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Abstract 
This paper presents the experience and lessons learned in a pilot project aimed at integrating 

artificial intelligence (AI) technologies in sturgeon aquaculture. The project used 

convolutional neural networks and visual intelligence for the evaluation of fish biomass and 

the optimisation of sturgeon rearing technologies in integrated multitrophic production 

systems. Similar solutions have been used before to determine the biomass of other fish 

species, but this is the first documentation of the application of such a solution for sturgeons. 

The application challenges were significant, which was determined by the special 

morphological peculiarities of the sturgeons (shape, way of swimming, their dimensions). 

Both YOLACT technology and a computer vision context were tested using LAB and HSV 

colour spaces to estimate fish biomass based on imaging data. It was found that the LAB 

colour space provided superior results in terms of precision and efficiency, but maximum 

accuracy was achieved using convolutional neural networks (YOLACT). The analysis of the 

project results confirms the significant advantages of using the AI system for biomass 

monitoring, advantages consisting of the reduction of unit costs with labour and feed, 

improvement of water quality, active optimisation of sturgeon growing conditions. In this 

way, conditions are created for the sustainable growth of sturgeon production, both for 

consumption and for the restocking of various aquatic ecosystems with brood.  It also proves 

that the large-scale implementation of AI-based technologies in the fisheries industry can 

make an important contribution to the achievement of Romania’s National Multiannual 

Aquaculture Strategic Plan 2022-2030, as well as to the implementation of the European 

Union’s strategies on food security and biodiversity. 
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Introduction 

In the context of the need for fish farms to ensure the medium- and long-term sustainable 

development of fishing and aquaculture in Romania, increasing the sustainability of 

production systems is absolutely necessary. Thus, aquaculture production systems fulfil a 

dual role in achieving the aforementioned goal, providing fish production for human 

consumption while actively contributing to the activities of populating and repopulating 

natural fish habitats. It is well known that production systems and technological facilities in 

aquaculture are classified according to a multitude of technical, technological, and ecological 

criteria. Among the various types of production systems, recirculating aquaculture systems 

offer the possibility of rigorous control of the technological process throughout the entire 

production cycle, with the aim of ensuring optimal growth conditions for various fish species. 

Consequently, considering the current concerns regarding the diversification and 

intensification of aquaculture technologies, as well as those related to the restoration of bio 

resources in natural aquatic ecosystems, significant investments are required to implement 

complex recirculating production systems. The high cost of fish produced in recirculating 

systems poses numerous technical and financial problems that must be addressed to ensure 

their competitiveness. 

The present study aims to present how artificial intelligence-based techniques can be 

successfully used to increase fish biomass, with the goal of maximising profitability and 

supporting the sustainability of intensive sturgeon aquaculture. Thus, the main objective of 

the study is to integrate AI technologies into industrial sturgeon fishery systems to maximise 

profitability by reducing operational effort and increasing efficiency in fish feed utilisation 

through the optimisation of sturgeon feeding processes while maintaining production 

performance, thereby reducing operational costs by eliminating unconsumed feed quantities. 

The paper demonstrates how technical improvements can be made to sturgeon recirculating 

systems by synergistically integrating AI-based imaging modules into an existing aquaponic 

system within a Romanian company specialising in this field. The aim of this integration is 

to estimate the real-time growth performance of the fish biomass involved in the production 

process, including a data acquisition and feed control module. This estimation contributes 

decisively to optimising nutrient utilisation in intensive aquaculture. Thus, the prototype 

intelligent system based on imaging data and convolutional networks implemented within 

the organisation can optimise fish biomass production, ensuring increased production, 

improved economic efficiency, and sustainability of sturgeon aquaculture industry. 

Maximising profitability, along with improving the sustainability of sturgeon aquaculture by 

connecting it to the ecosystem services system through the use of intelligent technologies, 

justifies such a study, which contributes to further aligning technological progress in 

Romania with the requirements of the national and international socioeconomic environment. 

Thus, the use of artificial intelligence technologies, based on convolutional neural networks, 

within recirculating aquaculture industrial systems allows for the development of modern 

systems that can assess the growth performance of fish biomass in real time (total length of 

fish for biomass calculation), accurately regulate the amount of feed administered, and 
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provide ecosystem services to support restocking actions of aquatic ecosystems with 

sustainably obtained sturgeon fry, limiting feed losses and the discharge of nutrients resulting 

from the decomposition of unconsumed feed into natural ecosystems. 

From an economic standpoint, the IT solution presented in this paper contributes to the 

bioeconomic stimulation of the fishing sector in Romania by improving sustainability 

(involvement in restocking programmes and limiting nutrient discharge from the 

decomposition of unconsumed feed) and profitability of recirculating aquaculture systems, 

integrating an engineering approach based on multitrophic production techniques and 

technologies supported by intelligent visual recognition and Internet of Things (IoT) tools. 

In the context where sturgeons, a highly valuable fish species economically, grow and 

reproduce naturally in the Lower Danube, the only area in the European Union with this 

quality, the importance of conserving stocks of these species becomes paramount. By 

adopting a holistic and socially responsible approach, the fishery industry can contribute to 

creating a sustainable balance between economic, social, and environmental needs (Cristache 

et al., 2019). Consequently, recirculating aquaculture systems meet the requirements for the 

growth of various sturgeon species, particularly in the early development stages. Finding 

means to increase technological maturity, involving the growth of sturgeons within 

recirculating aquaculture systems, combined with the implementation of intelligent technical 

solutions aiming to maximise the profitability of the respective fish farms while maintaining 

or improving sustainability, are essential goals for transitioning from a blue economy to a 

green one, according to the European Green Deal. 

 

1. State-of-the-art 

The objectives of this work are in line with the “National Multi-Annual Strategic Plan for 

Aquaculture 2022 – 2030”, which, through objective 2 - Participation in the green transition 

- specific objective 2.1. environmental performance - aims to modernise traditional 

aquaculture units by promoting integrated, innovative multitrophic technologies. This 

objective was also present in action 2 of the previous strategy (“National Strategy for the 

Fisheries Sector 2014 – 2020”), which encourages the stimulation of sustainable aquaculture 

in a competitive, innovative, knowledge-based manner that protects the environment and 

efficiently uses resources. The strategic plan for 2022-2030 emphasises that modern 

aquaculture is an essential subdomain for the sustainable development of the fisheries sector, 

which is why specific activities carried out in the traditional system must undergo a process 

of technical and technological modernisation through investments and innovation, as well as 

through more efficient management of material resources. Thus, sustainable aquaculture and 

biodiversity conservation are imperative, especially in the area of sturgeon stocks, linking 

their existence in the natural environment with the contribution of aquaculture, particularly 

through the implementation of programs supporting/restocking natural aquatic ecosystems. 

Modern aquaculture is an essential subdomain for the sustainable development of the 

fisheries sector, which is why specific activities carried out in the traditional and archaic 

system must undergo a process of technical and technological modernisation through 

investments and innovation, and more efficient management of material resources. In this 

context, integrated multitrophic systems represent an optimal solution to ensure the 

sustainability and profitability of the intensive aquaculture industry. The integration of these 
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technologies can not only contribute to increasing profitability, but also to the responsible 

management of resources and the environment (Gruia et al., 2020; Țarțavulea et al., 2020). 

The National Multi-Annual Strategic Plan for Aquaculture 2022 - 2030 aims to increase the 

ability of fish farms to improve water quality and contribute, through nutrient recycling, to 

the circular economy, thereby becoming a net provider of environmental services to society. 

The national strategy for sustainable development within the aforementioned strategic plan 

aims to create a competitive and sustainable food industry, considered a key foundation for 

accelerating economic growth and achieving the multiple sustainable development goals 

outlined in the Agenda 2030. In this regard, in line with the EU Industrial Policy Strategy, 

support is required for strengthening value chains (Roja et al., 2012; Cristache et al., 2021), 

implementing the most advanced technologies, and promoting circular and competitive 

economies associated with recirculating systems that use multitrophic production 

technologies and techniques. The concept of multitrophic aquaculture is also associated with 

point 3.1.1.7 within the aforementioned strategic plan, which encourages diversification of 

production and the creation of added value at the level of existing fish farms. 

Thus, in the context of the recommendations from the “National Multi-Annual Strategic Plan 

for Aquaculture 2022 – 2030” aiming to increase the profitability of aquaculture operators 

by expanding activities into complementary domains and the necessity of enhancing 

aquaculture sustainability, the intelligent technological solution presented in this paper offers 

a financially accessible solution, utilising new, interdisciplinary approaches in current 

international research. Multiple studies attest to the contribution of integrating aquaponic 

techniques into aquaculture systems in terms of maximisation of profitability and profitability 

(Bosma et al., 2017). To date, researchers (Petrea et al., 2016) have conducted a cost-benefit 

analysis of several intensive multitrophic technologies, using various combinations of fish-

plant species, such as rainbow trout - spinach, perch - spinach, perch - basil, perch - mint, 

and perch - tarragon. They concluded the usefulness of integrating aquaponic techniques to 

maximise the profitability of the existing sturgeon recirculating system and recommended 

further studies to develop solutions to minimise or better utilising nutrients from intensive 

aquaculture. 

In another study, Engle (2015) highlights the increase in fish farm profitability through the 

integration of aquaponic growth technologies for tomatoes, lettuce, and basil, recommending 

the latter plant species for economic reasons. From the same perspective, Xie and Rosentrater 

(2015) studied the economic and sustainability aspects of basil biomass growth in aquaponic 

systems, recommending this species for cultivation within multitrophic systems based on 

aquaponic production techniques. 

To increase profitability, reducing investment costs regarding the realisation and 

implementation of the aquaponic module is absolutely necessary (Geambașu et al., 2011). To 

achieve the desired level of sustainability and profitability, multitrophic aquaculture systems 

based on aquaponic techniques require optimisation of both growth technologies (for fish and 

plant biomass). Therefore, the present work proposes the use of visual intelligence techniques 

for real-time determination of sturgeon biomass growth, aiming to optimise the quantity of 

feed administered during the production cycle. 

Studies using similar technologies have been conducted by Mathiassen et al. (2011) for 

automating the grading and sorting process of fish material, using computer vision techniques 

based on VIS/NIR spectroscopy, computed tomography (CT), X-rays, and MRI (magnetic 
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resonance imaging). Additionally, Zion (2012) highlights the use of imaging techniques for 

fish counting within a system developed by AquaScan AS, Norway. Hufschmied et al. (2011) 

used a transit tunnel positioned outside the growth unit to determine fish biomass based on 

length-weight regressions. Odone et al. (2001) designed a device shaped like a transparent 

tube used for transferring fish biomass to other growth units, equipped with an automated 

device for evaluating the shape of specimens based on machine learning algorithms (SVM - 

Support Vector Machines) that can learn the relationship between fish weight and shape. 

Hao et al. (2016) designed a visual identification system for transporting fish material using 

conveyor belts, consisting of sonars, cameras, and algorithms based on convolutional neural 

networks (R-CNN) for precise identification of specimen length. Furthermore, Álvarez-

Ellacuría et al. (2020), using intelligent technologies based on deep learning, specifically the 

Mask R-CNN neural model, highlights that the dynamics of fish length distribution are a key 

element for understanding fish population dynamics and making informed decisions 

regarding exploited stock management. 

Although new technologies now make it possible to change the way aquaculture biomass is 

determined, in most fisheries, the measurement of fish length is still done manually. As a 

result, length estimation is accurate at the individual fish level, but due to the inherently high 

costs of manual sampling, the sample size tends to be small. Consequently, the precision of 

population-level estimates is often suboptimal and prone to errors when appropriate stratified 

sampling programmes are not accessible. 

Recent applications of artificial intelligence in fisheries science open up a promising 

opportunity for massive sampling of fish catches. For example, Yu et al. (2023) emphasise 

that precise measurement of fish size in spawning areas is crucial for the fishing industry. 

Unlike acoustic methods, which involve high equipment costs and low measurement 

accuracy, current imaging-based methods offer promising alternatives. In this regard, the 

authors have introduced an automated method for measuring fish size based on key point 

detection using convolutional neural networks (DLAT neural network transformed into a 

prototype network CenterFishNet). The rapid emergence of deep learning technology has 

been analysed in Yang et al. (2021), where the authors successfully demonstrated its use in 

the fishing industry for live fish identification, species classification, behavioural analysis, 

feeding decisions, size or biomass estimation, and water quality prediction using simple 

convolutional networks and recurrent neural networks. 

The development and implementation of AI technologies should be guided by ethical and 

human principles. The global community must collaborate to establish standards and rules to 

ensure responsible AI development, taking into account its impact on individuals and society 

as a whole (Vrabie, 2022, 2023; Petrariu et al., 2023). 

Thus, building on a level of technological maturity associated with the use of intelligent 

digital imaging techniques, validated in various experimental studies aimed at developing an 

assisted optimisation system in the fishing domain (Abinaya et al., 2022; Duhayyim et al., 

2022; Muñoz-Benavent et al., 2022), the present study puts into practice, at a micro-

production level, a new integrated imaging technology capable of adding value to existing 

aquaculture recirculation systems. 
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2. Materials and methods 

2.1. General experimental framework 

The experimental part of the present study was conducted within a system of intensive 

microproduction of sturgeons, located in the southern development region of Romania. A 

physical upgrade was integrated into the existing system to capture image data with high 

fidelity. This involved the use of Intel Real-Sense 455 cameras and Raspberry-Pi 

microcontrollers for data storage and transmission, as well as the delineation of an imaging 

study area at each sturgeon growth unit. 

 

2.2. Techniques used for image content processing 

The prototype of the intelligent system developed for real-time measurement of aquaculture 

biomass utilises two computational approaches, namely: a) Deep Learning techniques 

(specific to the field of Artificial Intelligence), b) Computer Vision. Within the Computer 

Vision category, colour spaces were explored to create object masks as presented in (Lu et 

al., 2022). Thus, a series of colour spaces (RGB, HSV, LAB, CMYK, YCrCb, XYZ) were 

identified, these being the most commonly used in image processing systems (Figure no. 1). 

The specific channels of each colour space were analysed, and ultimately only the processes 

that aid in mask extraction were retained. Among the previously mentioned colour spaces, 

two provided acceptable results: a) the HSV space presented in Hamuda et al. (2017), an 

approach involving the extraction of all pixels from the image that fall within a range of 

values (Figure no. 1), and b) the LAB colour space presented in Umam et al. (2020) and Kang 

et al. (2021), from which the L (Length) dimension of the fish was extracted (El Abbadi and 

Saleem, 2020). 

 

Figure no. 1. Example of image analysis using HSV color space 

Deep learning, also known as structured deep learning or hierarchical learning, is part of a 

family of machine learning methods based on artificial neural networks (Janiesch et al., 
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2021). In the context of the intelligent system for automatic quantification of aquaculture 

biomass, deep learning provides the main models for computational inference. Learning can 

be supervised (applied in this study), semi-supervised, or unsupervised. Deep learning 

models are applied in a multitude of domains, such as image recognition, speech recognition, 

natural language processing, audio recognition, social network filtering, automatic 

translation, bioinformatics, drug design, medical image analysis, material inspection, and 

entertainment, achieving comparable and, in some cases, superior results to human experts 

(Ganaie et al., 2022). Deep learning is based on neural networks, flexible and complex 

systems that extract patterns from input data to subsequently recognise different objects or 

make numerical predictions. The concept of a neural network is similar to the human brain, 

with such networks designed on a similar structure. The network can be viewed as an 

ensemble of interconnected neurons, similar to a directed graph structure, and training such 

a learning model to identify new objects often requires a significant volume of data and 

computing resources. 

Transfer learning is a concept in the field of artificial intelligence that is used in machine 

learning and neural networks. This approach involves taking a model that has been trained 

for a specific task and adapting or fine-tuning it to perform a different or similar task 

(Lauguico et al., 2020). Therefore, transfer learning is a deep learning technique in which a 

previously developed neural network is trained for a new task when training a neural network 

to recognise certain objects, but there are no algorithms available for such a task. In such 

situations, neural networks trained to recognise similar objects can be considered and later 

trained to recognise the specific object. As an approach, the last layer called the “loss output” 

layer, which is the final layer making predictions, is removed. This layer will be replaced by 

a new output layer that will identify the new class. Then, the annotated dataset is introduced, 

and the network is recalibrated to identify the desired class. This technique is not only 

intended for image recognition, but also for speech recognition or sound recognition, as well 

as for use in other types of neural networks such as recurrent neural networks (RNNs) 

(Zhuang et al., 2021). The main advantages of using transfer learning, compared to training 

a neural network from scratch, include significantly reducing training time and the ability to 

use deep learning models when the data volume is not large. 

PyTorch is an open-source machine learning library developed by Meta AI Research Lab, 

which provides flexibility and superior speeds in developing neural network-based models, 

thanks to its intuitive interface and extensive support for Python. The library contains a rich 

set of tools and libraries, such as Torchvision for image processing, Torchaudio for sound, 

and Torchtext for natural language processing. It integrates with the NumPy library, allowing 

for easy manipulation of numerical data, and is compatible with CUDA, enabling fast training 

of models on graphics processing units (GPUs), which is essential for working with large 

datasets, such as deep learning models (Novac et al., 2022). 

The development of the prototype intelligent system applicable in the fishing industry 

involved the use of MMDetection, an object detection library based on PyTorch, which 

provides an efficient and flexible platform for the rapid implementation and testing of a wide 

range of state-of-the-art object detection models (Wang et al., 2021). MMDetection is an 

open-source toolbox for both academic research and industrial applications based on 

PyTorch. It is provided by OpenMMLab and can cover a wide range of computer vision 

research topics, such as classification, object detection, segmentation, and image super-

resolution. In the context of the current project, MMDetection was useful due to its support 
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for multiple network architectures (RCNN, Mask RCNN, RetinaNet, etc.) and the efficiency 

of GPU utilisation in bbox (bounding box) or mask detection tasks. Thus, the training speed 

of AI inference models was superior to other inference modules such as Detectron2, 

maskrcnn-benchmark, and SimpleDet, whose characteristics are presented in Chen et al. 

(2019). From the MMDetection toolkit, the YOLACT algorithm was selected and used based 

on the specifications of the intelligent system to measure aquaculture biomass. The YOLACT 

algorithm performs instance segmentation and returns the bounding box and mask of the 

detected objects in an image (Figure no. 2). 

 

Figure no. 2. YOLACT architecture  

Source: Bolya et al., 2021 

Building upon the YOLACT model as the basis for implementing the AI inference module 

of the proposed system, an extension was made based on the concepts presented in Bolya et 

al. (2021), dividing the complex task of instance segmentation (images) into two simpler, 

parallel tasks, whose results can be assembled to form the final masks (Figure no. 3). 

 

Figure no. 3. YOLACT final mask 

Taking into account the specifications of the YOLACT networks presented in Bolya et al. 

(2022), the YOLACT network used in the development of the proposed intelligent system 

consists of the following components: 

 Prototype Generation: The protonet branch provides the ability to predict a set of k 

prototype masks for the entire image. 
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 Mask Coefficients: The object detection branch is anchor-based and is used to predict the 

class confidence and 4 regression boxes. 

 Mask Assembly: This component combines mask prototypes and coefficients using three 

types of loss functions: classification loss (Lcls), box regression loss (Lbox), and mask 

loss (Lmask). 

 Cropping Masks: This component crops the masks using bounding boxes. 

The results obtained from using the YOLACT model in the current project are presented in 

Table no. 1, demonstrating that the YOLACT model can be successfully used in the 

development of industrial systems for fish feature detection. The main motivation is 

represented by the processing time - accuracy tuple values compared to other tested 

algorithms, with this balance between accuracy and speed being important in real-time 

processing software applications. 

Table no. 1. YOLACT results 

Method Backbone FPS 
Time 

(ms) 
AP APso AP75 APS APM APL 

PA – Net R - 50 - FPN 4.7 212.8 36.6 58 39.3 16.3 38.1 53.1 

RetinaMask R - 101 - FPN 6 166.7 34.7 55.4 36.9 14.3 36.7 50.5 

FCIS R - 101 - C5 6.6 151.5 29.5 51.5 30.2 8 31 49.7 

Mask R – CNN R - 101 - FPN 8.6 116.3 35.7 58 37.8 15.5 38.1 52.4 

MS R - CNN R - 101 - FPN 8.6 116.3 38.3 58.8 41.5 17.8 40.4 54.4 

YOLACT - 550 R - 101 - FPN 33.5 29.8 29.8 48.5 31.2 9.9 31.3 47.7 

YOLACT - 400 R - 101 - FPN 45.3 22.1 24.9 42 25.4 5 25.3 45 

YOLACT - 550 R - 50 - FPN 45 22.2 28.2 46.6 29.2 9.2 29.3 44.8 

YOLACT - 550 D - 53 - FPN 40.7 24.6 28.7 46.8 30 9.5 29.6 45.5 

YOLACT - 700 R - 101 - FPN 23.4 42.7 31.2 50.6 32.8 12.1 33.3 47.1 

The image content database for sturgeon biomass required by artificial intelligence models 

was created by collecting images for a period of 1 month from the existing fish farming units 

within the recirculating aquaculture system of the profile company where the study was 

conducted. To create the dataset with sturgeon images, approximately 1,000 images were 

obtained daily from each basin, along with depth information. Initially (during the first two 

weeks), the photographs were collected both during the observation light period and during 

the growth light period, after which the collection was carried out only during the observation 

light period. 

 

3. Results and discussions 

The main outcome of the current study is the development, within a Romanian company 

specialising in fish farming, of an automated fish biomass calculation system using artificial 

intelligence and computer technologies. Based on the various solutions presented in the 

Literature Review section, the technologies and methods that provided the best results in the 

given organisational context were identified and aggregated into a prototype intelligent 

system developed within the Romanian company's domain. The solution presented herein 

can be adapted and implemented in other companies in the same field, with the Transfer 

Learning technique described in the Materials and Methods section allowing for incremental 

development through the integration of new fish species. 
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Thus, figure no. 4 illustrates the architecture of the data acquisition system for fish biomass. 

As can be seen, this system consists of two components: 

 a mechanical structure based on two components, namely a septum (element 2 in Figure 

no. 4) and a tunnel (element 1 in Figure no. 4). These components are located within the 

fish rearing unit, they are movable, and their position can be changed depending on the 

behaviour of the fish biomass. Their role is to assist in the accurate acquisition of data for 

fish biomass. 

 the second component of this system is represented by the automatic data acquisition 

system consisting of cameras (CF) for acquiring photographs of fish biomass and 

ultrasonic sonars (SU) for detecting the presence of fish in the septum and tunnel area. 

 

Figure no. 4. Architecture of the data acquisition system for fish biomass 

The two components presented earlier and represented in figure no. 4 implement the 

following functionality: when a fish is present in the septum or tunnel areas, the ultrasonic 

sonar (SU) detects this, and the information is transmitted to the Raspberry-Pi 

microcontroller, which commands the cameras for image acquisition (figure no. 5). 

 

Figure no. 5.  Fish Biomass Data Acquisition System 

These images, through the Raspberry-Pi microcontroller, were transmitted to the AI 

processing and analysis modules for fish biomass, in order to determine a growth index. The 

cameras and ultrasonic sensors have the necessary mobility, along with the mechanical 

system, to obtain the best data acquisitions. It should also be mentioned that data acquisition 

was performed both underwater, as seen with the CF mounted on tunnel 1 and the tripod-

mounted camera on 2, from figure no. 4, as well as from the water’s surface, with cameras 

mounted above the fish farming unit between a wall of the fish farming unit and the septum 
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wall. The motivation for implementing this architecture was to acquire the best image data 

on fish biomass, which, following AI inferences, could provide a growth index for 

aquaculture biomass as close to reality as possible. The calculation of the fish surface index 

was based on identifying each sturgeon specimen appearing in the region of interest in the 

basin (the basin wall and plexiglass). The formula for calculating the growth index took into 

account the pixel area of each sturgeon specimen correlated with the average distance to the 

fish, and the distance was being identified using an Intel RealSense camera. Thus, the first 

step in calculating the fish surface index was identifying each sturgeon in the image, a step 

performed using the YOLACT algorithm from the MMDetection framework. The network 

was trained for 600 epochs using transfer learning on a pre-trained network publicly provided 

by the PyTorch Python library. Following the training of the neural network on an annotated 

dataset (Figure no. 6), as seen in Figure no. 7, the YOLACT method segmented the supplied 

images, providing bounding boxes around the fish mass, with the results of fish identification 

being accurate. 

 

Figure no. 6. Annotation of sturgeon images using the LabelMe software tool 

 

Figure no. 7. Bounding boxes and masks at the level of sturgeon biomass using the 

transfer learning method 

The second step in calculating the fish surface index involved creating a mask for each 

individual fish. Thus, the calculation of a fish's surface uses the mask of each specimen in 

the image, both masks obtained using neural networks and those obtained using the LAB 

colour space (L dimension) (Figure no. 8). 
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Figure no. 8. Analysis of the LAB colour space 

As can be observed in figure no. 9, the colour space method aided in extracting a mask containing 

all objects in the image, similar to semantic segmentation methods (Figure no. 3). The main 

inconvenience in using this method was the possibility of noise appearing in the image, noise 

originating from factors such as brightness, reflection, or objects of similar colour. 

 

Figure no. 9. Mask obtained using the LAB colour space 

The representation of the masks (Figure no. 9) also involved the appearance of some image 

noise elements. To remove these, only the region where the fish is located was selected from 

each image, a region selected using the coordinates provided by the neural network. The 

formula to calculate the surface index of the sturgeon material was based on extracting the 

mask from each detected specimen and counting the pixels that appear in that mask. Using 

the depth information provided by the Intel RealSense camera and the obtained mask, a 

Bitwise AND operation was performed, and based on the depth information inside the mask, 

the average distance to the fish was extracted. The result of this operation is a surface index 

for each fish (Table no. 2). 

Table no. 2. Surface Index of sturgeon exemplars 

Date 

Rearing unit 

LAB NN 

Exemplars AVG Exemplars AVG 

2023.08.06 4552 5695.32 4552 4799.96 

2023.08.17 3218 4066.09 3220 4570.89 

2023.08.24 3700 4425.39 3699 5129.96 

2023.08.31 3144 4712.21 3144 5465.89 
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The results obtained from using the prototype model to measure fish biomass were validated 

within the organisation, with the sturgeon biomass corresponding to the growth unit for which 

the surface index was calculated using LAB and NN (neural networks) techniques showing 

the following growth dynamics, identified through in situ weightings: 599g on 06.08.2023; 

874g on 17.08.2023; 1043g on 24.08.2023; 1134g on 31.08.2023. Therefore, the following 

growth percentages were identified: 45.90%; 19.34%; 8.72%. It was observed that the index 

calculated through LAB and NN exhibited a negative trend in the first part of the 

experimental period (06-17.08.2023). This indicated both the need for calibration of the 

imaging system and the requirement for accommodating the sturgeon material to the new 

conditions within the growth unit, resulting from the positioning of the septum wall. 

The sturgeon specimens needed to get accustomed to the presence of the separating wall and 

its traversal method, made possible by administering feed along the entire length of the 

delimited surface. Taking into account the periods 17-24.08.2023 and 24-31.08.2023, it was 

concluded that the sturgeon biomass surface index increased by 8.83% and 6.48%, 

respectively, using the LAB method, and by 12.23% and 6.54% using the NN method. The 

NN method proved to be the most accurate in this context, with the linear model for 

determining the biomass increase for the period 17-24.08.2023 being y = x + 7.11, where y 

is the corrected surface index and x is the real surface index. Similarly, for the period 24-

31.08.2023, we have y = x + 2.18. The linear correction models in the case of LAB become 

y = x + 10.51 for the period 17-24.08.2023 and y = x + 2.26 for the same period. From an 

economic standpoint, the economic agent allocated an investment cost of 130.95 euros per 

sturgeon growth unit (9 kg of biological material per unit). However, the reduction in 

operational costs (feed costs, water exchange, and human resources) resulted in an investment 

return of 3.2%. Additionally, the development of the economic agent’s capacity to offer 

ecosystem services should be considered. Consequently, the water quality improved (with a 

decrease of 12.4% in NH4, 10.3% in NO2, and 9.8% in NO3 in the effluent, attributed to the 

reduction of feed losses), and the growth performance of fingerlings suitable for stocking 

programs increased (with an 18.3% increase in the administered feed conversion rate). 

Therefore, the tested imaging system managed to add value to intensive sturgeon aquaculture 

by reducing the amount of unconsumed feed and achieving superior utilisation of the 

administered feed, eliminating the need for classic biomass evaluation methods (physical 

manipulation-based weighing), activities that are frequently required in aquaculture due to 

the direct, proportional relationship between existing fish biomass and feeding rate 

(calculated as a percentage of the total fish biomass), improving production performance due 

to water quality enhancement (better water quality ensures better growth conditions for 

sturgeon), reducing water treatment costs, improving effluent quality and increasing the 

capacity to supply sturgeon fingerlings to the market, adaptable for use in restocking 

programmes. 

Similar to other studies, the current study has limitations - among them is the lack of 

application of the study in macro-production systems. It is well-known that transitioning from 

micro-production systems to macro-production systems in bioeconomy can lead to 

considerable variations in indicators. Therefore, for future studies, it is recommended to test 

the scalability of the technology to replicate it in farms with different production capacities, 

in order to identify its elasticity in various industrial scenarios. 
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Conclusions 

The involvement of artificial intelligence in the aquaculture sector implies sustained innovation 

activity that contributes to the economic sustainability of companies in the field. The use of 

artificial intelligence in the fish farming industry allows the optimisation of various 

biotechnologies or biotechnological sequences, efficient use of resources, especially those with 

limiting characteristics, reduction of operational costs, minimisation of environmental impact, 

increased fish biomass in accordance with European animal protection legislation, and efficient 

monitoring of inputs and outputs associated with the technological cycle. 

The solution analysed in this paper is innovative, merging current intelligent technologies 

described in various profile studies into a prototype system. The innovation is also 

highlighted by the technical design of the imaging database sampling method (the creation 

of a septum parallel to the walls of the growth unit, transparent, which ensures the limitation 

of the overlap of sturgeon specimens within the imaging frames, as well as the variability of 

the specimens that are immortalised with the help of images), thus achieving a homogeneous 

distribution of them within the flow of images taken into account in the training and 

validation of the models developed using deep learning techniques. 

The presented case study justifies and highlights how such a system can optimise feed usage 

(the most substantial component of fish farm operating costs), under the conditions of 

increased productivity performance of the system. 

It is well-known that feeding in animal husbandry, especially in aquaculture, is based on 

optimal reporting of the administered quantity to the biomass of the biological material (in 

the current study, sturgeon biomass). Thus, real-time growth of sturgeon biomass requires 

adjusting the amount of feed to maintain a high production rate. Misalignment of these two 

essential components, namely the growth rate of sturgeons and the rate of administered feed 

growth, generates major dysfunctions in the production cycle. This negatively affects water 

quality, sturgeon growth rate, their well-being, susceptibility to diseases, feed costs, and 

consequently, reduces the economic sustainability of sturgeon aquaculture activities. 

In a multitrophic integrated system, environmentally friendly, these dysfunctions will also 

affect plant biomass due to excess ammonia or nitrates, causing loss in it, food safety issues, 

and improving the efficiency of the technological water phytoremediation process. The 

prototype system presented integrates artificial intelligence techniques (deep learning) into 

multitrophic systems, automating real-time monitoring and control of feeding and sturgeon 

growth, respecting the environmental requirements (water quality) imposed by sturgeons. 

Thus, it is concluded that the use of artificial intelligence techniques in the fish farming 

industry has a major socioeconomic impact. This is reflected, first of all, in the increase in 

fish biomass quality, as a result of improving water quality through the application of AI 

technologies that limit the quantity of unconsumed feed, feed that undergoes a degradation 

process that negatively affects water quality and the environmental sustainability of intensive 

fish farming systems. Second, the socioeconomic impact is reflected in the increase in 

economic sustainability of fish farming systems, as a result of optimising the feed 

administration rate and the quantity of administered feed, fish feed being a major cost element 

in aquaculture. Improving water quality, as a result of optimising the mode of administration 

and the quantity of feed administered, directly leads to ensuring food safety of products 

intended for human consumption. Fish will accumulate fewer nitrites and nitrates in their 

muscle tissue and, last but not least, ethical requirements related to the growth of biological 
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material will be met. Like the majority of artificial intelligence technology-based contexts, 

this technology also presents a series of risks. However, both the occurrence rate associated 

with them, and the impact generated by their occurrence are reduced. Risks such as technical 

failures or risks associated with inappropriate fish behaviour associated with feed 

consumption can be countered in real-time, as the system consists of individual components 

that are easy to replace. Also, inappropriate fish behaviour (fish not consuming feed) can be 

an indicator of health status - thus, this risk can have a positive component integrated, as it 

can be used as an alert system (if unconsumed feed is observed) for a possible pathological 

problem existing at the level of the biological material. A possible barrier to adopting the 

system could be the additional cost generated by the initial investment associated with its 

integration at the fish farm level. However, the proposed solution has a low cost compared 

to the economic benefits it can provide over a production cycle, which is even more important 

in the case of sturgeons, a species with a long production cycle (minimum of 8 years) until 

obtaining the key product - caviar. 

 

Acknowledgement 

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, 

CNCS/CCCDI—UEFISCDI, project number 51 PTE—PN-III-P2-2.1-PTE-2019-0697, 

within PNCDI III. The present research was supported by the project An Integrated System 

for the Complex Environmental Research and Monitoring in the Danube River Area, 

REXDAN, SMIS code 127065, co-financed by the European Regional Development Fund 

through the Competitiveness Operational Programme 2014–2020, contract no. 

309/10.07.2021. This work was supported by grant 14882/11.05.2022 “Support and 

development of CDI-TT activities at the Dunărea de Jos University of Galați”. 

 

References 

Abbadi, N.K.E. and Razaq, E.S., 2020. Automatic gray images colorization based on lab 

color space. Indonesian Journal of Electrical Engineering and Computer Science, [e-

journal] 18(3), article no. 1501. https://doi.org/10.11591/ijeecs.v18.i3.pp1501-1509. 

Abinaya, N.S., Susan, D. and Sidharthan, R.K., 2022. Deep learning-based segmental 

analysis of fish for biomass estimation in an occulted environment. Computers and 

Electronics in Agriculture, [e-journal] 197, article no. 106985. 

https://doi.org/10.1016/j.compag.2022.106985. 

Al Duhayyim, M., Mesfer Alshahrani, H., N. Al-Wesabi, F., Alamgeer, M., Mustafa Hilal, 

A. and Ahmed Hamza, M., 2022. Intelligent Deep Learning Based Automated Fish 

Detection Model for UWSN. Computers, Materials & Continua, [e-journal] 70(3), 

pp.5871–5887. https://doi.org/10.32604/cmc.2022.021093.   

Álvarez-Ellacuría, A., Palmer, M., Catalán, I.A. and Lisani, J.-L., 2020. Image-based, 

unsupervised estimation of fish size from commercial landings using deep learning. ICES 

Journal of Marine Science, [e-journal] 77(4), pp.1330–1339. 

https://doi.org/10.1093/icesjms/fsz216. 

Asciuto, A., Schimmenti, E., Cottone, C. and Borsellino, V., 2019. A financial feasibility 

study of an aquaponic system in a Mediterranean urban context. Urban Forestry & Urban 

Greening, [e-journal] 38, pp.397–402. https://doi.org/10.1016/j.ufug.2019.02.001. 



AE The Use of Artificial Intelligence in Sturgeon Aquaculture 

 

972  Amfiteatru Economic 

Bolya, D., Mittapalli, R., and Hoffman, J., 2021. Scalable Diverse Model Selection for 

Accessible Transfer Learning. Neural Information Processing Systems. 

Bolya, D., Zhou, C., Xiao, F. and Lee, Y.J., 2022. YOLACT++ Better Real-Time Instance 

Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, [e-

journal] 44(2), pp.1108–1121. https://doi.org/10.1109/TPAMI.2020.3014297. 

Bosma, R.H., Lacambra, L., Landstra, Y., Perini, C., Poulie, J., Schwaner, M.J. and Yin, Y., 

2017. The financial feasibility of producing fish and vegetables through aquaponics. 

Aquacultural Engineering, [e-journal] 78, pp.146–154. https://doi.org/10.1016/ 

j.aquaeng.2017.07.002. 

Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, 

W., Loy, C.C. and Lin, D., 2019. Hybrid Task Cascade for Instance Segmentation. In: 

s.n., Conference on Computer Vision and Pattern Recognition (CVPR). n.d., s.l. s.l.:S.n.  

Cristache, N., Năstase, M., Petrariu, R. and Florescu, M., 2019. Analysis of Congruency 

Effects of Corporate Responsibility Code Implementation on Corporate Sustainability in 

Bio-Economy. Amfiteatru Economic, [e-journal] 21(52), pp. 536-553. DOI: 

10.24818/EA/2019/52/536. 

Engle, C.R., 2016. Economics of Aquaponics. [pdf] Available at: 

<https://extension.okstate.edu/fact-sheets/print-publications/srac/economics-of-

aquaponics-srac-5006.pdf > [Accessed 29 January 2024]. 

Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M. and Suganthan, P.N., 2022. Ensemble deep 

learning: A review. Engineering Applications of Artificial Intelligence, [e-journal] 115, 

article no. 105151. https://doi.org/10.1016/j.engappai.2022.105151. 

Geambasu, C.V., Jianu, I., Jianu, I. and Gavrila, A.A., 2011. Influence Factors for the Choice 

of a Software Development Methodology. Journal of Accounting and Management 

Information Systems, 10, pp.479–494.  

Gruia, L.A., Bibu, N., Nastase, M., Roja, A. and Cristache, N., 2020. Approaches to 

Digitalization within Organizations. Review of International Comparative 

Management, 21(3), pp.287–297. 

Hamuda, E., Mc Ginley, B., Glavin, M. and Jones, E., 2017. Automatic crop detection under 

field conditions using the HSV colour space and morphological operations. Computers 

and Electronics in Agriculture, [e-journal] 133, pp.97–107. 

https://doi.org/10.1016/j.compag.2016.11.021. 

Hao, M., Yu, H. and Li, D., 2016. The Measurement of Fish Size by Machine Vision - A 

Review. In: D. Li and Z. Li, eds. Computer and Computing Technologies in Agriculture 

IX. Cham: Springer International Publishing, pp.15–32. https://doi.org/10.1007/978-3-

319-48354-2_2. 

Hufschmied, P., Fankhauser, T. and Pugovkin, D., 2011. Automatic stress-free sorting of 

sturgeons inside culture tanks using image processing: Automatic stress-free sorting of 

sturgeons. Journal of Applied Ichthyology, [e-journal] 27(2), pp.622–626. 

https://doi.org/10.1111/j.1439-0426.2011.01704.x. 

Janiesch, C., Zschech, P. and Heinrich, K., 2021. Machine learning and deep learning. 

Electronic Markets, [e-journal] 31(3), pp.685–695. https://doi.org/10.1007/s12525-021-

00475-2. 



Amfiteatru Economic Recommends  AE 

 

Vol. 26 • No. 67 • August 2024  973 

Kang, H.-C., Han, H.-N., Bae, H.-C., Kim, M.-G., Son, J.-Y. and Kim, Y.-K., 2021. HSV 

Color-Space-Based Automated Object Localization for Robot Grasping without Prior 

Knowledge. Applied Sciences, [e-journal] 11(16), article no. 7593. 

https://doi.org/10.3390/app11167593. 

Lauguico, S., Concepcion, R., Tobias, R.R., Alejandrino, J., De Guia, J., Guillermo, M., 

Sybingco, E. and Dadios, E., 2020. Machine Vision-Based Prediction of Lettuce 

Phytomorphological Descriptors using Deep Learning Networks. In: IEEE, 2020 IEEE 

12th International Conference on Humanoid, Nanotechnology, Information Technology, 

Communication and Control, Environment, and Management (HNICEM). 3-7 December 

2020, Manila, Philippines. S.l: IEEE.  

Lu, Y., Young, S., Wang, H. and Wijewardane, N., 2022. Robust plant segmentation of color 

images based on image contrast optimization. Computers and Electronics in Agriculture, 

[e-journal] 193, article no. 106711. https://doi.org/10.1016/j.compag.2022.106711. 

Mathiassen, J.R., Misimi, E., Bondø, M., Veliyulin, E. and Østvik, S.O., 2011. Trends in 

application of imaging technologies to inspection of fish and fish products. Trends in 

Food Science & Technology, [e-journal] 22(6), pp.257–275. 

https://doi.org/10.1016/j.tifs.2011.03.006. 

Muñoz-Benavent, P., Martínez-Peiró, J., Andreu-García, G., Puig-Pons, V., Espinosa, V., 

Pérez-Arjona, I., De La Gándara, F. and Ortega, A., 2022. Impact evaluation of deep 

learning on image segmentation for automatic bluefin tuna sizing. Aquacultural 

Engineering, [e-journal] 99, article no. 102299. 

https://doi.org/10.1016/j.aquaeng.2022.102299. 

Novac, O.-C., Chirodea, M.C., Novac, C.M., Bizon, N., Oproescu, M., Stan, O.P. and 

Gordan, C.E., 2022. Analysis of the Application Efficiency of TensorFlow and PyTorch 

in Convolutional Neural Network. Sensors, [e-journal] 22(22), article no. 8872. 

https://doi.org/10.3390/s22228872. 

Odone, F., Trucco, E. and Verri, A., 2001. A trainable system for grading fish from images. 

Applied Artificial Intelligence, [e-journal] 15(8), pp.735–745. 

https://doi.org/10.1080/088395101317018573. 

Petrea, S.M., Coadă, M.T., Cristea, V., Dediu, L., Cristea, D., Rahoveanu, A.T., Zugravu, 

A.G., Rahoveanu, M.M.T. and Mocuta, D.N., 2016. A Comparative Cost – Effectiveness 

Analysis in Different Tested Aquaponic Systems. Agriculture and Agricultural Science 

Procedia, [e-journal] 10, pp.555–565. https://doi.org/10.1016/j.aaspro.2016.09.034. 

Tartavulea, C.V., Albu, C.N., Albu, N, Dieaconescu, R.I. and Petre, S., 2020. Online 

Teaching Practices and the Effectiveness of the Educational Process in the Wake of the 

COVID-19 Pandemic. Amfiteatru Economic, [e-journal] 22(55), pp. 920-936. DOI: 

10.24818/EA/2020/55/920. 

Umam, K. and Susanto, E.H., 2020. Classification Of Rice Leaf Color Into Leaf Color Chart 

Using LAB Color Space. CCIT Journal, [e-journal] 13(2), pp.168–174. 

https://doi.org/10.33050/ccit.v13i2.1008. 

Vrabie, C., 2022. Artificial Intelligence Promises to Public Organizations and Smart Cities. 

In: J. Maślankowski, B. Marcinkowski and P. Rupino Da Cunha, eds. 2022. Digital 

Transformation. Cham: Springer International Publishing. 

Vrabie, C., 2023. E-Government 3.0: An AI Model to Use for Enhanced Local Democracies. 

Sustainability, [e-journal] 15(12), article no. 9572. https://doi.org/10.3390/su15129572. 



AE The Use of Artificial Intelligence in Sturgeon Aquaculture 

 

974  Amfiteatru Economic 

Wang, J., Zhang, W., Zang, Y., Cao, Y., Pang, J., Gong, T., Chen, K., Liu, Z., Loy, C.C., and 

Lin, D., 2020. Seesaw Loss for Long-Tailed Instance Segmentation. In: s.n. Conference 

on Computer Vision and Pattern Recognition. n.d., s.l. s.l.: s.n. 

 Xie, K. and Rosentrater, K., 2015. Life cycle assessment (LCA) and Techno-economic 

analysis (TEA) of tilapia-basil aquaponics. In: American Society of Agricultural and 

Biological Engineers, ASABE International Meeting. 26-29 July 2015, New Orleans, 

Louisiana. S.l.: s.n. 

Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S. and Zhou, C., 2021. Deep learning for smart 

fish farming: applications, opportunities and challenges. Reviews in Aquaculture, [e-

journal] 13(1), pp.66–90. https://doi.org/10.1111/raq.12464. 

Yu, Y., Zhang, H. and Yuan, F., 2023. Key point detection method for fish size measurement 

based on deep learning. IET Image Processing, [e-journal] 17(14), pp.4142–4158. 

https://doi.org/10.1049/ipr2.12924. 

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q., 2021. A 

Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, [e-journal] 

109(1), pp.43–76. https://doi.org/10.1109/JPROC.2020.3004555.  

 

 

 


