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Abstract

This paper addresses a job shop scheduling problem with peak power constraints, in which jobs can be pro-
cessed once or multiple times on either all or a subset of the machines. The latter characteristic provides
additional flexibility, nowadays present in many manufacturing systems. The problem is complicated by the
need to determine both the operation sequence and starting time as well as the speed at which machines
process each operation. Due to the adherence to renewable energy production and its intermittent nature,
manufacturing companies need to adopt power-flexible production schedules. The proposed power control
strategies, that is, adjusting processing speed and timing to reduce peak power requirements may impact
production time (makespan) and energy consumption. Therefore, we propose a bi-objective approach that
minimizes both objectives. A linear programming model is developed to provide a formal statement of the
problem, which is solved to optimality for small-sized instances. We also proposed a multi-objective biased
random key genetic algorithm framework that evolves several populations in parallel. Computational ex-
periments provide decision and policymakers with insights into the implications of imposing or negotiating
power consumption limits. Finally, the several trade-off solutions obtained show that as the power limit is
lowered, the makespan increases at an increasing rate and a similar trend is observed in energy consumption
but only for very small makespan values. Furthermore, peak power demand reductions of about 25% have a
limited impact on the minimum makespan value (4–6% increase), while at the same time allowing for a small
reduction in energy consumption.

Keywords: job shop scheduling problem; energy efficiency; peak power; speed-adjustable machines; biased random key
genetic algorithm
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1. Introduction

Energy efficiency is of uttermost importance not only due to the high energy costs incurred but also
due to the environmental impacts associated with energy consumption. In 2020, the industry sector
was responsible for 26% and 35% of the energy consumed in the European Union (EU) and the
United States, respectively (EIA, 2021; EUROSTAT, 2022a). Within the industrial sector, manu-
facturing accounts for about 80% of energy consumption. Data for 2020 show that about one-third
of the energy consumed in the EU’s industry sector is electricity, most of it to operate equipment.
Although the environmental performance of manufacturing has improved over recent decades, it
is currently responsible for 17% of the U.S. emissions and is believed to increase to about 26% by
2050, while emissions of other high producing sectors will hold steady or decline (NIST, 2020).
Additionally, since most of the environmental impacts associated with manufacturing activities are
due to electrical energy consumption, improving energy efficiency may result in potentially large
cost reductions as well as lower environmental impacts.

The production and use of renewable energy have been increasing; for example, in the EU, re-
newable energy resources account for about 37% of the electricity generated and about 22% of the
electricity consumed EUROSTAT (2022b). However, renewable energy generation is irregular, par-
ticularly wind and solar energy generation, as it depends on meteorological conditions. In addition
to the large power requirements, due to the different nature of manufacturing activities, these re-
quirements vary significantly. Together, these two sources of power variability provoke large, and
to some extent unpredictable, swings in net demand that impact the power quality of the network
as a whole. Furthermore, large peaks in power consumption require significant capital investment
by the electric power companies, which, in turn, lead to an increase in electricity charges. Hence,
manufacturing companies have the social responsibility of reducing not only energy consumption
but also peak power consumption.

Although balancing energy efficiency, power demand and production targets is very challeng-
ing, there are several alternatives available, such as using more efficient machinery and sustain-
able materials and processes. Nevertheless, most of such alternatives require substantial financial
investment products and process changes and adaptation. In contrast, scheduling optimization
can be used to improve energy efficiency and reduce peak power consumption at almost no cost
(Gao et al., 2020).

Several works have been published on the job shop scheduling problem (JSP), and some of its
variants consider energy efficiency (for recent and comprehensive reviews, see, e.g., Gao et al., 2020;
Fernandes et al., 2022; Márquez and Ribeiro, 2022; Xiong et al., 2022). Most of the research on
JSP with energy considerations addresses energy efficiency by tackling the original problem while
optimizing some energy-related objectives. According to Fernandes et al. (2022), almost 70% of the
works published between 2011 and March 2022 do so. The energy objectives have been, typically,
optimized together with performance objectives (e.g., makespan, earliness or tardiness) and/or eco-
nomic objectives (e.g., production costs). Among the energy-related performance measures, energy
consumption is the most used one. More recently and in response to the utility’s current trend of
introducing time-dependent energy prices, such as time of use tariffs and critical peak pricing, many
works minimizing energy costs have been reported (see, e.g., Borges et al., 2020; Catanzaro et al.,
2023).
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Also recently, other authors have studied JSP versions that, although optimizing energy-related
performance measures, consider additional decisions, such as choosing the machine state when not
working (leaving it idle or switching it off or to a standby mode) and choosing the operations pro-
cessing speed. Several authors have addressed scheduling problems in which the machines have
several energy states. In most works, the states include on (when the machine is processing), idle
(when the machine is on, but waiting for an operation) and off (when the machine is shut down).
However, some works also consider that a machine may be on standby, similar to idle but with
lower energy consumption. A very small number of works consider transition states associated
with switching the machines to the standby and off states (ramp down) as well as switching them
back on (ramp up) (see, e.g., Gonzalez et al., 2022). Recent literature on the energy-efficient JSP
has favoured speed-adjustable machines, rather than machines with multiple energy states since
turning the machine on and off/standby frequently may damage them. In addition, switching the
machines off/standby and then back on implies transition states and thus, may lead to a spike in
power consumption and require a setup time. On the other hand, if the transition states are ignored
then, as the machines’ processing speed, processing time and power requirements are all constant,
minimizing the total energy/power consumption amounts to minimizing the total machines’ idle
time as only the non-processing energy/power consumption can be reduced (Afsar et al., 2022). Ac-
cording to Fernandes et al. (2022), between 2011 and March 2022, among the energy-efficient JSP
works published incorporated additional problem characteristics, 22 considered adjustable speed
machines and seven considered machines with multiple energy states.

Regarding adjustable speed machines, it is generally accepted that processing operations at a
higher speed lead to smaller processing times and larger energy requirements. Clearly, there exists a
conflict between processing time and required energy, and hence many different trade-off solutions
exist. The choice of the speed with which the machines process the operations can be used to re-
duce energy consumption while maintaining the level of service (e.g., makespan); for example, by
decelerating operations processing as much as possible without affecting any other operations. On
the other hand, such a choice can be used to improve the level of service (i.e., reduce the makespan)
while maintaining energy consumption; for example, by simultaneously speeding up the processing
of critical operations and slowing down the processing of non-critical ones. Furthermore, as shown
by Fontes et al. (2023), it is even possible, in some cases, to improve both the energy consumption
and the makespan simultaneously. Although not many works on the JSP with speed-adjustable
machines have yet been reported, an increasing trend can be observed in the literature (Fernandes
et al., 2022). This problem was first introduced by Tang and Dai (2015), who proposed a mixed
integer programming (MIP) model and a genetic and simulating annealing algorithm to improve
the energy consumption of a given schedule by adjusting the speed with which each operation is
processed. The results they reported show that, for small-sized instances, it is possible to reduce
the energy consumption, between 5% and 10%, without increasing (or increasing very slightly) the
makespan. For larger ones, the energy savings range from 0.5% to 4%, but the makespan increases
by 1% and up to 7%.

The power demands of manufacturing activities have been largely ignored, in favour of reducing
energy consumption or energy costs by minimizing energy consumption or time of use energy costs,
respectively. However, power consumption is a very important factor. On the one hand, usually,
industrial consumers have a contract that specifies a charge for energy consumption (i.e., the rate
at which each kWh is paid) and a charge for the maximum power (peak power) contracted; quite
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often, it is not possible or prohibitively expensive to go beyond the power limit contracted. On the
other hand, the (increasing) use of renewable energy sources cannot respond to surges in power
demand. Hence, to satisfy the peak power demand, which is increasing at a faster rate than the
average power demand, implies an increase in the infrastructure investment, which in turn, leads
to an increase in infrastructure costs. Therefore, all consumers end up paying more to satisfy their
energy needs.

Fang et al. (2011) seem to have been the first to address scheduling problems by tackling peak
power requirements directly. They propose a multi-objective MIP model for a flow shop prob-
lem with speed-adjustable machines that minimize the makespan, the peak power and the carbon
footprint. The model proved to be extremely difficult to solve as shown by resorting to a simple
two-machine flow shop with and without machine buffers. Later, they considered a similar prob-
lem, that is, a flow shop in which the makespan is to be minimized, and the maximum power (peak
power) required at any given time is limited to a given threshold (Fang et al., 2013). Two MIP for-
mulations are proposed, namely, a disjunctive formulation based on that of Manne (1960) and an
assignment and position formulation that is a variant of the one previously proposed by Fang et al.
(2011). The computational experiments were performed using the example in Fang et al. (2011).

However, work on the JSP considering power consumption is rare. As far as we know, only five
such works have been reported: some minimizing the power consumption and others imposing a
power consumption threshold (Kawaguchi and Fukuyama, 2016; Kemmoe et al., 2017; Masmoudi
et al., 2019; Gondran et al., 2020; Carlucci et al., 2023).

Kawaguchi and Fukuyama (2016) propose a reactive tabu search to find solutions to a JSP in
which every job is processed exactly once on each machine, and the machines have a single process-
ing speed. They propose a single-objective approach since they minimize the weighted sum of the
makespan and the total power consumed over the peak time interval (the daytime interval during
which electricity demand is higher). Additionally, they restrict the maximum power availability at
each time period in the peak time interval. Computational experiments were conducted on one in-
stance with six jobs and six machines in which the peak power interval contains 12 time periods.
The authors show that by imposing a power limit (10 kW) during the peak time interval and by
minimizing the total power consumed during that time interval, there is a shift in the power con-
sumed to time periods outside of the peak interval. However, it should be noticed that the power
peak observed outside the peak interval is very high (over 14 kW). Indeed, the power consumption
is not evenly distributed; actually, the highest values of power consumption are four times larger
than the lowest ones.

Kemmoe et al. (2017) propose a mixed-integer linear programming (MILP) model to minimize
the makespan in a job-shop system in which each job must be processed exactly once on each
machine and a power threshold, which cannot be exceeded at any time, is imposed. Although
machines have a single processing speed, operations have a power profile that includes more than
one segment and thus have a power consumption that varies with the processing stage. As in
Weinert et al. (2011), each operation is modelled as a set of sub-operations that are processed
consecutively without delays. Two sub-operations are considered: the first one consumes more
power than the second one. The disjunctive MILP model proposed is an improved version of that
of Kemmoé-Tchomté et al. (2015), which is based on the one proposed in Roy and Sussmann
(1964). Given the problem’s complexity, they also propose a greedy randomized adaptive search
procedure hybridized with an evolutionary local search (GRASP×ELS) metaheuristic, which Prins
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(2009) has shown to be successful on several combinatorial problems. The authors have generated
several problem instances to test their approaches. For small-sized instances, the GRASP×ELS
solutions were compared to the optimal solutions obtained by solving the MILP using CPLEX.
For larger instances, the GRASP×ELS was compared to two other heuristics: a variable neigh-
bourhood search (VNS) and a memetic algorithm (MA) adapted from the one reported in Wang
et al. (2012). The results have shown that the MILP model can only be solved optimality for very
small-sized instances. The optimality gap increases very quickly with instance size; for instances
with 32–40 operations (8–10 jobs and four machines), the optimality gap can be as high as 80%.
The VNS is the fastest of the three heuristics; however, it is also the worst regarding solution
quality. The GRASP×ELS and the MA find almost always the same best solution and require
a similar computational effort. Finally, the GRASP×ELS is the most robust as the standard
deviation values are the lowest. More recently, Gondran et al. (2020) address a similar problem; the
main difference being that the power threshold, not to be exceeded, is now minimized. Hence, they
address a bi-objective JSP, since they minimize both the makespan and the peak power, for which
they find a set of Pareto front schedules. As in Kemmoe et al. (2017), each operation is modelled as
a succession of two sub-operations that must be processed consecutively and without delays, each
with its own processing time and power demand. Two heuristics are proposed to find solutions
in the Pareto front, a hybrid NSGA-II (Deb et al., 2002) and an iterated GRASP×ELS adapted
from the one proposed in Kemmoe et al. (2017). The computational experiments involved a set
of 40 problem instances adapted from those proposed by Lawrence (1984) for the JSP. The results
show that, on average, the hybrid NSGA-II has better performance regarding solution quality and
distribution and a number of non-dominated solutions. However, the iterated GRASP×ELS finds
solutions with smaller makespans in the presence of higher peak power values.

Another work imposing a peak power limit is that of Masmoudi et al. (2019). They minimize
the total energy costs incurred, which are calculated by considering that the planning horizon is
divided into several time periods and associating a specific energy price with each of these peri-
ods. However, they do not consider productivity performance measures such as makespan. Fur-
thermore, the machines have only one single processing speed. Optimal solutions are obtained by
resorting to two MILP models, namely a disjunctive formulation based on that of Manne (1960)
and a time-indexed formulation based on that of Bowman (1959). They report computational ex-
periments involving one instance taken from Fisher and Thompson (1963) with six jobs and six
machines (mt06) and another taken from Lawrence (1984) with 10 jobs and five machines (la04).
From these two instances, they derived 90 instances. The results show that the time-indexed model
struggles to find feasible solutions; however, when it does the optimality gap is smaller than that of
the disjunctive model.

A JSP with peak power constraints and speed-adjustable machines was addressed, for the first
time, in Carlucci et al. (2023) where every job must be processed exactly once on each machine and
minimizes the makespan. As was the case in Kemmoe et al. (2017) and Masmoudi et al. (2019),
the approach proposed is a disjunctive mathematical model based on that of Manne (1960). They
report on two computational experiments conducted on one instance with three jobs and four ma-
chines, each with 20 possible speed values. The first experiment considers a constant power thresh-
old for the whole horizon, as this is, typically, the case when supplied by a utility company. Re-
garding the second case, a variable threshold is considered as this would be the case in the presence
of in-house renewable generation (e.g., photovoltaic system). As expected, the processing speed is
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adjusted to the available power and, hence, the value obtained for the makespan is larger in the
presence of power constraints. It was observed that in the presence of a variable power threshold,
most operations were processed at full speed when the (renewable) system supplies more power and
at the lowest speed when the power available is at its lowest. This is not surprising since the authors
are only concerned with the makespan. A more realistic version of this problem should optimize
the energy consumption along with the makespan.

As seen, very few works incorporate peak power constraints; however, it is common to have such
constraints in industry. The main motivations to consider peak power constraints are, on the one
hand, the nature of power and energy charges and contracts and, on the other hand, the several
issues associated with renewable energy production (intermittency, unpredictability and lack of af-
fordable power storage). Hence, this work addresses the JSP with peak power constraints. In line
with recent research on scheduling problems, we consider machines that can be operated at more
than one speed, that is, speed-adjustable machines. The speed choice impacts power consumption,
production time and energy consumption. Typically, the faster the processing speed the larger the
power consumption, the lower the processing time and the larger the energy consumption. There-
fore, since we are considering peak power limits (upper limits on the value of the maximum instant
power consumption), we optimize both the total production time (makespan) and the total energy
consumed. In contrast with the papers reviewed above, we consider that jobs may be processed once
or more on all machines or just on a subset of them; this way considering the additional flexibility
present in many modern manufacturing systems. The problem is formally defined and formulated
as a MILP model that can be solved to optimality, but only for small-sized instances. The prob-
lem understudy is very complex; indeed, it extends the JSP, which is an NP-hard problem. Hence,
heuristic approaches are needed to be able to solve more reasonably sized problem instances. To
that end, we propose a multi-objective and multi-population biased random key genetic algorithm
(BRKGA) based on that of Fontes and Homayouni (2023).

This work can provide decision-makers and production managers with a tool that balances pro-
ductivity and energy efficiency while complying with power consumption restrictions, resulting in
production plans that align with power availability. Additionally, the smother power profile and the
lower power and energy peaks are of uttermost importance since, if generalized, can contribute to
preventing fast degradation of the power grid, reducing energy production costs for all and help-
ing a further increase, at a faster pace, the renewable energy penetration. Recall that the industrial
sector is known to be the first energy consumer and greenhouse gas emitter in the world.

Hence, the contributions of this work are several: First, we contribute to the definition of a vari-
ant of the JSP that considers a shop floor in which (1) the jobs may be processed once or more
on all machines or just on a subset of them and (2) the machines are speed adjustable, that is, the
machines are capable of processing operations at one of the possible processing speeds as well as
peak power constraints, for which we develop a MILP model. To the best of our knowledge, finding
a schedule complying with peak power constraints for a job shop environment consisting of a set of
speed-adjustable machines and a set of jobs that can be processed once or more on all or a subset
of the given machines while minimizing both the makespan and the energy consumption has never
been considered. Second, we proposed a new BRKGA that, based on that of Fontes and Homay-
ouni (2023), adapts the BRKGA framework of Gonçalves and Resende (2011) by simultaneously
optimizing two objectives and simultaneously evolving several single-objective and multi-objective
populations (mop-BRKGA). Finally, we provide extensive computational experiments to assess the
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efficacy of the developed mop-BRKGA and provide relevant managerial insights since by adjusting
the processing timings, and the speed of the machines they can adapt the schedules to obtain differ-
ent trade-offs involving productivity, energy and power. Furthermore, the set of trade-offs provides
alternative solutions and information that can be used to discuss and negotiate the power thresh-
olds. This way, managers are provided with a tool that allows them to analyse and rethink their
production objectives and practices.

The remainder of this paper is organized as follows. The problem is formally defined in Sec-
tion 2. Section 3 describes the mop-BRKGA proposed, and Section 4 reports the computational
experiments. Finally, Section 5 draws some conclusions and points out future research directions.

2. Problem definition and formulation

The classical JSP comprises a set J of independent jobs and a set I of machines. Each job comprises
a set O j = {1, 2, . . . , n j},∀ j ∈ J of n j ordered operations. Each operation must be processed on
a predefined machine without preemption. Machines can only process one operation at a time
and jobs can only be processed on one machine at a time. Machine buffers are large enough to
accommodate any reasonable number of jobs; hence, whenever a machine finishes processing an
operation, it can start processing the next operation immediately. Additionally, operations can be
processed as soon as the previous operation of the same job is completed, or immediately if it is
the job’s first operation. However, both the machine and the job need to be available to process
an operation.

The problem understudy considers speed-adjustable machines; that is, machines that can process
each operation at one of the available speeds, each requiring a predefined time and power. Usually,
higher processing speeds imply lower processing times and higher instant power requirements. Ma-
chines not actively processing operations are considered in ‘stand-by’ mode with negligible power
requirements. Moreover, we consider that each job may be processed on all machines or a subset of
them and that the machines processing a job may process it once or more. Lastly, we also consider
peak power constraints.

Among all possible solutions, we are interested in those that provide trade-offs between the
makespan and the energy consumed to process all production operations, since we are interested in
minimizing both of them. Thus, the energy-efficient JSP with speed-adjustable machines and peak
power constraints, designated as EEJSPpp

sa , requires determining simultaneously the operations se-
quence on each machine (machine sequencing), the processing start time of each operation and
the speed with which each operation is processed (speed assignment) while ensuring that the in-
stant power requirements satisfy the peak power limits. Next, we provide a formal statement of the
EEJSPpp

sa by formulating it as a MILP model. Let us first introduce the notation used.

Sets, indices and parameters:

I: Set of machines indexed by m;
O: Set of operations indexed by k, l ;
O′: Set of jobs’ first operation;
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F : Set of operation pairs that cannot be processed consecutively, i.e., pairs of operations that
do not satisfy the precedence constraints F = {(k, l ) : l ≤ k, k, l ∈ O j, j ∈ J }.

T : Set of time periods indexed by t;
Vl : Set of speeds available to process operation l ∈ O;
ml : Machine processing operation l ∈ O;
τ v

l : Processing time of operation l ∈ O at speed v ∈ Vl ;
ρv

l : Instant power required to process operation l ∈ O at speed v ∈ Vl ;
P l imit

t : Maximum instant power available at time t ∈ T ;

Decision and auxiliary variables:

xv
kl : Binary variable set to 1 if a machine processes consecutively operations k, l ∈ O and the latter

is processed at speed v ∈ Vl and set to 0 otherwise (recall that xv
kl is only defined if (k, l ) �∈ F);

wv
lml

: Binary variable set to 1 if operation l ∈ O is the first operation on machine ml and is processed
at speed v ∈ Vl and set to 0 otherwise;

zlml : Binary ‘dummy’ variable set to 1 if operation l ∈ O is the last operation on machine ml and
set to 0 otherwise;

sl : Starting time of operation l ∈ O;
cl : Completion time of operation l ∈ O;
θ v

lt: Binary variable set to 1 if operation l ∈ O is being processed at speed v ∈ Vl at time t ∈ T and
set to 0 otherwise;

ylt: Binary auxiliary variable set to 1 if operation l ∈ O has been started at or before time t ∈ T
and set to 0 otherwise;

qlt: Binary auxiliary variable set to 1 if operation l ∈ O is concluded at or after time t ∈ T and
set to 0 otherwise;

ρt: Total instant power required at time t ∈ T ;
C: Makespan, total time required to process all operations;
E : Total energy consumed to process all productions.

Minimize:{C, E} (1)

Subject to:

C ≥ cl , ∀l ∈ O, (2)

E =
∑

k,l∈O

∑
v∈Vl

ρv
l τ

v
l xv

kl +
∑
l∈O

∑
v∈Vl

ρv
l τ

v
l wv

lml
, (3)

∑
v∈Vl

wv
lml
+
∑
k∈O

∑
v∈Vl

xv
kl = 1, ∀l ∈ O, (4)

∑
k∈O

∑
v∈Vl

xv
lk + zlml = 1, ∀l ∈ O, (5)

∑
l∈O

∑
v∈Vl

wv
lml
= 1, ∀m ∈ I, (6)
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l∈O

zlml = 1, ∀m ∈ I, (7)

sl ≥ cl−1, ∀l ∈ O \O′, (8)

sl ≥ ck +M

⎛
⎝∑

v∈Vl

xv
kl − 1

⎞
⎠, ∀k, l ∈ O, (9)

cl = sl +
∑
k∈O

∑
v∈Vl

xv
klτ

v
l +

∑
v∈Vl

wv
lml

τ v
l , ∀l ∈ O, (10)

ρt =
∑
l∈O

∑
v∈Vl

θ v
ltρ

v
l , ∀t ∈ T , (11)

Mylt ≥ t − (sl − 1), ∀l ∈ O, t ∈ T , (12)

Mqlt ≥ (cl + 1)− t, ∀l ∈ O, t ∈ T , (13)

2+ θ v
lt ≥ ylt + qlt +

(∑
k∈O

xv
kl + wv

lml

)
, ∀l ∈ O, v ∈ Vl , t ∈ T , (14)

ρt ≤ P l imit
t , ∀t ∈ T , (15)

C, E, cl , sl , ρt ≥ 0, ∀l ∈ O, t ∈ T , (16)

xv
kl , wv

lml
, zlml , ylt, qlt, θ

v
lt ∈ {0, 1}, ∀k, l ∈ O, v ∈ Vl , t ∈ T . (17)

As stated by Equation (1), the objective function minimizes two objectives, namely the makespan
and the total energy consumption. The makespan is given by the completion time of the last job
(constraints (2)), while the total energy consumption is given by the summation, over all operations,
of the energy consumed to process the operations (Equation (3)).

Constraints (4) and (5) ensure, respectively, that each operation is either the first operation of a
machine or it is preceded by another operation and that each operation is either the last operation
of a machine or is followed by another operation. Each machine has exactly one first operation and
one last operation as enforced by constraints (6) and (7), respectively.

Constraints (8)–(10) set the starting and completion time of the operations. An operation can
only be started after the completion of the previous operation of the same job (constraints (8)) and
the completion of the previous operation processed on the same machine (constraints (9)). Finally,
the operation completion time is given by adding the operation processing time to its starting time
(constraints (10)).

Peak power constraints are enforced through constraints (11)–(15). In constraint (11), the in-
stant power required at time t is calculated by adding the required instant power (to process the
operations at the chosen speed) of all operations being processed at time t. An operation is being
processed at time t if it has been started at or before time t and is concluded at or after time t, this
is determined by constraints (12) and (13), respectively. Hence, the operations being processed at
speed v at time t are determined in constraints (14) as the ones that have been started at or before
time t, concluded at or after time t and processed at speed v. Finally, constraints (15) ensure that
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the instant power required at any time is at most its availability. Lastly, constraints (16) and (17)
specify the variables’ domain.

3. The proposed multi-objective BRKGA

BRKGAs have been successfully proposed and implemented to find good quality solutions in
several applications, (e.g., Gonçalves et al., 2016; Brandão et al., 2017; Andrade et al., 2021;
Kummer et al., 2024; Lima et al., 2024; Homayouni et al., 2023). The multi-objective and multi-
population BRKGA proposed here (mop-BRKGA) is based on that of Fontes and Homayouni
(2023) and adapts the BRKGA framework, first proposed in Gonçalves and Resende (2011). The
mop-BRKGA evolves �+� populations: each of the � populations considers one of the � objec-
tives, while each of the � populations considers simultaneously all � objectives. The initial popu-
lations are randomly generated. Additionally, for the � populations, in 20% of the initial solutions
we set the processing speeds to the maximum or the minimum value depending on whether the ob-
jective under consideration is the makespan (C) or the total energy consumption (E), respectively.

3.1. The evolutionary strategy

The evolutionary strategy used in this study is similar for all populations. At each generation, a new
population is created by combining three sets of solutions: (i) the set of elite solutions of the current
population, which consists of the best ne solutions; (ii) the set of offspring solutions, which consists
of no solutions generated through crossover (see subsection 3.4); and (iii) the set of mutant solutions,
which consists of nm solutions randomly generated in the same manner as the initial population.

For each of the ω ∈ � single-objective populations, the set of elite solutions Nω
e comprises the

best ne solutions based on the population-specific fitness function. Regarding each of the π ∈ �

multi-objective populations, the set of elite solutions Nπ
e comprises the best ne solutions chosen

from a pool of solutions consisting of the best ne solutions of its current population and the best
ne solutions of the current population of each of the � single-objective populations. (Repeated
solutions are removed.) Additionally, every so often, the pool of solutions also includes the best ne
solutions of the other multi-objective populations. Therefore, the pool of solutions may have up to
(�+�)× ne solutions. However, only the best ne solutions of the pool are of interest. Regarding
multi-objective populations, to find the best solutions we resort to the non-dominated ranking
procedure to rank them and the crowding distance to sort the solutions of the same rank (Deb
et al., 2002).

The evolutionary process, that is, the process of creating and selecting the best solutions is re-
peated for a predetermined number of generations Gmax. In the end, a final pool of solutions is
created by joining the best ne solutions of each of the � single-objective populations and the non-
dominated solutions of the � multi-objective populations. After removing all repeated solutions
and all dominated solutions, we are left with a set of Pareto solutions that provide an approxima-
tion to the Pareto optimal front.
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Fig. 1. Solution encoding and decoding for an EEJSPpp
sa with four jobs with three operations each that can be processed

at one of the two/three available speeds.

Table 1
Data of the first problem instance (Yin et al., 2017)

Jobs Operations Machines τ v
l (ρv

l ) Jobs Operations Machines τ v
l (ρv

l )

v = 1 v = 2 v = 3 v = 1 v = 2 v = 3

1 1 1 14(2) 7(5) 6(8) 3 7 1 6(2) 5(5) 4(8)
2 2 7(2) 6(4) 8 4 5(3) 4(5)
3 3 8(4) 7(7) 9 5 13(5) 12(8) 8(10)

2 4 5 7(5) 6(8) 5(10) 4 10 3 9(4) 6(7)
5 2 4(2) 3(4) 11 4 6(3) 3(5)
6 4 7(3) 4(5) 12 1 5(2) 3(5) 2(8)

3.2. Encoding and decoding

A solution to the EEJSPpp
sa is represented by a two-part vector, each of which with N elements,

where N =∑ j∈J n j is the total number of operations to be scheduled across all jobs, J is the set of
all jobs and n j is the number of operations of job j. The first part of the vector provides a sequence
of operations, indicating the order in which the operations are to be scheduled, and the second part
assigns a processing speed to each operation.

Each element of the vector is represented by a random key (RK), which is a real number in the
interval [0, 1]. By using this encoding scheme, we are able to represent a wide range of potential
solutions to the EEJSPpp

sa . Additionally, the use of random keys enables the efficient exploration
of the solution space as well as the quick identification of high-quality solutions. Figure 1a il-
lustrates the proposed encoding for an EEJSPpp

sa involving four jobs with three operations each
that can be processed at one of the available speeds (two or three, depending on the operation
under consideration). The full data for the problem instance (Yin et al., 2017) is provided in
Table 1.

The decoding procedure for the first N elements of the vector resorts to the smallest position
value rule (Bean, 1994) to obtain a permutation representation of the random keys, where the
elements are sorted in ascending order. This provides a sequence of operations, as shown in part
(i) of Fig. 1b. The permutation is then converted into a feasible sequence of operations by sorting
the operations of each job in ascending order to ensure the precedence constraints, as illustrated in
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Algorithm 1. Earliest priority scheduling

1: Initialize the ordered set of unscheduled operations U and the set of associated processing speeds Vl ;
2: while U �= ∅ do
3: Consider the first operation in U , l , and its processing speed vl ;
4: Determine the EPSl and set the current time t1 ← EPSl ;
5: while Operation l is not scheduled do
6: if ρ

vl
l ≤ P limit

t , ∀t ∈ {t1, . . . t1 + τ
vl
l } then

7: Schedule the operation, sl ← t1, cl ← t1 + τ
vl
l , and cml ← cl ;

8: Update the remaining power, P limit
t ← P limit

t − ρv
l , ∀t ∈ {sl , . . . cl };

9: else
10: Update current time, t1 ← min

k∈O\U
{ck : ck > t1};

11: end if
12: end while
13: Update the set of unscheduled operations, U ← U \ {l};
14: end while
15: Return the schedule and the values of C and E .

part (i) of Fig. 1c. The second part of the chromosome assigns a processing speed to each operation,
which is the smallest integer greater than or equal to RKl × |Vl |, where |Vl | is the number of speeds
available to process operation l , as depicted in part (ii) of Fig. 1c. The decoding procedure generates
only solutions that satisfy the precedence constraints of the operations, significantly reducing the
search space and eliminating the need for repair mechanisms.

3.3. Scheduling strategy

After determining the operations’ sequence and processing speeds, we still have to determine the
(processing) starting time of each operation. An operation, say l , can only be processed once the
previous operation of the same job (l − 1) is completed, which happens at time cl−1, and the re-
quired machine (ml ) is available, which happens when the previous operation on the same machine
has been completed (cml ). Thus, the earliest possible starting (EPS) time of an operation is either
cml , if l is the first operation of a job, or max{cl−1, cml }, otherwise. However, not all operations may
be started at their EPS, since the (remaining) available power at the EPS might not be enough to
process them at the chosen speed. Hence, to determine the actual starting time of each operation we
propose an earliest priority scheduling scheme that (i) considers the operations in the order given by
the first part of the chromosome and (ii) starts each operation as soon as possible. This scheduling
strategy is articulated in Algorithm 1.

The ordered set of unscheduled operations U is initialized with all operations in the order deter-
mined by the decoding scheme previously described. The operations are then considered, one at a
time, in the given order, and for each operation its EPS is calculated (lines 3 and 4). If possible, that
is, if there is enough available power, the operation is scheduled to start at its EPS; otherwise, we
search for the closest time with enough power to schedule it (lines 5–12). This procedure is repeated
until all operations have been scheduled. Note that whenever an operation cannot be scheduled

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.



206 S. M. Homayouni and D. B. M. M. Fontes / Intl. Trans. in Op. Res. 32 (2025) 194–220

Fig. 2. Gantt chart solution associated with the operations’ sequence and speeds provided in Fig. 1, while enforcing the
15 kW power limit and the corresponding power profile.

at its EPS due to insufficient power availability, we only check future time periods at which an
operation is completed since only at those some power is released (line 10).

Let us now illustrate the complete solution obtained after applying the decoding procedure and
the scheduling strategy just described for the problem instance in Table 1 imposing a peak power
limit of 15 kW. In Table 1, for each operation of each job, we provide information on the processing
machine as well as the processing time (in minutes) and power consumption (in kW) required to
process it at each of the available speeds. Each operation l ∈ O has a constant power consumption
ρv

l over its duration τ v
l and an energy consumption given by ρv

l τ
v
l , with v ∈ Vl . We obtain the com-

plete solution, which is represented by the Gantt chart depicted in Fig. 2 by applying the earliest
priority scheduling strategy to the decoded chromosome represented in Fig. 1c.

The makespan, that is, the time required to process all operations is 37 minutes and the total

energy consumption is
∑

l∈O ρ
vl
l

τ
vl
l

60 = 5.8 kWh. As it can be seen in Fig. 2, the peak power limit
affects the schedule. The power limit prevents four operations (operations 1, 6, 9 and 12) from
being scheduled at their earliest possible starting time. Hence, they must be postponed to a time
at which there is enough available power; this is depicted by the red circles. Note that although we
have set a peak power limit of 15 kW, the power requirements are typically well below that value.
Indeed, the peak power demanded ranges from 5 kW (in six time periods) to 14 kW (in three time
periods), this is also shown in Fig. 2.

If no power limit is imposed, the makespan comes down from 37 to 32 minutes, about 13.5%
lower. However, the peak power demanded goes up to 19 kW, over 26% higher. Furthermore, the
power profile shows a much larger variability (see Fig. 3).
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Fig. 3. Gantt chart solution associated with the operations’ sequence and speeds provided in Fig. 1 with no power limit
and corresponding power profile.

3.4. Crossover procedure

The offspring solutions are generated through biased parameterized uniform crossover (Gonçalves
and Resende, 2012; Homayouni et al., 2023), for all populations. The parents selection process is
biased since one of the parents is always chosen from the set of elite solutions. By doing so, we
ensure that one good solution is always chosen, which tends to lead to better and fitter offspring.
However, to prevent a solution (or a few solutions) from taking over the entire population in a few
generations (i.e., premature convergence), the other parent is chosen from the remaining popula-
tion.

To generate a new solution, we combine the genetic material of the selected parents by resorting
to a biased uniform crossover operator. Hence, we consider one gene at a time and ‘flip a coin’
to decide whether the offspring inherits the gene from the elite parent or the other parent. Bias is
introduced by giving a higher chance to inherit the gene of the elite parent. Hence, the crossover
probability pe is larger than 0.5, which ensures that the offspring will have more genetic material
from the elite parent.

Figure 4 illustrates the crossover procedure used considering a 0.7 crossover probability. Once
the two parents have been selected, we create a mapping vector by generating a random number
between 0 and 1 for each gene. To obtain the offspring we copy the gene from the elite parent
whenever the corresponding value of the mapping vector is less than or equal to 0.7 and from the
non-elite parent otherwise. In the example given, 15 genes are taken from the elite parent and nine
from the non-elite one; as expected the offspring resembles the elite parent the most.
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Fig. 4. Crossover procedure: obtaining an offspring solution by resorting to the parameterized crossover with a 0.7
crossover probability.

4. Computational experiments

We address the JSP with speed-adjustable machines and peak power constraints while minimiz-
ing both the makespan and the energy consumption. The JSP instances proposed in Salido et al.
(2016) and Yin et al. (2017), which have all the required data, are used in our computational ex-
periments. Both works propose a single-objective genetic algorithm that finds solutions to the JSP
with speed-adjustable machines while minimizing the normalized weighted sum of the makespan
and the energy consumption in Salido et al. (2016) and of the makespan, the energy consumption
and the noise emissions in Yin et al. (2017).

In total, we consider 33 problem instances. The 30 instances proposed in Salido et al. (2016) all
have three jobs and machines that can be operated at one of three speeds. These instances can be
divided into three groups with 10 instances each: in the first group (Sal01–Sal10) all jobs have five
operations that are to be processed on three machines, in the second group (Sal11–Sal20) all jobs
have 10 operations that are to be processed on seven machines and in the third group (Sal21–Sal30)
all jobs have 25 operations that are to be processed on three machines. The other three instances
are designated Yin01, Yin02 and Yin03 and have four, 10 and 20 jobs with a total of 12, 40 and 60
operations, respectively. Instances Yin01 and Yin03 have five machines each, while instance Yin02
has six machines. Some machines have two processing speeds, while others have three (all instances
can be downloaded from https://fastmanufacturingproject.wordpress.com/problem-instances).

The MILP model was solved using Gurobi® 10.0. and the mop-BRKGA was coded in Python®

3.8. All computational experiments were carried out on a 3.20-GHz Intel® Core
TM

i7-8700 PC with
24 GB RAM.

We were able to find solutions for all small-sized instances using both the MILP model and the
mop-BRKGA. However, the MILP model could only be solved to optimality for medium-sized
instances when no peak power constraints were imposed. For the large-sized instances, the MILP
model could not find any feasible solutions within a reasonable time, even without considering peak
power constraints. It is worth noting that both the number of decision variables and the number
of constraints increase with problem instance size. Furthermore, since the magnitude of the total
processing time increases, the number of time instants also increases, which in turn leads to a further
increase of both the number of decision variables and the number of constraints.
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The MILP model was solved by employing a strategy that combines the ‘lexicographic’ and the
ε-constraint methods, as proposed in Fontes et al. (2023). First, we obtain optimal boundary solu-
tions by solving two single-objective MILP models: One model (model A) optimizes the makespan,
and the other model (model B) optimizes the energy consumption. Second, each of these mod-
els is solved again, this time while optimizing one of the objectives we must ensure the previously
found optimal value for the other. Then, we solve a series of single-objective pairs of MILP models
(models A and B): model A optimizes the makespan with an additional constraint imposing a de-
creasing upper bound on the energy consumption followed by model B that optimizes the energy
consumption while enforcing the makespan found by model A.

The mop-BRKGA was run with the problem-independent parameters set according to literature
recommendations as follows: the number of elite solutions to be passed onto the next population
was set to ne = 0.2P, the number of mutants introduced into the next population to nm = 0.1P,
and the crossover probability to pe = 0.7 (see, e.g., Gonçalves and Resende, 2011; Fontes and
Gonçalves, 2013; Roque et al., 2014). The problem-dependent parameters we set based on our pre-
vious experience are as follows: population size P = 20N, number of generations Gmax = 300, num-
ber of bi-objective populations � = 2 and number of generations after which the multi-objective
populations exchange the best solutions gex = 30 (Fontes and Gonçalves, 2013; Fontes et al., 2023;
Homayouni et al., 2023).

4.1. Performance evaluation

To infer the quality of the mop-BRKGA solutions, we use performance indicators of three groups,
namely, convergence, distribution and spread (Audet et al., 2021) and cardinality. Convergence in-
dicators measure the degree of proximity between the true Pareto front (PF∗) and its approximation
(PF). In this study, we used the modified generation distance GD+ that provides information on the
average distance between each element of PF and its closest neighbour in PF∗ and is calculated as
in Equation (18).

GD+(PF) = 1
n

n∑
i=1

min
j∈PF∗

√(
max

{
Ci −Cj, 0

})2 + (max
{
Ei − Ej, 0

})2
. (18)

Among the distribution and spread indicators, we chose the spread 
 as it captures both the
properties of spread and uniformity that indicate the variation of the distance between consecutive
elements of PF as well as the extent of PF. This indicator is particularly interesting for bi-objective
problems and is calculated as


(PF) = du + db +
∑n−1

i=1

∣∣di − d̄
∣∣

du + db + d̄ (n− 1)
, (19)

where n is the number of solutions in PF; di is the Euclidean distance between the objective function
values of two consecutive solutions; d̄ is the average distance, over all di distances; and du and db
are the Euclidean distances between the two extreme solutions of PF (i.e., the boundary solutions
obtained by the mop-BRKGA) and those of PF∗ (i.e., the boundary solutions obtained by the
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Table 2
Results: small-sized problem instances when no power limit is imposed

Instances MILP mop-BRKGA Performance indicators

Ins J-N-M P l imit
t C∗ E C E∗ |PF∗| T C∗ E C E∗ |PF| T δC δE GD+ 


Yin01 4-12-5 21 22 5.81 35 4.82 8 26.8 22 5.81 35 4.82 8 45.4 0.0 0.0 0.0000 0.4452
Sal01 3-15-3 266 34 112 54 79 17 1683.5 34 112 54 79 17 44.1 0.0 0.0 0.0280 0.2844
Sal02 3-15-3 362 46 177 79 116 29 5455.0 46 177 79 116 29 44.4 0.0 0.0 0.0153 0.4371
Sal03 3-15-3 258 39 122 63 73 23 4708.1 39 122 63 73 23 44.7 0.0 0.0 0.0171 0.4022
Sal04 3-15-3 248 39 127 65 70 25 2840.4 39 127 65 70 25 45.3 0.0 0.0 0.0384 0.3547
Sal05 3-15-3 337 34 127 54 80 20 2820.7 34 127 54 80 20 44.9 0.0 0.0 0.0117 0.3868
Sal06 3-15-3 222 45 119 72 88 21 6872.6 45 119 72 88 21 45.1 0.0 0.0 0.0061 0.3657
Sal07 3-15-3 295 38 107 60 69 20 1853.7 38 107 60 69 20 44.3 0.0 0.0 0.0200 0.3953
Sal08 3-15-3 268 40 128 63 68 23 4737.0 40 128 63 68 23 44.7 0.0 0.0 0.0209 0.3030
Sal09 3-15-3 354 49 150 75 105 26 9415.5 49 150 75 105 26 45.1 0.0 0.0 0.0175 0.3231
Sal10 3-15-3 319 46 163 73 96 27 11137.0 46 163 73 96 27 44.6 0.0 0.0 0.0308 0.3020
Mean 39.3 121.6 63.0 77.2 21.7 4686.4 39.3 121.6 63.0 77.2 21.7 44.8 0.0 0.0 0.0187 0.3636

MILP model). Regarding cardinality indicators, we consider the total number of non-dominated
solutions generated by the mop-BRKGA (|PF|) and by the MILP model (|PF∗|). We also calculate
the average percentage deviation between the values of the MILP boundary solutions and those of
the mop-BRKGA (see Equations (20) and (21)).

δC = 100×
√(

C∗GA −C∗MILP

C∗MILP

)2

+
(

EGA − EMILP

EMILP

)2

, (20)

δE = 100×
√(

CGA −CMILP

CMILP

)2

+
(

E∗GA − E∗MILP

E∗MILP

)2

. (21)

To capture the stochastic nature of our proposed solution approach, the mop-BRKGA was run
10 times for each problem instance. The values of the performance indicators are averaged over the
10 runs. Additionally, we provide the results for the best boundary solutions obtained by MILP
and mop-BRKGA for each problem instance.

4.2. Results for EEJSPpp
sa

First, we solved all instances while disregarding the power limit and determined the peak (i.e.,
largest instant) power consumption (PP) over the planning period. Then, the instances are solved
again considering that only 80% of PP is available, that is, P l imit

t = 0.8× PP, ∀t ∈ T . A summary
of the results for small-sized instances is reported in Tables 2 and 3. These tables have four parts:
the first part, which has three columns, reports the problem instances characteristics (J, number
of jobs; N, total number of operations; M, number of machines; and P l imit

t , instant power limit);
the second and third parts, which have six columns each, report the Pareto boundary solutions
(optimal makespan C∗ and corresponding energy consumption E and optimal energy consumption
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Table 3
Results: small-sized problem instances when a limit of 80% of the maximum power is imposed

Instances MILP mop-BRKGA Performance indicators

Ins J-N-M P l imit
t C∗ E C E∗ |PF∗| T C∗ E C E∗ |PF| T δC δE GD+ 


Yin01 4-12-5 16 23 5.97 35 4.82 7 28.0 24 5.65 35 4.82 6 123.2 6.9 0.0 0.0278 0.5969
Sal01 3-15-3 200 37 101 54 79 14 1211.8 38 101 54 79 14 88.7 3.5 0.0 0.0522 0.3380
Sal02 3-15-3 281 48 165 79 116 27 6533.1 48 165 79 116 27 90.4 2.1 0.0 0.0126 0.4484
Sal03 3-15-3 201 43 111 63 73 21 5294.2 43 115 63 73 21 88.4 3.6 0.0 0.0265 0.3849
Sal04 3-15-3 168 44 105 65 70 20 3541.1 44 105 65 70 20 89.6 1.1 0.0 0.0359 0.3169
Sal05 3-15-3 237 35 118 54 80 19 3476.7 35 118 54 80 19 86.7 0.0 0.0 0.0249 0.3275
Sal06 3-15-3 173 47 122 72 88 19 6445.7 48 114 72 88 18 88.5 5.3 0.0 0.0108 0.4901
Sal07 3-15-3 226 39 102 60 69 19 2044.5 39 102 60 69 18 88.8 4.4 0.0 0.0099 0.4416
Sal08 3-15-3 206 43 117 63 68 20 4752.5 43 117 63 68 20 87.9 0.0 0.0 0.0171 0.2878
Sal09 3-15-3 258 50 149 75 105 25 12446.1 50 149 75 105 25 88.9 0.0 0.0 0.0101 0.3009
Sal10 3-15-3 253 48 153 73 96 25 10141.9 49 152 73 96 24 88.1 3.0 0.0 0.0367 0.3438
Mean 41.5 113.5 63.0 77.2 19.6 5083.2 41.9 113.1 63.0 77.2 19.3 91.7 2.7 0.0 0.0240 0.3888

E∗ and corresponding makespan C), the number of Pareto solutions |PF| and the computational
time for the MILP and the mop-BRKGA, respectively; and the last part, reports the mop-BRKGA
performance, that is, the average value of the four performance indicators (δC, δE , GD+ and 
) over
the 10 runs. It is worthwhile to notice that the MILP model runs multiple times to find the non-
dominated solutions in PF∗. Therefore, for each instance, the reported computational time refers to
the total running time required to find all non-dominated solutions. In contrast, the mop-BRKGA
finds the entire PF at once, resulting in a computational time equivalent to its running time.

Regarding the solutions found when no power limit is imposed, the PFs found by the mop-
BRKGA are well populated and provide good approximations to the PF∗s found by solving the
MILP model. The average number of non-dominated solutions found by the mop-BRKGA, over
the 10 runs of each of the 11 small-sized instances, is the same as that of the MILP model. As it
can be seen from the results reported in Table 2, the mop-BRKGA found all optimal boundary
solutions (two for each problem instance). Moreover, the Pareto fronts found by the mop-BRKGA
are quite close to the MILP one, as can be seen by the reported values of the modified generation
distance (a measure of proximity). Furthermore, these fronts are also well spread and uniform
as shown by the low values obtained for the spread. The mop-BRKGA takes significantly less
computation time; on average, it takes about only 1% of the computation time required by the
MILP model. This shows that the mop-BRKGA not only provides highly accurate approximations
of the PF∗s but it also does so very quickly. It should be noted that in these instances all operations
can be scheduled at their earliest feasible times; hence, the mop-BRKGA does not make use of the
earliest priority scheduling algorithm (Algorithm 1).

Table 3 shows the results when the available instant power is restricted to 80% of the peak power
used when no limits are imposed. However, as it can be seen in Table 3, the instant peak power us-
age is actually lower than the power available. For example, in Sal04, although the available instant
power is 0.8× 248 = 198 kW, the power used has a peak value of 168 kW. On average, although
the available power is 80% of that reported in Table 2, the peak power demand is just about 75%
of that value, ranging from under 68% to under 79% of the original value. The best makespan
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Table 4
Results: Medium-sized problem instances without power limits and when a limit of 80% of the maximum power is im-
posed

No peak power constraint 80% of PP is available

Instances MILP mop-BRKGA mop-BRKGA

Ins J-N-M P l imit
t C∗ E C E∗ C∗ E C E∗ C∗ E C E∗

Yin02 10-40-6 38 40 18.31 56 17.73 40 18.31 56 17.73 43 18.54 56 17.73
Sal11 3-30-7 343 645 2192 1056 1309 645 2192 1056 1309 656 2292 1056 1309
Sal12 3-30-7 380 620 2597 969 1542 620 2597 969 1542 647 2554 969 1542
Sal13 3-30-7 388 729 3295 1205 2162 729 3295 1205 2162 756 3065 1205 2162
Sal14 3-30-7 440 527 2530 804 1396 527 2530 804 1396 536 2468 804 1396
Sal15 3-30-7 339 638 2656 1082 1485 638 2656 1082 1485 682 2411 1082 1485
Sal16 3-30-7 293 693 2672 1145 1722 693 2672 1145 1722 781 2521 1145 1722
Sal17 3-30-7 375 588 1951 894 1301 588 1951 894 1301 588 2018 894 1301
Sal18 3-30-7 394 630 2957 989 1818 630 2957 989 1818 651 2808 989 1818
Sal19 3-30-7 409 585 2514 960 1595 585 2514 960 1595 593 2480 960 1595
Sal20 3-30-7 326 604 2296 959 1384 604 2296 959 1384 629 2126 959 1384
Mean 572.6 2334.4 919.9 1430.2 572.6 2334.4 919.9 1430.2 596.5 2251.0 919.9 1430.2

increases slightly; on average, it is under 6% larger, while, at the same time, the corresponding
energy consumption decreases, on average, by just under 6%, ranging from about 3% larger to 17%
lower. Furthermore, when the energy consumption is the main consideration, an average, peak
power reduction of about 75% is accomplished at no cost as both the production time and the
production energy are the same. The consideration of peak power constraints appears to increase
the difficulty of solving the problem to optimality, as indicated by the longer computational times
reported for the MILP model. On average, peak power constraints result in an 8.5% increase
in computational time. Introducing peak power constraints and incorporating the execution of
the earliest priority scheduling algorithm (Algorithm 1) also leads to a twofold increase in the
computational time of the mop-BRKGA. Nevertheless, it does not seem to impact the performance
of the mop-BRKGA, except for a slight increase in the values of the average percentage deviation
between the best makespan values. The values of the modified generation distance and the spread
are slightly larger; however, they remain very low.

In the presence of peak power constraints, the MILP model was unable to find any feasible
solution for medium-sized instances. However, if no peak power constraints are considered, the
MILP model can be solved to optimality. Table 4 reports the boundary solutions obtained by both
the MILP model and the mop-BRKGA without peak power constraints as well as the solutions
found by the mop-BRKGA when only 80% of the previously used peak power is available. The
mop-BRKGA is able to find boundary solutions for all medium-sized instances.

As it can be seen, a reduction of about 20% of the power availability leads to an average increase
in the minimum makespan C∗ of about 4% while accomplishing, at the same time, a reduction of
the corresponding energy consumption E of almost 4%. On the other hand, the minimum energy
consumption E∗ and corresponding makespan C remain the same. On average, the mop-BRKGA
solves medium-sized problems in approximately 62.5 seconds when there are no peak power con-
straints and 310 seconds when such constraints are imposed. This suggests that Algorithm 1 may
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Table 5
Results: Large-sized problem instances without power limits and when a limit of 80% of the maximum power is imposed

Instances No peak power constraint 80% of PP is available

Ins J-N-M P l imit
t C∗ E C E∗ |PF| C∗ E C E∗ |PF|

Yin03 20-60-5 35 62 22.86 111 20.96 31 62 23.29 111 20.96 20
Sal21 3-75-3 473 1524 6191 2502 3542 56 1649 6067 2502 3542 48
Sal22 3-75-3 367 1996 7390 3065 4458 67 2139 7013 3100 4458 60
Sal23 3-75-3 425 1678 6506 2810 3469 63 1782 6926 2810 3469 58
Sal24 3-75-3 455 1684 6538 2884 3760 53 1721 6550 2922 3760 65
Sal25 3-75-3 373 1611 6413 2641 3891 47 1715 6104 2628 3891 46
Sal26 3-75-3 476 1530 6207 2488 3739 52 1549 6228 2505 3739 40
Sal27 3-75-3 453 1507 5988 2544 3159 58 1563 5654 2547 3159 57
Sal28 3-75-3 477 1607 6782 2625 4001 71 1634 6630 2625 4001 54
Sal29 3-75-3 401 1814 7087 3125 4056 54 1853 7270 3125 4056 45
Sal30 3-75-3 375 1853 6885 3173 4203 52 1931 6621 3173 4203 70
Mean 1533.3 6000.9 2542.5 3481.7 54.9 1599.8 5916.9 2549.8 3481.7 51.2

be quite time consuming, but it is still reasonable for this class of problem instances. Nevertheless,
the variability of the running time across instances is negligible.

For large-sized instances, the MILP model could not find any feasible solutions, regardless of the
peak power constraints. Therefore, Table 5 summarizes the results obtained by the mop-BRKGA
with and without the peak power constraints. The power availability reduction of 20% results in a
6.3% average increase in the minimum production time and simultaneously in a 2.5% decrease in
the corresponding energy consumption. As before, power reduction does not have any effect on the
minimum energy consumption and corresponding makespan. Regarding the cardinality of Pareto
fronts, a small decrease is observed in the presence of peak power constraints; mainly due to the
fact that the solutions associated with the smallest makespan values are not feasible. When dealing
with large-sized instances, the average computational time is around 102 seconds with no power
availability limits and 630 seconds when limited to 80% of the original required peak power.

4.3. Results for EEJSPsa

When no power limit is imposed, the problem under study is comparable to the EEJSPsa for which
the benchmark instances were solved by Salido et al. (2016) using a multi-objective GA (moGA)
and constraint programming (CP) and by Yin et al. (2017) using a genetic algorithm (GA). Both
works employed a weighted summation approach and reported the C and E values under different
weight assumptions. Table 6 reports the average boundary solutions obtained by the MILP model
and by the mop-BRKGA, over 10 problem instances (i.e., Sal01–10, Sal11–20 and Sal21–30), since
this is the way in which the CP and the moGA results are reported in Salido et al. (2016). Figure 5
depicts the Pareto fronts obtained by the mop-BRKGA, by the GA (Yin et al., 2017), and, when
available, the true Pareto front found by the MILP model for instances Yin01–03. As it can be seen,
the mop-BRKGA is capable of finding very good solutions and it outperforms the GA, the CP and
the moGA approaches.
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Table 6
The boundary solutions for benchmark problem instances when no power limit is imposed

Sal01–10 Sal11–20 Sal21–30

Approach C∗ E C E∗ C∗ E C E∗ C∗ E C E∗

MILP 41.0 132.9 65.8 84.4 625.9 2566.0 1006.3 1571.4 – – – –
mop-BRKGA 41.0 133.2 65.8 84.4 625.9 2566.0 1006.3 1571.4 1680.4 6598.7 2785.7 3827.8
CP 41.0 143.1 71.4 84.4 625.9 2664.1 1088.4 1571.4 1673.4 6732.2 3160.0 3827.1
moGA 41.0 152.0 65.8 84.4 625.9 2935.1 1006.3 1571.4 1697.0 7088.5 2888.8 3827.1

Fig. 5. Pareto front solutions for problem instances Yin01–03 when no power limit is imposed.
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Fig. 6. Impact of the power limit on the Pareto fronts obtained by the mop-BRKGA for instance Yin02.

4.4. Impact of considering peak power constraints and managerial insights

Power demand and power consumption profiles have been ignored by academia, in favour of en-
ergy consumption or energy costs. However, instant power demand is a main cost driver regarding
industrial consumers’ contracts. Such contracts, usually, include a charge for the peak power con-
tracted in addition to the energy charge. Furthermore, it is, quite often, impossible or prohibitively
expensive to go beyond the power limit contracted. Another important factor is the heavy invest-
ment costs required to provide the electric grid with the ability to satisfy surges in power demand,
which in turn leads to higher power and energy costs. Hence, providing a tool to industrial compa-
nies that allows them to manage power demand is of uttermost importance.

The results reported in Table 2 have shown that a 20% reduction in the power availability leads
to a reduction in the peak power usage of about 25%. Additionally, it could be seen that such re-
duction implies just slightly larger values for the minimum makespan. However, the corresponding
energy consumption decreases. On the other hand, it could be observed that the minimum energy
consumption values are not impacted by the peak power reduction. Furthermore, the correspond-
ing production times (makespans) are almost the same.

In this section, in order to better analyse the impacts of imposing peak power constraints we
solved a subset of four problem instances (Yin02, Sal01, Sal10 and Sal20) under three different
scenarios: (i) no power limit, (ii) a 20% reduction of the peak power availability and (iii) a 40%
reduction of the peak power availability. The Pareto fronts obtained by the mop-BRKGA for each
of the instances considering the above three scenarios are provided in Figs. 6–9.

The impacts of the power reduction in Yin02 are more visible, which does not come as a surprise
since this is a small instance. Note that, if a 40% reduction is imposed, unless the operations are pro-
cessed at the lowest speed, only one or two operations can be done simultaneously; despite having
six machines available. From the Pareto fronts obtained, it can be seen that for larger makespans,
it is possible to process all operations with similar time and energy requirements, regardless of the
power constraints. On the other hand, for shorter makespan values to compensate for the power re-
duction a larger energy consumption is required. Furthermore, in the presence of a 40% reduction
of the available peak power, not many Pareto solutions can be found.

In Sal01, the impacts are less drastic. The Pareto fronts obtained with no power limit and with
a 20% peak power reduction are quite similar; however, in the latter case, it is not possible to find
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Fig. 7. Impact of the power limit on the Pareto front obtained by the mop-BRKGA for instance Sal01.

Fig. 8. Impact of the power limit on the Pareto front obtained by the mop-BRKGA for instance Sal10.

Fig. 9. Impact of the power limit on the Pareto front obtained by the mop-BRKGA for instance Sal20.

solutions for the smallest makespan values. In the presence of a 40% peak power reduction, for
the lowest attainable makespan values the energy consumption is quite larger; nevertheless, this
increase is quickly reduced as the makespan values increase. In Sal10 and Sal20, the impacts are
only noticeable for the smallest makespan values (left part of the Pareto front) since some of them
are not possible to achieve in the presence of the peak power reduction.

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.



S. M. Homayouni and D. B. M. M. Fontes / Intl. Trans. in Op. Res. 32 (2025) 194–220 217

Regarding instance Sal20, as expected, the conclusions are slightly different since it involves seven
machines. Under no peak power constraints, up to seven operations can be done simultaneously.
However, when the instant peak power usage is reduced by 20% and by 40%, the number of si-
multaneous operations decreases and thus the minimum makespan increases from 604 to 629 and
688, respectively.

From the Pareto fronts obtained, it can be seen that managers can clearly choose strategies
favouring peak power reductions. Furthermore, if the main concern is energy consumption, that
is, its minimization, then power reductions can be achieved at no cost both regarding production
time and energy consumption (bottom right side of the Pareto fronts). On the other hand, if the
production time is the main issue, then power reduction implies an increase in the production time
but, at the same time, provides a decrease in energy consumption.

5. Conclusions

In this paper, a JSP with peak power limits is studied. The objective is to find a production power
profile that respects the power availability and minimizes both the energy consumption and the
makespan. To find and smoothen the overall power consumption profile, one has to coordinate the
activities of individual machines. Given that each machine can process each operation at one of
the several machine speeds available, in addition to the sequence of operations on each machine,
one must also determine both the starting time and the processing speed for each operation. There
are two main reasons to include peak power constraints. On the one hand, the energy providers
charge customers not only for the amount of energy consumed but also for the highest rate at
which energy is consumed during any given interval of time, that is, the instant peak power demand.
This encourages customers to manage their energy usage more efficiently and avoid excessive usage
during peak periods. On the other hand, power consumption limits are becoming more and more
important due to the increasing penetration of renewables. For example, solar power production
depends on the availability of sunlight, and wind power production depends on wind strength. If
renewable energy sources cannot provide the necessary (peak) power for a specific time period,
then the energy grid may need to rely on other sources to meet the demand, which can be costly
and environmentally unfriendly. To avoid this, energy providers may impose peak power limits to
ensure that renewable energy sources are utilized efficiently and effectively.

We minimize the total energy consumption together with the makespan; since otherwise, the
processing speed would be adjusted to the available power, that is, the maximum speed that satisfies
the power constraint. Therefore, we obtain several trade-off solutions that show that it is possible
to reduce the makespan or the energy consumed, without impacting much of the other.

The problem is formulated as a MILP model. This model is able to find true Pareto fronts for
small- and medium-sized instances with up to four jobs, 40 operations, and five machines when
no peak power constraints are imposed. Additionally, true Pareto fronts were obtained for small-
sized instances when a 20% reduction is imposed on the instant peak power demand. To address
this problem, a multi-objective and multi-population biased random key genetic algorithm (mop-
BRKGA) was developed. This algorithm uses a heuristic scheduling approach to generate only
feasible schedules that observe the instant peak power constraints. The mop-BRKGA algorithm
finds very good trade-off solutions, with approximated Pareto fronts that align with the true Pareto
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fronts obtained by the MILP model and are well distributed over the search space. An analysis of
the impact of imposing instant peak power constraints shows that the minimum production time
increases with the decrease of the instant peak power available. Additionally, a larger energy con-
sumption is required to obtain similar makespan values, as expected. Nevertheless, it was observed
that the slightly larger values for the minimum makespan (4–6%, on average) were accomplished
while being able to decrease the required energy consumption (also 4–6%, on average). Addition-
ally, it could also be observed that the minimum energy consumption values are not impacted by
the peak power reduction. Furthermore, the corresponding production times (makespans) are al-
most the same. These findings have important implications for manufacturing companies that need
to adopt power-flexible production schedules due to stricter regulations regarding environmental
impacts and the intermittent nature of power availability associated with renewable energies. The
results of this study provide decision and policymakers with valuable insights regarding power re-
quirements, particularly in what concerns the implications of imposing or negotiating power con-
sumption limits.

This work can be extended in several ways. Regarding machines, one may include machine states,
that is, machines that when not processing can be switched into one of several possible states (e.g.,
idle, power saving, off) and thus have a different power and energy consumption. Regarding oper-
ations, it can be considered that the power needed to process each operation varies depending on
the processing stage. Regarding power availability, it could be considered time-dependent, which is
more representative of renewable energy availability, or even not known in advance, which would
lead to real-time optimization.
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