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Abstract

To improve the dynamic assessment of risks of speculative assets, we apply a

Markov switching MGARCH approach to portfolio risk forecasting. More spe-

cifically, we take advantage of the flexible Markov switching copula multivari-

ate GARCH (MS-C-MGARCH) model of Fülle and Herwartz (2022). As an

empirical illustration, we take the perspective of a risk-averse agent and

employ the suggested model for assessments of future risks of portfolios com-

posed of a high-yield equity index (S&P 500) and two safe-haven investment

instruments (i.e., Gold and US Treasury Bond Futures). We follow recent sug-

gestions to employ the expected shortfall as a prime assessment of tail risks. To

accurately evaluate the merits of the new model, we back-test the risk forecast-

ing for daily returns over 10 years for heterogeneous market environments

including, for example, the COVID-19 pandemic. We find that the MS-

C-MGARCH model outperforms benchmark volatility models (MGARCH,

C-MGARCH) in predicting both value-at-risk and expected shortfall. The supe-

riority of the MS-C-MGARCH model becomes stronger, when the share of

comparably risky assets in the portfolio is relatively large.
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1 | INTRODUCTION

Since the financial crisis in 2007–2009 and its impacts on
the stability of the financial system, banking regulators
have increasingly kept an eye on the resilience of finan-
cial institutions. As a replacement of the so-called Basel
II regularities, Basel III (The Basel Committee on Bank-
ing Supervision, 2011) was introduced to sharpen the
capital requirements for financial institutions. To assess
the risks and determine the required common equity
according to Basel III, financial institutions have to use
forecasting models that are capable of measuring risk

such that the institution using it withstands certain stress
tests. The Basel Committee on Banking Supervision
(2011) requires financial institutions to use the value at
risk (VaR) (Jorion, 1996) as a risk measure. However, if
return distributions feature excess (left-hand side) tail
probability mass, estimated VaRs might become inaccu-
rate (Acerbi & Tasche, 2002; Bradley & Taqqu, 2003;
Tasche, 2002). The expected shortfall (ES) has been devel-
oped to account for such tail risks. Specifically, it repre-
sents the expected loss encountered in the (lowest)
quantiles of return distributions (Acerbi & Tasche, 2002;
Bradley & Taqqu, 2003; Tasche, 2002). The Basel
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Committee on Banking Supervision (2013) has proposed
to use the ES for risk assessment.

Besides the choice of an unnecessarily weak risk mea-
sure, false distributional assumptions regarding a predic-
tive model could result in inadequate and imprecise risk
forecasts that might lead to overfulfillment or underful-
fillment of capital requirements. Hence, a more accurate
distributional model has the potential to mitigate the cap-
ital tied up due to Basel III requirements and/or improve
the valuation of default risks. In this regard, this work
aims to improve the risk forecasting accuracy by a sophis-
ticated and flexible process for (co-)variance and higher
order dependency estimation. The generalized autore-
gressive conditional heteroskedasticity (GARCH) models
of Bollerslev (1986) and their multivariate extensions of
Engle and Kroner (1995) and Engle (2002) have been
widely applied to capture stylized facts of (vector-valued)
speculative returns, for example, volatility clustering and
contagion. However, studies with non-Gaussian distrib-
uted residuals (Aloui et al., 2013; Huang et al., 2009;
Weiß, 2013), asymmetric conditional volatility (Brooks &
Persand, 2003b), changing (volatility) regimes (Ardia
et al., 2018; Haas et al., 2004), or conditional skewness
and/or kurtosis (Bali et al., 2008) have highlighted the
benefits of greater model-implied flexibility in risk fore-
casting. Going beyond the assumption of time-invariant
distributions of model residuals, Liu et al. (2017), Wang
et al. (2011), Chollete et al. (2009), and Ang and Chen
(2002) have advocated the existence of changing struc-
tural dependence patterns among speculative return
series. Taking advantage of flexible distributional models,
we evaluate the predictive performance of the Markov
switching Copula-MGARCH (MS-C-MGARCH) intro-
duced by Fülle and Herwartz (2022) as a generalization
of the C-MGARCH model of Lee and Long (2009),1 since
it promises to increase the risk forecasting performance
compared with benchmark models. For the included
MGARCH process, we consider the asymmetric BEKK
model of Kroner and Ng (1998) to account for leverage
effects of (co)variances in response to unfavorable market
news (see, among others, Nelson, 1991; Bekaert &
Wu, 2000; Baur, 2012). Moreover, Billio and Pelizzon
(2000); Brooks et al. (2002), and Brooks and Persand
(2003a) have advocated the merits of accounting for
asymmetries when it comes to estimating hedging flows
and the VaR. However, Brooks and Persand (2003b) and
Berkowitz and O'Brien (2002) have argued that the use of
MGARCH models is computationally very demanding.
Against this background, we employ the recently devel-
oped R-package for the estimation of BEKK(1,1,1) models
of Fülle et al. (2022) that allows fast and efficient estima-
tion and inference for this model class.2

In order to protect firms or portfolios against losses,
so-called safe-haven assets are often added to portfolios
or firm's balances to cut down risk in periods of excess
market volatility. According to Baur and Lucey (2010),
Baur (2012), and Baur and McDermott (2010), the most
prominent safe havens are gold and long-term treasury
bonds (e.g., US Treasury Bond Futures). Accordingly,
modeling such safe-haven dependencies may enhance
the risk assessment, especially in times of economic tur-
moil when hedging becomes increasingly important. To
investigate the predictive out-of-sample performance for
such portfolios admix with safe havens, we consider a
30-year three-dimensional time series stacking returns
of gold, the S&P 500 index, and 10-year US Treasury
Bonds Futures. To compare the risk-forecasting perfor-
mance of benchmark specifications and the MS-
C-MGARCH models, we apply a 20-year rolling window
on the selected time series and estimate the ES 1 day
ahead by the parameters, which are estimated for each
time using the returns from the previous 20 years. In
order to evaluate risk predictions, Christoffersen (1998)
derived coverage tests to compare VaR out-of-sample
forecasting performance across models. Here, we use
the most recent coverage tests for the ES of Du and
Escanciano (2017), which are based on the benchmark
tests of Kupiec (1995) and Christoffersen (1998) for
VaR. We concentrate on the ES forecasting performance
to compare the MS-C-MGARCH model with bench-
mark processes in terms of predicting tail risks. Going
beyond the testing of unconditional and conditional
coverage, we use the quantile (QL) and the Fissler and
Ziegel (2016) loss (FZL) as two specific loss functions
for VaR and ES statistics and employ the Diebold and
Mariano (1995) test (DM) and the so-called model
confidence set (MCS) of Hansen et al. (2011) for com-
parative model assessments. We find that the MS-
C-MGARCH model outperforms the benchmark models
of Engle and Kroner (1995), Kroner and Ng (1998),
Grier et al. (2004), and Lee and Long (2009), when it
comes to assessing (downside) risks for portfolios com-
prising a relatively large share of volatile, that is, rela-
tively risky, asset classes.

The remainder of this work is organized as follows. In
Section 2, we briefly introduce the asymmetric BEKK,
C-MGARCH, and MS-C-MGARCH models. Section 3
outlines our approach to ES backtesting and the portfolio
distribution functions for the MS-C-MGARCH model. In
Section 4, we provide an empirical study in the format
discussed above. Section 5 concludes. In the appendix,
we provide the definition for copulas, model-implied
portfolio distributions, and additional further graphical
representations of empirical results.

2164 FÜLLE and HERWARTZ



2 | MODEL SETUP

In this section, we first sketch the asymmetric BEKK
model of Kroner and Ng (1998) and subsequently outline
the copula MGARCH (C-MGARCH) model of Lee and
Long (2009) and its Markov switching generalization of
Fülle and Herwartz (2022).

2.1 | Asymmetric BEKK

Let rt define an N-dimensional time series with
t � 1,…,Tf g. The information available at time t is
Ωt ¼ r1,…,rtf g. Then, the asymmetric BEKK(1,1,1) model
of Kroner and Ng (1998) reads as

rt ¼ μtþ et, ð1Þ

et ¼H1=2
t ηt, ηt �N 0, INð Þ, ð2Þ

Ht ¼QQ0 þA0et�1e
0
t�1AþB0γt�1γ

0
t�1BþG0Ht�1G, ð3Þ

where μt ¼ rtjΩt�1ð Þ is a conditional expectation, and
the exponent 1=2 indicates a covariance matrix decompo-
sition.3 Without loss of generality, we henceforth assume
that an empirical analysis is based on centered return
processes such that μt ¼ μ¼ 0. The matrices Q,A,B and G
are (N�N)-dimensional coefficient matrices, where Q is
lower triangular. Accordingly, the parameter vector of
the asymmetric BEKK(1,1,1) model is

ϕ¼ vech Qð Þ0,vec Að Þ0,vec Bð Þ0,vec Gð Þ0� �0
�ℝ

N Nþ1ð Þ
2 þ2N2

, and

Φ⊆ℝ
N Nþ1ð Þ

2 þ3N2
is the corresponding parameter space.

Unlike the symmetric model specification of Engle
and Kroner (1995), the asymmetric model in (3) allows
for so-called leverage effects. Specifically, the model addi-
tionally allows jointly negative returns to exert a positive
incremental influence on the conditional heteroscedasti-
city by setting

γt ¼ et et < N0ð Þ, ð4Þ

where  �ð Þ is the indicator function returning 1 if the
condition inside the parentheses is fulfilled and 0 if not.
Moreover, the relation < l for two l-dimensional vectors
x¼ x1,…,xlð Þ0 and y¼ y1,…,ylð Þ0 is defined as

x < ly, xj < yj 8 j� 1,…, lf g:

The asymmetric BEKK nests the symmetric BEKK
model of Engle and Kroner (1995) in the case of B¼ 0.
According to Grier et al. (2004), the asymmetric effects in

the BEKK model might be chosen in a more flexible way
by selecting a combination of positive and negative
returns that is supposed to have the strongest effects on
the conditional covariance. Covariance stationarity and
uniqueness (identification) of the asymmetric BEKK
(1,1,1) hold, respectively, if the following two conditions
are fulfilled (Engle & Kroner, 1995):

max Eig A�Aþ  et < N0ð Þð ÞB�BþG�Gð Þj jf g<1 and

diag Qð Þ, a11, b11,
g11 > 0,

ð5Þ

where a11,b11 and g11 denote the first diagonal element of
A,B and G, respectively, and the diag �ð Þ operator collects
the diagonal elements of a square matrix. The expected
occurrence of asymmetric effects,   et < N0ð Þð Þ, is esti-
mated by the empirical mean of the return residuals, that

is, 1=T
PT
t¼1

 et < N0ð Þ.
The log-likelihood of the asymmetric BEKK(1,1,1)

model for a return series etð Þt¼1,…T is given by

L ϕð Þ¼
XT
t¼1

lt ϕð Þ¼
XT
t¼1

N
2
log 2πð Þ�1

2
log detHtð Þ�1

2
e0tH

�1
t et

� �
,

where Ht ¼Ht ϕð Þ, and the (quasi) maximum likelihood
((Q)ML) estimator is bϕQML ¼ argmaxϕ � ΦL ϕð Þ. Asymp-
totic normality and consistency of bϕQML may be shown
analogously to Comte and Lieberman (2003) and Hafner
and Preminger (2009). They prove that the QML estima-
tion of MGARCH models is asymptotically consistent
and normal under some regularity conditions.

2.2 | C-MGARCH

For their Copula MGARCH (C-MGARCH) model, Lee
and Long (2009) modified the residuals in (2) in the fol-
lowing way:

ηt ¼Σ�1=2ξt, ð6Þ

where ξt follows a Copula distribution with covariance
matrix E ξtξ

0
tjΩt�1

� �¼Σ.4 Accordingly,

E ηtη
0
tjΩt�1

� �¼ IN , E etjΩt�1½ � ¼ 0, and E ete
0
tjΩt�1

� �¼Ht:

To specify dependence characteristics for each bivari-
ate relation in a flexible manner, we consider a so-called
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vine copula. For instance, in the case of N ¼ 3, the CDF
of a vine copula distribution is defined as

F ξ1,t,ξ2,t,ξ3,t;θ
� �¼ Z ξ3,t

�∞
C12j3 F1j3 ξ1,tjz;θ

� �
,

�
F2j3 ξ2,tjz;θ

� �
;θ
	
f 3 zð Þdz,

ð7Þ

which stacks three potentially different copulas and its
respective parameters. With regard to Joe (1996a) and
Nelsen (2006), the number of copulas increases by N ,
when the dimension of the series et is augmented from N
to Nþ1. To address a potential curse of dimensionality,
one may restrict (economically) less relevant pair-wise
copulas to the independence copula. As an alternative
and more restrictive approach, one might formalize an
N-dimensional Archimedean copula with only one
parameter to impose a uniform dependence structure
over all pair-wise series. Although the choice of a particu-
lar copula function is essential for the implied depen-
dence structure, the full specification of the distributional
model requires the choice of marginal distributions as
well. In this study, we assume throughout that marginal
distributions are standard Gaussian. However, it is worth
stressing that non-trivial convolutions of dependent
Gaussian marginals ξi,t—as considered within the
C-MGARCH model—do not necessarily translate to nor-
mally distributed marginals of et (Joe, 1996b). Moreover,
the time-varying convolutions triggered by decomposi-
tions of Ht lead to time-varying marginal distributions.
Complementing the analysis of Lee and Long (2009),
Fülle and Herwartz (2022) discuss distributional features
of the model-implied transformations, et ¼H1=2

t ηt ¼
H1=2

t Σ�1=2ξt conditional on the conventions that the
matrices H1=2

t and Σ1=2 refer to the eigenvalue decomposi-
tion of the MGARCH covariance Ht and the lower trian-
gular Cholesky factor of Σ, respectively. In particular,
their findings show that, first, an upper (lower) tail
dependence in ξt is rotated by 180 ∘ and results in a lower
(upper) tail dependence of et. Second, probability mass is
shifted such that the joint occurrence of extreme returns
is more likely than under of independence of the random
variables in ξt.

With the distribution defined in (7), the log-likelihood
of the C-MGARCH model is

L θð Þ¼
XT
t¼1

log f Σ1=2H�1=2
t et;θ

� 	� 	
þ log det Σ1=2H�1=2

t

� 	� 	
, ð8Þ

where f is the PDF implied by the distribution in (7) and
the likelihood is determined by using the transformation
theorem for densities. For a more detailed discussion of

the C-MGARCH model, we refer the reader to Lee and
Long (2009).

2.3 | MS-C-MGARCH

Noticing that, among others, Ang and Chen (2002) found
that the dependencies between financial assets are chang-
ing over time, and Fülle and Herwartz (2022) have sug-
gested recently a Markov switching generalization of the
copula MGARCH model of Lee and Long (2009).
The MS-C-MGARCH model accounts for k different (hid-
den) states st � 1,…,Kf g such that shocks ξt st ¼ kð Þ origi-
nate from different copula distributions. In analogy to
Fülle and Herwartz (2022), we define Σk ≔Σ st ¼ kð Þ,
et kð Þ≔ et st ¼ kð Þ and ξt kð Þ≔ ξt st ¼ kð Þ. More formally,
the model reads as

et kð Þ¼H1=2
t Σ�1=2

k ξt kð Þ, Var ξt kð ÞjΩt�1½ �
¼Σk and ξt kð ÞjΩt�1 �Fk ξ1,t,…,ξN ,t;θk

� �
¼Ck Fk,1 ξ1,t;θk,1

� �
,…,Fk,N ξN ,t;θk,N

� �
;θk

� �
,

where Fk is the CDF of a copula distribution with copula
Ck and parameter θk. The corresponding marginal distri-
butions are Fk,j, j¼ 1,2,…,N , with parameters θk,j. The
hidden regimes are modeled by the Hamiltonian filter
(Hamilton, 1989, 2016) and a Markov Chain with transi-
tion matrix M. In analogy to the state invariant case
(i.e., the C-MGARCH model in Section 2.2), the PDF of
et kð Þ is

gk et kð Þð Þ¼ f k Σ1=2
k H�1=2

t et
� 	

�det Σ1=2
k H�1=2

t

� 	
:

The probability of being in (the hidden) state i given
Ωt is

P st ¼ ijΩtð Þ¼ P st ¼ ijΩt�1ð Þf i et j Ωt�1ð ÞPK
j¼1P st ¼ jjΩt�1ð Þf j et j Ωt�1ð Þ : ð9Þ

Since the states follow a Markov process, conditional
on Ωt�1 the respective probability is

P st ¼ ijΩt�1ð Þ¼ piiP st�1 ¼ ijΩt�1ð Þ

þ
XK

j¼1, j≠ i

pij P st�1 ¼ jjΩt�1ð Þ, ð10Þ

where pij is the probability of being in state i in time t
under the condition that the state of the previous period
t�1 was j, that is, pij ¼P st ¼ ijst�1 ¼ jð Þ. The log-
likelihood of the Markov switching model is
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L κð Þ¼
XT
t¼1

lt κð Þ

¼
XT
t¼1

log
XK
i¼1

f i Σ1=2
i H�1=2

t et
� 	� 

�det Σ1=2
i H�1=2

t

� 	
�P st ¼ ijΩt�1ð Þ

	!
,

ð11Þ

with parameter vector κ¼ ϕ,ψð Þ¼ ϕ,θ1,…,θK ,θ1,1,…,
�

θ1,N ,…,θK ,N ,fvec Mð Þ0�0, where fvec Mð Þ is a N N�1ð Þ-
dimensional vector stacking the free parameters of the
transition matrix M. The respective parameter space is
K¼Φ[Ψ. The PDFs f k for state k in (11) are determined
as in (7) with copula density ck. The ML estimator isbκML ¼ argmax κ � KL κð Þ.

For the estimation of the MS-C-MGARCH model, we
proceed in analogy to Lee and Long (2009) and suggest a
two-step estimation procedure, where the MGARCH part
of the model is estimated first by QML estimation, that is,bϕQML, to obtain an assessment of the covariance process.
The second step is to estimate the remaining parameters
conditional on the results from the first step (i.e., bψCML).
For further details and a discussion of consistency and
asymptotic normality, we refer the reader to Fülle and
Herwartz (2022). Hereinafter, we denote the two-step
estimator as bκ2SE ¼ bϕQML,bψCML

� 	
.

3 | ESTIMATING AND
BACKTESTING RISKS

In this section, we first define VaR and ES and derive the
distribution of a portfolio of (dependent) returns. Then,
the backtesting procedure for ES of Du and Escanciano
(2017) is briefly sketched along with further loss
statistics.

3.1 | Risk measures

The VaR has become a prominent measure to estimate
the risks of, for instance, financial assets and portfolios. It
quantifies the loss of an asset or portfolio Z that is not
exceeded with probability 1�α, that is,

VaRα Zð Þ¼F�1
Z αð Þ¼ inf z�ℝ : FZ zð Þ> αf g, ð12Þ

where FZ is the (estimated) CDF of Z. Two main critics
have been raised against this measure. First, it is non-
subadditive, which means that the VaR of compound
assets is not less than the sum of the particular VaRs
of those assets (see also Acerbi & Tasche, 2002;
Tasche, 2002). Second, the VaR does only depict the

minimal loss that is not exceeded with probability
1�α. This especially leads to potential underestimation
of risks by the VaR, when the true distribution of the
asset is heavy tailed (i.e., non-normal). More specifically,
the expected loss in the α quantile could be sizeably
larger than the respective VaR. The ES has been designed
to mitigate the described underestimation of risks featur-
ing the VaR. According to Acerbi and Tasche (2002), the
ES is defined as

ESα ¼ Z j Z ≤VaRα Zð Þð Þ¼ 1
α

Z α

0
VaRα Zð Þ

¼ 1
α

Z VaRα

�∞
zf Z zð Þdz, ð13Þ

where f Z is the PDF of portfolio Z.

3.2 | Distribution of portfolio returns

Let zt denote the return of a weighted portfolio compris-
ing N assets; the returns of which are collected in et . The
portfolio weights ω¼ ω1,ω2,…,ωNð Þ are assumed to be
positive (i.e., no short selling) and constant over time,
where ωi � 0,1½ � and

PN
i¼1ωi ¼ 1. The portfolio returns

obtain as

zt ¼ωet ¼ωH1=2
t Σ�1=2

k ξt kð Þ: ð14Þ

Accordingly, zt is a weighted, time-varying, and state-
dependent sum of the stochastic model residuals ξt kð Þ.
Let νt kð Þ¼ ν1,t kð Þ,ν2,t kð Þ,…,νN ,t kð Þð Þ denote the vector of
those (time- and state-varying) weights. Accordingly, zt
reads as

zt ¼ νt kð Þξt kð Þ
¼ ν1,t kð Þξ1,t kð Þþν2,t kð Þξ2,t kð Þþ…þνN ,t kð ÞξN ,t kð Þ

¼
XK
i¼1

P st ¼ ijΩt�1ð Þνt st ¼ ið Þξt st ¼ ið Þ,

where νt stð Þ¼ωH1=2
t Σ�1=2 stð Þ. The PDF of the portfolio

can be obtained by applying the convolution formula for
densities. Accordingly, let f st η1,t,η2,t,…,ηN ,t

� �
denote the

PDF assigned to state st. Then, the density of the portfolio
returns zt is

f zt zð Þ¼
XK

i¼1
P st ¼ ijΩt�1ð Þ

Z ∞

�∞
� � �
Z ∞

�∞
f i

z
ν1,t st ¼ ið Þ
�

�η2ν2,t st ¼ ið Þ
ν1,t st ¼ ið Þ �…�ηNνN ,t st ¼ ið Þ

ν1,t st ¼ ið Þ ,η2,…,ηN
�

dη2dη3� � �dηN ,
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where ν1,t st ¼ ið Þ≠ 0. However, the complexity of the
PDF and CDF can be mitigated, if at least one of the
state-dependent weights νt stð Þ is equal to zero.5 For the
CDF in the case of a C-MGARCH and MS-C-MGARCH
model, we refer to Appendix B.

3.3 | Backtesting

Backtesting helps to assess the accuracy of risk models
and to compare alternative model specifications. For
backtesting, we closely follow the recent literature using
a rolling window approach. More specifically, we divide
the sample etð ÞTt¼1 into an in-sample part of length Tin

and an out-of-sample part of length T�Tin (i.e., the
remainder of the series et). A more detailed outline of the
rolling window design will be given below in Section 4.3.

The backtesting statistics for the ES of Du and Escan-
ciano (2017) build upon the backtesting models of Kupiec
(1995) and Christoffersen (1998) that depart from the def-
inition of a hit occurring in time t (Christoffersen, 1998)
for VaR level of α as

ht αð Þ¼  zt < VaRt αð ÞjΩt�1ð Þ, t¼Tinþ1,…,T: ð15Þ

Based on this hit function, the cumulative violation of
the forecast to test the ES forecasting accuracy is given by

Ht ¼ 1
α

Zα
0

ht uð Þdu¼ 1
α

α�utð Þ ut ≤ αð Þ, ð16Þ

where ut ¼Fz zt;bκ2SEjΩL
t�1

� �
is the quantile of the

observed returns under the estimated parameter vector,
that is, bκ2SE . Assuming that Fz zt;bϕQMLjΩL

t�1

� 	
is the true

CDF of the observed returns zt, the cumulative violation
Ht is uniformly distributed on the interval 0,α½ �
(Berkowitz, 2001; Hong & Lee, 2003; Rosenblatt, 1952).
Then, the expected value of Ht is α=2. Following Du and
Escanciano (2017), the hypothesis

H0 : Htð Þ¼ α=2 ð17Þ

is used to test the forecasting accuracy of the ES.6 The
corresponding t-statistic is given by

UES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�Tin

p
Ht�α=2
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α 1=3�α=4ð Þp , ð18Þ

where Ht ¼ 1= T�Tinð ÞPT
t¼Tinþ1Ht is the sample mean.

Here, we base on Corollary 1 of Du and Escanciano
(2017), since we use 1-day-ahead forecasts and assume
a sufficiently large in-sample period. As a result, the

t-statistic is asymptotically Gaussian, that is,
UES �N 0,1ð Þ.

Besides opting for average accuracy of the risk fore-
casts, one would like to avoid systematic (i.e., dynamic)
ES violations, as this can lead to an increased risk of
default due to depleted capital after a first violation.
Therefore, we test for independence similarly to Kupiec
(1995). The hypothesis for conditional coverage, that is,
independence of the ES forecasts on the previous periods'
forecasts, is

H0 : Ht�α=2 j Ωt�1ð Þ¼ 0: ð19Þ

The test statistic is then given by

CES mð Þ¼ T�Tinð Þ
Xm
j¼1

bρ2j , ð20Þ

where bρj ¼bγj=bγ0, bγj ¼ 1
T�Tin�jð Þ

PT
t¼Tinþ1þj

Ht�α=2ð Þ Ht�j�
��

α=2Þ�, and the number of lagged autocorrelations
subjected to testing is m. With similar arguments as for
the unconditional coverage test, and under Corollary 2 of
Du and Escanciano (2017), the test statistic is asymptoti-
cally χ2m distributed under the null hypothesis in (19).

In order to evaluate at which time instances one
model outperforms another model in terms of risk fore-
casting, we largely follow Ardia et al. (2018) and Patton
et al. (2019) and employ two specific loss functions. First,
to assess the VaR forecasting accuracy, the so-called
quantile loss (QL) is

QLα
t ¼ α�  zt < VaRt αð Þð Þð Þ zt�VaRt αð Þð Þ, ð21Þ

which is minimized by the most accurate VaR measure
retrieved from a set of alternative prediction models. Sec-
ond, to test alternative measures for VaR and ES jointly,
the combined loss function of Fissler and Ziegel (2016) is

FZLα
t ¼

1
αESt αð Þ zt < VaRt αð Þð Þ zt�VaRt αð Þð Þ

þVaRt αð Þ
ESt αð Þ þ log �ESt αð Þð Þ�1:

ð22Þ

4 | RISK FORECASTING FOR A
PORTFOLIO WITH SAFE HAVENS

In this section, we outline the estimation results of the
MS-C-MGARCH model and compare them with the
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outcomes of benchmark models. Then, we estimate
1-day-ahead VaR and ES forecasts using rolling windows
and compare backtesting results obtained from the diag-
nostics encountered in Section 3.

4.1 | Data and model specification

For the assessment and comparison of different condi-
tional volatility processes with respect to risk forecasting,
we consider a three-dimensional time series of centered,
daily log-returns of gold, S&P 500 index returns, and
yields of 10-year US Treasury Bond Futures as depicted
in Figure 1. Corresponding quotes of closing prices have
been drawn from Refinitiv. The sample covers the period
from October 1, 1991, until September 30, 2021, that is,
7346 observations. Since copula-MGARCH models have
the potential to assign considerable probability mass to
the joint occurrence of returns that are relatively large in
absolute value, we refrain from any trimming of the
return series and removing outlying observations on
the basis of the (ex-post) unconditional distribution. For
the empirical analysis, the sample information is split
into two parts. First, to compare the in-sample fit of alter-
native models and to infer about dependencies among
the three asset classes, we consider a period of 20 years,

that is, October 1, 1991, to September 30, 2011, that com-
prises Tin ¼ 4893 return observations. Second, the
remaining 2453 observations (October 1, 2011, until
September 30, 2021) are used to evaluate the ex-ante fore-
casting performance. Throughout, we compare the MS-
C-MGARCH model with benchmark models such as the
C-MGARCH model of Lee and Long (2009) and the
(asymmetric) BEKK model in terms of goodness-of-fit
and predictive ES performance. The following three sta-
tistics are considered to compare the goodness-of-fit of
the alternative models:

Log-likelihood value: LLV¼L bκð Þ,
Akaike information criterion: AIC¼�2 �LLVþ2 � J ,
Bayesian information criterion: BIC¼�2 �LLVþ J �
ln Tð Þ,

where J is the number of model parameters.
To account for patterns of upper and lower tail depen-

dence, we consider four alternative copulas that have
been widely applied in financial econometrics (see,
e.g., Diks et al., 2010; Rodriguez, 2007), namely, Gumbel
(G), Clayton (C), Gumbel survival (GS), and Clayton sur-
vival (CS). Hence, there are 43 ¼ 64 possible combina-
tions of these copulas to form copula-distributed shocks
by means of regular D-vine copulas. To reduce the

FIGURE 1 2000 random draws

from a Gumbel copula with θ¼ 8 and

Gaussian marginals, that is, the sample

has an upper tail dependence. Arrows

indicate the transformation obtained by

reverting the correlation of the sample.

Here, we assume an upper tail

dependence between η1 and η2. Hence,

the dependence is rotated (by changing

the sign of the correlation) into a

dependence between high negative

values of η2 and high positive values η1
(and vice versa if η1 and η2 are

exchanged).
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number of specification alternatives, we take account of
empirical findings on the (asymmetric) dependencies
between safe havens and stock markets and impose some
restrictions on the set of copula combinations to be evalu-
ated. Baur and Lucey (2010), Baur (2012), and Fülle and
Herwartz (2022) showed that stock markets are nega-
tively correlated with gold or treasury bonds in periods of
economic downturns. For this reason, we concentrate on
copulas that capture tail dependence characterizing the
relationship between a safe haven and stocks. More spe-
cifically, there should be a dependence between highly
positive safe haven and highly negative stock returns in
times of economic turmoil and vice versa for periods of
economic recovery. Figure 2 displays the changing tail
dependence profile of random variables η1 and η2. Under
negative return correlation (i.e., a 90 ∘ clockwise rotation
of a bivariate return vector), an initially upper tail depen-
dence is transformed into a joint dependence between
large positive values of η1 and large negative values of η2.
Furthermore, Fülle and Herwartz (2022) showed that the
underlying dependence structure is non-trivially influ-
enced by the transformations characterizing (MS)-C-
MGARCH models. As described in Section 2.2, the tail
dependence pattern is rotated by 180 ∘ inside the model,
such that an upper (lower) tail dependence of ξt ends up
in a lower (upper) tail dependence of the process et.

Accordingly, the joint returns of gold and stocks should
be modeled by a copula featuring upper tail dependence
(here denoted with C12j3), since these assets are nega-
tively correlated in times of crisis (for more details, see
Fülle & Herwartz, 2022). Moreover, the returns of the
S&P 500 and US Treasury Bond Futures are modeled by
the copula C23 η2,η3ð Þ. Setting for this combination η1 ¼
η2 and η2 ¼ η3 in Figure 2 represents a corresponding
structure of upper tail dependence between S&P
500 returns and Treasury Bond yields. Accordingly, a 90 ∘

rotation of the (upper-tail) dependence structure of these
two assets leads to a dependence profile that is untypical
for crisis times (i.e., a dependence between large positive
stock returns and [in absolute value] large negative bond
returns). Consequently, using a copula with lower-tail
dependence incorporates a dependence that is more rea-
sonable in crisis times.

In light of these considerations, we restrict the
space of examined copula combinations and use a cop-
ula with lower tail dependence for C12j3 and a copula
with upper tail dependence for C23 for crisis periods and
vice versa for economic recovery periods. For the rela-
tionship between the two safe havens, both upper and
lower tail dependencies are considered.7 Table 1 depicts
all combinations of copulas used in our comparative risk
analysis.

FIGURE 2 Daily log-returns of gold, S&P 500, and US Treasury Bond Futures (T¼ 7316).
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4.2 | In-sample estimation

First, we examine eventually asymmetric patterns for the
BEKK model. For this purpose, we consider all possible
combinations of positive and negative returns in the
series. Respective estimation results are documented in
Table 2. The highest likelihood value is obtained, if the
model is specified such that negative stock (i.e., S&P 500)
returns joint with positive gold and bond returns exert an
additional effect on conditional volatility. This coincides
with the findings of Baur and Lucey (2010), Baur (2012),
and Fülle and Herwartz (2022), since it implies that in
times of crisis, safe-haven patterns in the return series
are associated with higher volatility. Henceforth, we con-
dition on this selection when considering empirical
asymmetric BEKK models. Estimated conditional volatil-
ities using the R-Package BEKKS of Fülle et al. (2022) are
shown in Figure C1 in Appendix C.

Similar to Fülle and Herwartz (2022), we proceed in
three steps for generalizing the asymmetric MGARCH
model specification. Regarding the first step, results

shown in Table 3 indicate that the consideration of state
invariant copula distributions, that is, the C-MGARCH
model, improves model fit in terms of both selection cri-
teria. As a second step and going beyond state invariant
models, we set up two regime MS-C-MGARCH models,
which we denote as 2MS-C-MGARCH. According to esti-
mation results documented in Table 4, the consideration
of 2MS-C-MGARCH processes further improves the
model fit in terms of information criteria. The copula
combinations signifying flight-to-safety effects in the
presence of economic crisis lead to the best fitting model.
Figure C2 in Appendix C shows the implied smoothed
regime probabilities for the case of the preferred model
comprising two regimes, with the second regime captur-
ing dependence patterns that are typical for crisis periods
with copula combination (GS, G, G). Smoothed regime
probabilities allow for the interpretation that the copula
regimes are more likely to occur in times of economic cri-
sis. With the described evidence in favor of a 2MS-C-
MGARCH model, a natural interest arises in testing a
combination of three regimes. Hence, as a third step of
model augmentation, we consider 3MS-C-MGARCH
models featuring a Gaussian regime for non-crisis times
and two copula regimes (one for crisis periods and one
for recovery). Corresponding estimation results are dis-
played in Table 5 and Figure C3. The best-fitting copula
combination features a crisis regime with copulas (GS, G,
G) and a recovery regime with copulas (G, GS, GS). This
copula structure further underpins the safe-haven charac-
teristics of gold and US Treasury Bonds, since the crisis
and recovery regime are more likely to occur in the con-
text of major economic or political pressures (see
Figure C3 in Appendix C). Moreover, the information cri-
teria show that the best asymmetric three-regime model
leads to a considerable increase of the log-likelihood
value (LLV = 50446:88).

By implication of the best-fitting copula combination,
we find that gold and bond returns are subject to lower
and upper tail dependence in times of crisis and recovery,
respectively. Aligning with the economic rationale of safe
havens, this evidence hints more at comovements and
less at transitions of such safe-haven instruments in times
of extreme events. Moreover, we find a stronger relation-
ship to exist between bonds and stocks than between gold
and stocks. According to the best-fitting 3MS-C-
MGARCH model, we find evidence for periods of strong
upper (λU ¼ 0:941) and lower (λL ¼ 0:965) tail dependence
between gold and stocks. Similarly, we see periods of
strong upper (λU ¼ 0:972) and lower (λL ¼ 0:959) tail
dependence between bonds and stocks.8 Hence, one may
conclude that in times of extreme stock market turmoil,
bonds are more often chosen as a safe haven than gold
because of stronger tail dependence in crisis periods. In

TABLE 1 Used copula combinations to form D-vine copulas.

Economic state/copulas C12j3 C13 C23

Crisis GS/C GS/C G/CS

Crisis GS/C G/CS G/CS

Recovery G/CS GS/C GS/C

Recovery G/CS G/CS GS/C

Note: Cij stands for the copula to model the dependence between ei,t and ej,t .

TABLE 2 Estimation results and information criteria for

asymmetric BEKK(1,1,1) models (with symmetric benchmark in

the last row).

Asymmetries Goodness-of-fit criteria

e1 e2 e3 LLV AIC BIC

� � � 49,906.73 �99,747.46 �99,533.11

� þ þ 49,840.96 �99,615.93 �99,401.58

� þ � 49,887.10 �99,708.21 �99,493.86

� � þ 49,964.57 �99,863.15 �99,648.79

þ � � 49,840.96 �99,615.93 �99,401.58

þ þ þ 49,882.06 �99,698.12 �99,483.76

þ þ � 49,840.96 �99,615.93 �99,401.58

þ � þ 49,967.23 �99,868.46 �99,654.11

Sym. BEKK 49,840.96 �99,633.93 �99,478.04

Note: The labels “�” and “þ” indicate an accounting for asymmetric
conditional volatility patterns for negative and positive returns, respectively
(see Section 2.1). Largest LLV and smallest AIC and BIC statistics are in

boldface.
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conjunction with the results from Section 4.1 and Table 1
on model implied tail dependence patterns, we find crisis
and recovery regimes for which a slump (boom) in stocks
is likely to coincide with a boom (slump) in bonds and
gold given negative correlation between stocks and the
two safe havens. Moreover, extreme gold and bond
returns are estimated to be highly synchronized during
both market phases. This finding aligns with the litera-
ture on safe-haven characteristics of gold and bonds
(Baur & Lucey, 2010; Baur & McDermott, 2010; Fülle &
Herwartz, 2022). Unlike the flexible MS-C-MGARCH
approach, the restrictive single regime C-MGARCH
model fails to detect the described higher order comove-
ments. By implication of copula parameter estimates, we
barely find tail dependencies between gold and stocks
(λL ¼ 0:000) or between bonds and stocks (λU ¼ 0:172) for
the best-fitting C-MGARCH model.

In sum, we find evidence for better fitting MS-
C-MGARCH models compared with benchmark models.
Regarding two particular steps of model generalization
from MGARCH to C-MGARCH and from C-MGARCH

to MS-C-MGARCH, the latter is of particular effective-
ness. In fact, log-likelihood differences for the second
generalization step are by a factor of about eight larger
than those for the first step. This is remarkable even after
accounting for the implied enlargement of the parameter
space. To examine model-implied forecasting perfor-
mance, we next take a look at rolling window, 1-day-
ahead predictive exercises.

4.3 | Out-of-sample analysis

We next analyze the performance of alternative models
and benchmark specifications in ex-ante VaR and ES pre-
diction. Regarding the considered copula selections, we
mainly build upon those models that provided the most
effective in-sample estimates. Unreported further results
for all model specifications are available upon request.
More specifically, the crisis and recovery regimes featur-
ing (GS, G, G) and (G, GS, GS) vine copulas are used
hereinafter for C-MGARCH, 2MS-C-MGARCH, and

TABLE 4 Estimation results and goodness-of-fit criteria for alternative two-state MS-C-MGARCH models.

Copulas Estimates Goodness-of-fit criteria

C12j3 C13 C23 bp11 bp22
bθ12 bθ13 bθ23 LLV AIC BIC

G GS GS 0.782 0.000 12.883 30.493 30.032 50,336.52 �100,597.00 �100,350.20

(0.088) (0.354) (7.977) (1.523) (3.264)

G G GS 0.827 0.047 1.523 9.638 31.500 50,334.57 �100,593.10 �100,346.30

(0.101) (2.106) (1.801) (0.686) (0.494)

GS G G 0.757 0.139 26.058 26.032 31.499 50,393.51 �100,711.00 �100,464.20

(0.183) (0.709) (0.767) (0.054) (0.852)

GS GS G 0.674 0.221 1.061 31.499 6.384 50,343.08 �100,610.20 �100,363.30

(0.557) (1.169) (0.906) (1.084) (10.238)

Note: Estimated standard errors are calculated using the distribution for the two-stage ML estimator outlined in Fülle and Herwartz (2022). The conditional
(co)variances align with the best-performing asymmetric BEKK(1,1,1) model as highlighted in Table 2.

TABLE 3 Estimation results and

goodness-of-fit criteria for alternative

C-MGARCH models with an

asymmetric BEKK(1,1,1) model to

formalize conditional (co)variances.

Copulas Estimates Goodness-of-fit criteria

C12j3 C13 C23 bθ12 bθ13 bθ23 LLV AIC BIC

G GS GS 1.013 1.005 1.018 49,997.33 �99,922.65 �99,688.81

(0.008) (0.011) (0.009)

G G GS 1.018 1.033 1.018 50,000.11 �99,928.22 �99,694.38

(0.010) (0.023) (0.009)

GS G G 1.026 1.015 1.135 50,012.88 �99,953.76 �99,719.92

(0.012) (0.013) (0.081)

C C G 0.032 0.026 1.149 50,014.64 �99,957.29 �99,723.45

(0.014) (0.018) (0.049)

Note: The asymmetric patterns are chosen to follow the best-fitting model as highlighted in Table 2.
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3MS-C-MGARCH models.9 In line with the recent litera-
ture on VaR and ES forecasting (see, e.g., Kratz
et al., 2018; Patton et al., 2019), we adopt a rolling win-
dow approach with a window length of 20 years (in total
4893 daily observations). For each time instance t of the
out-of-sample period t � Tinþ1,…,Tf g, 1-day-ahead VaR
and ES forecasts (dVaRt αð Þ and cESt αð Þ) are determined in
an iterative manner on the basis of updated QML esti-
mates that condition upon sampled returns
rt�Tin ,…,rt�1f g. Subsequently, we investigate for three
alternative VaR coverage levels α¼ 0:01,0:025 and α¼
0:05 and two portfolio compositions (i.e., an equal weight
portfolio and a 0.15, 0.70, and 0.15 portfolio with the
highest weight assigned to equity) out-of-sample risk pre-
dictions with regard to several criteria. First, we imple-
ment ES backtests of Du and Escanciano (2017) outlined
in Section 3 (see Equations 18 and 20). Second, we per-
form pairwise Diebold–Mariano tests (DM; Diebold &
Mariano, 1995) with regard to the two loss functions QL
and FZL as given in (21) and (22), respectively. Third, we
consider MCS in the vein of Hansen et al. (2011) for joint
model comparisons of QL and FZL statistics.

Overall, the in-sample results on relative model per-
formance discussed in Section 4.2 are well reflected in
the ES forecasting performance of alternative models. As
documented in Table 6, MS-C-MGARCH models tend to
result in higher p-values of diagnostic tests for uncondi-
tional and conditional levels of the ES. Accordingly, the
flexible regime switching models are of particular conve-
nience for all three VaR coverage levels (1%,2:5%,5%)
and both portfolio compositions. For instance, regarding
risk predictions for portfolios with a higher share of
equity (ω¼ 0:15,0:70,0:15ð Þ) and the 1% coverage level,
the null hypothesis of unconditional coverage is through-
out rejected except for the asymmetric 2MS-C-MGARCH
model (with a p�value of 0:1436). Although diagnostic
results are not that clear for remaining cases, testing for
conditional or unconditional coverage provides the larg-
est p-values for regime switching models generally.

The findings for the ES diagnostics are underpinned
by results for the loss functions QL and FZL. For
instance, as depicted in Figure 4 (for portfolio weights of
ω¼ 0:15,0:70,0:15ð Þ) and Figure C4 in Appendix C (equal
weight portfolio), loss differentials between the best-
fitting benchmark model and the best-fitting MS-
C-MGARCH model indicate a lead of the latter. Although
the loss differentials between the two models are less pro-
nounced in periods of economic prosperity, cumulative
losses show that the risk forecasting is especially
improved by the best-performing 3MS-C-MGARCH
model during times of economic stress such as the out-
burst of the trade conflict between China and the
United States and the COVID 19 pandemic and theirT
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aftermaths. These insights are underpinned by Figure 3
highlighting that the Markov switching model with three
regimes provides comparably more accurate risk forecasts
in comparison with time-invariant benchmark models.
Especially in the wake of the European debt crisis and

during the COVID crash in March 2020, MS-C-MGARCH
models appear to signify more realistic risk levels, since
the two most extreme downturns in 2013 are only
covered by the ES forecasts of the more flexible 3MS-C-
MGARCH model. During the COVID crash, the best-

FIGURE 3 Estimated 1-day-ahead 1% ES for a portfolio with weights ω¼ 0:15,0:7,0:15ð Þ. The blue line displays the best-performing

C-MGARCH model (i.e., the benchmark model, GS/G/G). The red line displays results for the 3MS-C-MGARCH model (G/GS/GS & GS/G/

G) featuring the best predictive performance (see results shown in Table 7).

TABLE 6 ES-forecasting results for rolling windows using 20 previous years as in-sample.

Model Copula

Hit rates bHt UES p-values CES 5ð Þ p-values
1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5%

Portfolio weights: ω¼ 1=3,1=3,1=3ð Þ
BEKK .0090 .0141 .0227 .0006 .3880 .3630 .4199 .4294 .4408

C-BEKK G/G/GS .0129 .0208 .0317 .0000 .0000 .0091 .4223 .4332 .4459

C-BEKK GS/G/G .0129 .0208 .0317 .0000 .0000 .0091 .4216 .4313 .4467

2MS-C-BEKK G/GS/GS .0080 .0135 .0225 .0099 .6014 .3202 .4219 .4361 .4481

2MS-C-BEKK GS/G/G .0077 .0133 .0221 .0192 .6615 .2622 .4224 .4369 .4550

3MS-C-BEKK G/GS/GS & GS/G/G .0093 .0159 .0258 .0002 .0621 .7507 .4236 .4326 .4402

Portfolio weights: ω¼ 0:15,0:7,0:15ð Þ
BEKK .0102 .0160 .0236 .0000 .0567 .5894 .4207 .4305 .4355

C-BEKK G/G/GS .0156 .0214 .0286 .0000 .0000 .1592 .4228 .4306 .4358

C-BEKK GS/G/G .0153 .0210 .0284 .0000 .0000 .1872 .4207 .4297 .4368

2MS-C-BEKK G/GS/GS .0159 .0166 .0238 .0000 .0248 .6280 .4189 .4350 .4400

2MS-C-BEKK GS/G/G .0067 .0116 .0195 .1436 .6401 .0313 .4230 .4377 .4427

3MS-C-BEKK G/GS/GS & GS/G/G .0074 .0128 .0211 .0387 .8624 .1309 .4214 .4306 .4399

Note: Largest p-values are highlighted in boldface.
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FIGURE 4 Model comparisons by means of cumulative loss differentials (Ardia et al., 2018). The upper and lower panels show,

respectively, QL and FZL differentials between the best-performing benchmark and the best-performing MS-C-MGARCH model from VaR

and ES with nominal coverage of α= 1%. The underlying portfolio has weights of ω¼ 0:15,0:70,0:15ð Þ. Corresponding results for equal-
weight portfolios are shown in Appendix C.

TABLE 7 Average QL and FZL statistics for equal-weight portfolios (upper panel) and portfolios with a higher share of equity (lower).

Model Copulas

VaR coverage α

1% 2.5% 5%

QL FZL QL FZL QL FZL

Portfolio weights: ω¼ 1=3,1=3,1=3ð Þ
BEKK 0.198e-3 �3.692 0.366e-3 �4.132 0.591e-3 �4.396

Asym. BEKK 0.201e-3 �3.645 0.372e-3 �4.102 0.598e-3 �4.377

C-BEKK 0.205e-3 �3.727 0.369e-3 �4.174 0.587e-3 �4.434

Asym. C-BEKK 0.211e-3 �3.674 0.376e-3 �4.142 0.595e-3 �4.417

2MS-C-BEKK G/G/GS 0.201e-3 �3.789 0.372e-3 �4.163 0.592e-3 �4.368

Asym. 2MS-C-BEKK G/G/GS 0.199e-3 �3.839 0.372e-3 �4.179 0.599e-3 �4.386

3MS-C-BEKK G/GS/GS & GS/G/G 0.199e-3 �3.737 0.365e-3 �4.150 0.586e-3 �4.404

Asym. 3MS-C-BEKK G/GS/GS & GS/G/G 0.204e-3 �3.728 0.373e-3 �4.126 0.596e-3 �4.376

Portfolio weights: ω¼ 0:15,0:70,0:15ð Þ
BEKK 0.342e-3 �2.631 0.602e-3 �3.397 0.940e-3 �3.808

Asym. BEKK 0.333e-3 �2.753 0.595e-3 �3.445 0.934e-3 �3.836

C-BEKK 0.416e-3 �2.184 0.650e-3 �3.332 0.960e-3 �3.842

Asym. C-BEKK 0.404e-3 �2.251 0.639e-3 �3.362 0.954e-3 �3.855

2MS-C-BEKK G/G/GS 0.343e-3 �2.702 0.606e-3 �3.429 0.944e-3 �3.828

Asym. 2MS-C-BEKK G/G/GS 0.315e-3 �3.090 0.586e-3 �3.572 0.937e-3 �3.882

3MS-C-BEKK G/GS/GS & GS/G/G 0.327e-3 �2.957 0.597e-3 �3.506 0.938e-3 �3.859

Asym. 3MS-C-BEKK G/GS/GS & GS/G/G 0.318e-3 �3.092 0.588e-3 �3.565 0.933e-3 �3.871

Note: The smallest mean losses are highlighted in boldface. We apply the MCS test of Hansen et al. (2011) to all models listed in the leftmost column. The tests
are performed with a confidence level of 5% using the R-package MCS of Catania and Bernardi (2017). Numbers in italic indicate that the respective model is
excluded from the set of superior models.
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performing benchmark model overestimates actual risks,
whereas the best regime switching model results in an
eventually more realistic risk assessment, since realized
returns deviate less from ES forecasts.

Adding to the graphical display of selected QL and
FZL statistics in Figure 4, Table 7 documents average
losses for all competing models. Although we document
results for four MS and four time-invariant benchmark
models, minimum losses are found more often for MS-
C-MGARCH models for both QL and FZL statistics. This
performance lead is especially pronounced, if the portfo-
lio can be considered more risky (i.e., portfolio weights
imply a higher share of equity). In this case, benchmark
models fail throughout to yield minimum loss statistics.
To infer on the relative performance of MS-C-MGARCH
models over benchmark models by means of explicit
tests, we perform pairwise DM and overall MCS tests for
QL and FZL statistics. Results are documented in Table 8
and indicate that VaR and ES forecasts of MS-
C-MGARCH models often outperform benchmark
models, especially in the case of more risky portfolios
that comprise relatively large shares of equity.

Although DM tests only allow for pairwise compari-
sons of model-implied losses, the MCS method of Hansen
et al. (2011) enables a joint assessment of all models listed
in Table 7. This test procedure consists of iterative exclu-
sions of models for which forecast-implied losses are

pairwise outperformed by all remaining models (inside the
MCS) with 5% significance. Although results for the equal-
weight portfolios do not signify a superior performance of
MS-C-MGARCHmodels, the picture changes when portfo-
lios comprise a relatively large share of risky assets
(i.e., equity). Especially for the most extreme events (i.e., a
VaR coverage level of α= 1%), the MCS mainly consists of
the new flexible MS-C-MGARCH models. More specifi-
cally, when we are looking at the FZL, the outperfor-
mance of the benchmark approaches by the new model
class is evident. The best-performing model with regard
to average FZL and 1% coverage level is the asymmetric
3MS-C-MGARCH model with the so-called “recovery”
and “crisis” regimes.

In sum, the introduction of regime-specific higher
order dependencies of speculative returns improves both
ex-post and ex-ante performance of model-implied risk
measures. The suggested Markov switching approach
promises particular performance leads for portfolios com-
prising relatively large shares of risky assets as, for
instance, equity. Regarding the overall performance of
the considered benchmark and Markov switching specifi-
cations, it is important to notice that (almost) all models
considered in this study build upon a flexible asymmetric
MGARCH specification in BEKK form that allows for
rather general spillover effects among returns. Hence, the
performance differentials examined in this study can be

TABLE 8 Diebold–Mariano tests for QL and FZL statistics of equal-weight portfolios (upper panel) and portfolios with an extended

share of equity ω¼ 0:15,0:7,0:15ð Þ (lower panel).

α Model Copulas

BEKK Asym. BEKK C-BEKK Asym. C-BEKK

QL FZL QL FZL QL FZL QL FZL

Portfolio weights: ω¼ 1=3,1=3,1=3ð Þ
1% 2MS-C-BEKK G/G/GS 0.678 �2.686 �1.438 �2.571 �1.674 �5.005 �2.830 �5.520

3MS-C-BEKK G/GS/GS & GS/G/G 3.401 �1.395 2.576 �1.498 �0.687 �3.738 �2.739 �6.085

2.5% 2MS-C-BEKK G/G/GS 3.627 �2.958 �0.006 �2.658 0.716 �4.387 �1.026 �4.956

3MS-C-BEKK G/GS/GS & GS/G/G 3.669 �2.372 0.821 �1.888 1.749 �0.650 �1.328 �2.321

5% 2MS-C-BEKK G/G/GS 5.157 �8.746 0.762 �6.728 2.982 �2.072 0.838 �2.937

3MS-C-BEKK G/GS/GS & GS/G/G 2.912 �4.895 �1.426 �3.849 3.962 �0.502 0.367 �1.358

Portfolio weights: ω¼ 0:15,0:70,0:15ð Þ
1% 2MS-C-BEKK G/G/GS �4.274 �7.427 �3.846 �7.532 �6.984 �11.204 �6.746 �11.245

3MS-C-BEKK G/GS/GS & GS/G/G �4.386 �7.148 �4.229 �7.444 �7.134 �11.108 �6.925 �11.294

2.5% 2MS-C-BEKK G/G/GS �2.963 �8.579 �2.733 �9.093 �5.323 �12.659 �5.034 �12.856

3MS-C-BEKK G/GS/GS & GS/G/G �2.983 �7.896 �2.354 �8.531 �5.582 �12.321 �5.358 �12.758

5% 2MS-C-BEKK G/G/GS �0.584 �9.083 1.262 �10.468 �2.339 �11.008 �2.052 �10.734

3MS-C-BEKK G/GS/GS & GS/G/G �1.449 �7.792 �0.599 �10.069 �3.067 �8.159 �2.952 �7.195

Note: Results are shown for alternative coverage levels α. In-sample best-performing MS-C-MGARCH models (see Tables 4 and 5) with two and three regimes
are ordered row-wise, whereas non-MS benchmark models (symmetric and asymmetric) are ordered columnwise. Bold entries indicate a non-zero performance

difference with 1% significance. Negative (positive) DM statistics are in favor of MS-C-MGARCH (benchmark) models.
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reasonably attributed to higher order (and non-trivial)
dependence structures as, for instance, the rare cases
when large returns of either size occur jointly within the
constituents of a portfolio under scrutiny. Hence, the rel-
ative performance of the flexible Markov switching
models could be subject to time variation and confined in
particular to episodes of market turmoil.

5 | CONCLUSION

In accordance with Basel III regulations, risk managers
will likely focus on ES as a more accurate measure for tail
risks. Especially for very rare events such as the COVID
crash or the Ukrainian crisis a predictive tool for tail risks
is of particular interest. We have estimated and tested the
ES forecasting performance of the regime switching cop-
ula MGARCH model of Fülle and Herwartz (2022). To
analyze the risks for different portfolios combining a
stock index and two major safe-haven assets, we deployed
a rolling window ex-ante analysis. From these exercises,
three results are of particular importance. First, the MS-
C-MGARCH model improves the risk forecasting of
speculative assets and safe havens compared with
benchmark models for alternative nominal VaR cover-
age levels. Second, we find that choosing the origin of
leveraged (co)variances properly enhances the model fit
and risk forecasting performance. In this framework,
accounting for additional (conditional) volatility induced
by jointly positive returns of safe havens and negative
returns of stock indices has led to the most favorable
results and underpins the consideration of gold and US
Treasury Bonds as safe havens. The patterns of the best
fitting copula combinations for two- and three-regime
MS-C-MGARCH models further stress the role of proper
model selection, since copula distributions are of partic-
ular relevance in times of crisis and recovery. Third, we
find that the more flexible model with two and three
regimes enhances the forecasting accuracy of US specu-
lative asset returns. More specifically, accounting for a
setup featuring one regime for recovery and one for cri-
sis yields the best data-fitting and risk-predicting model
in our empirical framework.

A topic for future research is to investigate whether
the MGARCH models help to evaluate and forecast the
risks in a striking environment, for instance, under finan-
cial market stress as invoked by the current war in
Ukraine. In the wake of such a ground-breaking crisis,
extreme comovements and counter movements can be
expected. Against this background, the MS-C-MGARCH
model might help to capture such capital movements and
improve risk forecasting in states when it is of crucial
interest. Throughout, the analysis in this work relied on

time invariance of marginal distributions prior to stan-
dardization. For future research, it appears tempting to
systematically address the scope of extending Markov
switching patterns to induce time variation of marginal
distributions. As potential distributional frameworks, one
might consider heavy tailed and/or skewed distributions
in the vein of Bali et al. (2008).
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ENDNOTES
1 It is worth to notice that in the present context, the definition of
copula models and/or Markov switching is independent of the
specification for time-varying volatilities or correlations. Hence,
instead of our focus on MGARCH covariance models, one could
also consider constant or dynamic correlation models (CCC or
DCC) to formalize conditional heteroskedasticity (Bollerslev, 1990;
Engle, 2002). We utilize MGARCH models in BEKK form, since
they better capture spillovers in comparison with DCC. Although
this has to be compromised by system dimensionality
(in comparison with CCC or DCC), however, Markov switching
might suffer from a curse of dimensionality, if it is intended to
cover the marginal volatility processes.

2 The package employs analytical derivatives of the BEKK(1,1,1)
log-likelihood as suggested by Hafner and Herwartz (2008), which
are implemented in C++ to enable fast nonlinear optimization.
For instance, subjecting a five-dimensional time series comprising
about 5000 observations obtains parameter estimates within less
than 1 min.

3 Among the possible decompositions of a positive definite symmet-
ric matrix D into LL0 ¼D is, for example, the Cholesky decomposi-
tion, where L is a lower triangular matrix. The symmetric
(eigenvalue) decomposition with D¼D1=2D1=2 is D1=2 ¼ΓΛ

1
2Γ0,

where Γ denotes the matrix of eigenvectors and Λ is a diagonal
matrix containing the eigenvalues of D.

4 See the textbook treatments of Joe (1996a) or Nelsen (2006) and
Appendix A for definitions of copulas and their probability
densities.
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5 In case of independently distributed residuals ηt , the PDF of the
portfolio (state) is given by integrating over the weighted product
of the marginal PDFs. For example, in case of normal residuals

(here: N 0,1ð Þ), zt �N 0,
P3

j¼1νj,t
� 	

.

6 In addition to the null hypothesis of a correctly predicted ES, the
test conditions implicitly on the correctness of the estimated CDF.

7 One may observe jointly positive returns in times of downturns.
However, there might be also a transfer from a (considerably
weaker) safe haven to another in crisis times.

8 The notations λU and λL indicate, respectively, upper and lower
tail dependence. For an explicit definition of these moments, see
Appendix A. For a detailed investigation of the of the copula-
specific transmission of higher order (tail) dependencies from latent
random variables ξt to observables et , see Fülle and Herwartz
(2022).

9 We restrict the analysis to only one vine copula setup for crisis
and recovery to enable a sound performance comparison across
model classes C-MGARCH and MS-C-MGARCH.
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APPENDIX A: COPULAS

This section originates broadly from Joe (1996a) and Nelsen (2006).

Definition 1. A bivariate function C : 0,1½ �2 ! 0,1½ � is defined as a copula if the conditions

1. C u1,u2ð Þ¼ 0 for u1 ¼ 0_u2 ¼ 0.

2.
P2
i¼1

P2
j¼1

�1ð Þ C u1,i,u2,j
� �

≥ 0 8 u1,i,u2,j
� �

� 0,1½ �2 with u1,1 < u1,2 and u2,1 < u2,2.

3. C u1,1ð Þ¼ u1 and C 1,u2ð Þ¼u2 8u1,u2 � 0,1½ � are fulfilled.

Definition 2. We define upper and lower tail dependence (TD), that is, the comovement in the extreme
quantiles, of two random variables X1, X2 as

λU ≔ lim
u!1�

P X1 >F�1
1 uð ÞjX2 >F�1

2 uð Þ� �¼ lim
u"1

1�2uþC u,uð Þ
1�u

λL ≔ lim
u!0þ

P X1 ≤F�1
1 uð ÞjX2 ≤F�1

2 uð Þ� �¼ lim
u#0

C u,uð Þ
u

,

where F�1
i are the inverse cumulative distribution functions (CDF) of Xi.

Definition 3. The survival copula CS of a copula C is defined as

CS u1,u2;θð Þ¼u1þu2�1þC 1�u1,1�u2;θð Þ

Consequently, it is a copula rotated by 180 ∘ .
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Definition 4. The Gumbel copula is defined as

CGumbel u1,u2;θð Þ¼ exp � � ln u1ð Þð Þθþ � ln u2ð Þð Þθ
� 	1

θ

 �

cGumbel u1,u2;θð Þ¼
CGumbel u1,u2;θð Þ ln u1ð Þ ln u2ð Þð Þθ�1 � ln u1ð Þð Þθþ � ln u2ð Þð Þθ

� 	1
θ þθ�1

�
u1u2 � ln u1ð Þð Þθþ � ln u2ð Þð Þθ

� 	2�1
θ

where θ≥ 1 must hold. The lower tail dependence is zero, where the upper tail dependence is λU ¼ 2�2
1
θ.

Definition 5. The Clayton copula is defined as

CClayton u1,u2;θð Þ¼ u�θ
1 þu�θ

2 �1
� ��1

θ

cClayton u1,u2;θð Þ¼ 1þθð Þ u�θ
1 þu�θ

2 �1
� ��1

θ�2

u1u2ð Þθþ1

where θ>0 must hold. Moreover, the copula is not continuous for u1 ¼ 0_u2 ¼ 0. The upper tail dependence is zero,
where the lower tail dependence is λL ¼ 2�

1
θ.

A.1 | Vine copulas

Besides generalizing the copulas for higher dimensions, for instance, described in Joe (1996a) and Lee and Long (2009).
The so-called regular D-vine copulas provide a more flexible framework to model dependencies in higher dimensions.
For N ¼ 3, the D-vine copula is defined as

F ξ1,t,ξ2,t,ξ3,t;θ1,θ2,θ3,θ12,θ13,θ23
� �¼Z ξ3,t

�∞
C12j3 F1j3 ξ1,tjz;θ13

� �
,F2j3 ξ2,tjz;θ23

� �
;θ12

� �
f 3 z,θ3ð Þdz,

Fij ξi,t,ξj,t;θi,θjθij
� �¼Cij Fi ξi,t;θi

� �
,Fj ξj,t;θj
� �

,θij
� �

,

with Fijj η1,η2ð Þ¼Cijj F1 η1ð Þ,F2 η2ð Þð Þ, conditional copula Cijj u,vð Þ¼ ∂Cij u,vð Þ
∂v , Cij being a two-dimensional copula, and Fi

marginal CDFs. Hence, the PDF reads as

f 123 ξ1,t,ξ2,t,ξ3,t;θ1,θ2,θ3,θ12,θ13,θ23
� �¼

c12j3 F1j3 ξ1,tjz;θ13,t
� �

,F2j3 ξ2,tjz;θ23
� �

;θ12
� �

f 13 ξ1,t,ξ2,t;θ12
� �

f 23 ξ2,t,ξ3,t;θ23
� �

f 2 ξ2,t;θ2
� �¼

c12j3 F1j3 ξ1,tjz;θ13,t
� �

,F2j3 ξ2,tjz;θ23
� �

;θ12
� �

c13 F1 ξ1,t;θ1
� �

,F3 ξ3,t;θ2
� �

;θ13
� ��

c23 F2 ξ2,t;θ2
� �

,F3 ξ3,t;θ3
� �

;θ23
� �Y3

i¼1

f i ξi,t;θi
� �

The copulas for N >3 can be derived by iterating that scheme. Joe (1996a) gives a detailed view.
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APPENDIX B: PORTFOLIO DISTRIBUTIONS

For notational simplicity, we drop the copula parameters hereinafter. According to Cherubini et al. (2004), the distribu-
tion of the portfolio in the case of a single regime is given by

Fzt zð Þ¼

F1
z
ν1,t

� �
if ν2,t ¼ ν3,t ¼ 0

F2
z
ν2,t

� �
if ν1,t ¼ ν3,t ¼ 0

F3
z
ν3,t

� �
if ν1,t ¼ ν2,t ¼ 0Z ∞

�∞
F1j2,3

z
ν1,t

�η2,t
ν2,t
ν1,t

,η2,t

� �
dη2,t if ν3,t ¼ 0Z ∞

�∞
F1j3

z
ν1,t

�η3,t
ν3,t
ν1,t

,η3,t

� �
dη3,t if ν2,t ¼ 0Z ∞

�∞
F2j3

z
ν2,t

�ν3,t
ν2,t

,η3,t

� �
dη3,t if ν1,t ¼ 0Z ∞

�∞

Z ∞

�∞
F1j2,3 F1j3

z
ν1,t

�η3,t
ν2,t
ν1,t

η2,t�
ν3,t
ν1,t

η3,t,η3,t

� �
,F2j3 η2,t,η3,t

� �� �
� f 23 F2 η2,t

� �
,F3 η3,t
� �� �

dη2,tdη3,t else

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
and for the regime switching model with two regimes (for more than two regimes, this distribution can be derived by
iterating that scheme):

Fzt zð Þ¼

P1Φνt zð ÞþP2F1
z

ν1,t st ¼ 2ð Þ
� �

if ν2,t st ¼ 2ð Þ¼ ν3,t st ¼ 2ð Þ¼ 0

P1Φνt zð ÞþP2F2
z

ν2,t st ¼ 2ð Þ
� �

if ν1,t st ¼ 2ð Þ¼ ν3,t st ¼ 2ð Þ¼ 0

P1Φνt zð ÞþP2F3
z

ν3,t st ¼ 2ð Þ
� �

if ν1,t st ¼ 2ð Þ¼ ν2,t st ¼ 2ð Þ¼ 0

P1Φνt zð ÞþP2

Z ∞

�∞
F1j2,3

z
ν1,t st ¼ 2ð Þ�

ν2,t st ¼ 2ð Þ
ν1,t st ¼ 2ð Þ,η2,t

� �
dη2,t if ν3,t st ¼ 2ð Þ¼ 0

P1Φνt zð ÞþP2

Z ∞

�∞
F1j3

z
ν1,t st ¼ 2ð Þ�

ν3,t st ¼ 2ð Þ
ν1,t st ¼ 2ð Þ,η3,t

� �
dη3,t if ν2,t st ¼ 2ð Þ¼ 0

P1Φνt zð ÞþP2

Z ∞

�∞
F2j3

z
ν2,t st ¼ 2ð Þ�

ν3,t st ¼ 2ð Þ
ν2,t st ¼ 2ð Þ,η3,t

� �
dη3,t if ν1,t st ¼ 2ð Þ¼ 0

P1Φνt zð ÞþP2

Z ∞

�∞

Z ∞

�∞
F1j2,3ðF1j3

z
ν1,t st ¼ 2ð Þ�

ν2,t st ¼ 2ð Þ
ν1,t st ¼ 2ð Þη2,t�

ν3,t st ¼ 2ð Þ
ν1,t st ¼ 2ð Þη3,t ,η3,t

� �
,

F2j3 η2,t,η3,t
� �Þ � f 23 F2 η2,t

� �
,F3 η3,t
� �� �

dη2,tdη3,t else

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
with Pi ¼ P st ¼ ijΩt�1ð Þ and Φνt zð Þ is the CDF of a univariate normal distribution with standard deviationP3
l¼1

νt,l st ¼ 1ð Þ.
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APPENDIX C: ADDITIONAL GRAPHS AND TABLES

FIGURE C1 Estimated conditional standard deviations and correlations implied by the asymmetric BEKK(1,1,1) model with

asymmetric affects set to þ, � ,þð Þ. Estimated by the R-Package BEKKs of Fülle et al. (2022).
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FIGURE C2 Estimated smoothed probabilities of being in the independence regime P st ¼ 1jΩTinð Þ by the algorithm of Kim (1994).

Upper/lower panel shows the probabilities when the second regime is set to the best fitting crisis (GS, G, G)/recovery (G, GS, GS) regime.

The grey-shaded areas indicate important economic and or political crisis events. I, Japan Crisis; II, Black Wednesday; III, Mexican peso

crisis; IV, Asian financial crisis; V, Bursting of the Dotcom Bubble; VI, Financial Crisis; VII, European Sovereign Debt Crisis.
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FIGURE C3 From top to bottom: estimated smoothed probabilities of being in the independence, crisis, and recovery regime. For

further information, see Figure C2.
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FIGURE C4 Cumulative loss differentials (Ardia et al., 2018). The upper and lower panels show QL and FZL statistics from VaR and

ES with nominal coverage of α= 1%. The underlying portfolio is equally weighted. For further information, see Figure 4.
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