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HIGHER-ORDER INCOME RISK OVER THE BUSINESS CYCLE∗

By Christopher Busch and Alexander Ludwig

LMU Munich, CESifo, and CEPR, Germany; Goethe University Frankfurt, ICIR, and CEPR,
Germany

We explore the consequences of higher-order risk in a standard incomplete-markets life-cycle model. We
calibrate the model using a canonical income process with persistent and transitory risk, extended to feature
cyclical shock distributions with left-skewness and excess kurtosis. We estimate this income process for U.S.
household data, and find shocks to be highly leptokurtic, with countercyclical variance and procyclical skew-
ness of persistent shocks. In the model, first, higher-order risk has sizable welfare implications; second, it mat-
ters quantitatively for the welfare costs of cyclical idiosyncratic risk; third, it has nontrivial implications for
self-insurance against shocks.

1. introduction

The extent of idiosyncratic income risk matters for many macroeconomic questions. As our
main contribution, we systematically evaluate a set of economic consequences of higher-order
risk in an incomplete-markets model. Higher-order risk refers to features of the distribution
of idiosyncratic risk captured by moments beyond the variance. We systematically decom-
pose the role of the variance, skewness, and kurtosis of the shock distributions for economic
choices—and link those to properties of preferences (risk attitudes). As our second contribu-
tion, we estimate higher-order idiosyncratic income risk and its variation over the business cy-
cle within the canonical transitory-persistent decomposition (dating back to Gottschalk and
Moffitt, 1994).

∗Manuscript received September 2021; revised November 2023.
We thank Helge Braun for numerous helpful discussions as well as Chris Carroll, Russell Cooper, Johannes Gier-

linger, Fatih Guvenen, Daniel Harenberg, Nikolas Hilger, Greg Kaplan, Fatih Karahan, Magne Mogstad, Serdar
Ozkan, Luigi Pistaferri, Irina Popova, Luis Rojas, Raül Santaeulàlia-Llopis, Kjetil Storesletten, Peter Zorn, and sem-
inar and conference participants at various places for insightful comments. We also thank four anonymous referees
and the editor, Iourii Manovskii, for very helpful comments. We thank Rocío Madera for sharing her code to set up
the PSID. Christopher Busch gratefully acknowledges financial support from the Spanish Ministry of Economy and
Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D, and the European Re-
search Council under grant Horizon 2020 GA no. 788547 (APMPAL-HET). Alexander Ludwig gratefully acknowl-
edges financial support by the Research Center SAFE, funded by the State of Hessen initiative for research LOEWE
and from NORFACE Dynamics of Inequality across the Life-Course (TRISP) grant: 462-16-120. Please address cor-
respondence to: Christopher Busch, LMU Munich, Department of Economics, Geschwister-Scholl-Platz 1, 80539 Mu-
nich, Germany; E-mail: christopher.busch@econ.lmu.de
Alexander Ludwig, Goethe University Frankfurt, RuW PF 65, Theodor-W.-Adorno-Platz 4, 60629 Frankfurt am
Main, Germany; E-mail: alexander.ludwig@econ.uni-frankfurt.de

1105
© 2023 The Authors. International Economic Review published by Wiley Periodicals LLC on behalf of the Economics
Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research
Association.

mailto:christopher.busch@econ.lmu.de
mailto:alexander.ludwig@econ.uni-frankfurt.de


1106 busch and ludwig

1.1. Implications of Higher-Order Risk. We consider a standard incomplete-markets life-
cycle model with ex post heterogeneity, that is, the only source of inequality in the model
is the risky idiosyncratic component of household income. Households receive stochastic in-
come throughout their working lives, after which they enter a retirement phase and receive
income through a pay-as-you-go pension system. The only means of self-insurance against in-
come risk is private savings in a risk-free asset.

We compare model outcomes under two different calibrations of the income process: (i)
with shock distributions that feature (estimated) dispersion, nonzero skewness, and excess
kurtosis of shocks, and (ii) with Gaussian shock distributions that feature the same dispersion
(but with skewness and excess kurtosis of zero). The goal of the analysis is to establish how
higher-order risk of the distribution matters for economic outcomes predicted by the model
framework. Households have recursive preferences over consumption (Epstein and Zin, 1989,
1991; Weil, 1989), which allows us to separately control the intertemporal elasticity of sub-
stitution and the coefficient of risk aversion. The latter also pins down higher-order risk atti-
tudes, and through this is a crucial determinant of the behavioral reaction to higher-order risk.

Our analysis delivers three main findings. First, evaluated from an ex-ante perspective
higher-order risk has sizable negative welfare implications for strong risk attitudes: the con-
sumption equivalent variation (CEV) that makes agents in the economy with lognormal
shocks indifferent to the economy with higher-order risk ranges between −0.5% (for a co-
efficient of risk aversion of 2) and −14.5% (relative risk aversion of 4). The dominant eco-
nomic mechanism driving this result is a change of the consumption profile over the life cycle:
when facing riskier income, risk-sensitive agents form more precautionary savings, and thus
consume less at young ages. With weak risk attitudes (like log utility), the welfare effect can
be positive (CEV of 0.4%).1

Second, higher-order risk matters for the welfare costs of business cycles. Since Lucas
(1987, 2003) argued that the gains of smoothing cycles beyond what the existing tax and
transfer system does would be small, several studies have explored the role of both ex ante
and ex post heterogeneity, with Imrohoroglu (1989) being the first to emphasize the impor-
tance of idiosyncratic risk and incomplete markets. In a model similar to hers, Storesletten
et al. (2001) allow for cyclical variance of persistent shocks as estimated in Storesletten et al.
(2004). Following a similar strategy, we provide the first systematic assessment of the wel-
fare consequences of cyclical higher-order risk as captured in a continuous distribution func-
tion, and thus bridge this approach to papers that explore cyclical downside risk in the form
of unemployment (e.g., Krusell and Smith, 1999; Krebs, 2003, 2007; Beaudry and Pages, 2001;
Krusell et al., 2009). Under higher-order risk, we find welfare costs—computed as CEV mak-
ing households in the noncyclical economy indifferent to the cyclical economy—which are 0.3
percentage points (risk aversion of 2) to 7.6 percentage points (risk aversion of 4) larger than
under lognormal shocks.

Third, higher-order risk crucially matters for the degree of self-insurance against shocks. We
employ a measure of self-insurance introduced in the literature by Blundell et al. (2008), who
suggest to evaluate the degree of partial insurance against income shocks by estimating the
pass-through of the identified transitory and permanent shocks to consumption changes. In
the context of our model based analysis, we follow Kaplan and Violante (2010), who study
how much of the empirically estimated partial insurance can be generated in a standard in-
complete markets model. We find that incorporating higher-order risk leads to weaker pass-
through of income shocks to consumption. However, this does not necessarily represent better
insurance against negative shocks. In a scenario with higher-order risk agents form more pre-
cautionary savings (relative to a scenario in which they face lognormal shocks), which implies
a weaker consumption reaction to positive shocks. Negative shocks can actually translate more
strongly into negative consumption changes, if the higher savings do not suffice to smooth out

1 What might appear surprising at first glance, follows mechanically: the introduction of third-order risk (left-
skewness) reduces second-order risk (variance) when characterizing the distribution in levels and holding the variance
in logs constant.



consequences of higher-order risk 1107

negative shocks that are more pronounced relative to normal shocks. In particular, for transi-
tory shocks, we find this to be the case. Therefore, we caution against using only the insurance
coefficient by Blundell et al. (2008) for the analysis of the degree of partial insurance against
income risk.

1.2. Estimation of Higher-Order Risk. We characterize both transitory and persistent
shocks by their second to fourth central moments, which in the case of the persistent shocks
we allow to be state-contingent. We estimate these distribution moments using the second to
fourth cross-sectional central moments and comoments of incomes—whereas similar estima-
tions traditionally are based solely on the variance–covariance matrix. Identification of cycli-
cality follows from the fact that the accumulated second to fourth central moments system-
atically differ across cohorts if these cohorts experience different macroeconomic histories
and if the moments of shocks differ systematically over the business cycle. This identification
idea was introduced in Storesletten et al. (2004) for the second moment, and we extend it to
higher-order moments.

Although Storesletten et al. (2004) analyze household-level income including government
transfers from the Panel Study of Income Dynamics (PSID) and find countercyclical vari-
ance2 of persistent shocks, later evidence in Guvenen et al. (2014) based on administrative
social security data (SSA) for individual males in the United States suggests that individual
downside risk is larger in contractions, whereas upside risk is smaller—this is reflected in a
more pronounced left-skewness of the distribution of earnings changes in contractions. Busch
et al. (2022) conduct a nonparametric analysis and find procyclical skewness of individual
and household-level annual earnings changes in Germany, Sweden, France, and the United
States.3

Our estimation approach draws a richer image of cyclical income changes within the
transitory-persistent framework and thus bridges the previous studies. We use the PSID,
which allows us to control for a rich set of household-level information and to take into ac-
count several relevant public transfer components. We focus on a measure of household net
income defined as labor income plus public transfers minus taxes. This reflects the view that
this measure represents the amount of risk remaining after insurance through the main insur-
ance mechanisms other than self-insurance—that is, within-household insurance and govern-
ment taxes and transfers (cf. Blundell et al., 2008)—and as such delivers the necessary ingredi-
ent for our model analysis, in which agents insure against this remaining risk using private sav-
ings.

We find that both transitory and persistent shocks to household net income feature strong
left-skewness, and that persistent shocks are significantly cyclical: in contractions, their distri-
bution is more dispersed and more left-skewed. The magnitude of dispersion is in line with
the estimates in Storesletten et al. (2004). Finally, we find strong excess kurtosis of transitory
and persistent shocks. One related recent study of cyclical risk is Angelopoulos et al. (2022),
who adapt a version of our estimator and document procyclical skewness of persistent shocks
in data from the British Household Panel Study.

Our article is part of a growing literature that explicitly analyzes the implications of new
insights on cyclical skewness of persistent earnings shocks for macroeconomic questions.
Golosov et al. (2016) allow for time-varying skewness of idiosyncratic risk in a study of
optimal fiscal policy, Catherine (2021) analyzes the implications of procyclical skewness of id-
iosyncratic income risk for the equity premium, and McKay (2017) links procyclical skewness

2 This terminology has been introduced in the macroeconomic asset pricing literature, see Mankiw (1986), Con-
stantinides and Duffie (1996), and Storesletten et al. (2007). Building on the framework of Storesletten et al. (2004),
Bayer and Juessen (2012) focus on residual hourly wages and based on PSID data estimate countercyclical dispersion
of persistent shocks in the United States.

3 More recently, Guvenen et al. (2021) document that, in a given year, most individuals experience small earn-
ings changes, whereas some workers experience very large changes of their earnings. This is summarized by a high
kurtosis—relative to what the conventional assumption of log-normality implies. See also De Nardi et al. (2021) for
the Netherlands, and Druedahl and Munk-Nielsen (2020) for Denmark.
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to aggregate consumption dynamics. Our analysis is also related to work on the implications
of rich earnings dynamics in general (without considering the cyclicality of risk). De Nardi
et al. (2020) feed an income process a la Arellano et al. (2017) into an incomplete markets
model and study the role of richer earnings dynamics for consumption insurance and the
welfare costs of idiosyncratic risk. Their analysis features nonlinearity, nonnormality, and age-
dependence of the income process and corroborates results from Karahan and Ozkan (2013)
regarding the role of age-dependent persistence and distributions of shocks. Civale et al.
(2017) analyze implications of left-skewed and leptokurtic idiosyncratic shocks for the interest
rate and aggregate savings in an otherwise standard Aiyagari economy. Besides the particular
outcomes of interest, our contribution to that literature is that we provide a transparent link
between moments of the shock distribution and the outcomes of interest, emphasizing the
relevant properties of preferences.

The remainder of the article is structured as follows: Section 2 illustrates the implications of
higher-order risk for welfare and savings in a simple two-period model, and then sets up the
quantitative version of the life-cycle economy. Section 3 presents our empirical approach, dis-
cusses identification of the income process, and presents the results of applying the estimator
to U.S. household earnings data from the PSID. Section 4 shows the consequences of higher-
order risk in the quantitative model, and Section 5 concludes.

2. higher-order risk in a life-cycle model

2.1. A Two-Period Model. Before we turn to a quantitative life-cycle economy, we con-
sider a simple two-period consumption-savings problem, in which agents face riskless first-
period income and risky second-period income. Within this framework, we illustrate that the
distribution of risk (i) matters for welfare, (ii) affects precautionary savings, and (iii) affects
the marginal propensity to consume (MPC). The utility and behavioral implications depend
on risk attitudes of households.

2.1.1. Setting. The household receives riskless income y0 and risky income y1 in periods 0
and 1, respectively. Denote the distribution function of y1 by �(y), which is characterized by
its central moments around the mean, μ

y
k.4 Households enter period 0 with zero assets and, in

the general formulation of the model, have access to a risk-free savings technology with zero
interest. The budget constraints are c0 + a1 = y0 and c1 ≤ a1 + y1, where a1 denotes savings in
period 0, and c0 and c1 denote consumption in the two periods. Preferences over consumption
streams are additively separable and per-period utility is given by u(c). We assume that u(c)
is continuously differentiable, that the derivatives feature alternating signs with positive odd
derivatives, and denote the kth derivative of the utility function by u(k). We assume no dis-
counting of the future such that expected lifetime utility is U = u(c0) + E[u(c1)]. We also as-
sume that E[y1] = y0. The assumptions imply that there is no intertemporal savings motive in
this simple model.

2.1.2. Welfare. Consider hand-to-mouth consumers and shut down the savings technol-
ogy, that is, a1 = 0. Mechanically, the welfare implication of changing the kth central moment
of �(y1) is pinned down by the kth derivative of u(c). To see this, consider an exact Taylor
series expansion of the objective function around the mean of period 1 consumption, c1 =
E[y1]:5

U = u(c0) + E[u(c1)] = u(c0 = y0) +
∞∑

k=0

u(k)(c1 = E[y1])
k!

μ
y1
k .(1)

4 μ
y
k = E[(y − E[y])k] for k = 1, 2, 3, . . . .

5 The expression given for the Taylor series expansion around c1 = E[y1] follows from the linearity of the ex-
pectation operator: E[u(c1)] = E[

∑∞
k=0(u(k)(E[y1])/k!)(y1 − E[y1])k] = ∑∞

k=0(u(k)(E[y1])/k!)E[(y1 − E[y1])k] =∑∞
k=0(u(k)(E[y1])/k!)μy1

k . See Appendix A.1 for a derivation of all analytical expressions used in this section.
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We refer to an increase of even moments and/or a reduction of odd moments as an increase in
risk: a higher variance (larger μ

y1
2 ), higher kurtosis (larger μ

y1
4 for a given μ

y1
2 ), or more nega-

tive skewness (smaller, or “more negative,” μ
y1
3 for a given μ

y1
2 ) all imply a riskier distribution.

Per Equation (1)—and our assumption of alternating signs of the derivatives u(k)—we see that
the household experiences a welfare reduction for each of these increases in risk—and how
strong that reduction is depends on the size of the corresponding derivative of the utility func-
tion. The relevant risk attitudes that imply that the household cares about second-, third-, and
fourth-order risk are referred to as risk aversion, prudence, and temperance, respectively (see,
e.g., Eeckhoudt, 2012 for a discussion of these risk attitudes).

2.1.3. Precautionary savings. Now, we allow for savings. Given that households face risky
income in period 1, they will form precautionary savings to forearm against low-income real-
izations. The first-order condition characterizing the optimal savings choice is

f ≡ u(1)(c0) − E[u(1)(c1)] = u(1)(y0 − a1) −
∞∑

k=0

u(k+1)(E[y1] + a1)
k!

μ
y1
k = 0,(2)

where after plugging in the budget constraints, we express marginal utility tomorrow by a Tay-
lor expansion. As before, this step allows us to see how the change of some central moment of
period 1 income translates into the expected value—in this case, of marginal utility, for a given
choice a1. Equation (2) shows that an increase of risk (higher μ

y1
2 , lower μ

y1
3 , higher μ

y1
4 ) im-

plies an increase of expected marginal utility. Thus, the household chooses a higher a1 such
that the FOC holds in the higher risk scenario. The Taylor expansion shows that derivative
u(k+1)(c) matters to induce a behavioral reaction of a1 to a change of the kth moment.6 Thus,
preferences need to feature a positive third derivative (prudence) for μ

y1
2 to matter, a nega-

tive fourth derivative (temperance) for μ
y1
3 to matter, and a positive fifth derivative (edginess)

for μ
y1
4 to matter.7 If they do, then households reduce the adverse utility consequences of in-

creased risk (second and higher order) by increasing savings a1.8

2.1.4. MPC. From (2), we can derive the marginal propensity to save (MPS) out of a
shock to period 0 income by setting the total derivative df/dy0 to zero. The MPC then follows
as MPC=1-MPS:

MPC ≡ 1 − ∂a1

∂y0
= 1 −

(
1 + E

[
u(2) (y1 + a1)

]
u(2) (y0 − a1)

)−1

.(3)

We are now interested in dMPC/dμ
y1
k for k = 2, 3, 4. There are two effects of an increase of

risk: first, the precautionary savings response discussed above increases a1, which per Equa-
tion (3) decreases the MPC.9 This intuitively simply says that due to increased risk, house-
holds form more precautionary savings, and therefore, they consume less out of an additional
unit of income received today. Second, for a given a1, an increase of risk reduces the (nega-
tive) expected value E[u(2)(y1 + a1)]: again, this becomes apparent when considering a Taylor
expansion around the mean, which gives E[u(2)(y1 + a1)] = ∑∞

k=0(u(k+2)(E[y1] + a1)/k!)μy1
k .

Thus, the expression in parenthesis in (3) is larger for a given a1, giving a larger MPC. This re-
action of the MPC to an increase of risk is driven by high-order risk attitudes: for example, the

6 We explore precautionary savings in response to higher-order risk in the absence of a liquidity constraint. This
complements Carroll et al. (2021), who analyze the savings response to a liquidity constraint.

7 The term edginess was coined by Lajeri-Chaherli (2004).
8 This extends the result on precautionary savings in response to increases in the variance in Kimball (1990) and

corroborates findings in Eeckhoudt and Schlesinger (2008) using a slightly different approach.
9 To see this, recall that u(2)(c) is negative and u(3)(c) is positive.
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fourth derivative—temperance—matters for MPC reactions to variance. The overall effect on
the MPC of increasing risk is thus ambiguous and a quantitative question.

2.2. A Life-Cycle Model. Per the illustration in the two-period model, we know that de-
viations from lognormal shocks matter in principle—but does the estimated deviation from
the canonical income process matter quantitatively? Put differently, what is the economic rel-
evance of the estimated skewness and kurtosis? To answer this question, we use a quantita-
tive version of the simple two-period model of Section 2.1 by extending it to a standard mul-
tiperiod life-cycle model.

2.2.1. Endowments. Households live from age j = 0 to age j = J. Before they retire ex-
ogenously at age jr, they receive exogenous earnings at each age j < jr that consist of an age-
specific deterministic component e j and two stochastic income components: transitory income
shock ε, drawn i.i.d. from distribution F̃ε, and persistent income z, which is AR(1) with auto-
correlation coefficient ρ and shock η. The distribution of the persistent shock, F̃η(s), depends
on the aggregate state s. In retirement, persistent income stays constant, and thus,

z′(z; s′) =
{

ρz + η′ for j < jr, where η′ ∼
i.i.d.

F̃η(s′)

z for j ≥ jr.
(4)

For j ≥ jr, households earn a fixed pension income contingent on the last persistent income
state before retirement, b(z). Net household income is thus

y( j, z, ε) =
{

e j · exp(z + ε) for j < jr
b(z) for j ≥ jr.

(5)

There is a risk-free savings technology with (acyclical) rate of return r, and a zero borrowing
constraint. Thus, the dynamic budget constraint is

a′( j, z, ε; s) = a · (1 + r) + y( j, z, ε) − c( j, z, ε; s) ≥ 0.(6)

The aggregate state s ∈ {C, E} follows a first-order Markov process with time-invariant tran-
sition matrix �s. We abstract from a first-order effect of the cycle on income.

2.2.2. Preferences and household problem. Households maximize recursive utility by solv-
ing a consumption-savings problem every period. They discount the future at factor β > 0.10

The state variables of the household are age j, asset holdings a, persistent income state z,
transitory shock ε, and the aggregate state of the economy s. The recursive problem is

Vj(a, z, ε; s) = maxc,a′

⎧⎨
⎩
(

(1 − β̃)c1− 1
γ + β̃(v(Vj+1(a′, z′, ε′; s′)))1− 1

γ

) 1
1− 1

γ γ 
= 1

exp
{
(1 − β̃) ln c + β̃ ln (v(Vj+1(a′, z′, ε′; s′)))

}
γ = 1

(7)

s.t. (4), (5), and (6),

where v(Vj+1(·)) denotes the certainty equivalent of next period’s continuation value, β̃ =
β/(1 + β) the relative utility weight on this certainty equivalent, and γ the intertemporal elas-
ticity of substitution between current period utility from consumption and v(Vj+1(·)). Param-

10 It is straightforward to show that our intuitive arguments of Section 2.1 extend to recursive preferences, cf. our
working paper version, Busch and Ludwig (2020).
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eter θ pins down risk attitudes of households (see Section 2.1), and thus, determines the cer-
tainty equivalent of the risky continuation value:

v(Vj+1(a′, z′, ε′; s′)) =
{(

E j
[
Vj+1(a′, z′, ε′; s′)1−θ

]) 1
1−θ θ 
= 1

exp (E j[lnVj+1(a′, z′, ε′; s′)]) otherwise,
(8)

where conditional expectations E j are defined with respect to the realization of next period’s
aggregate state of the economy s′, transitory income shock ε′, and persistent income shock η′.

2.2.3. Equilibrium and model solution. We consider a partial equilibrium in which the in-
terest rate is exogenously given and the pension system clears. Given constant aggregate in-
come across different scenarios of idiosyncratic income risk, this ensures that also average
pension income is constant across these scenarios—this rules out first-order income difference
across scenarios and thus a change of the life-cycle savings incentives. We solve for house-
hold policy and value functions using the method of endogenous gridpoints (cf. Carroll, 2005).
We aggregate by explicit aggregation iterating forward on the age-specific cross-sectional dis-
tribution � j(a j, z j, ε; s), which follows from the initial distribution �0(a0, z0, ε0; s) and the
transition function Gj(a j, z j, ε j; s). The latter is induced by the exogenous laws of motion
of s and z, the exogenous distribution of ε, and the endogenous age-specific policy func-
tion a′

j(a j, z j, ε j; s).

2.2.4. Risk scenarios. We explore the consequences of higher-order income risk through
the lens of the model by, first, calibrating the distributions of shocks, F̃ε and F̃η(s), such that
they feature higher-order risk, and, second, comparing model outcomes to a calibration with
lognormal shock distributions. To inform the calibration, we estimate an income process con-
sistent with the one specified above (outside of the model), which we then feed into the
model. To this end, we proceed in three steps. First, we estimate the second to fourth cen-
tral moments of the shock distributions by the generalized method of moments (GMM). Sec-
ond, we fit parametric distribution functions to the estimated moments. Third, we discretize
the distributions using their quantile functions to use them in the model. Thus, our approach
directly translates the estimated central moments into the model’s shock distributions with-
out the need to simulate. We calibrate the remaining elements of the model in a standard way,
with details provided in Section 4.1. We now turn to the estimation of the income process.

3. estimating higher-order income risk

3.1. Income Process with Higher-Order Risk. Let log income of household i of age j in
year t be

ln(yi jt ) = f (Xi jt ,Yt ) + ỹi jt ,(9)

where f (Xi jt,Yt ) is the deterministic component of income, that is, the part that can be ex-
plained by observable individual and aggregate characteristics, Xi jt and Yt , respectively, and
ỹi jt is the residual part of income, which is assumed to be orthogonal to f (Xi jt ,Yt ). The de-
terministic component f (Xi jt ,Yt ) is a linear combination of a cubic in age j, fage( j), the log
of household size, year fixed effects, and an education premium fEP(t) for college education,
which we allow to vary over years t:

f (Xi jt ,Yt ) = β0t + fage( j) + 1eduit=c fEP(t) + βsize ln (hhsizei jt ),(10)

where fage( j) = β
age
1 j + β

age
2 j2 + β

age
3 j3, fEP(t) = βEP

0 + βEP
1 t + βEP

2 t2, and indicator 1eduit=c

takes on value 1 for college-educated households.
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We model residual income ỹi jt as the sum of three components: a persistent component zi jt ,
an i.i.d. transitory shock εi jt , and an idiosyncratic fixed effect χi. The idiosyncratic fixed effect
is a shock drawn once upon entering the labor market from a distribution that is the same
for every cohort.11 The persistent component is modeled as an AR(1) process with innova-
tion ηi jt :

ỹi jt = χi + zi jt + εi jt , where εi jt ∼
i.i.d.

Fε, χi ∼
i.i.d.

Fχ(11a)

zi jt = ρzi j−1t−1 + ηi jt, where ηi jt ∼
id

Fη(s(t)),(11b)

where Fχ , Fε, and Fη(s(t)) denote the density functions of χ , εi jt , and ηi jt , respectively. The
density function of the persistent shock depends on the aggregate state of the economy in
period t, s(t). This income process features the canonical transitory-persistent specification
(e.g., Moffitt and Gottschalk, 2011). However, instead of focusing on the variance alone, we
are interested in estimating the second to fourth central moments of the shocks, which we de-
note by μx

2, μx
3, and μx

4, for x ∈ {χ, ε, η(s)}.12

As in Storesletten et al. (2004), the economy in period t can be in one of two aggregate
states s(t), which we denote by E (expansion) and C (contraction), s(t) ∈ {E,C}. Thus, the
central moments of the persistent shock μ

η

k(s(t)) are equal to μ
η,E
k or μ

η,C
k if s(t) = E or

s(t) = C, respectively (for k = 2, 3, 4). Both empirical evidence (e.g., Blundell et al., 2008) and
model-based analyses (e.g., Kaplan and Violante, 2010) find that households can insure well
against transitory shocks. We therefore follow Storesletten et al. (2004) and only consider the
cyclicality of persistent income shocks, which have long-lasting effects in the context of a life-
cycle decision-making problem. We still do capture skewness and kurtosis of the (acyclical)
transitory component and explore its quantitative role. In Appendix B.2, we show robustness
with respect to this benchmark choice.

We assume that upon entering the labor market, in addition to drawing the fixed effect χi,
each worker draws the first realizations of transitory and persistent shocks, εit and ηit , from the
distributions Fε and Fη(s(t)), respectively. Thus, the moments of the distribution of the persis-
tent component for the cohort entering in year t at age j = 0 are μk(zi0t ) = μ

η

k(s(t)).

3.1.1. Implied central moments. Central (co-)moments are given by

μk(ỹi jt; θ ) = E
[
(ỹi jt − E[ỹi jt])

k|st
]
,(12a)

μkl (ỹi jt , ỹi j+1t+1; θ ) = E
[
(ỹi jt − E[ỹi jt])

k(ỹi j+1t+1 − E[ỹi j+1t+1])l |st
]
,(12b)

where θ =(ρ,μ
χ

2 , με
2, μ

η,E
2 , μ

η,C
2 , μ

χ

3 , με
3, μ

η,E
3 , μ

η,C
3 , μ

χ

4 , με
4, μ

η,E
4 , μ

η,C
4 ) is a vector of second-

stage parameters, and st summarizes the history of aggregate states up to year t.13 The process
implies the following cross-sectional moments of the distribution of residual income at age j
in year t:

μ2(ỹi jt; θ ) = μ
χ

2 + με
2 + μ2(zi jt ),(13a)

μ3(ỹi jt; θ ) = μ
χ

3 + με
3 + μ3(zi jt ),(13b)

μ4(ỹi jt; θ ) = μ
χ

4 + με
4 + μ4(zi jt ) + 6

(
μ

χ

2 με
2 + (

μ
χ

2 + με
2

)
μ2(zi jt )

)
,(13c)

11 Thus, from the econometric perspective, we estimate a random effects model.
12 One potential disadvantage of using central moments to characterize the shocks in the income process is that

they are hard to interpret by themselves. However, in the data, the central moments of the cross-sectional income dis-
tribution are strongly correlated with percentile-based counterparts to those moments. We are thus confident that the
estimated central moments—and the implied standardized moments skewness and kurtosis—do capture salient fea-
tures of the distribution.

13 Note that we need to condition only on st , not on st+1, because period t + 1 shocks are uncorrelated with all
shocks accumulated up to period t.
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and the following (auto) comoments:

μ11(ỹi jt , ỹi j+1t+1; θ ) = μ
χ

2 + ρμ2(zi jt ),(14a)

μ21(ỹi jt , ỹi j+1t+1; θ ) = μ
χ

3 + ρμ3(zi jt ),(14b)

μ31(ỹi jt , ỹi j+1t+1; θ ) = μ
χ

4 + ρμ4(zi jt ) + 3
(
μ

χ

2 με
2 + (

μ
χ

2 + ρ
(
μ

χ

2 + με
2

))
μ2(zi jt )

)
,(14c)

where μk(zi jt ), for k = 2, 3, 4 are given recursively by μ2(zi jt ) = ρ2μ2(zi j−1t−1) + μ
η

2(s(t)),
μ3(zi jt ) = ρ3μ3(zi j−1t−1) + μ

η

3(s(t)), and μ4(zi jt ) = ρ4μ4(zi j−1t−1) + 6ρ2μ2(zi j−1t−1)μη

2(s(t)) +
μ

η

4(s(t)), respectively.

3.1.2. Identification. All parameters of (11) are identified using the moments (13a)–(14c)
and their empirical counterparts. As seen in (13a), the sum (μχ

2 + με
2) is identified as the in-

tercept of the variance profile over age. Next, the difference between the two expressions
for (13a) and (14a) identifies μ

χ

2 separately from με
2. The persistence parameter ρ is identi-

fied from the curvature of the variance age profile. To see this, ignore t for the moment, and
consider the change of variance from age j to j + 1: μ2(ỹi j ) = μ2(ỹi j+1) − μ2(ỹi j ) = (ρ2 −
1)μ2(zi j ) + μ

η

2 = · · · = μ
η

2ρ
2 j. Thus, the relative slope at two different ages j and j′ > j iden-

tifies ρ: μ2(ỹi j′ )/μ2(ỹi j ) = ρ2 j′/ρ2 j = ρ2( j′− j). A concave variance profile over age implies
ρ < 1. The overall magnitude of the increase of the cross-sectional variance over age identifies
the variance of persistent shocks, μ

η

2.
The above logic translates almost one-for-one to the third moment: (μχ

3 + με
3) is iden-

tified via the intercept of the age profile of the third central moment, as seen in (13b).
The difference between the expressions for the third central moment and comoment, Equa-
tions (13b) and (14b), identifies μ

χ

3 separately from με
3.14 Given ρ and the variance parame-

ters μx
2 for x ∈ {χ, ε, η(s)}, Equations (13c) and (14c) identify the fourth central moments μx

4
for x ∈ {χ, ε, η(s)} in the same way as for the second and third central moments.

Let us now turn to cyclicality. The difference between μ
η,C
2 and μ

η,E
2 is identified by the dif-

ference between the cross-sectional variances of different cohorts at the same age (for cohorts
which by that age lived through different histories of contractions and expansions). The use
of cross-sectional moments for identification allows us to exploit macroeconomic information
that predates the micro panel, thereby incorporating more business cycles in the analysis than
covered by the sample, as pointed out by Storesletten et al. (2004). Consider the persistent
component of the income process in Equation (11b). The variance of the innovations accumu-
lates as a cohort ages, as can be seen in Equation (13a). If the innovation variance is higher
in contractionary years, then a cohort that lived through more contractions will have a higher
income variance at a given age than a cohort at the same age that lived through fewer contrac-
tions, if the persistence is high.

Our extension of Storesletten et al. (2004) is based on the insight that other central mo-
ments accumulate in a similar fashion, as seen in Equations (13b) and (13c). Consider the
third central moment and compare again two cohorts when they reach a certain age. If the
third central moment of the shock was smaller (more negative) in a contraction than in an ex-
pansion, that is, μ

η,C
3 < μ

η,E
3 , then this would imply a more negative cross-sectional third cen-

tral moment for the cohort that worked through more contractions.15 For a given dispersion,
this implies a reduction of skewness (a more left-skewed distribution).

14 Also, the curvature of the age profile of the third moment gives additional overidentifying restrictions for the
persistence parameter ρ.

15 Let us emphasize that the cross-sectional distribution of ỹi jt does not converge to a Normal distribution: the third
and fourth central moments of the shocks accumulate over age. This allows identification of higher-order moments of
the shock distributions based on cross-sectional moments. Of course, if the shock distributions are symmetric in logs,
then this is identified as well, as μ3(ỹi jt ) = 0 in this case.
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Note that by restricting the transitory shocks to not vary over the business cycle, we do not
bias the estimated cyclicality of persistent shocks, which is identified via accumulated shock
distributions. Note that Huggett and Kaplan (2016) use a similar strategy based on second and
third central moments and comoments, without resorting to presample aggregate information
in the spirit of Storesletten et al. (2004) as we do.

3.2. Data and Sample Selection. We use data from the PSID, which interviews households
in the United States annually from 1968 to 1997 and every other year since then. The repre-
sentative core sample consists of about 2,000 households in each wave, and we use data from
1977–2012.16 We estimate the income process at the household level. De Nardi et al. (2020)
show that at the individual level, the PSID sample captures well the salient features of earn-
ings dynamics documented in administrative social security data by Guvenen et al. (2021),
who also resort to it for the analysis of wage and hours dynamics. Similarly, Arellano et al.
(2017) estimate a rich earnings process using the PSID. Busch et al. (2022) document that the
cyclical changes of the distribution of annual earnings changes in the PSID reflect the dynam-
ics in social security data documented by Guvenen et al. (2014).17

Household net income is defined as household labor income plus public transfers minus
taxes. As a measure of labor income, we use annual total labor income that includes income
from wages and salaries, bonuses, and the labor part of self-employment income. We then sum
up head and spouse annual labor income. We impute taxes using Taxsim, and add 50% of the
estimated payroll taxes to the sum of head and spouse labor incomes to obtain pregovern-
ment income. We aggregate public transfers to the household level and include measures of
unemployment benefits, workers’ compensation, combined old-age social security and disabil-
ity insurance (OASI), supplemental security income, aid to families with dependent children
(AFDC), food stamps, and other welfare.

We deflate all nominal values with the annual consumer price index, and select households
of at least two adults if the household head is between 25 and 60 years of age. The minimum
of our measure of household income and a pregovernment measure, which does not include
the tax and transfer component, needs to be above a constant threshold, which is defined as
the income from working 520 hours at half the minimum wage. Central moments (especially
of higher order) are imprecisely estimated in small samples. We therefore estimate the mo-
ments for a given year and age group based on a sample from a five-year window over age
within the year, which also smoothes the age profiles of these moments.

3.2.1. Defining business cycles. We classify years (from 1942 to 2012) as contractions or ex-
pansions. Starting from the NBER dating of peaks and troughs, we classify a year as a contrac-
tion if (i) it is completely in a contractionary period, which is defined as the time from peak
to trough, (ii) if the peak is in the first half of the year and the contraction continues into the
next year, and (iii) if a contraction started before the year and the trough is in the second half
of the year. Given the sluggish synchronization of labor market outcomes with the macroeco-
nomic indicators that the NBER takes into account (cf. Guvenen et al., 2014, Huggett and Ka-
plan, 2016), we expand the dating based on mean earnings of males in the PSID. We classify
the following years as contractions: 1945, 1949, 1953, 1957, 1960, 1970, 1974, 1980–83, 1990–91,
2001–02, 2008–10. All years that are not classified as contractions are classified as expansions.

3.3. Estimation Results: Cyclical Idiosyncratic Risk.

3.3.1. Illustration of identification. In Figure 1, we plot the cross-sectional second and
third central moments of residual household net income against the share of years classified
as contractions out of all years a cohort went through since age 25 once reaching the given

16 We do not use earlier waves because of poor coverage of income transfers before 1977. Although the change
to a biannual survey frequency implies that households are observed only every other year after 1997, the estimated
income process continues to be at the annual level. Thus, starting in 1997, two shocks realize between two observa-
tion periods.

17 Hryshko and Manovskii (2018) discuss some heterogeneity of income dynamics across PSID samples.
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Notes: Cross-sectional moments of residual income are net of age effects. Share of contractions for a given moment is
the fraction of years classified as contraction since age 25. The slopes of the fitted lines are 0.13 and –0.11 for m2 and
m3, respectively. Moments for shares of 0 or 1 are not displayed for visualization reasons (they are used in the GMM
estimation).

Figure 1

cross-sectional moments by aggregate history

year. Each marker denotes a moment for households of some age j in some year t, mk(ỹi jt )
for k = 2, 3. The pattern that emerges is that a higher share of contractionary years correlates
positively with the cross-sectional second moments, and negatively with the cross-sectional
third moments. These correlations identify the cyclicality of the moments of the shocks.

3.3.2. Estimation. We use the number of observations that contribute to an empirical mo-
ment as weights for the moment conditions, and this way assign more weight to those mo-
ments that are themselves estimated more reliably in the data. Daly et al. (2022) discuss the
importance of the panel composition for consistency of estimates based on income changes
versus cross-sectional moments. In the context of our quantitative life-cycle evaluation, it is
crucial for us to match cross-sectional distribution moments over the life cycle. Further, the
accumulated shocks captured by those cross-sectional moments identify our cyclicality esti-
mates. Still, partly reflecting the insights from Daly et al. (2022), we include as additional mo-
ment conditions the averages over years of the second to fourth central moments of one- to
five-year income changes. This ensures that the estimated income process is both, consistent
with moments of the cross-sectional distribution and broadly consistent with moments of in-
come changes. We give a collective weight of 10% to the latter.

In addition to the structure imposed so far, we hold the kurtosis of η fixed over the business
cycle. Note that this does not mean that we restrict the fourth central moment to be acycli-
cal: Let αi denote the ith standardized moment, that is, αi = μi/μ

i/2
2 . Assuming α

η

4 (s(t)) = α
η

4

implies μ
η,C
4 = α

η

4 (μη,C
2 )2 and μ

η,E
4 = α

η

4 (μη,E
2 )2. In Appendix B.2, we show robustness with re-

spect to this restriction. This leaves us with 12 parameters to estimate. We use moments (13a)
and (14a) to estimate the variance parameters and the persistence ρ. Given an estimate for ρ,
we then use moments (13b) and (14b) to estimate the third central moments. Likewise, given
estimates for ρ and the variance parameters, we use moments (13c) and (14c) to estimate
the fourth central moments. The third central moment of the cross-sectional distribution fea-
tures a low-frequency change (see Panel (e) of Figure 2). To accommodate this in the esti-
mation, and to not confound the estimated cyclicality, we add a linear trend to the third cen-
tral moment of transitory shocks. This serves to detrend the moment, as we fit a stationary
process. We report the time average of the implied moment. For inference, we apply a block
bootstrap procedure and resample households to preserve the autocorrelation structure of the
data. Table 1 shows the estimates, and Figure 2 illustrates the fit over age and time (further,
Appendix B shows standardized moments).
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Notes: Moments are cross-sectional central moments. For each moment, age and year profiles are based on a regres-
sion of the moment on a set of age and year dummies. Blue lines: empirical moments; red dashed lines: theoretical
moments implied by point estimates; shaded area denotes a 90% confidence band based on the bootstrap iterations.

Figure 2

fit of estimated process for household net income

Table 1
estimation results for household net income

Estimated Central Moments

ρ 0.9683
[0.9463;0.9841]

μ
χ

2 0.1076 μ
χ

3 −0.0508 μ
χ

4 0.0173
[0.0897;0.1237] [−0.0780;−0.0253] [0.0000;0.0741]

με
2 0.0752 με

3 −0.0866 με
4 0.2300

[0.0677;0.0816] [−0.0935;−0.0771] [0.1927;0.2664]
μ

η,C
2 0.0223 μ

η,C
3 −0.0167 μ

η,C
4 0.0666

[0.0152;0.0291] [−0.0266;−0.0062] [0.0363;0.0847]
μ

η,E
2 0.0085 μ

η,E
3 −0.0013 μ

η,E∗
4 0.0098

[0.0044;0.0153] [−0.0073; 0.0040] [0.0022;0.0272]

Note: Estimated central moments for household income after taxes and transfers. Brackets show 5th and 95th per-
centiles of 1,000 bootstrap estimates (998 of the bootstrap iterations converge). ∗μη,E

4 not separately estimated.
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3.3.3. Cyclical dispersion. The first column of Table 1 reports the persistence of the AR(1)
component of income along with the estimates of the variances of the components of the
income process estimated jointly. The estimated persistence parameter (ρ) is 0.97. The esti-
mates imply a countercyclical variance of persistent shocks: in aggregate downturns, the cross-
sectional distribution of shocks is more dispersed. Our estimate of countercyclicality is quanti-
tatively similar to the one estimated by Storesletten et al. (2004): the estimated standard devi-
ation of persistent shocks is 61% higher in aggregate contractions.

3.3.4. Cyclical skewness. The second column of Table 1 reports the third central moments.
We find that all shock components have negative third central moments, implying negative
skewness of shocks. The third central moment of persistent shocks is significantly negative in
contractions; the point estimate of the third central moment of persistent shocks in expansions
is also negative, however, not statistically different from zero. The second and third central
moments together translate into the third standardized moment, the coefficient of skewness,
which is informative about the shape of the distribution. The cyclicality of the third central
moment is stronger relative to the cyclicality of the second moment, which translates into the
standardized moment displaying procyclicality. Thus, aggregate contractions are periods in
which negative persistent shocks become relatively more pronounced.

3.3.5. Excess kurtosis. The third column of Table 1 reports the fourth central moments.
The fixed effects are very imprecisely estimated; the point estimates imply relatively flat dis-
tributions (compared to a Normal distribution, which has a kurtosis of 3): the implied kurtosis
coefficient at the point estimates is 1.5. The transitory and persistent shocks are estimated to
display very pronounced excess kurtosis of about 41 and 134. Note that while these estimates
of kurtosis seem very high at first glance, they imply a good fit of the cross-sectional distribu-
tion over age and over years, as shown in Figure 2. Furthermore, the estimated income pro-
cess is in line with the average kurtosis of income changes.18

3.3.6. Robustness. In Appendix B.2, we present a range of alternative empirical specifica-
tions, such as estimating parameters jointly (instead of step-wise), varying the weight given to
moments of changes, allowing for cyclicality of the transitory component, among others. The
key insight is robustness of the core estimates, that is, those informing the model calibration—
the persistence and distributional moments of the persistent component, and the moments of
transitory shocks.

4. quantitative role of higher-order risk

4.1. Calibration of the Life-Cycle Model.

4.1.1. Idiosyncratic income. A model period is one year. Households start working at
age 25 ( j = 0) and retire at age 60 ( j = 35). We calibrate the deterministic age profile e j by
the fitted age polynomial fage( j) of the first-stage estimation, where we abstract from hetero-
geneity by education, labor market experience, or household size by taking the weighted aver-
age of college and noncollege age profiles that display the usual hump-shaped pattern, cf. Ap-
pendix C.1. We normalize average productivity to one, that is, 1

jr

∑ jr−1
j=0 e j = 1.

Next, for each stochastic component (i.e., ε, η(E), η(C)), we use a flexible generalized
lambda distribution (FGLD). The FGLD is developed in Freimer et al. (1988), and can be
characterized by its quantile function

Q(p; λ) = F−1(p; λ) = x = λ1 + 1
λ2

(
pλ3 − 1

λ3
− (1 − p)λ4 − 1

λ4

)
,(15)

18 We also estimate the process on pregovernment income, cf. Appendix B.1.
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Notes: Discretized log distribution functions for the persistent shock η. LKSW: FGLD with estimated variance, skew-
ness, and kurtosis. Markers denote the grid points used in the discretized distribution. Normal: Normal distribu-
tion with estimated variance discretized using Gaussian quadrature method. Log density is the base 10 logarithm of
the PDF.

Figure 3

discretized log distribution functions: persistent shock

where p denotes a percentile and λ is a vector of four parameters with location parameter λ1,
scale parameter λ2, and tail index parameters λ3, λ4.19 The four parameters of the FGLD can
be calibrated well to match the first four central moments of a distribution (cf. Lakhany and
Mausser, 2000; Su, 2007). Calibration targets for each shock x ∈ {ε, η(E), η(C)} are the central
moments {μ̂x

i }4
i=2 of distributions Fε and Fη(s), estimated in the second stage; we choose the

first moment such that the expected value in levels is normalized to one. We then discretize
by spanning equidistant grids for the respective random variable x ∈ {ε, η(s)} and by assigning
to each grid point probabilities from the integrated probability density function of the distri-
bution (details in Appendix C.1).

We consider two alternative parameterizations of the FGLD to which we refer as distribu-
tion scenarios. The first scenario, LKSW, features leptokurtic and left-skewed shock distribu-
tions with the estimated second, third, and fourth central moments.20 Panel (a) in Figure 3
shows the log density functions of the persistent shock η(s) in contractions and expansions.
The second scenario, NORM, features FGLD distributions with the first four central moments
of a Gaussian distribution with the estimated variance. Panel (b) shows the corresponding
Gaussian distributions for the persistent component.21

Appendix C.1 reports the estimated, fitted, and discretized moments of the shocks, as well
as the parameter vectors λ for all shocks under the two scenarios NORM and LKSW.22 It
also shows central moments 2–4 of cross-sectional income in logs and levels that result from
our parameterization.

19 The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1
4 .

20 We also impose a minimum household net income that remains unchanged across scenarios, which turns out to
be nonbinding in either scenario.

21 Note that the FGLD distribution NORM is not exactly identical to a Gaussian, but with no quantitative impli-
cations: any differences between FGLD distribution NORM and its Gaussian counterpart are captured by the even
central moments higher than the fourth (the sixth, eighth, tenth, etc.). Following our analytical analysis in Section 2.1,
these mechanically become less and less important with the order. As documented in Appendix D.1, all quantitative
results for a Gaussian distribution are numerically almost identical to those obtained for FGLD distribution NORM,
which we choose to compare to benchmark LKSW given its nesting in the FGLD distribution.

22 Following Huggett and Kaplan (2016), we assume that one-third of the estimated variance of the transitory shock
is measurement error and reduce the targeted variance accordingly. We assume that this measurement error is sym-
metric and accordingly adjust the third and fourth central moments such that the implied coefficients of skewness and
kurtosis are unchanged.
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4.1.2. Pension system. The model pension system approximates the current U.S. bend
point formula, in which we approximate individual average indexed monthly earnings
(AIME) by the realization of the persistent income shock before entering into retire-
ment z jr−1. This yields the model equivalent to the primary insurance amount (PIA), denoted
by p(z jr−1), which we scale by � to obtain pension benefits as b(z jr−1) = � · p(z jr−1). Pension
contributions obey a linear schedule with the contribution rate calibrated to 11.7%. By our
normalization of income, aggregate contributions are constant across scenarios. We calibrate �

so that the pension system clears, which implies that average pension income is also constant
across scenarios, and thus, we rule out changes in life-cycle savings motives. Appendix C.2
provides the details of the contribution scheme, the pension budget, and the calibrated values
of �.

4.1.3. Aggregate shock process. Based on our classification of time periods as contractions
and expansions for the U.S. economy, we estimate a Markov transition process on this data.
We estimate π (s′ = E|s = E) = 0.7885 and π (s′ = C|s = C) = 0.3889, implying the stationary
invariant distribution �s = [0.2571, 0.7429]′.

4.1.4. Initial assets and interest rate. We assume that all households are born with the same
initial assets a0 = ā0. We compute those from the average asset to net earnings data at age 25,
which we calculate from PSID data as 0.89. We set the annual interest rate of the risk-free as-
set to r = 3% as in Kaplan and Violante (2010). This choice is consistent with a risk-free rate
of about 4% as in Siegel (2002) and a technological growth rate of 1% (given that there is no
technological growth in our model economy).

4.1.5. Preferences. We consider risk-sensitive preferences Tallarini (2000)—and accord-
ingly, set the intertemporal elasticity of substitution to γ = 1—and four alternative parame-
terizations for θ ∈ {1, 2, 3, 4}. Based on the estimates in Cooper and Zhu (2016), we take θ =
4 as our benchmark parameterization.23 For each θ ∈ {1, 2, 3, 4}, we determine the discount
rate ρ = 1/β − 1 by targeting the average life-cycle asset profile scaled by net earnings, which
we compute from PSID data for the sample which we use in the income process estimation.
Since our model is not designed to match saving patterns in retirement (there is neither sur-
vival risk nor a bequest motive), we match assets for ages 25–60, the working period in our
model. This calibration is done for distribution scenario LKSW, and we then hold the cali-
brated discount rate constant when moving to scenario NORM, for each calibration of θ .24

Calibrated discount rates range from 1.86% for θ = 1 to 2.60% for θ = 4, see Table 2. The
reason for the positive relationship of the calibrated discount rates and θ is that stronger risk
attitudes (larger θ) imply higher precautionary savings that is offset in the calibration to the
asset target by a larger ρ so that the life-cycle savings motive is less potent.

4.1.6. Alternative calibration. As the main robustness analysis, we consider an alternative
calibration of our model economy, following the benchmark calibration in Kaplan and Vi-
olante (2010), which we refer to as KV-calibration. There are two differences relative to the
baseline calibration described above. First, we set initial assets to zero, and second, we cali-
brate the discount rate targeting an aggregate capital–output ratio of 2.5—the ratio implicitly
targeted in our baseline calibration is about 5.4. As we show in Section 4.5, the welfare impli-
cations of higher-order risk are larger in the KV-calibration.

4.2. Welfare Effect of Higher-Order Income Risk. First, we assess the welfare effect of
higher-order income risk per se—that is, we translate the deviation from Gaussian shock dis-

23 Cooper and Zhu (2016) estimate a risk aversion of 4.4 and an IES of 0.6. We choose an IES of 1 as a natural
benchmark. This is also very convenient when we decompose the welfare effects as described in Appendix A.2.

24 Recalibrating the discount rate under scenario NORM does not alter the results by a relevant margin as reported
in Appendix D.3 for completeness.
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Table 2
calibrated parameters

Working Period 25 ( j = 0) to 60 ( j = jr − 1)
Maximum Age 80
Elasticity of intertemporal of substitution γ = 1
Coefficient of risk aversion θ ∈ {1, 2, 3, 4}
Discount rate (baseline) ρ ∈ {0.0186, 0.0205, 0.0229, 0.0260}
Discount rate (KV-calibration) ρ ∈ {0.0361, 0.0462, 0.0633, 0.0919}
Interest rate r = 0.03
Pension contribution rate τ p = 0.117
Pension benefit level � shown in Table C.4
Average tax rate τ = 0.168
Aggregate shocks π (s′ = C | s = C) = 0.3889, π (s′ = E | s = E) = 0.7885
Initial ass. / inc. ā0 = 0.89

Note: The discount rate ρ is calibrated endogenously to match the average asset-to-income life-cycle profile from the
PSID (baseline) or the aggregate capital–output ratio of 2.5 (KV). The pension benefit level is calibrated to clear the
pension budget.

tributions toward skewed and leptokurtic distributions into welfare consequences. To this end,
we define the social welfare function from an ex ante perspective as the certainty equivalent
of being born into the economy under a given distribution scenario. We express the welfare
function as a function of the stochastic consumption stream ci(a), which denotes optimal con-
sumption at every age for every possible history, given starting out with asset holdings a, when
facing shock distribution scenario i: W i(ci(a)) = ν(V i

0(a, z, ε; s)) for i ∈ {NORM,LKSW}. The
certainty equivalent is given by (8), and the expectation operator within ν(·) is taken over
the idiosyncratic shocks and the aggregate state. In particular, agents draw a shock ε from
distribution F̃ε, and an initial persistent shock η from conditional distribution F̃η(s), whereas
s ∈ {E,C} is drawn from the stationary distribution of the aggregate state, �s.

We evaluate the welfare function for households starting with average assets, that is,
W i(ci(a = ā0)). Given the optimal consumption plans under each distribution scenario, we
then calculate the CEV that households need to receive in scenario NORM to be indifferent
to scenario LKSW. Homogeneity of the utility function implies that W i((1 + gc)ci(a = ā0)) =
(1 + gc)W i(ci(a = ā0)), where gc proportionately varies consumption in every state and pe-
riod. From W LKSW (cLKSW (a = ā0)) = W NORM((1 + gc)cNORM(a = ā0)), the CEV follows as
gc = W LKSW/W NORM − 1, where W i = W i(ci(a = ā0)).

Table 3 contains four panels for the different calibrations of risk attitudes. Within each
panel, the first row shows the CEV along with a decomposition that we explain below. Fo-
cus first on the total CEV. In line with the discussion for the two-period model, welfare losses
show up for θ > 1, ranging from about −0.5% for θ = 2 to −14.5% for θ = 4. For weak risk
attitudes (θ = 1), higher-order risk leads to welfare gains (CEV of 0.4%). The latter results
from the fact that we consider mean-preserving changes of risk: a mean-preserving increase
(in absolute terms) of the negative third central moment implies an increase of the mean in
logs, and under log utility, this translates into welfare gains. We formalize this in Proposition 1
in Appendix A.3.

To understand the mechanism behind the welfare effect, we next decompose the CEV into
three components. When facing different income risk, households make different savings deci-
sions (depending on their risk attitudes). The first consequence of this is potentially different
(overall) mean consumption, that is, consumption averaged cross-sectionally and over age. We
call the welfare consequence of this change of mean consumption the mean effect, gmean

c . The
remaining welfare effect stems from a change of the distribution around this mean (and we re-
fer to this welfare component as the distribution effect, gdistr

c ).
The change of the distribution consists of two components. First, a change over age: the

profile of average consumption over the life-cycle changes, which gives rise to a life-cycle dis-
tribution effect, glcd

c . Second, at a given age, the cross-sectional distribution of consumption
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Table 3
welfare effects of (cyclical) idiosyncratic risk

gc gmean
c glcd

c gcsd
c gcr

c

Risk Aversion, θ = 1
NORM→LKSW 0.384 −0.112 0.482 0.015 –
NORM: cyclical risk −1.918 0.360 −2.142 −0.136 –
LKSW: cyclical risk −1.620 0.289 −1.793 −0.116 0.298

Risk Aversion, θ = 2
NORM→LKSW −0.504 −0.106 −0.365 −0.033 –
NORM: cyclical risk −3.622 0.651 −3.998 −0.274 –
LKSW: cyclical risk −3.943 0.605 −4.261 −0.287 −0.321

Risk Aversion, θ = 3
NORM→LKSW −5.193 0.270 −5.085 −0.378 –
NORM: cyclical risk −5.106 0.894 −5.594 −0.406 –
LKSW: cyclical risk −8.128 1.027 −8.514 −0.641 −3.022

Risk Aversion, θ = 4
NORM→LKSW −14.450 0.957 −14.153 −1.254 –
NORM: cyclical risk −6.373 1.108 −6.961 −0.520 –
LKSW: cyclical risk −13.976 1.460 −14.196 −1.240 −7.603

Note: Welfare gains (positive numbers) and losses (negative numbers) of higher-order income risk, expressed as a
consumption equivalent variation (CEV) in percentages in scenario NORM that makes households indifferent to the
higher-order income risk scenario LKSW. Also CEV in the noncyclical scenario that makes households indifferent
to the cyclical scenario. gc: total CEV, gmean

c : CEV from changes of mean consumption, glcd
c : CEV from changes of

consumption over the life cycle, gcsd
c : CEV from changes in the cross-sectional distribution, where gc = gmean

c + glcd
c +

gcsd
c . gcr

c = gLKSW,cr
c − gNORM,cr

c .

around the age-specific average changes, which gives rise to a cross-sectional distribution ef-
fect, gcsd

c . The overall CEV is the sum of the three components: gc = gmean
c + glcd

c + gcsd
c (cf. Ap-

pendix A.2 for explicit expressions), which are shown in columns 2–4 of Table 3.
The dominant channel behind the welfare results turns out to be the different life-

cycle consumption profile reflected in glcd
c . Driven by the precautionary savings motive,

young households choose lower consumption when facing scenario LKSW compared to sce-
nario NORM. The average life-cycle consumption profiles under the two scenarios are shown
in Panel (a) of Figure 4.25 In welfare terms, lower young-age consumption dominates higher
old-age consumption due to discounting. For θ = 3 and θ = 4, the mean effect gmean

c is positive
because higher old-age consumption dominates.

Panels (b)–(d) of Figure 4 show the second to fourth cross-sectional central moments of the
consumption distribution over the life cycle, which are responsible for the cross-sectional dis-
tribution effect gcsd

c . To interpret it, note that the variance is lower in scenario LKSW than
in scenario NORM for most ages, whereas the third central moment is initially negative and
the fourth central moment is higher at all ages.26 Lower variance contributes positively to gcsd

c ,
which dominates for weaker risk attitudes, whereas the more negative third and higher fourth
central moment contribute negatively, which dominates for stronger risk attitudes.

4.2.1. Decomposing moments. In Appendix D.2, we analyze an additional distribution sce-
nario, which features symmetric (in logs) shocks with the excess kurtosis of LKSW. For cali-

25 The corresponding asset profile is shown in Appendix C.3. Qualitatively, effects are the same in the other cali-
brations of θ . Consumption is monotonically increasing due to a strong life-cycle savings motive; we address this in
Section 4.5.

26 The Gini coefficient for assets for a risk aversion of 4 is at 0.36 in scenario NORM, and at 0.34 in scenario LKSW:
the introduction of higher-order income risk does not increase the Gini coefficient in a quantitative model such as
ours. Also, note that the Gini coefficient in our calibrated model is substantially lower than in the data and also lower
than what is typically found in quantitative work; for example, Krueger and Ludwig (2016) compute a Gini coefficient
of assets of 0.55 in an overlapping generations model calibrated to the U.S. economy. Main reason for the relatively
modest asset inequality lies in our focus on ex post heterogeneity. In our alternative KV-calibration, the Gini coeffi-
cient for assets is 0.50 under scenario NORM and 0.38 under scenario LKSW.
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Notes: Moments of cross-sectional distribution of log consumption over the life cycle under scenarios NORM
and LKSW.

Figure 4

central moments of log consumption by age (θ = 4)

bration θ = 4, the welfare costs are 10.9% (see Table D.2), which implies that the kurtosis ac-
counts for about 75% of the welfare costs of higher-order risk, and thus, skewness accounts
for about 25%.

4.3. Welfare Costs of Cyclical Idiosyncratic Risk. Second, we quantify the util-
ity consequences of cyclical idiosyncratic risk under the different scenarios. For each
i ∈ {NORM, LKSW}, let W i,ncr denote the social welfare function in a (counterfactual) no
cyclical risk scenario, in which we shut down the cyclical variation of the shock distributions.
We then compute the CEV that makes households in this counterfactual scenario ex ante
indifferent to being born into the (actual) scenario with cyclical risk, gi,cr

c = W i/W i,ncr − 1. By
holding mean wages and interest rates constant over the cycle, the welfare effects of cyclical
risk we report constitute a lower bound for each scenario.27

When shutting down cyclicality, we assume that households always draw from the
expansion-distribution of the scenario. When using lognormal distributions of shocks, one

27 Note that the direct effect of business cycles is typically found to be small. For example, Storesletten et al. (2001)
find the direct effect to be an order of magnitude smaller than the role of cyclical variation in idiosyncratic risk. How-
ever, there can be indirect utility “interactions” between aggregate and idiosyncratic risk, which may be large Haren-
berg and Ludwig (2019), and which we abstract from in order to focus on the role of the idiosyncratic shock distribu-
tion.
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approach in the literature is to consider an average distribution, which features the average
of expansion and contraction variances, see, for example, Storesletten et al. (2001). This
approach is not applicable in our analysis as it is conceptually not clear what characterizes
such an average distribution once other moments than the variance are taken into account.
To the extent that some average distribution represents a better noncyclical counterfactual
scenario, the pure effect of cyclical idiosyncratic risk is overstated in our analysis.28 However,
we are mainly interested in the difference of welfare costs of cyclical income risk across sce-
narios, that is, the difference-in-difference comparison between gLKSW,cr

c and gNORM,cr
c , that is,

gcr
c = gLKSW,cr

c − gNORM,cr
c . Thus, our approach to shutting down cyclicality of idiosyncratic

risk is of second-order importance as it is consistent across scenarios.29

Table 3 reports the resulting overall welfare costs of cyclical idiosyncratic risk in scenar-
ios NORM and LKSW, and the decomposition of the total CEV into its components for each
calibration of θ . In both scenarios i ∈ {NORM, LKSW}, we observe that, first, the welfare
costs of business cycles, gi,cr

c , increase monotonically in θ . Second, the effect is dominated by
the life-cycle distribution effect gi,cr,lcd

c , which reflects the change of the mean consumption
profile over age: agents face higher risk to which they respond by increasing savings early
in the life cycle. Third, higher savings increase expected consumption in the middle of the
life cycle, which pushes up overall mean consumption and is reflected in a positive mean ef-
fect gi,cr,mean

c .
Consistent with the previous result that with logarithmic utility the total welfare effect from

higher-order income risk is positive, we now find that welfare losses from cyclical idiosyncratic
risk are about 0.3 percentage points lower in scenario LKSW. Similarly, with moderate risk at-
titudes (risk aversion of 2), the welfare losses of cyclical income risk in scenario LKSW are
only mildly higher than those obtained in scenario NORM. With strong risk attitudes (θ = 4),
the welfare losses are significantly (about 7.6 percentage points) higher in scenario LKSW
compared to scenario NORM. Thus, the welfare effects of cyclical risk are strongly underes-
timated in conventional approaches based on Gaussian distributions of innovations if risk atti-
tudes are strong.

4.3.1. Decomposing moments. In the calibration with θ = 4, welfare costs of cyclical risk
are about 4.9 percentage points higher in the distribution scenario with excess kurtosis but
zero skewness than in scenario NORM (see Table D.2). Combined with the lower part of
Table 3, we thus find that of the differential welfare losses from higher-order risk approxi-
mately 64% (≈ 4.885/7.608 · 100 [%]) are due to the excess kurtosis and the remaining 36%
are due to the left-skewness of shocks.

4.4. Self-Insurance and the Propensity to Consume. We extensively used the concept of
increased precautionary savings—that is, self-insurance—in response to higher-order risk to
explain the ex ante welfare effects that largely stem from reduced consumption at early
ages. Now, we study how this translates into measures of self-insurance against income
shocks x j(s) ∈ {ε j, η j(s)}. We start by employing a measure of consumption insurance as in-
troduced in the empirical literature by Blundell et al. (2008), which is based on estimating
the pass-through of shocks to consumption adjustments. As all shocks are observed within the

28 In one of our sensitivity checks in Appendix D.3, we consider CRRA preferences with θ = 2, and in scenario
NORM, obtain welfare costs of about 2.9%. With the same specification for preferences, Storesletten et al. (2001)
find welfare costs of cyclical (Gaussian) risk of about 1.3%. Besides other differences between our model and theirs,
one reason for the higher welfare costs in our analysis lies in the different approach to characterizing the noncycli-
cal scenario.

29 One alternative is to follow the “integrating out” principle (see Krusell and Smith, 1999 and Krusell et al., 2009),
which first isolates a true idiosyncratic component of the shock, and then integrates over the probability distribution
of the aggregate state.
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Notes: Figures show the degree of consumption insurance against transitory and persistent shocks separately by age.

Figure 5

insurance coefficients: strong risk attitudes, θ = 4

Table 4
aggregate pass-through and its decomposition, θ = 4

Components of 1 − φ: Conditional 1 − φ:

Transitory: 1 − φε π−Aε

1−φε
π+Bε

1−φε
Cε

1−φε 1 − φε|ε− 1 − φε|ε+

NORM 0.051 −0.014 0.883 0.131 0.041 0.063
LKSW 0.045 0.303 0.525 0.172 0.030 0.090

Persistent: 1 − φη π−Aη

1−φη
π+Bη

1−φη
Cη

1−φη 1 − φη|η− 1 − φη|η+

NORM 0.448 0.409 0.576 0.015 0.463 0.494
LKSW 0.402 0.523 0.454 0.023 0.350 0.511

Note: Column 1 shows the aggregate consumption pass-through coefficient, and columns 2–4 its decomposition into
components according to Equation (17), expressed as shares of total pass-through. π− and π+ are short for the prob-
abilities of the shock being negative or positive. Columns 5 and 6 show conditional pass-through coefficients for nega-
tive and positive shocks.

model, we calculate the model-consistent insurance coefficient following Kaplan and Violante
(2010).30

Conditional on aggregate state s and age j, the pass-through coefficient 1 − φx
j (s) is the co-

efficient of a linear regression of consumption growth on shock x:

1 − φx
j (s) = cov( ln (c j+1(s′ | s)), x j+1(s′))

var(x j+1(s′))
,(16)

where  ln(c j(s′ | s)) = ln(c j+1(s′ | s)) − ln(c j(s)), and φx
j (s) denotes the insurance coeffi-

cient.
Figure 5 reports the insurance coefficients φx

j for all ages j ∈ {0, . . . , J}, as a weighted aver-
age of the coefficients in contractions and expansions (using the stationary invariant distribu-
tion �s), for the transitory shock ε in Panel (a) and for the persistent shock η(s) in Panel (b).
Results are quantitatively similar for different values of risk attitudes, so we focus on θ = 4.
In the first column of Table 4, we report the pass-through aggregated over age. All in all, in

30 Thus, we do not consider the extent to which an empirical measure is valid, given that shocks are not observed in
observational data and need to be extracted using some identifying assumptions, as discussed in, for example, Blun-
dell et al. (2008), Kaplan and Violante (2010), or Commault (2022).
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scenario LKSW, consumption insurance against both transitory and persistent shocks as mea-
sured by the φ-coefficients is higher than in scenario NORM. This is in line with results pre-
sented in De Nardi et al. (2021).

One part of the higher insurance coefficient is explained directly by higher precaution-
ary savings, which imply a lower pass-through of income gains to consumption, as we dis-
cuss in Section 2.1 for the two-period setting. To explore whether the higher insurance coef-
ficient represents better insurance against income losses, we consider the following decomposi-
tion, which captures the contribution of consumption comovement with positive and negative
shocks, respectively, to the aggregate pass-through coefficient for shock x ∈ {η, ε}:

1 − φx = E[ ln(c(·))x] − E[ ln(c(·))]E[x]
var(x)

=(17)

π− · E[ ln(c(·))x
∣∣x < 0]

var(x)︸ ︷︷ ︸
Ax

+ π+ · E[ ln(c(·))x
∣∣x > 0]

var(x)︸ ︷︷ ︸
Bx

− E[ ln(c(·))]E[x]
var(x)︸ ︷︷ ︸

Cx

.

The terms π− and π+ are short for the probabilities of the shock being negative or positive,
respectively. The decomposition of the aggregate coefficient expressed as shares is shown in
Table 4 for θ = 4 (in Appendix Table D.4, we show the same table for θ = 2; the other cali-
brations of θ yield the same patterns). In scenario NORM, the comovement of consumption
changes with negative transitory shocks plays only a negligible role (−1.4%) for the overall
pass-through coefficient. On the other hand, in scenario LKSW, the (negative) consumption
reaction to negative transitory shocks accounts for sizable 30.3% of the pass-through coeffi-
cient. A possible rationalization is that built-up savings do not suffice to smooth out the nega-
tive shocks in scenario LKSW as well as they do in scenario NORM. The nonzero third term
in the decomposition follows from the normalization in levels, which implies a nonzero mean
of the shocks in logs (which is larger in scenario LKSW than in scenario NORM). Turning
to persistent shocks, in scenario NORM, 40.9% of the pass-through is accounted for by con-
sumption reductions in response to negative shocks, whereas 57.6% come from consumption
increases with positive shocks. A larger fraction (52.3%) of the overall smaller pass-through is
accounted for by consumption reductions in response to negative shocks in scenario LKSW.

The last two columns of Table 4 show pass-through coefficients conditional on the sign of
the shocks. For example, 1 − φε|ε− = cov( ln(c(·)), ε|ε < 0)/var(ε|ε < 0), and likewise for
positive shocks and for η. For both transitory and persistent shocks, under scenario LKSW,
the conditional pass-through is larger for positive shocks and smaller for negative shocks,
compared to scenario NORM.31

To further interpret these findings, note that the decomposition captures three effects. First,
the shock distributions differ, and thus, do the probabilities of positive and negative shocks,
and the (typical) size of the shocks of either sign. Second, the equilibrium asset distribution
is different—and the amount of assets matters for the optimal consumption-savings choice.
Third, for a given amount of assets, the reaction to a shock of the same magnitude is different.

For better comparability across distribution scenarios, we now first turn to the MPC, de-
fined as the slope of the consumption function. Table 5 reports the average MPC for different
levels of risk attitudes. It turns out that the aggregate marginal consumption response is some-
what larger in scenario LKSW.

Next, in Table 6, we consider explicitly the consumption response to transitory and persis-
tent shocks of different signs, and of three sizes. Small shocks are defined as one standard de-
viation of the persistent shock (0.11 based on the weighted variances in expansions and con-

31 Comparison of the coefficients is not straightforward as the conditional variance of the shocks changes. Consider
negative transitory shocks: under scenario NORM, the conditional covariance of shocks with consumption changes is
0.0009, whereas it is an order of magnitude larger (0.0085) under LKSW, which displays a larger conditional variance
of negative shocks.
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Table 5
marginal propensity to consume

Risk Aversion

θ = 1 θ = 2 θ = 3 θ = 4

NORM 0.0390 0.0410 0.0433 0.0461
LKSW 0.0390 0.0417 0.0463 0.0529

Note: MPC is calculated as the slope of the consumption policy function. Reported value aggregates over the distri-
bution of households (over age, income, and assets).

Table 6
propensity to consume (θ = 4)

Negative Shocks Positive Shocks

Small Medium Large Small Medium Large

Transitory: NORM 0.0460 0.0460 0.0460 0.0460 0.0459 0.0459
LKSW 0.0528 0.0530 0.0533 0.0525 0.0523 0.0519

Persistent: NORM 0.3991 0.4026 0.4045 0.3914 0.3868 0.3704
LKSW 0.3847 0.3889 0.3981 0.3800 0.3748 0.3594

Note: Propensity to consume out of a given shock. The reported numbers are evaluated at the mean asset profile over
age from scenario LKSW.

tractions); medium shocks as one standard deviation of the transitory shock (0.22), and large
shocks as twice that (0.44). For both transitory and persistent shocks, we show the consump-
tion reaction to a shock of a given sign and size for households with age-specific average in-
come and the (baseline) asset holdings from the LKSW calibration, aggregated over age.32

Thus, the difference between NORM and LKSW represents changes in the policy function.
For transitory shocks, we find that the propensity to consume is larger in scenario LKSW, re-
flecting the somewhat larger MPC mentioned already. In particular, negative shocks (of the
same size) translate somewhat more strongly into consumption reductions than in scenario
NORM. For persistent shocks, the consumption responses are weaker in scenario LKSW com-
pared to scenario NORM. The reason for this direction of the effect is that for persistent
shocks, the precautionary savings motive is more pronounced. As we discussed in Section 2.1,
a stronger savings motive reduces the propensity to consume out of a given shock.33

Summing up, for both transitory and persistent shocks, we observe a smaller pass-through
(increase of the insurance coefficient) in scenario LKSW than in scenario NORM. In the
case of the persistent shock, this is driven by a reduced propensity to consume, and in this
sense reflects better insurance. In the case of transitory shocks, however, negative shocks ac-
tually translate more into consumption, which is also reflected in a higher MPC. The reduc-
tion of the pass-through therefore does not reflect better insurance against a same-size shock
for an observationally equivalent household. Thus, the simple aggregate insurance coefficient
based on comovements of shocks and consumption is an imprecise measure of insurance, if
one plausibly has in mind that better insurance means that negative shocks translate less into
consumption—and that this is what should be reflected by a larger value of an insurance coef-
ficient.

4.4.1. Decomposing moments. Table D.3 shows that the difference between scenar-
ios NORM and LKSW of the relative importance of positive and negative shocks for the over-

32 Ghosh and Theloudis (2023) estimate a nonlinear consumption function on biannual PSID data and find patterns
of the propensity to consume over shock sign and size that qualitatively resemble our model patterns.

33 Considering the propensity to consume out of a persistent shock in the two-period framework, one can show that
there is an additional term added to (3) that increases in the persistence of the shock; results are available upon re-
quest.
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Table 7
welfare analysis in kv-calibration

gc gmean
c glcd

c gcsd
c gcr

c

Risk Aversion, θ = 2
NORM→LKSW −4.008 0.329 −4.075 −0.262 –
NORM: cyclical risk −2.472 0.898 −3.288 −0.082 –
LKSW: cyclical risk −4.397 1.088 −5.406 −0.079 −1.925

Risk Aversion, θ = 4
NORM→LKSW −25.553 2.563 −27.540 −0.576 –
NORM: cyclical risk −3.081 1.315 −4.269 −0.127 –
LKSW: cyclical risk −16.958 2.170 −18.666 −0.462 −13.877

Note: Welfare gains (positive numbers) and losses (negative numbers) of higher-order income risk, expressed as a
consumption equivalent variation (CEV) in percentages in scenario NORM that makes households indifferent to the
higher-order income risk scenario LKSW. Also, CEV in the noncyclical scenario that makes households indifferent
to the cyclical scenario. gc: total CEV, gmean

c : CEV from changes of mean consumption, glcd
c : CEV from changes of

consumption over the life cycle, gcsd
c : CEV from changes in the cross-sectional distribution, where gc = gmean

c + glcd
c +

gcsd
c . gcr

c = gLKSW,cr
c − gNORM,cr

c .

all pass-through is driven by the introduction of left-skewness—under scenario LK, the shares
are very close to scenario NORM.

4.5. Alternative Calibrations. We start by considering the alternative calibration a la Ka-
plan and Violante (2010) (KV-calibration), where we set initial assets to zero, and calibrate
the discount factor targeting an aggregate capital–output ratio of 2.5. Relative to our base-
line calibration, the endogenously calibrated discount rate now exceeds the (exogenous) inter-
est rate, cf. Table 2, which in isolation would lead to a consumption profile negatively sloped
over age. As households engage in precautionary savings, they save when young to build up a
buffer against negative income risk. Together, the two forces lead to a hump-shaped consump-
tion profile (see Figure D.2 and the corresponding asset profile in Figure C.2).

Table 7 summarizes the results of the two welfare analyses for θ = 2 and θ = 4. For each
value of θ , the first row shows the welfare costs of higher-order risk, which turn out substan-
tially higher under the KV-calibration. To insure themselves against the higher risk in scenario
LKSW, households save relatively much at young ages, which tilts the average consumption
profile compared to the one in scenario NORM. The difference between the two profiles is
stronger than in our baseline calibration, which is driven by (exogenously set) zero initial
assets and an (endogenously determined) higher discount rate. This interpretation is further
supported by investigating the fraction of borrowing constrained households. In the base-
line calibration, this fraction is basically zero in both risk scenarios with high-risk attitudes
of θ = 4. In the KV calibration of scenario NORM with a risk aversion of θ = 4, about 16%
of households are initially (at biological age 25) borrowing constrained. In scenario LKSW,
this fraction is substantially lower, at about 1% only, because households face higher risk that
induces them to save more. The worse outcomes at young ages are crucial given the ex ante
perspective on welfare and the higher discount rate.

The remaining rows in Table 7 show the welfare costs of cyclical idiosyncratic risk in scenar-
ios NORM and LKSW under the KV-calibration. Qualitatively, the results mimic the baseline
calibration, and differences in magnitude are driven by the same mechanisms as described for
the overall welfare costs.

We next analyze the aggregate measure of (self-)insurance against idiosyncratic risk. We
again focus on the results for θ = 4, as there is no relevant variation across different values of
risk attitudes. The pass-through coefficient, as shown in Table 8, is smaller in scenario LKSW
relative to scenario NORM for both transitory and persistent shocks. A smaller fraction of the
lower pass-through is accounted for by consumption increases in response to positive shocks,
which is again in line with increased precautionary savings.
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Table 8
kv-calibration—aggregate pass-through and decomposition, θ = 4

Components of 1 − φ: Conditional 1 − φ:

Transitory: 1 − φε π−Aε

1−φε
π+Bε

1−φε
Cε

1−φε 1 − φε|ε− 1 − φε|ε+

NORM 0.101 0.562 0.445 −0.007 0.100 0.106
LKSW 0.081 0.558 0.383 0.058 0.058 0.146

Persistent: 1 − φη π−Aη

1−φη
π+Bη

1−φη
Cη

1−φη 1 − φη|η− 1 − φη|η+

NORM 0.620 0.529 0.472 −0.001 0.657 0.666
LKSW 0.499 0.563 0.425 0.011 0.450 0.602

Note: Column 1 shows the aggregate consumption pass-through coefficient, and columns 2–4 its decomposition into
components according to Equation (17), expressed as shares of total pass-through. π− and π+ are short for the prob-
abilities of the shock being negative or positive. Columns 5 and 6 show conditional pass-through coefficients for nega-
tive and positive shocks.

Table 9
kv-calibration—propensity to consume (θ = 4)

Negative Shocks Positive Shocks

Small Medium Large Small Medium Large

Transitory: NORM 0.0782 0.0796 0.0885 0.0753 0.0743 0.0727
LKSW 0.0990 0.1002 0.1022 0.0970 0.0959 0.0936

Persistent: NORM 0.5722 0.5773 0.5809 0.5607 0.5540 0.5298
LKSW 0.5042 0.5094 0.5204 0.4974 0.4913 0.4735

Note: Propensity to consume out of a given shock. The numbers are evaluated at the mean asset profile over age
from scenario LKSW in the KV calibration.

Table 9 reports the propensity to consume out of transitory and persistent shocks of differ-
ent sign and magnitude (11, 22, and 44 log points). We evaluate the consumption responses at
the age-specific mean asset holdings under the KV calibration in scenario LKSW. We find that
the consumption response to transitory shocks is stronger in scenario LKSW than in scenario
NORM, whereas the aggregate consumption response to persistent shocks is weaker. These
differences are more pronounced than in the baseline calibration.

In Appendix D.3, we further decompose differences between the baseline and the KV-
calibrations. We also explore robustness with respect to the preference specification by consid-
ering CRRA utility—stronger risk attitudes θ now simultaneously imply a lower IES γ . Our
calibration then determines a lower discount rate because that second effect turns out to be
the dominant force for asset accumulation. Consequently, the future is valued more in both
scenarios NORM and LKSW, and therefore, for θ > 1, the welfare effects of higher-order risk
are lower. This finding underscores the importance of disentangling risk attitudes from in-
tertemporal preferences. Also, we consider a version of the baseline where we recalibrate the
discount rate for scenario NORM and find that our results are very little affected.

5. conclusion

We estimate an income process that extends the canonical one by higher-order risk of tran-
sitory and persistent shocks. Our estimates on PSID household income imply that persistent
shocks exhibit countercyclical variance and a procyclical third central moment. All shocks ex-
hibit excess kurtosis.

Within an otherwise standard partial equilibrium life-cycle model with incomplete markets,
first, higher-order risk has important welfare consequences relative to a world with lognor-
mal shocks. Second, the presence of higher-order risk matters for the welfare costs of business
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cycles. Third, higher-order risk affects the measured degree of consumption self-insurance and
the (marginal) propensity to consume. A natural follow-up analysis pertains to the empirical
exploration of consumption moments over the life cycle and how a structural model such as
ours matches those.
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