗 ln
(
𝑏2
𝑡−𝑗

)
(7)

for𝜑𝑗 > 0, 𝜓𝑗 > 0, 𝛾𝑗 > 0 and𝜔 > 0.𝜑𝑗 captures the sign
effect, and 𝛾𝑗 captures the size effect of the previous stan-
dardized innovation. The persistence parameter for this
model is 𝜓𝑗 .
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The GJR-GARCH (q, p) model due to Glosten et al.
(1993) has:

𝜎2
𝑡 = 𝜔 +

𝑞∑
𝑗=1

(
𝜑𝑗

(
𝑅𝑡−𝑗 − 𝑎𝑡−𝑗

)2
+ 𝛾𝑗𝐼𝑡−𝑗

(
𝑅𝑡−𝑗 − 𝑎𝑡−𝑗

)2)

+

𝑝∑
𝑗=1

𝜓𝑗𝜎
2
𝑡−𝑗

(8)

for 𝜑𝑗 > 0, 𝜓𝑗 > 0, 𝛾𝑗 > 0 and 𝜔 > 0, where 𝐼𝑡−𝑗 =

1 if (𝑅𝑡−𝑗 − 𝑎𝑡−𝑗) ≤ 0 and 𝐼𝑡−𝑗 = 0 if (𝑅𝑡−𝑗 − 𝑎𝑡−𝑗) > 0. 𝛾𝑗
represents an asymmetry parameter. A positive shock will
increase volatility by 𝜑𝑗; a negative shock will increase
volatility by 𝜑𝑗 + 𝛾𝑗 .
Simple GARCH, IGARCH, GJRGARCH and EGARCH

combined with the ARMA process are used to fit the con-
ditional volatility and conditional mean of the financial
assets. For the analysis are considered a maximum order
of one for the ARMA part, and a maximum of order three
for the GARCH models. The conditional distribution of
the innovation is supposed be normal or Skewed normal.
So, an iterative procedure estimates, for all 4 ARMA-
GARCH processes, the best model for each combination
of lags until the maximum settled, replete this procedure
two times, one for each distribution hypothesis of the
innovation.3 The lower bitcoin (BIC) value is chosen as
criterium to identify the most adapt model.

3 COPULA AND VINE COPULA
MODELS

Copulas are models through which it is possible to iso-
late the dependence structure of amultivariate distribution
(Nelsen, 2007). Let𝐻 be a n-dimensional distribution func-
tion with marginal distribution functions 𝐹𝑗(𝑍𝑗; 𝜃).Then
there exists a Copula 𝐶 such that:

𝐻 (𝑍1, … , 𝑍𝑛) = 𝐶 (𝐹1 (𝑍1; 𝜃) , … , 𝐹𝑛 (𝑍𝑛; 𝜃) ; 𝛿) (9)

where 𝐶(𝐹1 (𝑥1; 𝜃), … , 𝐹𝑛 (𝑥𝑛; 𝜃); 𝛿) is the Copula associ-
ated to H and 𝛿 is the vector of dependence parameters
of 𝐶. The Copula is unique if the marginals 𝐹𝑗(𝑍𝑗; 𝜃) are
continuous (Sklar, 1959). The unicity of the Copula was
demonstrated by Sklar (1959). A large number of Cop-
ulas have been proposed in the literature, and each of
these imposes a different dependence structure on the data
(Trivedi & Zimmer 2007). Joe and Xu (1996), Trivedi and
Zimmer (2007), Balakrishnan and Lai (2009) and Nelsen
(2007) provide a detailed overview about the properties of
Copulas (Elaal 2017). Gaussian (normal) Copula, Student’s
Copula, Gumbal and Clayton Copula are taken into con-

sideration for this analysis. The normal Copula, proposed
by Lee (1983), takes the form:

𝐻 (𝑍1, … , 𝑍𝑛)

= Φ𝐺

(
Φ−1 (𝐹1 (𝑍1; 𝜃)) , … , Φ−𝑛 (𝐹𝑛 (𝑍𝑛; 𝜃)) ; 𝛿

)
(10)

where Φ is the CDF of the standard normal distribution,
and Φ𝐺 is the standard multivariate normal distribu-
tion with correlation parameter restricted to the interval
(−1, 1). A Copula with two dependence parameters is the
multivariate t-distribution with 𝜐 degrees of freedom and
correlation 𝛿,

𝐻 (𝑍1, … , 𝑍𝑛)

= 𝑡
(
𝑡−1𝑚1

(𝐹1 (𝑍1; 𝜃)) , … , 𝑡−𝑛𝑚2
(𝐹𝑛 (𝑍𝑛; 𝜃)) ; 𝛿, 𝜐

)
(11)

where 𝑡−1𝑚 denotes the inverse of the CDF of the standard
univariate t-distribution with 𝑚 degrees of freedom. The
parameter 𝜐 controls the heaviness of the tails. TheClayton
(1978) Copula, proposed by Kimeldorf and Sampson (1975),
takes the form:

𝐻 (𝑍1, … , 𝑍𝑛)

=
(
𝐹1(𝑍1; 𝜃)

−𝛿
+⋯+ 𝐹𝑛(𝑍𝑛; 𝜃)

−𝛿
− 1

)−1∕𝛿

(12)

with the dependence parameter 𝛿 restricted on the region
(0,∞). As 𝛿 approaches zero, the marginal become inde-
pendent. The Clayton Copula cannot account for negative
dependence. It has been used to study correlated risks
because it exhibits strong left-tail dependence and rel-
atively weak right-tail dependence (Trivedi & Zimmer
2007).
The Gumbel Copula introduced by Gumbel (1960) takes

the form:

𝐻 (𝑍1, … , 𝑍𝑛)

= exp

(
−
(
− log𝐹1(𝑍1; 𝜃)

𝛿
+⋯− log𝐹𝑛(𝑍𝑛; 𝜃)

𝛿
)1∕𝛿

)
(13)

The dependence parameter is restricted to the interval
[1,∞). Values of 1 and ∞ correspond to independence.
Similar toClaytonCopula, Gumbel does not allownegative
dependence, but it contrast to Clayton, Gumbel exhibits
strong right-tail dependence and relatively weak left-tail
dependence (Trivedi & Zimmer 2007).
The Student’s Copula and the Gaussian Copula belong

to the family of Elliptical Copulas, the Gumbel and the
Clayton Copulas instead are part of the family of the
Archimedeans. The main difference between two families
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of Copulas is that the Elliptical ones have the possibility
to specify the level of correlation between the marginal
distributions, contrary to the other. The Archimedean
ones have the merit of modeling well the extreme values
of the multivariate distributions. These characteristics,
therefore, make one more or less suitable than the other
depending on the case. In a portfolio allocation problem
with more than two assets, it is improbable that a single
correlation parameter (as in the case of Elliptical Copulas)
can represent a correlation structure of n-dimensions.
The possibility of using the Elliptical functions even in

a context that concerns more than two dimensions, mak-
ing the Copula approach even more flexible, led Joe (1996)
to elaborate the first Vine Copula model. A Vine Cop-
ula is a factorization of multivariate Copula densities into
(conditional) bivariate Copula densities. For example:
Let 𝑐(𝐹1(𝑍1; 𝜃), 𝐹2(𝑍2; 𝜃), 𝐹3(𝑍3; 𝜃); 𝛿) be the density

function of a 3-dimentional Copula, the respective Vine
Copula structure is composed by three parts:

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑎𝑖𝑟

= 𝑐ℎ𝑔|𝑚 (
𝐹ℎ|𝑚 (𝑍ℎ|𝑍𝑚) ; 𝐹𝑚|𝑔 (𝑍𝑚|𝑍𝑔

))
(14)

𝑢𝑛𝑐𝑜𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑎𝑖𝑟𝑠

= 𝑐𝑚𝑔

(
𝐹𝑚 (𝑍𝑚) ; 𝐹𝑔

(
𝑍𝑔

))
⋅ 𝑐ℎ𝑔

(
𝐹ℎ (𝑍ℎ) ; 𝐹𝑔

(
𝑍𝑔

))
(15)

𝑚𝑎𝑔𝑖𝑛𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

= 𝑓𝑔
(
𝑍𝑔

)
⋅ 𝑓𝑔

(
𝑍𝑔

)
⋅ 𝑓ℎ (𝑍ℎ) (16)

𝑐 (𝐹1 (𝑍1; 𝜃) , 𝐹2 (𝑍2; 𝜃) , 𝐹3 (𝑍3; 𝜃) ; 𝛿)

= 𝑐. 𝑑.𝑝𝑎𝑖𝑟 ⋅ 𝑢.𝑑. 𝑝𝑎𝑖𝑟𝑠 ⋅ 𝑚.𝑑.𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 (17)

As it possible to see, the adaptability of Copula mod-
els makes them much more complex than multivariate
Copulas in terms of estimation. In fact, as shown in
Equation (18), these models are composed by conditional
Copula densities, joint Copula densities and the marginal
probability functions. The initial sequence of these assets
is not known a priori: this means that it is not possible
to know how to couple the financial assets from time to
time, in order to form the various Copula bivariate. More-
over, the determination of the initial sequence is very often
subordinate to the choice of the structure of the Vine
Copula. In literature there are three main structures stud-
ied: The Regular-Vine Copula, the Canonical-Vine Copula
and the Draw able-Vine Copula; the last two are a sub-
category of the first one. The C-vine has a star structure
where a unique node is connected to all other ones. The
D-vine has path structure where each asset has a single

link with the next one. The R-vine is built considering

the 𝑛!

2
⋅ 2

⎛⎜⎜⎝
𝑛 + 1

2

⎞⎟⎟⎠ possible combinations between the assets
(Morales-Nàpoles, 2010). Regardless of the chosen struc-
ture, it should be noted that the link between each pair of
assets is unique; this allows to consider as far as the C- and
D- Copulas 𝑛!

2
possible dispositions are concerned. More-

over, while for these last two there is a rule that establishes
how to construct the pairs following to the starting tree,
the structure of the R-vines is always the result of a com-
putational procedure. Once an initial order of themarginal
distributions has been determined and amethodology able
to proceed in the construction of the pairs has been identi-
fied, it is necessary to identify the type of Copula that binds
each pair, estimating its relative parameters.
The two different methodologies (Vine and multivari-

ate) are comparable using the BIC and AIC criteria. The
goodness of fitting (GoF) of both Copula models structure
will bemeasured through the test proposed byGenest et al.
(2009). This functional and certainly not exhaustive excur-
sus on Copulamodels can be concludedwith the following
formal definition:

Definition 1. A d-dimensional Copula, 𝐶 ∶ [0; 1]
𝑑

∶→

[0; 1] is a cumulative distribution function (CDF) with
uniform marginal.

It is precisely this last definition that creates the link
between the Location-Scale model, the GARCH and Cop-
ula models. The definition indicates that the only values
that can be used as input to create a Copula model
are between 0 and 1. This means that the standardized
residues, obtained from the GARCH model, need to be
converted into probability, through the identification of
a distributive function. In fact, according to the integral
transformation of probability, it is possible to transform
random variables belonging to any distribution into uni-
formly distributed random variables; the statement is
valid provided that the distribution used as a means of
transformation is the real one. In order to identify the
true distribution, the Kolmogorov-Smirnov test (K-S test)
(Massey, 1951) and the Uniformity test (PIT test) (Diebold
et al., 1997) have been used on a sample of five different dis-
tributions (Standard normal, t-Student, Skewed t-Student
(Skwd. t-Stud.), Generalized Error distribution (GED),
Skewed Generalized Error distribution (Skwd. GED).

3.1 Portfolio optimization

A key step toward a quantitative approach to the issue of
strategic asset allocationwas taken byHarryMarkowitz, in
his article “Portfolio Selection” published on the Journal
of Finance in 1952. Its model assumes essentially that the
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investors are rational and are interested in maximizing
the returns and minimizing the risk, furthermore they
have free access to correct information on the returns
and risk; the markets are efficient and absorb the infor-
mation quickly and perfectly. Under these hypothesizes,
Markowitz consider the risk how the oscillation of the
returns around their average. In these terms we can
consider the variance of the returns of a portfolio as its risk
and the average of these returns as the expected return of
the portfolio. In statistical terms it is therefore necessary
to minimize the variance (or standard deviation) and
maximize the average, adjusting the weights that each
asset has inside of the portfolio. Formally:

min
wi

(𝜎2
𝑝) = min

𝑤𝑖;𝑤𝑗

(∑
𝑖

∑
𝑗

𝑤𝑖𝑤𝑗𝜎𝑖𝑗

)
(18)

𝐸 (𝑅𝑝) =

𝑛∑
𝑖=1

𝑤𝑖𝑅𝑖 𝑎𝑛𝑑 0 ≤ 𝑤𝑖 ≤ 1 (19)

This model is not free of limits: first of all, this way
of optimizing a portfolio limits the number of assets
to be chosen, contrary to the benefit of diversification,
creating violent and drastic shifts in the composition of
the portfolio over time; moreover, the past performance of
a portfolio has little predictive power of its future perfor-
mance (Braga 2016). In the empirical work, to determine
the weight of each asset in portfolio, the maximization of
Sharpe ratio is set as target.4 In literature this is known
how Tangency portfolio.5

max
𝑤

𝐸(𝑅𝑝)

𝜎𝑝

Subject to
∑
𝑖

𝑤𝑖 = 1

0 ≤ 𝑤𝑖 ≤ 1

(20)

The use of this model together with the above limits
allows a transversal analysis of the problem: on the one
hand it allows to assess whether a portfolio that contains
cryptocurrencies is actually more performing than those
composed only of traditional assets, on the other hand it
allows to see if a Location-Scale-GARCH-Copula model
approach allows to solve (at least partially) the problems
mentioned above. Finally, the portfolio’s performance is
assessed using the Sharpe index in the version proposed
by Pezier and White (2006).6

4 DATA AND RESULTS

The first step toward a comparative analysis of the three
different portfolios begins with the choice of assets. This

first phase is conducted by taking into account the past
performance of the returns of a set of assets over a period
ranging from January 01, 2017 to December 31, 2018.7 The
first portfolio, called “Traditional portfolio” (or Trad), is
composed exclusively of assets belonging to the invest-
ment universe that is represented by equities, government
bonds and commodities. 8 As for the stock market, the
Dow Jones and Eurostoxx 50 indices provided a basis for
stock picking. In fact, out of the total 80 equity assets, the
three most preforming ones for both indices were cho-
sen: Microsoft (MSFT), Boing (BA) and Visa (V) fromDow
Jones, RWE AG (RWEG), Amadeus (AMA) and Kering
S.A. (PRTP) form Eurostoxx 50. Comparing the govern-
ment bond yields of France,Germany, Italy,UKandUSAat
10 years, it was found that US government bonds were the
best in terms of risk-return. In order to achieve the most
accurate possible replication of this type of return, it was
decided to include the ETF (Exchange Traded Fund) IUSM
in the portfolio. Finally, for the choice of the four com-
modities, the performance analysis was carried out, taking
into account the most liquid markets. The most perform-
ing commodities were Palladium (PA), Copper (HG), Gold
(GC). Crude oil (CL) is forcibly added to guarantee the
most diversification possible. The second portfolio, called
“Cryptos portfolio” (or Cryptos), is composed by 10 cryp-
tocurrencies, which were selected from the 200 with the
highest market capitalization on December 31, 2018; the
cryptocurrencies that performed best were PIVX (PIVX),
Ethereum (ETH), XRP (XRP), Stellar (XLM), NEO (NEO),
Decred (DCR), Waves (WAVES), Verge (XVG), Unobta-
nium (UNO) and Groestlcoin (GRS).9 The third portfolio,
called “Traditional Crypto portfolio” (or Trad+Cry) is com-
posed of all the assets of the “Traditional portfolio” with
the addition of themost performing cryptocurrency among
those selected for the “Cryptos portfolio”.
Table 1 shows the performances of the assets and

selected cryptocurrencies.10
A particular GARCH process for the variance is speci-

fied for each asset. Table 2 summarized for each asset the
best selected ARMA-GARCH models,11 the assumed con-
ditional distribution and the value of the BIC, estimated as
indicated in the Methodology Section.12

5 ESTIMATION OF HISTORICAL
PERFORMANCE

By using the standardized residuals, it is possible to pro-
ceed with the calculus of the correlation among the assets
in different ways and to determine the historical perfor-
mance for each of the three different portfolios above
mentioned. The optimization process is carried out min-
imizing the variance-covariance matrix and maximizing
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TABLE 1 Performances of cryptocurrencies and traditional financial assets from January 1, 2017 to December 31, 2018.

Asset name PRTP RWEG AMA IUSM BA Va MSFT PA HG GC CL
Expected return .14% .10% .06% −.02% .12% .09% .08% .10% .02% .01% .00%
Standard deviation .017 .018 .012 .005 .016 .013 .014 .015 .013 .010 .017
Kurtosis .073 −.910 −.408 −.026 .023 −.170 .129 −.438 −.049 .222 −.851
Skewness 5.945 9.308 1.414 .765 3.220 3.094 3.476 3.033 1.564 5.412 2.528
Adjusted sharpe .080 .054 .051 −.042 .076 .068 .060 .072 .017 .011 −.002
Asset name PIVX ETH XRP UNO NEO DCR XLM GRS XVG WAVES
Expected return .66% .38% .55% .53% .54% .48% .52% .72% .79% .37%
Standard deviation .101 .064 .093 .089 .100 .090 .098 .136 .161 .079
Kurtosis .841 .297 2.551 −.615 1.518 .869 1.750 1.943 .989 .286
Skewness 3.830 3.372 27.136 20.788 11.489 2.953 11.543 10.030 7.481 2.321
Adjusted sharpe .066 .060 .057 .057 .054 .054 .053 .053 .049 .047

TABLE 2 ARMA-GARCHmodels of cryptocurrencies and financial assets.

PRTP RWEG AMA IUSM BA Va MSFT PA HG GC CL
EGARCHmodel (2.3) (1.3) (2.1) (2.3) (1.2) (2.1) (3.3) (1.3) (2.2) (3.2) (3.3)
ARMAmodel (.0) (1.0) (.1) (1.0) (.1) (.0) (.0) (.0) (1.0) (.0.0) (1.0)
Cond. distr norm norm norm norm s-norm norm norm norm norm norm s-norm
BIC −5.93 −6.03 −6.60 −8.64 −6.14 −6.67 −6.43 −6.16 −6.55 −7.17 −5.85

ETH XRP XLM NEO DCR WAVES GRS XVG PIVX UNO
EGARCHmodel (3.3) (1.1) (1.2) (1.2) (3.3) (3.3) (2.3) (3.3) (3.3) (2.3)
ARMAmodel (.0) (.0) (.0) (.0) (.1) (.0) (.1) (.1) (.1) (.0)
Cond. distr norm s-norm norm s-norm s-norm s-norm norm norm norm norm
BIC −2.75 −2.44 −2.15 −2.08 −2.11 −2.35 −1.57 −1.4 −1.97 −2.21

TABLE 3 Statistical measures and final performance of the simple “Markowitz optimization” approach.

Trad+Cry
Trad+Cry
(bound) Trad

Trad
(bound) Cryptos

Cryptos
(bound)

Expected return .00092 .00090 .00071 .00069 .00584 .00583
Standard deviation .00741 .00732 .00653 .00644 .06032 .06026
Kurtosis −.25233 −.26028 −.6567 −.68337 −.28524 −.28772
Skewness 2.18322 2.14843 4.98413 5.01445 1.44485 1.44738
Adjusted sharpe .12474 .12318 .10667 .10488 .09702 .09690
Sharpe .12486 .12330 .10895 .10715 .09686 .09674

the Sharpe ratio13 of the portfolio (Bilir 2016). Table 3 shows
the final performances of the three portfolios when the
simple “Markowitz optimization” (bounded and not)14 is
applied to the historical returns for each portfolio.
The Copula and Vine Copula approach are introduced

in order to unlink the linear correlation from Markowitz
optimization. As explained in Section 2, the first step is
to transform the standardized residuals into PITs. Table 4
shows the distribution that was individuated for each
asset considering the p values of K-S and Uniformity
tests.

The resulting PITs are used as input for the Copula and
Vine Copula models. Table 5 shows the p values of GoF
test, the BIC and the AIC values for the four tested Copula
families.15
As it is possible to notice, the t-Copula presents the

best values for each category of parameters so it will be
used to model the correlation structure for all three port-
folios. Table 6 shows the final performances of the three
portfolios when the “GARCH-t-Copula Markowitz opti-
mization” (bounded and not) is applied to the historical
returns for each portfolio.



JELESKOVIC et al. 147

T
A
B
L
E

4
St
at
is
tic
al
di
st
rib
ut
io
ns
of
st
an
da
rd
re
si
du
al
so
fc
ry
pt
oc
ur
re
nc
ie
sa
nd

fin
an
ci
al
as
se
ts
.

G
C

PA
H
G

BA
M
SF
T

Va
R
W
EG

A
M
A

PR
TP

C
L

IU
SM

D
is
tr
ib
ut
io
n

Sk
w
d.
G
ED

Sk
w
d.
G
ED

G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
G
ED

K
—
S
te
st

.9
89

.3
36

.8
94

.8
61

.8
94

.3
05

.6
55

.9
79

.9
65

.4
84

.9
23

PI
T
te
st

.2
93

.6
04

.4
90

.8
40

.9
60

.13
5

.57
4

.4
87

.4
09

.7
77

.8
38

ET
H

XR
P

XL
M

N
EO

D
C
R

W
AV

ES
G
RS

XV
G

PI
V
X

U
N
O

D
is
tr
ib
ut
io
n

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
t-S
tu
d.

Sk
w
d.
t-S
tu
d.

Sk
w
d.
G
ED

Sk
w
d.
G
ED

Sk
w
d.
t-S
tu
d.

Sk
w
d.
G
ED

Sk
w
d.
t-S
tu
d.

G
ED

K
—
S
te
st

.9
98

.7
85

.9
89

.9
47

.9
65

.6
55

.9
98

.8
24

.9
79

.15
8

PI
T
te
st

1.0
00

.8
28

.9
76

.9
90

.6
59

.6
20

.9
83

.19
5

.9
94

.12
4

The low flexibility of the traditional Copulas can be
solved using the Vine Copula approach. Table 7 shows the
correlation structure, the p value of GoF test and values of
the BIC and AIC for each estimated Vine Copula.16
Considering the obtained values, the R-Vine Copula

is used for both “Traditional portfolio” and “Traditional
Crypto portfolio”; the C-Vine Copula is chosen for “Cryp-
tos portfolio”. Table 8: shows the final performances
of the three portfolios when the “GARCH-Vine Copula
Markowitz optimization” (bounded and not) is applied to
the historical returns for each portfolio.
The weights that had been estimated using the returns

up to December 31, 2018, have been applied to the future
returns that the same assets have in a period between Jan-
uary 01, 2019 and March 31, 2019, in order to evaluate
the predictive capacity of the models. Table 9 shows the
performances that would have been achieved.

5.1 Forecasting and possible evolution
of portfolio

It is possible to make forecasting by using the estimated
models. In the Copulas model, the random variables
extraction from the Copula structure is used for forecast-
ing; in the Vine Copula approach the simulation algorithm
used to make predictions is described by Dissmann et al.
(2013).17 The empirical analysis considers two points of
view: the first one assesses whether the method of calcula-
tion of the correlation structure should change considering
different investment time horizons (Table 10);18 the sec-
ond one investigates on the stability of the performance
associate to each asset considering a rolling investment
window: at the end of each time window within the fore-
cast period, the portfolio is rebalanced. The forecasting
period is considered to be 90 days (Table 11).19

6 DISCUSSION OF RESULTS

Referring to the results just shown, some considerations
aremandatory. The results in Table 1 show that resulting in
an averagely higher Adjusted Sharpe Ratio, cryptocurren-
cies, are not excessively riskier as compared to traditional
assets. While the results in Table 2 confirm the presence of
a leverage effect (Bouchaud et al., 2001), which is also an
example of a generalized goodness of fit of the EGARCH
model. The results in Tables 3 and 6 show that the best
performance is achieved by the “Traditional Crypto port-
folio” with the “Markowitz optimization” approach and
for “Traditional Crypto portfolio” through the “GARCH-t
Copula Markowitz optimization” approach. While, results
of Table 8 show that the “GARCH-Vine Copula Markowitz
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TABLE 5 Statistical measures of multivariate Copula models for the three portfolios.

Normal Copula t-Copula Gumbel Copula Clayton Copula
Traditional Portfolio
GoF test 0 .2 0 0
AIC −1455.6845 −1953.7731 −221.2759 −427.9208
BIC −1203.1424 −1696.6393 −216.6842 −423.3291
Traditonal Crypto Portafoglio
GoF test 0 .6 .2 0
AIC −1446.2462 −1882.4204 −191.0680 −405.5577
BIC −1143.1957 −1574.7782 −186.4764 −400.9660
Cryptos Portfolio
GoF test 0 0 0 0
AIC −3061.3267 −3347.5690 −2539.6445 −2905.5006
BIC −2854.7014 −3136.3520 −2535.0529 −2900.9089

TABLE 6 Statistical measures and final performance of the ‘GARCH-t-Copula Markowitz optimization’ approach.

Trad+Cry
Trad+Cry
(bound) Trad

Trad
(bound) Cryptos

Cryptos
(bound)

Expected return .00089 .00087 .00069 .00067 .00612 .00612
Standard deviation .00715 .00707 .00634 .00625 .06982 .06995
Kurtosis −.26356 −.27493 −.65851 −.68937 .20948 .22088
Skewness 2.22084 2.18260 4.91895 4.94759 1.83626 1.83579
Adjusted sharpe .12411 .12258 .10626 .10449 .08828 .08807
Sharpe .12429 .12276 .10849 .10672 .08764 .08742

optimization” approach, on the other hand, resulted
in worst performance. Results in Table 9, suggest that
with allocation of weights to returns of assets through
“GARCH-Vine Copula Markowitz optimization” the “Tra-
ditional Portfolio” outperform other portfolios. This result
offers the possibility to use approaches with a statistical
structure (GARCH-Cupula and GARCH-Vine Copula) in
order to perform simulations and to use them to make
forecasts.
Table 11 shows the result obtained in the case of peri-

odic rebalancing of the portfolio: a careful analysis of
the two central columns validate that, regardless of the
statistical process underlying the simulation, the “Tra-
ditional Crypto portfolio” performances maintain it in
second position, without ever having an excessive gap
from the best-performing portfolio in a certain sub-period,
while, the other portfolios show drastic changes in per-
formance, the “Traditional Crypto portfolio” results stable
relatively to each considered period (further confirmation
of the diversification effect of the cryptocurrencies).
Results of Table 10 confirms that, the temporal hori-

zon of investment results, not to be a conditioning variable
when one of the two proposed methods (Copula and Vine
Copula) is applied to calculate the correlation between the

assets. In fact, considering the three portfolios coupled for
simulativemethod (Copula andVineCopula), it is possible
to see as the reached performances do not vary in a sub-
stantial way: therefore, there is no more reason to assert
that it should be used as amethod, according to the change
of the investment horizon.
Moreover, Tables 5, 6, and 8 reflect that a portfolio

composed exclusively of cryptocurrencies has a lower per-
formance as compared to a “mixed” or a “traditional”
portfolio. The results in these tables thus highlight in iden-
tifying the correlation structure of cryptocurrencies, with
the consequence of under- fitting of the models used, due
to a market which is not structurally mature and hard to
predict.

7 CONCLUSION AND FUTURE
RESEARCH DIRECTIONS

The purpose of this analysis is to evaluate the perfor-
mance of cryptocurrencies as financial assets. To this
end, we have constructed three portfolios: the first one
consists of traditional assets. We conducted the analysis
using autoregressive models to estimate the evolutionary
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TABLE 7 Vine Copula structures for ‘Traditional portfolio’. ‘Traditional Crypto portfolio’ and ‘Cryptos portfolio’.

R-Vine C-Vine D-Vine
Traditional portfolio

GoF test 1 1 1
AIC −2064.60 −2038.17 −2058.40
BIC −1674.31 −1611.14 −1649.74

Traditional Crypto portfolio

GoF test 1 1 1
AIC −2062.48 −2048.82 −2045.47
BIC −1598.72 −1571.29 −1577.12

Cryptos portfolio

GoF test 1 1 1
AIC −3729.40 −3737.37 −3692.75
BIC −3475.64 −3476.86 −3426.44
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TABLE 8 Statistical measures and final performance of the ‘GARCH-Vine Copula-Markowitz optimization’ approach.

Trad
(bound) Trad Trad+Cry

Trad+Cry
(bound)

Cryptos
(bound) Cryptos

Expected return .00073 .00056 .00061 .00050 .00463 .00456
Standard deviation .00740 .00594 .00683 .00593 .05960 .06057
Kurtosis −.72972 −.59870 .32276 .30873 −.36989 −.33666
Skewness 6.16765 4.38488 2.98568 3.71192 1.53819 1.48117
Adjusted sharpe .09669 .09218 .08945 .08390 .07759 .07527
Sharpe .09918 .09356 .08902 .08375 .07760 .07523

TABLE 9 Performance and statistics of the three portfolios using the estimated weights at December 31, 2018.

GARCH t-Copula Markow approach
Trad
(bound) Trad

Trad+Crypto
(bound) Trad+Crypto Cryptos

Cryptos
(bound)

Expected return .00167 .00166 .00165 .00164 .00232 .00228
Standard deviation .00703 .00712 .00713 .00721 .04865 .04832
Kurtosis .37768 .35138 .39594 .37523 1.24711 1.26607
Skewness 1.50712 1.44536 1.52881 1.42619 6.82703 6.90927
Adjusted sharpe .24525 .24060 .23871 .23445 .04790 .04724
Sharpe .23815 .23386 .23187 .22781 .04779 .04713

GARCHMarkow approach
Trad
(bound) Trad

Trad+Crypto
(bound) Trad+Crypto Cryptos

Cryptos
(bound)

Expected return .00170 .00169 .00167 .00166 .00106 .00104
Standard deviation .00728 .00738 .00751 .00760 .03711 .03690
Kurtosis .48435 .45807 .47354 .45277 −.41620 −.41662
Skewness 1.48944 1.44603 1.51607 1.44284 1.76452 1.78371
Adjusted Sharpe .24141 .23658 .22997 .22569 .02867 .02811
Sharpe .23357 .22917 .22297 .21896 .02869 .02813

GARCH-Vine Copula-Markow approach
Trad
(bound) Trad

Trad+Crypto
(bound) Trad+Crypto

Cryptos
(bound) Cryptos

Expected return .00195 .00155 .00102 .00102 .00087 .00085
Standard deviation .00783 .00639 .00574 .00644 .03219 .03251
Kurtosis .72057 .08311 .32236 .06806 −.95559 −.91788
Skewness 2.34643 2.01057 .28685 .61119 4.83958 4.88716
Adjusted Sharpe .25813 .24592 .18235 .16066 .02691 .02592
Sharpe .24899 .24268 .17712 .15789 .02708 .02608

processes of the average and variance of returns. Addi-
tionally, we employed Copula and Vine Copula models to
assess the correlation structure of the assets and conduct
simulations, aiming to investigate the future behavior of
the portfolios.
Our findings indicate that, from a post-performance

evaluation perspective, the introduction of cryptocurrency
into the portfolio yields better results than a portfolio com-
prised solely of equities, bonds, and commodities or one
consisting exclusively of cryptocurrencies. When analyz-

ing the future evolution of the portfolio, the “Traditional
Crypto portfolio” emerges as the most stable in terms
of performance. This stability is accompanied by strong
performance compared to the best-performing portfolios
during certain periods.
Furthermore, we observed that the Copula and Vine

Copula approaches exhibit similar simulative capabilities.
The differences in representing the correlation structure of
assets between these two models become apparent when
evaluating past performance.
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TABLE 10 Performances and statistics of three portfolios considering three different time horizons.

Time horizon: 30 day

Trad cop.
Trad
cop.vine

Trad+Crypto
cop. vine

Trad-Crypto
cop.

Cryptos
cop. vine

Cryptos
cop.

Expected return .00196 .00192 .00183 .00178 −.00363 −.00381
Standard Dev. .00599 .00605 .00644 .00629 .03389 .03401
Kurtosis .36503 .32307 .29744 .33120 −.69873 −.63477
Skewness .07012 .15761 .28638 .19303 .99652 .92418
Adjusted Sharpe .34730 .33507 .29795 .29732 −.10740 −.11232
Sharpe .32766 .31768 .28476 .28349 −.10702 −.11208

Time horizon: 60 day

Trad cop.
Trad cop.
vine

Trad+Crypto
cop. vine

Trad+Crypto
cop.

Cryptos
cop. vine

Cryptos
cop.

Expected return .00202 .00199 .00196 .00192 −.00004 −.00006
Standard Dev. .00547 .00550 .00568 .00565 .03362 .03365
Kurtosis .29801 .25694 .24267 .24159 −.91550 −.91493
Skewness .85303 .95238 1.08142 .98918 2.30137 2.28767
Adjusted Sharpe .38744 .37800 .35984 .35360 −.00121 −.00188
Sharpe .36854 .36127 .34547 .33932 −.00121 −.00188

Time horizon: 90 day
Trad cop.
vine Trad cop.

Trad+Crypto
cop.

Trad+Crypto
cop. vine

Cryptos
cop. vine

Cryptos
cop.

Expected return .00147 .00146 .00145 .00146 .00129 .00126
Standard Dev. .00569 .00572 .00574 .00579 .03103 .03112
Kurtosis .13025 .09857 .12489 .13367 −.85149 −.84144
Skewness 1.34281 1.38368 1.42199 1.46765 2.83125 2.71640
Adjusted Sharpe .26408 .26030 .25869 .25762 .04146 .04033
Sharpe .25804 .25485 .25314 .25214 .04170 .04054

TABLE 11 Performances and statistics of three portfolios considering a 30-days rebalancing.

First 30 days

Trad cop.
Trad cop.
vine

Trad+Crypto
cop vine

Trad+Crypto
cop.

Cryptos
cop. vine

Cryptos
cop.

Expected return .00196 .00192 .00183 .00178 −.00363 −.00381
Standard Dev. .00599 .00605 .00644 .00629 .03389 .03401
Kurtosis .36503 .32307 .29744 .33120 −.69873 −.63477
Skewness .07012 .15761 .28638 .19303 .99652 .92418
Adjusted Sharpe .34730 .33507 .29795 .29732 −.10740 −.11232
Sharpe .32766 .31768 .28476 .28349 −.10702 −.11208

Second 30 days

Trad cop.
Trad
cop.vine

Trad+Crypto
cop. vine

Trad+Crypto
cop.

Cryptos
cop.

Cryptos
cop. vine

Expected return .00186 .00185 .00186 .00184 .00355 .00349
Standard Dev. .00392 .00392 .00397 .00399 .03210 .03217
Kurtosis −.18840 −.18363 −.23582 −.29604 −1.25406 −1.23559
Skewness −.28078 −.28845 −.52100 −.59023 3.92928 3.93804
Adjusted Sharpe .49734 .49551 .49235 .48299 .10745 .10563
Sharpe .47371 .47182 .46875 .46163 .11048 .10851

(Continues)



152 JELESKOVIC et al.

TABLE 11 (Continued)

Third 30 days
Cryptos
cop. vine

Cryptos
cop.

Trad+Crypto
cop. vine

Trad+Crypto
cop.

Trad cop.
vine Trad cop.

Expected return .00416 .00405 .00050 .00045 .00034 .00034
Standard Dev. .02482 .02453 .00417 .00421 .00435 .00438
Kurtosis −.10121 −.15886 −.22111 −.34644 −.20882 −.29315
Skewness .83759 .89118 1.10909 1.19796 1.31970 1.37473
Adjusted Sharpe .16972 .16661 .11948 .10775 .07860 .07667
Sharpe .16766 .16494 .11889 .10755 .07839 .07656

Empirical evidence suggests that a cryptocurrency port-
folio exhibits a lower generalized performance.
This article’s concept can be further expanded by consid-

ering not only evolutionary processes for the average and
variance but also for correlations, introducing dynamic
Copula models (Aepli et al., 2015; So & Yeung, 2014).
Future studies should focus on measuring risk and opti-
mizing portfolio performance when risk is not solely
expressed by a single measure. For this purpose, a poly-
nomial goal programming (PGP) model could be proposed
(Aracioğlu et al., 2011; Lai et al., 2006).
In addition to methodological considerations, further

research should explore how many and which cryp-
tocurrencies are needed to create an optimal portfolio
(Antonakakis et al., 2019; Songa et al., 2019).
Lastly, we recommend applying portfolio optimization

for investments with cryptoassets in the midterm and long
term based on the Markowitz approach, especially as long
as the cryptomarkets remain unregulated and blockchain
technology is not widely adopted. This recommendation
is based on economic considerations rather than solely on
statistical facts.
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ENDNOTES
1 “The location parameter a is responsible for the distribution’s
position on the abscissa. An enlargement (reduction) of a causes
a movement of the distribution to the right (left). The location
parameter is either a measure of central tendency of a distribution.
The parameter b,b>0, is the scale parameter. It is responsible for
the dispersion or variation of the variate X. Increasing (decreas-
ing) b results in an enlargement (reduction) of the spread and
a corresponding reduction (enlargement) of the density” (Rinne,
2010).

2Azzalini, A. A class of distributions which includes the normal
ones. Scandinavian journal of statistics, 1985, 171-8.

3The algorithm estimates four different types of GARCH, each of
which has 4 different dispositions of the parameters of ARMA
process and 9 possible dispositions of the parameters of GARCH
process. All this is done for each of the assumed conditional dis-
tributions of the innovations, for a total of 288 models for each
financial asset.

4The Sharpe ratio considered is the original one (Sharpe, 1994).
5The Tangency portfolio is identified at the point where the Capital
Market Line tinges the (Markowitz) efficient frontier.

6This version (Adjusted Sharpe Ratio) allows to assess the risk of a
portfolio not only in terms of standard deviation, but also in terms
of kurtosis and skewness.

7The performance analysis is carried out by calculating the Sharpe
index in the version proposed by Pezier and White 2006; it is also
assumed the absence of exchange rate risk.

8The data referred to the “Traditional portfolio” are provided by
investing.com.

9The data are provided by cryptomarket.com.
10 In order to avoid the loss of relevant information and the use of
stock prices too far in time, the missing data were treated with the
technique of linear interpolation (Noor et al., 2014). The assets that
had more than 10%missing data in their series of historical returns
are not considered.

11The eGARCHmodels have always shown the lowest BIC.
12The models were estimated through “rugarch” R-package (Gha-
lanos, 2019).

13The Sharpe ratio considered is the original one (Sharpe, 1994).
14Very often Markowitz optimization tends to allocate the entire
weight in a few assets, without considering the principle of diver-
sification (Braga, 2016); to avoid this problem it is possible to set
a minimum weight so as to ensure the presence of each asset in
the portfolio, at least in a small part. For this empirical analysis a
threshold of 1% is set.

15The Copula models was estimated using “copula” R-package
(Hofert et al., 2018; Hofert & Mächler, 2011; Kojadinovic & Yan,
2010; Yan, 2007).

16The Vine Copula model with the lowest AIC and BIC values is
chosen for each portfolio. The process of identifying the disposi-
tion of assets and the Copula families that bind the asset pairs is
described by Dissmann et al. (2013). The procedure can be per-
formed in R thanks to the “VineCopula” (Schepsmeier et al., 2018)
and “CDVine” (E. C. Brechmann & Schepsmeier, 2013) packages.

17Using the properties of the Location-Scale model, once the stan-
dardised residues have been simulated (for each of the two
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procedures), it is possible tomultiply them by the conditioned stan-
dard deviation and add the conditioned average (where the future
estimates of both conditioned measures are calculated using the
ARMA-GARCH model selected earlier), obtaining an estimate of
the returns for each day of the forecast period. 5000 simulations of
amatrix are carried out: it has as columns the number of assets that
make up the portfolio and as rows the number of days for which the
forecast is made.

18Three investment time horizons of 30, 60 and 90 days are consid-
ered, for each of which a process of Markowitz optimization takes
place.

19The time window is fixed at 30 days and therefore the portfolio will
be rebalanced and optimized three timeswithin the forecast period.
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