
Dovern, Jonas; Glas, Alexander; Kenny, Geoff

Article  —  Published Version

Testing for differences in survey‐based density
expectations: A compositional data approach

Journal of Applied Econometrics

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Dovern, Jonas; Glas, Alexander; Kenny, Geoff (2024) : Testing for differences
in survey‐based density expectations: A compositional data approach, Journal of Applied
Econometrics, ISSN 1099-1255, Wiley, Hoboken, NJ, Vol. 39, Iss. 6, pp. 1104-1122,
https://doi.org/10.1002/jae.3080

This Version is available at:
https://hdl.handle.net/10419/306086

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1002/jae.3080%0A
https://hdl.handle.net/10419/306086
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Received: 4 June 2023 Revised: 11 January 2024 Accepted: 29 April 2024

DOI: 10.1002/jae.3080

R E S E A R C H A R T I C L E

Testing for differences in survey-based density expectations:
A compositional data approach

Jonas Dovern1 Alexander Glas2 Geoff Kenny3

1School of Business, Economics and
Society, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nuremberg,
Germany
2Pensions and Sustainable Financial
Markets, ZEW – Leibniz Centre for
European Economic Research,
Mannheim, Germany
3European Central Bank, Frankfurt am
Main, Germany

Correspondence
Jonas Dovern, School of Business,
Economics and Society,
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Lange Gasse 20,
90403 Nuremberg, Germany.
Email: jonas.dovern@fau.de

Summary

We propose to treat survey-based density expectations as compositional data
when testing either for heterogeneity in density forecasts across different groups
of agents or for changes over time. Monte Carlo simulations show that the pro-
posed test has more power relative to both a bootstrap approach based on the
KLIC and an approach that involves multiple testing for differences of individ-
ual parts of the density. In addition, the test is computationally much faster than
the KLIC-based one, which relies on simulations, and allows for comparisons
across multiple groups. Using density expectations from the ECB Survey of Pro-
fessional Forecasters and the US Survey of Consumer Expectations, we show the
usefulness of the test in detecting possible changes in density expectations over
time and across different types of forecasters.
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1 INTRODUCTION

Expectations are central both for microeconomic decision-making and for macroeconomic dynamics. Hence, it is not sur-
prising that a large body of literature studies the properties of expectations in various economic contexts. In recent years,
the use of survey-based expectation data has become increasingly more common. This process is particularly strong in
macroeconomics where more and more surveys are set up to study the macroeconomic expectations of private house-
holds (Conrad et al., 2022; Coibion et al., 2024; D'Acunto et al., 2021; Kim & Binder, 2023), firms (Andrade et al., 2022;
Coibion et al., 2018, 2020; Dovern et al., 2023; Kumar et al., 2023), and professional forecasters (Glas & Hartmann, 2022;
Rich & Tracy, 2021).

We observe two tendencies in this literature that we want to bring together in our paper. On the one hand, there is a
growing focus on understanding the reasons for and the effects of heterogeneity of macroeconomic expectations at least
since the seminal contribution by Mankiw et al. (2003). On the other hand, there is a tendency toward the analysis
of probabilistic (density) expectations that offer a more complete picture of expectations relative to conventional point
expectations (Manski, 2018). What is missing, so far, are major efforts to combine these two important aspects. Rich
and Tracy (2021) use the Wasserstein distance as a measure of heterogeneity in experts' density forecasts. However,
they do not compare distinct groups of forecasters and do not test for statistical differences. Mitchell and Hall (2005)
and Clements (2018) use Diebold–Mariano-type tests based on the Kullback Leibler Information Criterion (KLIC) as
suggested by Bao et al. (2007). Mitchell and Hall (2005) compare the density forecasts (“fan charts”) for inflation in the
United Kingdom reported by the Bank of England and the National Institute of Economic and Social Research and find
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that the former tend to be more accurate than the latter. Clements (2018) tests whether experts' density forecasts out-
perform unconditional benchmark densities. While this approach could be used to test for (cross-sectional) expectation
heterogeneity, both studies rely on time series variation in forecast performance to compare different density expectations.

Our paper's contribution is to suggest a method that can be used to test for heterogeneity of probabilistic expectations.
Such probabilistic expectations are usually elicited by asking agents to assign probabilities to intervals of potential out-
comes. Our central insight is that these vectors of probabilities are compositional data. Compositional data consist of
vectors of proportions (here: probabilities) that are subject to the constraint that the sum of all elements must equal a
fixed value (here: one); see Aitchison (1982, 1986). We propose to use tests that have been developed for compositional
data to test for differences in probabilistic expectations across different groups of individuals or survey waves.

Using Monte Carlo simulations, we compare the proposed compositional approach to an alternative bootstrap-based
approach that builds on the more traditional way of comparing (expectation) distributions using distance measures such
as the KLIC. The results from the Monte Carlo simulations suggest that the tests designed for compositional data have
higher power against alternatives that imply only moderate differences in density expectations between two subpopula-
tions, especially when the sample size is relatively small. Moreover, our proposed test is much faster because it does not
require simulations due to the fact that the distribution of the test statistic is known under the null hypothesis. In addi-
tion, the test allows for a joint comparison of multiple groups, whereas the KLIC-based approach can only be used to
compare two groups at a time.

We then apply the method to five different research questions that have recently been discussed in the literature.
Specifically, we test for heterogeneity of expectations and changes over time among different groups of professional
macroeconomic forecasters (based on data from the European Central Bank's Survey of Professional Forecasters, SPF) and
private households (based on data from the Federal Reserve Bank of New York's Survey of Consumer Expectations, SCE).
We show that (i) professional forecasters quickly changed their short-term inflation density forecasts in response to the
recent period of rising inflation rates, whereas long-term expectations reacted more gradually, (ii) in most survey waves,
both inflation and GDP growth expectations differ significantly between experts that round their probability statements
and those that do not, (iii) there is strong evidence against the hypothesis that private households' inflation expectations
reported by men and women are equal, (iv) households learn about concepts they are initially unfamiliar with—such as
inflation—via repeated survey participation as recently highlighted by Kim and Binder (2023), and (v) for a sizeable frac-
tion of periods in our sample, households from different regions report significantly different density expectations for the
future change of nationwide house prices.

First and foremost, our work relates to other studies that analyze heterogeneity of macroeconomic expectations across
individuals or firms. For example, Malmendier and Nagel (2011, 2016) show that US households who experienced low
stock market returns and/or high inflation rates during their lifetime tend to be more pessimistic with respect to future
stock market developments and/or inflation than individuals with more moderate lifetime experiences. Similarly, Kuchler
and Zafar (2019) find that local house price experiences affect households' expectations about future house price changes.
In particular, the experience of volatile house prices leads to a higher dispersion of house price expectations. With respect
to firm expectations, Kumar et al. (2015) find that the inflation expectations of firm managers in New Zealand are heavily
dispersed, at odds with the notion of anchored or fully rational expectations. A common feature shared by these studies
is that they focus on point forecasts. Our contribution is to provide methods that allow us to analyze heterogeneity of
density expectations and, thus, to move beyond the analysis of heterogeneity of point expectations.

In terms of the methodology used, our work relates to—and borrows heavily from—the literature on compositional data.
Aitchison (1986) and Filzmoser et al. (2018) offer comprehensive overviews of methodological aspects that are impor-
tant when dealing with such data. The methods are widely applied in many disciplines, including geochemistry (e.g.,
Buccianti, 2018; Reimann et al., 2012), sedimentology (Weltje & von Eynatten, 2004), demography (Lloyd et al., 2012),
and medicine (Braga & Feingenbaun, 2020; Kitano et al., 2020). In economics, methods for compositional data have been
used, for instance, to analyze income or expenditure shares (Fry et al., 1996) and how time budgets are shared for dif-
ferent activities (Gupta et al., 2020). Our contribution is to show that these methods are also relevant and helpful when
dealing with probabilistic expectations.

The rest of this paper is structured as follows. Section 2 briefly summarizes the basics of compositional data and
describes the tests that we propose to use for the analysis of heterogeneity and temporal stability in probabilistic expec-
tations. Section 3 presents the results from the Monte Carlo simulations that we use to assess the properties of the tests.
Section 4 describes the applications of the proposed method. Section 5 concludes.
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2 METHODOLOGY

We consider survey-based probabilistic density expectations reported by individuals i = 1, … ,N at time t = 1, … ,T
for some future (macroeconomic) outcome in period t + h so that h indicates the forecast horizon. In practice, these
density expectations are most commonly elicited by asking subjects to assign probabilities to a set of K different outcome
intervals (or “bins”). The assigned values indicate the probabilities by which subjects expect the outcome to fall into
the corresponding intervals. Hence, each probabilistic density expectation is reported in the form of a histogram that is
represented by a vector pi,t,h = (pi,t,h,1, … , pi,t,h,K)′ with nonnegative elements pi,t,h,k for k = 1, … ,K. Since the union of
all intervals covers the entire outcome space, a natural constraint (which is usually enforced by the survey design) is that
pi,t,h,1 + pi,t,h,2 + … + pi,t,h,K = 1.

We are interested in the following problem: Given two sets of density forecasts from different groups of forecast-
ers, denoted as g ∈ {A,B}, we want to test—based on the sample of available histograms—the null hypothesis
that individuals from both groups draw their probabilistic expectations from the same distribution. More formally, let(
𝜇

g
t,h,1, 𝜇

g
t,h,2, ·; ·𝜇

g
t,h,K

)′
= 𝝁

g
t,h = E

(
pg

i,t,h

)
denote the expected value of the vector of interval probabilities for any individ-

ual from group g.1 Note that the definition and the number of intervals, K, need to be the same for both groups because
the test is going to compare vectors that need to be of the same length. Usually, this is given automatically because expec-
tations for both groups come from the same survey. Our null hypothesis then is H0: 𝝁A

t,h = 𝝁B
t,h against the alternative

hypothesis that H1: 𝝁A
t,h ≠ 𝝁B

t,h. We want to test this hypothesis about the two population moments using two samples of
observed histogram forecasts of size NA and NB (with NA + NB = N).2

In the following subsections, we first propose a test for analyzing differences of histogram forecasts across groups of
individuals that we borrow from the literature on compositional data. We then describe two alternative approaches. The
first alternative breaks down our null hypothesis into K interval-specific testable hypotheses and uses the Bonferroni
correction to control for the size of the test of the primary null hypothesis. The second alternative is a bootstrap-based
approach that is based on the traditional way of measuring the dissimilarity between two distributions using the KLIC.

2.1 Compositional data approach

Treating expectations of the form considered in this paper as compositional data starts from the insight that the sum of
all probabilities must equal one. With respect to the statistical modeling of the distribution of the vectors of probabilities
pi,t,h, this implies that the sample space is not simply the K-dimensional space of nonnegative real numbers RK

+ but the
so-called K − 1-dimensional simplex defined by

S
K−1 = {(pi,t,h,1, … , pi,t,h,K) ∶ pi,t,h,1 ≥ 0, … , pi,t,h,K ≥ 0; pi,t,h,1 + … + pi,t,h,K = 1}. (1)

Failing to take account of this—by applying “standard” statistical methods—will lead to various problems, including
problematic interpretation of the covariance of the interval probabilities (see Aitchison, 1986, chapter 3).

Instead, one needs to apply a proper one-to-one transformation that leads to a vector of random variables that one can
handle more easily. Commonly, the additive logratio transformation is used, and we adopt this choice in our paper, too.3
Choosing the Kth probability as the reference (without loss of generality because it does not matter which element of pi,t,h
is used), the transformed expectation data is given by

1In economic terms, this expectation denotes the consensus expectation in the population, that is, the average expectation that reflects common
information after all idiosyncratic factors—such as private information, different priors, and different expectation-formation models—has been
integrated out.
2Instead of working with the survey histograms, one could fit a parametric distribution to the survey probabilities, for example, a normal distribution
(Giordani & Söderlind, 2003), the generalized beta distribution (Engelberg et al., 2009), or a skew t distribution (Ganics et al., 2024). However, choosing
a particular parametric distribution is difficult due to the large degree of heterogeneity frequently observed in survey data. This is especially true for
household surveys that also suffer from irregularities such as bimodal responses and disjointed sets of nonzero probabilities. A major advantage of the
approaches discussed in this paper is that they do not require any parametric assumptions or fitting procedure.
3This choice implies that we require strictly positive probabilities to simplify the analysis. Hence, we replace all zero entries by very small (random)
numbers in the applications and adjust the other entries accordingly to ensure that the unit constraint is still met. Given that rounding is an eminent
feature of survey-based probabilistic expectations (Binder, 2017; Clements, 2021; Glas & Hartmann, 2022; Reiche & Meyler, 2022), treating zero entries
as rounded approximations of small probabilities seems a reasonable modeling choice. Martín-Fernández et al. (2003) and Filzmoser et al. (2018) discuss
various strategies of dealing with zeroes and missing values in compositional data.
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p̃i,t,h,k = ln
(

pi,t,h,k

pi,t,h,K

)
for k = 1, … ,K − 1. (2)

This transformation makes the constraint that elements must add up to one obsolete. Instead, the sample space for the
transformed object p̃i,t,h = (p̃i,t,h,1, … , p̃i,t,h,K−1)′ is RK−1. The above stated hypothesis test translates into a simple test of
equality of the transformed population means, that is, H0: �̃�A = �̃�B versus H1: �̃�A ≠ �̃�B, suppressing the indices for the
time period and expectation horizon for the remainder of this subsection to simplify the notation.

We assume that the corresponding K−1×K−1 population covariance matrix, 𝜮, is the same in each subpopulation (an
assumption that we could relax easily). 𝜮 refers to within-group variation across survey participants. It can be interpreted,
for instance, as reflecting heterogeneity in density expectations caused by idiosyncratic information or other information
rigidities such as sticky information. Note that it is not a measure of uncertainty for individual density expectations.

In this setting, the null hypothesis can be implemented by a Hotelling test using the test statistic

 2 = NANB

NA + NB

(
p̃A − p̃B

)′
S−1

(
p̃A − p̃B

)
, (3)

where

p̃A = 1
NA

NA∑
i=1

p̃i,

p̃B = 1
NB

NB∑
𝑗=1

p̃𝑗

and

S = 1
NA + NB

( NA∑
i=1

(
p̃i − p̃A

)(
p̃i − p̃A

)′
+

NB∑
𝑗=1

(
p̃𝑗 − p̃B

)(
p̃𝑗 − p̃B

)′
)

denote the maximum likelihood estimates of the population parameters. The test statistic  2 in Equation (3) asymptoti-
cally follows a 𝜒2 distribution with K − 1 degrees of freedoms.4

For finite samples, we can use a related statistic if we assume that p̃i,t,h follows a multivariate normal distribu-
tion  (�̃�t,h,𝜮 t,h), implying that the original vector of probabilities pi,t,h follows an additive logistic normal distribution
according to the definition in Aitchison (1986, p. 113). In particular,

 = NA + NB − K
(NA + NB − 2)(K − 1)

 2

follows an F distribution with K − 1 and NA + NB − K degrees of freedom in this case.
One advantage of treating histogram expectations as compositional data when testing for mean differences across

groups is that we can easily extend the approach to allow for a joint comparison of more than two groups. This can be
done by applying an ANOVA-type analysis to test the null hypothesis H0 ∶ �̃�1 = �̃�2 = … = �̃�G against the alternative
that at least one mean is different from the others. Another benefit is that the computations necessary for this approach
are very fast, which is an advantage over the KLIC-based approach discussed below in Section 2.3.

2.2 Multiple testing Bonferroni approach

The second approach for testing the null hypothesis described above deconstructs the histograms and compares the prob-
abilistic expectations interval by interval. The primary null hypothesis implies for all k = 1, … ,K that Hk

0 ∶ 𝜇A
t,h,k = 𝜇B

t,h,k
is true. The alternative in each case is Hk

1 ∶ 𝜇A
t,h,k ≠ 𝜇B

t,h,k. For each k, we can use a standard two-sample t-test to test this.
The primary null hypothesis is rejected if we can reject the implied null hypothesis for at least one of the bins. To ensure
good small sample properties, we apply the test to the log probabilities, that is, ln(pi,t,h,k) for k = 1, … ,K.

4See Aitchison (1986, p. 125) for the suitable central limit theorem.
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Because this approach gets us into a multiple-testing setup, we have to apply a correction to the significance level used
for the individual t-tests to control the overall size of our testing approach. A common approach to do so is the Bonferroni
correction that implies using a significance level of 𝛼∕K for each individual hypothesis Hk

0 , where 𝛼 is the overall size that
should be achieved.

Similar to the Hotelling test from the previous subsection, the approach described here can deal with more than
two groups and does not require much computing power. A drawback of this approach is that the Bonferroni correc-
tion is known to be conservative (“undersized”) when the individual test statistics are correlated, which—due to the
compositional nature of our data—is the case in our context. This reduces the power of the testing approach.

2.3 KLIC-based approach

The third approach for testing the primary null hypothesis starts from the fact that the KLIC is commonly used to com-
pare probability distributions. The KLIC describes the expected value of the logarithmic difference between two sets of
probability distributions (Mitchell & Hall, 2005). For discrete probability distributions, such as the histogram forecasts
described above, the KLIC is defined as

KLIC
(

pA
t,h,pB

t,h

)
=

K∑
k=1

p̄A
t,h,k ln

(
p̄A

t,h,k

p̄B
t,h,k

)
. (4)

In Equation (4), the elements of the vectors pA
t,h = (1∕NA)

∑NA
i=1 pi,t,h and pB

t,h = (1∕NB)
∑NB

i=1 pi,t,h represent the average
(nontransformed) probability mass assigned to bin k based on all individuals in a particular group.

Under the null hypothesis defined above, the aggregate distributions of both groups are very similar for finite group sizes
and asymptotically identical. In this case, the KLIC from Equation (4) is close to zero. The more p̄A

t,h,k and p̄B
t,h,k deviate from

each other, the larger the value of KLIC
(

pA
t,h,pB

t,h

)
. To test whether KLIC

(
pA

t,h,pB
t,h

)
is significantly different from zero

and, hence, the null hypothesis should be rejected, we use a bootstrap approach. Specifically, we draw Z random samples
of size N with replacement from the available expectation data. We then randomly assign NA of the drawn histograms
to group A and NB drawn histograms to group B. For each bootstrap sample, we then calculate the KLIC as described in
Equation (4). We conclude that KLIC

(
pA

t,h,pB
t,h

)
is significantly different from zero whenever it exceeds the 95%-quantile

of the Z bootstrapped KLIC values.5

The use of the KLIC for comparing histogram forecasts has several disadvantages. First, the KLIC can only be used to
compare the probability distributions of two groups. In case the number of groups exceeds two, only pairwise comparisons
can be carried out. Second, calculation of the bootstrapped KLICs is computationally intensive. Third, the results of the
KLIC-based test are sensitive to the ordering of the two groups, that is, KLIC

(
pA

t,h,pB
t,h

)
≠ KLIC

(
pB

t,h,pA
t,h

)
, although it

should be noted that the test is correctly sized in both cases (if a particular order is chosen ex ante). Overall, these are
important shortcomings relative to the previously discussed alternatives.

3 MONTE CARLO SIMULATIONS

We now assess the properties of the testing approaches discussed in the previous section by means of Monte Carlo simula-
tions. In particular, we compare the rejection frequencies of the Hotelling test, the multiple testing Bonferroni approach,
and the KLIC-based test under the null hypothesis of equal subpopulation means and various altenatives.

5This approach is similar to Clements (2022) who proposes a test for heterogeneity in the revisions of GDP growth expectations in the US Survey of
Professional Forecasters. In order to address potential issues due to small sample size, Clements (2022) simulates a set of imaginary SPF participants
by randomly drawing from the set of forecast revisions reported in a given survey wave. While his bootstrap approach focuses on revisions of point
forecasts, we randomly draw and reassign entire density forecasts. In an earlier study, Clements (2018) implements the above-mentioned alternative
approach that tests for differences between average expectations of a group of forecasters and a model-based benchmark by exploiting variation across
time. For our purpose, this alternative is not suitable for two reasons. First, many of the new household surveys with large cross-sections still have a
short time dimension. Second, the alternative does not allow to analyze changes of group differences across time.
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3.1 Simulation setup

For the Monte Carlo evaluation, we calibrate our benchmark histograms to the one-year-ahead inflation histograms from
the 2020Q1 wave of the SPF (see Section 4 for details on the survey). We first obtain an estimate of 𝜮 by applying the
additive logratio transformation in Equation (2) to the individual histograms and calculating the corresponding covari-
ance matrix. To obtain �̃�A, we fit a normal distribution to the aggregate SPF histogram. To do so, we first calculate the
mean and standard deviation of the aggregate histogram by assuming that the probability mass in each bin is centered at
the midpoint and use those parameters as starting values for the optimization.6 We then calculate the probability mass
for each bin using the fitted normal density and apply the additive logratio transformation to these probabilities.

For each scenario described below, we simulate S = 2000 artificial data sets of histograms.7 We then apply the Hotelling
test, the Bonferroni-adjusted t-tests, and the KLIC-based test as described in the previous section and calculate the rejec-
tion frequencies in each case. For the KLIC-based test, we set the number of bootstrap replications to Z = 250. Finally,
we choose a nominal level of 𝛼 = 0.05.

In practice, the SPF histograms are relatively coarse, and many individual histograms do not closely resemble a nor-
mal distribution. For the one-year-ahead inflation expectations, almost two third of the SPF participants assign nonzero
probability to at most five bins. Therefore, a possible concern could be that the choice of a Gaussian distribution for the
simulations is not appropriate for individual survey responses and, thus, might yield a misleading impression of the tests'
properties in real applications. To assess how deviations from normality affect the size and power of the tests, we conduct
a second set of simulations with a data generating process (DGP) that mimics this data feature. In particular, we trans-
form the simulated histograms into more coarse versions with nonzero probability assigned only to the (two to five) bins
with the highest probabilities. For each individual histogram, we randomly draw the precise number of bins with nonzero
probability with selection probabilities equal to the relative frequency of observations in the SPF with two to five bins
(rescaled to sum to unity).8 We refer to the two settings as the Gaussian setup and the truncated-probabilities setup below.

3.2 Results for Gaussian setup

In a first step, we analyze whether the different tests are correctly sized for varying group size. For each group, we consider
group sizes of 10, 25, 50, 75, 100, 200, and 500 individuals. While a group size of approximately 25 individuals seems to
be a good description of surveys among professional forecasters, a group size of 500 individuals is more representative of
a typical household survey.

Table 1 shows the rejection frequencies of all three tests under the null hypothesis. While Panel A shows the results
for our baseline calibration of the covariance matrix that determines the within-group heterogeneity, Panels B and C
present findings for lower/higher within-group heterogeneity. In these settings, we multiply 𝜮 by a factor c, where c
equals 0.5 (Panel B) or 5 (Panel C). For both the Hotelling test for compositional data and the KLIC-based approach (and
for all sample sizes and levels of within-group heterogeneity), the empirical size is very close to the nominal size of 0.05.
In contrast, the multiple testing Bonferroni approach is, as expected, undersized. With respect to the speed of the MC
simulations, performing the KLIC-based test 2000 times takes a little more than 14 hours on a standard desktop computer
while 2000 Hotelling tests take only nine seconds.

Next, we turn to an assessment of the power of the tests. Unless explicitly stated otherwise, we set the group sizes to
NA = NB = 25. Because the Bonferroni approach is too conservative in the sense that it suffers from size distortions, we
report size-adjusted power statistics for this approach.

We first consider shifts in the expected first moment of the histograms. Under H0, all histograms have the same expected
value. We then shift the expected value of the histograms for one group. We consider the following shifts: H1a: 0.05,H1b:
0.1,H1c: 0.2,H1d: 0.3,H1e: 0.4,H1𝑓 : 0.5,H1g: 0.75, and H1h: 1.00. Next, we change the population standard deviation of the

6Figure A.1 of the supporting information shows the aggregate SPF histogram (reporting densities instead of bin probabilities) based on the predictions
reported by 46 survey participants. Mean and standard deviation based on the “mass-at-midpoint”-approach are 1.26 percentage points and 0.60 per-
centage point, respectively. The black line shows the fitted normal distribution, which has a mean of 1.25 percentage points and a standard deviation
of 0.54 percentage point.
7This number was chosen because preliminary simulations had indicated that this is a number sufficiently large to give us stable estimates of the
empirical sizes of tests and of the power curves. Lower values of S would have been possible, of course, to cut down on computational cost—at the
expense of the precision of results.
8These frequencies are 9.9%, 20.0%, 16.4%, and 15.1% for the one-year-ahead inflation expectations in the SPF.
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TABLE 1 Monte Carlo simulation results: Size analysis.

Group size (NA = NB) 10 25 50 75 100 200 500
Panel A: Gaussian setup, baseline within-group heterogeneity

Compositional 0.055 0.052 0.056 0.048 0.046 0.046 0.048
Bonferroni 0.053 0.050 0.049 0.043 0.033 0.038 0.033
KLIC 0.062 0.050 0.063 0.049 0.054 0.047 0.049

Panel B: Gaussian setup, low within-group heterogeneity (relative to baseline)
Compositional 0.055 0.048 0.048 0.042 0.051 0.057 0.045
Bonferroni 0.035 0.040 0.043 0.040 0.039 0.040 0.038
KLIC 0.047 0.049 0.042 0.051 0.047 0.066 0.050

Panel C: Gaussian setup, high within-group heterogeneity (relative to baseline)
Compositional 0.052 0.049 0.051 0.050 0.058 0.054 0.050
Bonferroni 0.048 0.044 0.042 0.037 0.043 0.037 0.039
KLIC 0.038 0.053 0.047 0.052 0.047 0.052 0.055

Panel D: Truncated-probabilities setup, baseline within-group heterogeneity
Compositional 0.050 0.047 0.044 0.038 0.049 0.046 0.045
Bonferroni 0.061 0.043 0.043 0.044 0.042 0.041 0.040
KLIC 0.048 0.046 0.052 0.046 0.053 0.045 0.049

Note: The panels show rejection frequencies for the Hotelling test for compositional data, the multiple
testing approach, and the KLIC-based test under the null hypothesis of no expectation difference between
two groups for varying group size. In the simulations, all tests are used with a nominal size of 0.05. Panel A
presents results for the Gaussian setup with baseline within-group heterogeneity. Panels B and C show
rejection rates when we multiply the baseline 𝜮 by 0.5 and 5, respectively. Panel D presents our findings for
the truncated-probabilities setup with baseline within-group heterogeneity.

histograms for one group by multiplying the standard deviation under H0 by a factor unequal to one. We consider the
following factors: H2a: 1.05,H2b: 1.1,H2c: 1.2,H2d: 1.3,H2e: 1.4,H2𝑓 : 1.5,H2g: 1.75,H2h: 2.00,H2i: 2.50, and H2𝑗 : 3.00. Next,
we change the group sizes under the assumption of a moderate mean shift of 0.05 (i.e., under H1a). Finally, we consider
changes in the within-group heterogeneity by adjusting the covariance matrix 𝜮 (again assuming a mean shift of 0.05
as in H1a). In particular, we consider a range of settings for c𝜮, where c assumes the following values in the different
alternative scenarios: H3a: 0.5,H3b: 0.75,H3c: 1.0,H3d: 1.25,H3e: 1.5,H3𝑓 : 1.75,H3g: 2.0, H3h: 2.5, H3i: 3.0, and H3𝑗 : 10.0.

The plot in the upper left of Figure 1 shows the rejection frequencies for the set of alternatives for which we shift
the mean expectations of one group. Evidently, the performances of the three approaches are very different. While the
Hotelling test for compositional data rejects the null hypothesis in about 70% of cases already for a small shift of 0.05, the
KLIC-based test produces much lower rejection frequencies for small deviations from the null hypothesis. It matches the
performance of the Hotelling test only for very large mean shifts of 0.75 or more. The size-adjusted power of the Bonferroni
approach lies somewhere in between, matching the power of the Hotelling test for mean shifts of 0.3 or more.

The upper-right plot of Figure 1 shows analogous rejection rates for the second set of simulations that analyze the
test performance against alternatives that deviate from the null hypothesis due to differences in the population standard
deviation of the density expectations across groups. The alternatives range from moderate deviations (for which the ratio
of the implied standard deviation of the two groups is 1.05) to extreme (ratio of 3). Again, the Hotelling test yields high
rejection frequencies for all alternatives except H2a. The Bonferroni approach here shows very similar (size-adjusted)
power to the compositional approach. In contrast, rejection frequencies of the KLIC-based test are low for the alternatives
that do not differ much from the null hypothesis; we observe rejection frequencies above 25% only for alternatives that
are based on a ratio of the standard deviations of 1.5 or larger.

Next, we assess how the group size affects the rejection frequencies. We analyze this for the alternative H1a, which
implies a mean shift of 0.05 of mean expectations in one of the groups. The results in the lower-left plot show that increas-
ing the sample size—even to numbers that would be common in household surveys—does not substantially increase the
rejection frequency for the KLIC-based test. Rejection frequencies are much higher for the Hotelling test—for small sam-
ple sizes and increasingly so for larger sample sizes. Again, the Bonferroni approach is somewhere in-between, exhibiting
very low (size-adjusted) power for small to medium sample sizes but catching up with the Hotelling test for large sample
sizes of NA = NB = 500.

Finally, the lower-right plot of Figure 1 shows how the level of within-group heterogeneity affects rejection frequencies.
It is evident that the KLIC-based test and the Bonferroni approach have no power against H1a independently of the level
of within-group heterogeneity. For the Hotelling test, we observe that—not surprisingly—it has good power against a
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FIGURE 1 Monte Carlo simulation results: Power analysis for Gaussian setup. Note: The plots show rejection frequencies based on the
Gaussian setup for the Hotelling test for compositional data (solid red lines), the multiple testing approach (dashed blue lines), and the
KLIC-based test (dotted black lines) under various alternatives. The upper-left plot corresponds to alternative hypotheses with differences in
means of density expectations (H1a: 0.05,H1b: 0.1,H1c: 0.2,H1d: 0.3,H1e: 0.4,H1𝑓 : 0.5,H1g: 0.75, and H1h: 1.00). The upper-right plot
corresponds to alternative hypotheses with differences in the standard deviation of density expectations (H2a: 1.05,H2b: 1.1,H2c: 1.2,H2d:
1.3,H2e: 1.4,H2𝑓 : 1.5,H2g: 1.75,H2h: 2.00,H2i: 2.50, and H2𝑗 : 3.00). The lower-left plot corresponds to simulations with varying group size,
assuming mean differences as in H1a. The lower-right plot corresponds to simulations with varying within-group heterogeneity for which we
multiply our baseline calibration for the covariance matrix by a factor c, where c assumes the following values: H3a: 0.5,H3b: 0.75,H3c:
1.0,H3d: 1.25,H3e: 1.5,H3𝑓 : 1.75,H3g: 2.0, H3h: 2.5, H3i: 3.0, and H3𝑗 : 10.0 (again assuming mean differences as in H1a). In the simulations, all
tests are used with a nominal size of 0.05.

small difference in the expected value of the histograms implied by H1a when the heterogeneity within groups is small,
but less so when it is high. Rejection frequencies decline considerably from almost 100% to around 10% over the scenarios
considered in our simulations. Still, for any level of within-group heterogeneity, the rejection frequencies are substantially
higher than those of the KLIC-based test and the Bonferroni approach.

The number of bins in the SPF questionnaire changes over time. To assess whether the power of the tests depends on
the specifics of the survey design, we aggregate the bin probabilities for two adjacent bins in another set of simulations.
Thereby, we effectively reduce the number of bins from twelve to six. Using the changed setting, we re-estimate rejection
frequencies. Figure 2 shows that this procedure slightly reduces the power of the tests. However, the rejection frequencies
of the Hotelling test remain high and dominate those of the other tests.
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FIGURE 2 Monte Carlo simulation results: Power analysis for reduced number of bins. Note: The plots show rejection frequencies based
on the Gaussian setup with the number of bins reduced by half for the Hotelling test for compositional data (solid red lines), the multiple
testing approach (dashed blue lines), and the KLIC-based test (dotted black lines) under various alternatives. The upper-left plot corresponds
to alternative hypotheses with differences in means of density expectations (H1a: 0.05,H1b: 0.1,H1c: 0.2,H1d: 0.3,H1e: 0.4,H1𝑓 : 0.5,H1g: 0.75,
and H1h: 1.00). The upper-right plot corresponds to alternative hypotheses with differences in the standard deviation of density expectations
(H2a: 1.05,H2b: 1.1,H2c: 1.2,H2d: 1.3,H2e: 1.4,H2𝑓 : 1.5,H2g: 1.75,H2h: 2.00,H2i: 2.50, and H2𝑗 : 3.00). The lower-left plot corresponds to
simulations with varying group size, assuming mean differences as in H1a. The lower-right plot corresponds to simulations with varying
within-group heterogeneity for which we multiply our baseline calibration for the covariance matrix by a factor c, where c assumes the
following values: H3a: 0.5,H3b: 0.75,H3c: 1.0,H3d: 1.25,H3e: 1.5,H3𝑓 : 1.75,H3g: 2.0, H3h: 2.5, H3i: 3.0, and H3𝑗 : 10.0 (again assuming mean
differences as in H1a). In the simulations, all tests are used with a nominal size of 0.05.

3.3 Results for truncated-probabilities setup

We now turn to the Monte Carlo simulation for the alternative truncated-probabilities setup. Panel D of Table 1 shows
that the tests are still appropriately sized for the alternative DGP.

Figure 3 presents the results for the power analysis. Clearly, the power of all tests is affected negatively when the data are
not normally distributed. The upper-left plot shows that the rejection frequencies for the Hotelling and Bonferroni tests
are much lower for small mean shifts and are now in a similar range as those for the KLIC-based test. In fact, rejection
frequencies for the KLIC are slightly higher than those for the other tests for intermediate mean shifts, although the
differences are relatively small. The upper-right plot shows that the power to detect shifts in the standard deviation is
reduced for all three tests relative to the Gaussian setup, although the relative ranking remains the same. The lower-left
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FIGURE 3 Monte Carlo simulation results: Power analysis for truncated-probabilities setup. Note: The plots show rejection frequencies
based on the truncated-probabilities setup for the Hotelling test for compositional data (solid red lines), the multiple testing approach
(dashed blue lines), and the KLIC-based test (dotted black lines) under various alternatives. The upper-left plot corresponds to alternative
hypotheses with differences in means of density expectations (H1a: 0.05,H1b: 0.1,H1c: 0.2,H1d: 0.3,H1e: 0.4,H1𝑓 : 0.5,H1g: 0.75, and H1h: 1.00).
The upper-right plot corresponds to alternative hypotheses with differences in the standard deviation of density expectations (H2a: 1.05,H2b:
1.1,H2c: 1.2,H2d: 1.3,H2e: 1.4,H2𝑓 : 1.5,H2g: 1.75,H2h: 2.00,H2i: 2.50, and H2𝑗 : 3.00). The lower-left plot corresponds to simulations with
varying group size, assuming mean differences as in H1a. The lower-right plot corresponds to simulations with varying within-group
heterogeneity for which we multiply our baseline calibration for the covariance matrix by a factor c, where c assumes the following values:
H3a: 0.5,H3b: 0.75,H3c: 1.0,H3d: 1.25,H3e: 1.5,H3𝑓 : 1.75,H3g: 2.0, H3h: 2.5, H3i: 3.0, and H3𝑗 : 10.0 (again assuming mean differences as in H1a).
In the simulations, all tests are used with a nominal size of 0.05.

plot shows that with the truncated-probabilities setup the low rejection frequencies for a small mean shift cannot be
improved upon by increasing the group size to 500. Finally, the lower-right plot shows that the competitive edge of the
Hotelling test in settings with low intragroup heterogeneity disappears for the truncated-probabilities setup.

In summary, the Hotelling test for compositional data and the KLIC-based test is appropriately sized while the
Bonferroni approach is, as expected, undersized. For the Gaussian setup, the Hotelling test clearly outperforms the
other two approaches in terms of power against all alternatives considered here. In particular, the Hotelling test detects
significant group differences for much smaller differences in the expected value of density expectations relative to the
KLIC-based approach and the Bonferroni approach, especially when group sizes and/or within-group heterogeneity
are small. It also has much higher power compared with the KLIC-based approach against differences in the standard
deviation of the density expectations across groups. While the rejection frequencies of the Hotelling test are considerably
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lower for the case of the truncated-probabilities setup, the power of the other tests are not substantially higher for any of
the considered alternatives in this setup. The results from the Monte Carlo simulations thus complement the conceptual
advantages of our approach as described in Section 2.

4 EMPIRICAL APPLICATIONS

In this section, we consider a range of applications for which the discussed tests can be useful. All applications deal with
aspects of expectation heterogeneity that have recently been discussed in the literature. The data in the applications are
either from the Survey of Professional Forecasters conducted by the European Central Bank for the euro area (as described
in Bowles et al., 2007) or from the Survey of Consumer Expectations conducted by the Federal Reserve Bank of New York
among US households (see Armantier et al., 2015). For all applications, we exclude those histograms from the sample
that assign 100% probability to a single bin. Moreover, as the probability mass assigned to the exterior bins is zero in many
cases, we choose the sixth bin as the reference category throughout.

4.1 Response to rising inflation rates

After several years of low inflation rates, inflation in the euro area began to increase midway through 2021. In this section,
we analyze whether the steady rise in inflation changed the inflation density expectations of SPF participants at different
forecast horizons, that is, we test for differences in the aggregate densities across time, thereby shedding light on their
temporal stability. Intuitively, one might expect to observe an immediate adjustment of short-term expectations while
long-term expectations would not change if they were firmly anchored.

The SPF asks experts from financial and nonfinancial institutions to report predictions for several macroeconomic
outcomes in the euro area, including one- and five-year-ahead inflation expectations. It has been conducted by the ECB
since 1999 at a quarterly frequency. We focus on the density expectations that are elicited by asking panelists to state
probabilities for a range of bins (e.g., the likelihood that inflation turns out to be between 1.5% and 1.9%) that jointly
determine a histogram as an approximation of the underlying density expectations. An attractive feature of the SPF is that
the bins have a constant width with the exception of the exterior bins, which are half-open. In particular, the intervals as
defined in the SPF questionnaire have a width of 0.4 percentage point with a gap of 0.1 percentage point between bins.9

To analyze whether the increase in inflation had an effect on inflation expectations, we use 2021Q1 as a reference wave
and compare the histogram forecasts from each subsequent wave (up until 2022Q2) to those reported in this reference
wave. For all of these waves, the SPF bin definitions for inflation have remained identical and comprise K = 12 bins. To
provide some descriptive evidence, we compute the first four moments of the one- and five-year-ahead aggregate density
expectations from each wave, that is, pt,h. Next, we formally test for each wave and horizon whether expectations have
changed relative to the 2021Q1 wave by using the three testing approaches described in Section 2.

Panels A and C of Table 2 present the number of panelists in each wave along with the estimated moments (based
on the “mass-at-midpoint” approach) of the aggregate probability distributions for the one- and five-year-ahead infla-
tion expectations. As the test statistics along with the corresponding p-values for the three tests given in Panels B and D
allow for an overall assessment only, these moments are informative about what particular features of the density expec-
tations change and what features stay rather constant. They give an indication of whether the central tendency changes,
whether expectational uncertainty changes, whether the (a-)symmetry of the distribution changes, and/or whether the
expectations distribution became more leptokurtic or less leptokurtic.

For the one-year-ahead expectations, Panel A shows an upward shift in the histogram mean over time as well as an
increase in the standard deviation for the 2022Q1 and 2022Q2 waves. As shown in Section 3, the Hotelling test should
be able to detect such differences. For skewness and kurtosis, we do not observe any clear patterns. The upward shift in
the mean is visible for virtually all of the underlying individual density expectations and suggests that SPF participants
quickly reacted to the rising inflation rates. However, these changes are relatively small in magnitude from one period to
the next relative to the heterogeneity of individual expectations. As a result, all tests do not reject the null hypothesis when

9One exception is a recent change in the survey design for expectations of GDP growth. In 2020Q2, bins with a width of two percentage points have
been introduced.
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TABLE 2 Differences in inflation expectations over time.

2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2
Panel A: Histogram moments (one-year-ahead expectations)

Group size 39 39 34 38 38 31
Mean 1.24 1.36 1.51 1.71 1.94 2.73
Standard deviation 0.78 0.78 0.74 0.79 0.98 1.06
Skewness 0.12 0.16 −0.19 0.11 0.29 −0.44
Kurtosis 3.85 4.38 4.40 3.90 3.15 2.82

Panel B: Distance measures (one-year-ahead expectations)
Compositional – 0.525 1.895 2.813 3.083 12.300

– (0.880) (0.058) (0.005) (0.002) (0.000)
Bonferroni – −1.685 2.536 3.759 3.599 −7.166

– (1.000) (0.161) (0.004) (0.007) (0.000)
KLIC – 0.016 0.094 0.199 0.303 1.051

– (0.562) (0.002) (0.000) (0.000) (0.000)
Panel C: Histogram moments (five-year-ahead expectations)

Group size 40 43 35 37 42 38
Mean 1.60 1.62 1.75 1.86 1.87 2.02
Standard deviation 0.83 0.80 0.88 0.89 0.89 0.85
Skewness 0.03 0.01 0.09 0.28 0.17 −0.05
Kurtosis 3.95 4.38 3.92 4.06 3.92 3.52

Panel D: Distance measures (five-year-ahead expectations)
Compositional – 0.247 0.504 1.157 1.625 4.701

– (0.993) (0.894) (0.334) (0.111) (0.000)
Bonferroni – 1.063 0.985 1.958 −1.946 −3.505

– (1.000) (1.000) (0.647) (0.662) (0.009)
KLIC – 0.004 0.017 0.053 0.060 0.140

– (0.868) (0.380) (0.080) (0.058) (0.000)

Note: Panel A presents moments (based on the “mass-at-midpoint” approach) for the aggregate
one-year-ahead inflation expectations from the 2021Q1 to 2022Q2 waves of the SPF. Panel B shows the test
statistics relative to the 2021Q1 wave along with corresponding p-values in parentheses. For the multiple
testing approach, we report the largest test statistic across the twelve distinct bins and twelve times the
corresponding p-value. Panels C and D present the results for the five-year-ahead inflation expectations.

comparing the 2021Q1 and 2021Q2 waves. In contrast, the tests detect significant differences in short-term forecasts when
comparing subsequent waves to the reference period. Note that to make results comparable, we report the minimum of
one and twelve times the smallest of the twelve p-value in case of the Bonferroni approach.10

We also observe an increase in the histogram mean of the five-year-ahead expectations, although the changes from one
period to the next are clearly smaller than those for the one-year-ahead expectations. This likely reflects the fact that such
expectations are more anchored and less impacted by price shocks that are perceived to have a large transitory component.
In addition, we do not observe an increase in the standard deviation toward the end of the sample. As a result, the tests
reject the null hypothesis only for the 2022Q2 wave relative to 2021Q1.

We conclude that the SPF participants quickly adapted their short-term inflation expectations in response to the recent
inflation shock. Long-term expectations reacted less strongly and more gradually but also increased significantly relative
to 2021Q1. This suggests that there was a deterioration in the degree to which medium term expectations were anchored.11

This finding is consistent with the results in Binder et al. (2023) for US forecasters. The low p-values for the KLIC-based
test are in line with our Monte Carlo simulation results for the truncated-probabilities setup. As seen in Figure 3, the
power of the KLIC-based test can exceed that of the Hotelling test for moderate mean shifts in nonnormal settings.

10The displayed test statistics are the largest of the twelve bin-specific t-statistics.
11The ECB revised its inflation target in 2021. Comparing the five-year-ahead inflation expectations from the 2021Q3 wave (elicited just before the
publication of the revised ECB strategy) with those from the 2021Q4 wave, we do not reject the null hypothesis. A possible explanation for this finding
is that professional forecasters adjusted their density expectations to the new inflation target well in advance to the official announcement by the ECB.
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4.2 Different types of professional forecasters

A number of studies have recently observed that one can distinguish two types of survey-based forecasts based on the
rounding behavior of the panelists (Binder, 2017; Clements, 2021; Glas & Hartmann, 2022; Reiche & Meyler, 2022). For
density forecasts, Glas and Hartmann (2022) show that one type of panelist (“rounders”) states interval probabilities that
are multiples of five or ten and tends to assign positive probabilities to only a relatively small subset of the surveyed bins
while another type of panelist (“nonrounders”) reports probabilities that do not share a common divisor and tends to
consider a larger number of bins, often reporting probabilities with higher precision (i.e., to at least one decimal point)
for most, or indeed, all of the surveyed bins.

We test whether the reported expectations from rounders and nonrounders are indeed sampled from different popula-
tions. We define rounders as those panelists who report histograms containing probabilities of which more than half are
multiples of five.

For this analysis, we look at the SPF density forecasts for inflation and real GDP growth and focus on the one-year-ahead
forecasts from all available survey waves. Overall, the sample includes information from 108 panelists and T = 94 sur-
vey rounds, covering the period 1999Q1–2022Q2. The panel is unbalanced due to frequent dropouts and entries of new
participants. The black lines in Figure A.2 of the supporting information show that, on average, 45–55 panelists report
histogram forecasts for inflation and GDP growth each quarter (with declining trend).

Figure 4 shows the p-values for all tests and each survey wave; to ensure comparability of results, we again show the
smallest p-value multiplied by the (time-varying) number of bins for the Bonferroni approach. The null hypothesis of
equal expectations is rejected for most survey waves. We obtain the lowest rejection frequency of 75% of the survey waves
for the KLIC-based test in the case of inflation expectations. In line with the evidence in Glas and Hartmann (2022), the
rejections are driven primarily by the lower variances of the histograms reported by the rounders rather than differences
in mean expectations (see Figure A.3 of the supporting information). We observe a few large p-values in the first half of
the sample. The red lines in Figure A.2 of the supporting information show that only a small number of nonrounders
are included in these particular waves, leading to very low power of the tests. Another spike is visible in 2009Q1. This
can be explained by a pile-up of probabilities in the exterior bins due to the Great Recession, which partially masks the
differences in the second moments between both groups (see Figure A.3 of the supporting information).

Referring back to the discussion of the Gaussian setup versus the truncated-probabilities setup in Section 3, the his-
tograms reported by the nonrounders are more in line with the normality assumption than those of the rounders. As such,
the SPF data can be thought of as a mixture of “well-behaved” and relatively coarse histograms. With that in mind, we
briefly return to the previous application and now focus on the subsample of nonrounders only. Broadly speaking, we find
that the nonrounders adjust their short-term expectations more slowly than the rounders (Table A.1 of the supporting
information). In particular, the standard deviation of the aggregate histogram is essentially constant. As before, the tests

FIGURE 4 p-values for
heterogeneity tests (SPF): Rounders
versus nonrounders. Note: The plot
shows the p-values from the
Hotelling test for compositional data
(solid red lines), the multiple testing
approach (dashed blue lines), and
the KLIC-based test (dotted black
lines) for the analysis of differences
in inflation expectations (left) and
GDP growth expectations (right)
between rounders and nonrounders.
For the multiple testing approach,
we report (the minimum of one and)
the smallest p-value multiplied by
the number of bins to make it
comparable. The sample period is
1999Q1–2022Q2.
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detect significant differences for the short-term expectations before such differences are evident for the long-term expec-
tations. Interestingly, we observe that the KLIC-based test does not produce smaller p-values than the Hotelling test,
unlike in Table 2. It is likely that this is because the histograms of the nonrounders are more in line with the normality
assumption.

4.3 Gender differences in household inflation expectations

A drawback of the SPF data is the relatively small cross-section. Figure 1 shows that a small group size negatively affects
the power of all tests including the Hotelling test. Therefore, we now turn to data on expectations of private households
with a larger number of individual survey responses. A potential disadvantage is that within-group heterogeneity may be
larger for households than for experts. Moreover, it is likely that the data contain more frequent violations of the normality
assumption than the SPF data.

First, we compare inflation expectations of men and women. Among others, D'Acunto et al. (2021) show that, on aver-
age, women expect higher inflation rates than men due to higher exposure to price changes for certain household items
during grocery shopping. One may expect to find a similar divergence in the density forecasts reported by both genders.
For US households, Armantier et al. (2021) show that female survey participants assign more probability mass to both
exterior bins, resulting in higher uncertainty. Similarly, using survey data from German households, Conrad et al. (2022)
find that the inflation histograms of women tend to be more dispersed than those of men.

Here, we tackle the question of gender differences in inflation expectations using the full density forecasts reported in
the SCE, which is a monthly and representative survey among US households that asks questions about socioeconomic
characteristics and macroeconomic expectations. The SCE has been conducted since June 2013. Each wave includes
roughly 1300 households with a balanced relation between male and female household heads.12

We use density forecasts for the consumer price inflation rate over the next twelve months (Q9 in the survey question-
naire).13 Our sample includes responses from 18,066 households across T = 103 survey waves, covering the period from
June 2013 to December 2021. The elicited histogram forecasts in the SCE are conceptually similar to those in the SPF. The
specific design differs, however, in the sense that the width of the intervals is larger and varies across bins.14

All tests reject very strongly for all survey waves the null hypothesis of no differences in the density forecasts of men and
women, with p-values way below 0.01 (results not shown). This is not surprising given the large differences in expectations
across genders. The upper-left plot in Figure A.5 of the supporting information shows the aggregate histograms (pooled
across households and survey waves) for men and women. In line with the studies discussed above, we observe that
women assign more probability mass to the exterior bins and have higher mean expectations and variances. The latter
can be seen more clearly in Figure A.6 of the supporting information, which presents the time series for the first four
moments of the aggregate histograms of men and women. The figure also shows that the aggregate distribution of men
is more symmetric and displays higher kurtosis. Given that the histograms reported by men and women strongly differ
in terms of all four moments (and that a large sample size is available), it is not surprising that all tests reject the null
hypothesis despite potentially large within-group heterogeneity.

4.4 Panel conditioning effects

In a recent paper, Kim and Binder (2023) show that inflation expectations of first-time SCE participants differ from those
of more experienced participants. In particular, first-time participants expect higher inflation rates (as measured by point
forecasts) and report higher uncertainty (as measured by the interquartile range of their probabilistic expectations). This
is interpreted as evidence of panel conditioning (or “learning-through-survey”) effects. The idea is that respondents are
initially quite unfamiliar with the concept of inflation and revise their expectation in subsequent waves after they collected
information on the topic (including potentially from the survey questionnaire). Kim and Binder (2023) also document
that the evidence of panel conditioning effects is weaker for personal income expectations. They explain this by the fact
that respondents are more familiar with their own income situation already when entering the survey panel, and hence,

12Figure A.4 of the supporting information shows the sample size and the number of women per survey round.
13We obtain nearly identical results if we focus on long-term inflation expectations (Q9c). Results are available upon request by the authors.
14In particular, households are asked to assign probabilities to the following outcomes for future inflation (in percent):
(−∞,−12], (−12,−8], (−8,−4], (−4,−2], (−2, 0], (0, 2], (2, 4], (4, 8], (8,12], (12,+∞)
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FIGURE 5 p-values for
heterogeneity tests (SCE): Panel
conditioning effects. Note: The plot
shows the p-values from the
Hotelling test for compositional data
(solid red line), the multiple testing
approach (dashed blue line), and the
KLIC-based test (dotted black line)
for the analysis of panel
conditioning effects in inflation
expectations (left) and personal
income expectations (right). For the
multiple testing approach, we report
(the minimum of one and) the
smallest p-value multiplied by the
number of bins to make it
comparable. The sample period is
from June 2013 to December 2021.
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the scope for learning is more limited. We supplement this evidence by testing for systematic differences in probabilistic
inflation and income density expectations (Q24) between first-time survey participants versus more experienced partic-
ipants. The sample is the same as the one used in the previous application. The left plot in Figure A.4 of the supporting
information shows that the number of first-time respondents in each wave is around 150–200 with the exception of August
2013 where 740 new participants entered the SCE. The plots at the bottom of Figure A.5 of the supporting information
show the aggregate distributions of both groups.

The left plot of Figure 5 shows clear evidence that first-time participants draw their probabilistic inflation expectations
from a different distribution than more experienced panelists. Consistent with the findings of Kim and Binder (2023),
Figure A.7 of the supporting information indicates a higher standard deviation for first-time respondents (and a noticeably
lower kurtosis). In contrast, the right plot of Figure 5 shows only limited evidence of panel conditioning effects for the
income expectations. Indeed, Figure A.8 of the supporting information shows that the differences in histogram moments
are much less pronounced for income expectations. In sum, our findings confirm the evidence of panel conditioning
effects documented by Kim and Binder (2023) and that such effects are much less pronounced for expectations of variables
like personal income growth that households are likely to be very familiar with.

4.5 Regional differences in national house price expectations

In this final application, we demonstrate that the KLIC-based approach ceases to be feasible in setups where expectations
of more than two groups need to be compared. The choice is motivated by the finding of Kuchler and Zafar (2019) that
differences in local house price dynamics tend to translate into dispersed forecasts of future nationwide house prices
changes, a finding that appears inconsistent with full information rational expectations.

We test for differences of house price expectations across households from the 50 US states and Washington D.C.—or,
alternatively, from four broader regions (“West,” “Midwest,” “Northeast,” and “South”; see Figure A.4 for the number of
households from each region). In particular, we test the hypothesis that the density expectations from all states (regions)
are from the same population in an ANOVA framework. The data are again from the SCE, and we focus on expectations
for the change of average house prices nationwide (C1). The upper right plot in Figure A.5 of the supporting information
shows the aggregate histograms for the different regions. Figure A.9 of the supporting information shows the time series
of the moments of the aggregate histograms. The figures do not reveal clear evidence of differences with one exception:
The mean of the aggregate histogram for the “West” region is noticeably higher than those for the other regions in the
first couple of survey waves.

The plots in Figure 6 present the results based on regions (left plot) and states (right plot). Evidently, there is more
time variation in the p-values than for the differences in inflation expectations in the two previous applications. For the
Hotelling test, we reject the null hypothesis of no differences in the house price expectations across regions (states) for
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FIGURE 6 p-values for
heterogeneity tests (SCE): Local
differences in house price
expectations. Note: The plot shows
the p-values from the Hotelling test
for compositional data (solid red
line) and the multiple testing
approach (dashed blue line) for the
analysis of differences in house price
expectations across regions (left) or
states (right). For the multiple
testing approach, we report (the
minimum of one and) the smallest
p-value multiplied by the number of
bins to make it comparable. The
sample period is from June 2013 to
December 2021.

28 (26) of the 103 survey waves. The evidence for the multiple testing approach is similar. The periods with significantly
different house price expectations are distributed without any obvious systematic pattern, although particularly for the
state-level analysis we observe more differences in the beginning of the sample between 2013 and 2015. This is likely due
to the higher mean expectations for the “West” region during this period.

5 CONCLUSION

We propose a new test for heterogeneity and differences in density expectations. This test builds on the insight that prob-
abilistic survey forecasts are compositional data. For normally distributed data, our Monte Carlo simulations show the
superior performance of this test relative to a more traditional bootstrap-based approach using the KLIC as a distance
measure between two densities and an approach that involves multiple testing for differences of individual parts of the
density. The novel test has high power especially when intragroup heterogeneity is relatively low. For settings that mimic
more closely the coarse density expectations observed in many surveys, all tests have very similar power. However, the
novel test is always much faster compared to the KLIC-based test because it does not rely on simulations. In addition, it
has the additional advantage that it allows for comparisons across more than two groups.

In five applications, we analyze survey-based density expectations of professional forecasters and households. First, we
show that the short-term inflation expectations of experts adjusted rapidly in response to rising inflation rates in the euro
area after 2021. Long-term expectations were not fully anchored but changed less strongly and more gradually. Second,
we find that for most periods, short-run inflation and growth expectations significantly differ between forecasters that
round their probability statements and those that do not. Third, we find very strong evidence against the hypothesis that
inflation expectations of male and femal household heads are equal, confirming earlier results in the literature based on
point forecasts. Fourth, we show that the inflation expectations of households who just entered the survey panel differ
from those of more experienced participants. Finally, consistent with a role for local developments and information sets
influencing subjective expectations data for aggregate outcomes, we show that for a sizeable fraction of periods in our
sample, households from different regions report significantly different density expectations for the future change of
nationwide house prices.

Our analysis shows that it is beneficial to treat survey-based density expectations as compositional data. This might be
relevant also in other contexts where such survey data are used.

Our results could be extended by using the panel structure of most expectation surveys. So far, we have analyzed each
survey wave as separate data samples, but one could also jointly analyze the full sample of expectation data. For instance,
by adopting a dynamic model for the compositional expectation data. Furthermore, one could, of course, replace the
KLIC by other distance measures—such as the Wasserstein distance (Dobrushin, 1970), the Jensen–Shannon divergence
(Lin, 1991), or symmetric versions of the KLIC—to generate alternative benchmark tests.
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Lastly, Bassetti et al. (2022) propose a nonparametric alternative for estimating the underlying density expectations from
a cross-section of available survey-based histogram forecasts. In principle, that would also be an approach upon which
one could build an analysis of heterogeneity across groups. However, for the SPF, the number of available histograms per
group is rather small—likely too small for the application of this nonparametric method. We leave a comparison of our
method with nonparametric approaches for future research.
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