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Abstract: This article uses a nonparametric production
frontier approach to investigate the operating efficiency
differences by the impacts of capital expenditure and busi-
ness model in the global semiconductor industry. Handling
the impact of capital expenditure as a fixed input by the
directional distance estimator, this study compares the oper-
ating efficiencies in the global semiconductor industry between
the integrated device manufacturers and the fabless and
foundry firms over 1999–2018. The estimation results indicate
that the operating efficiencies do vary in the semiconductor by
the business model. The vertically integrated manufacturers
dominate the semiconductor industry, and the capital-inten-
sive manufacturers operate more efficiently than the asset-
light fabless firms on average.

Keywords: semiconductor industry, CAPEX, integrated device
manufacturer, nonparametric frontier, directional distance
estimator

1 Introduction

Integrated circuits (ICs) are essential components of vir-
tually all modern electronic devices. Since Bell laboratories
invented the transistors in 1947 and Texas Instruments
released the first working IC in 1958, the semiconductor
industry, which is the aggregate of companies engaged in
the design and fabrication of semiconductor devices or IC
chips, has been at the forefront of the digital economy for
decades. From laptop to smartphone and artificial intelligence

(AI), semiconductor devices are present in nearly all aspects of
modern technology. The personal computer revolution in the
1970–1980s was a result of advances in semiconductor tech-
nology, such as the Intel 8,008 microprocessor (Ceruzzi, 1996).
In the development and expansion of the World Wide Web
revolution in the 1990s, application-specific integrated circuits
played a significant role in enabling fast and efficient net-
working and data processing, contributing to the growth of
web-based technologies and consumer electronics (Makimoto,
2002). The rise of the smartphone in the 2010s was supported
by higher-performance system-on-a-chip (SoC), such as the
Apple A series and Qualcomm Snapdragon series. ChatGPT,
latterly the most popular deep learning workload, required
significant computational power and was trained on Nvidia1

graphics processing units (GPUs).
Due to the growth in emerging technologies such as AI,

cloud computing, Internet of Things, 5G networks, autono-
mous vehicles, industrial automation, and renewable energy
systems, the needs for more powerful, energy-efficient, and
miniaturized semiconductor devices have been consistently
increasing. The 2023 Semiconductor Industry Association
(SIA) factbook reported that the global semiconductor sales
reached the highest-ever annual total of $574 million in
2022.2McKinsey’s preliminary forecast shows that the global
semiconductor industry is poised to become a trillion-dollar
industry by 2030 (Burkacky et al., 2022).

1.1 Structural Change History in the
Semiconductor Industry

The semiconductor industry has a long history of struc-
tural change. Prior to the 1980s, a few integrated device
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1 Nvidia Corporation (Nasdaq: NVDA) is a leading technology com-
pany specializing in the design and development of GPUs and AI
computing solutions.
2 https://www.semiconductors.org/the-2023-sia-factbook-your-source-
for-semiconductor-industry-data/.
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manufacturers (IDMs), such as Intel, Infineon,3 ST,4 and
Texas Instruments, were the dominant players in the semi-
conductor industry. These IDMs have in-house capabilities
to perform all of the production processes (e.g., research and
design [R&D], front-end fabrication, and back-end assembly
and test [A&T]). For example, as a leading IC manufacturer,
Intel has several fab production sites (located in the US,
Ireland, Israel, etc.), A&T sites (located in the US, China,
Malaysia, Vietnam, etc.), and tens of thousands employees
and partners all over the world. The vertical integration of
managing the entire production process internally allows
Intel to have greater control over quality, intellectual prop-
erty (IP), and the ability to optimize the manufacturing pro-
cess for specific needs (Malone, 2014).

The semiconductor industry is renowned for its rapid
technological advancements. This dynamic field continu-
ally pushes the boundaries of innovation, driving progress
in areas of miniaturization, performance improvements,
power efficiency, and emerging technologies. For example,
the semiconductor industry had experienced significant
shrinks in process technology nodes,5 from around 130 nm
in 2000, to 32 nm in 2010, and 7 nm in 2020 (Flamm, 2017).
However, due to physical constraints, manufacturing chal-
lenges, heat dissipation, and power consumption issues,
semiconductors with ever-expanding complexity approach
the limits of Moore’s law6 (Mack, 2011). The expenses of
building a semiconductor fabrication facility had increased
from around $1 billion in the 2000s to more than $10 billion
nowadays (e.g., see Ibrahim et al., 2014; Lambrechts et al., 2018).
The substantial increase in fab construction costs became pro-
hibitive for almost all the IC suppliers. It stimulated business

model innovation in the semiconductor industry and gave
birth to the fabless–foundry business model in the mid-1980s
(Sarma & Sun, 2017).

In the fabless–foundary business model, fabless com-
panies dedicate their time to IC design and brand opera-
tion, while pure-play foundries devote themselves to front-
end fabrication, and a third group of companies are allotted
for back-end outsourced semiconductor assembly and test
(OSAT) operations. By specializing in IC design with brand
operation, fabless companies can concentrate their efforts
and resources on creating differentiated and competitive
chips where technological innovation meets strategic mar-
keting, leveraging the manufacturing capabilities of semi-
conductor foundries and OSATs (Hurtarte et al., 2011). At
the same time, foundries and OSATs take care of the actual
manufacturing process, fabrication, and quality control,
allowing fabless companies to focus on their core competen-
cies, resulting in a more flexible semiconductor business
ecosystem.

A milestone of the vertical disintegration in the semi-
conductor industry is the establishment of the Taiwan
Semiconductor Manufacturing Company (TSMC) in 1987.
TSMC introduced the concept of a pure-play semiconductor
foundry, specializing solely in the manufacturing of ICs and
committed to be a long-term non-competitive partner with
the fabless firms. By continuously investing in advanced
process technologies, TSMC quickly established itself as a
leader in semiconductor manufacturing. Presently, TSMC
is the first company to commercialize the 7nm process tech-
nology7 and the largest dedicated semiconductor foundry
worldwide.8 Its advanced process technologies, highly auto-
mated manufacturing facilities, the ability to scale produc-
tion, and a strong focus on customer satisfaction have
helped TSMC to build long-term relationships with its custo-
mers, enabling it to capture a significant share of the high-
end semiconductor market and making it a crucial player in
the semiconductor ecosystem (e.g., see Hsieh et al., 2002).

1.2 CAPEX Plays a Crucial Role

The fabless–foundry business model has significantly changed
the structure of the semiconductor value chain over the last



3 Infineon Technologies AG (Infineon) is Germany’s largest semicon-
ductor manufacturer. It was established on April 1, 1999, as a spinoff
from Siemens AG, taking over Siemens’ semiconductor operations
including its research, development, manufacturing, and sales activ-
ities. Infineon has been a leader in developing and producing high-
quality power MOSFETs (metal-oxide-semiconductor field-effect tran-
sistors) for various applications.
4 STMicroelectronics (ST) is a global semiconductor company head-
quartered in Geneva, Switzerland. It was formed in 1987 through a
merger between the semiconductor divisions of Italy’s STET (Società
Finanziaria Telefonica) and France’s Thomson Semiconducteurs.
5 Historically, the process technology node (also process node or
simply node) was named after the physical gate length of a transistor.
Shrinks in process node offer numerous advantages, including
increased transistor density, improved performance, enhanced power
efficiency, cost reduction, miniaturization, advanced functionality,
and manufacturing advancements.
6 Moore’s law was first observed in 1965 and later revised in 1975 by
Gorden Moore, the co-founder and chairman emeritus of Intel.
Moore’s law states that the number of components per IC doubles
about every 2 years.



7 The 7 nm process has helped TSMC win major customers such as
Apple (A series Bionic chips), Qualcomm (Snapdragon 800-series chip-
sets), and Nvidia (RTX 30 series GPUs).
8 TSMC had invested more than $16 Billion at its Fab 18, a new fab in
the Southern Taiwan Science Park for producing 5nm and 3nm pro-
cess technology.
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few decades and has been a topic of wide interest (e.g., see
Adner & Kapoor, 2010; Macher et al., 2007; Sarma & Sun, 2017).
Many factors might affect production costs and productivity in
the innovation-driving IC industry, such as capital allocation
(Brown et al., 2005), technological capability (Park et al., 2021;
Sher & Yang, 2005), business model (Shin et al., 2017), device
type (Park et al., 2018), institutional factor (Gugler & Siebert,
2007; Lu et al., 2013; Walheer & He, 2020), and foreign competi-
tion (Henderson & Scott, 2018).

The major challenges in the capital-intensive semicon-
ductor industry are the heavy capital expenditure (CAPEX)
for cleanroom and costly equipment for front-end fabrica-
tion and back-end A&T procedures. Cleanrooms must be
free of all airborne particles, which requires advanced fil-
tration systems, controlled air flow, and rigorous cleaning
procedures. Additionally, due to the complexity of the man-
ufacturing processes and the need for precision and accu-
racy in the production of semiconductor chips, the equip-
ment used in front-end fabrication and back-end A&T is
costly (Monch et al., 2012). For example, extreme ultraviolet
lithography (EUV)9 is a critical technology for advanced semi-
conductor manufacturing processes. Each EUV machine made
by ASML10 costs around $200 million or even higher. The high
costs associated with CAPEX can be a significant barrier for
new companies looking to enter the semiconductor industry,
as well as a challenge for existing companies looking to
expand their manufacturing capacity (Powell et al., 2015).

Another challenge in the semiconductor industry is the
cyclicality of demand (Rastogi et al., 2011; Tan & Mathews,
2010). The semiconductor industry is highly dependent on
end-market demand, which can be volatile and subject to
rapid shifts. It is difficult for companies to accurately fore-
cast demand and plan production capacity, which might
lead to costly overproduction or underproduction. In order
to achieve full-capacity utilization, the foundries and OSATs
seek to optimize productivity by serving many fabless com-
panies, while even IDMs are renting their idle capacity to
competitors to reduce the financial burden. It also triggered
many of the IDMs to start outsourcing manufacturing par-
tially from the dedicated foundries and became fab-lite11

(Saha, 2015). In comparison, the fabless companies, mostly
startups or spin-offs that are getting rid of the burden in
setting up, maintaining, and upgrading fabs, are more flex-
ible to integrate within local knowledge networks and focus
in less crowded niche markets, specialized applications, or
innovative technologies to explore technological diversity
and comparative advantage, and compete with the IDMs.

Besides the huge equipment expenditures, R&D costs
for developing leading-edge products such as microproces-
sors and radiofrequency devices also raise steadily. With
the shrinking of process node, technological complexity
and design complexity increase exponentially. The slow
progress in node technology requires continuous invest-
ments in both R&D and advanced fabrication facilities.
Based on the 2023 SIA factbook, US semiconductor compa-
nies accounted for sales totaling $275 billion in 2022, or 48%
of the global market. At the same time, US semiconductor
firms also invested $58.8 billion in R&D, the highest in
history to remain competitive in the industry. The uncer-
tainty of R&D investments and the IP protection by incum-
bents set high barriers to entry and favor the success of
large IDMs, such as Intel, ST, and Texas Instruments, which
are able to make risky investments and thus have a higher
chance to foresee and lead the technology evolutions.

1.3 Trade-offs Between Business Models

There has been a long-lasting debate on which business
model is operating more efficiently, or which business model
is more likely to dominate the semiconductor industry. On
the one hand, the reduced barriers to entry by vertical spe-
cialization drastically reduces the burden of CAPEX and
ensures the domination of new markets by the fabless design
houses. The entry of new fabless companies, most of which
are spinoffs from industry incumbents, spur innovation and
propel the diversification of products in various applications
(Pellens & Della Malva, 2018).

Furthermore, vertical disintegration in the semicon-
ductor value chain is accompanied and twisted by the
trend of industry globalization (Brown et al., 2005). Since
the 1990s, fabless firms have had substantial shares or even
dominated in most of the fastest-growing market segments
(Balconi & Fontana, 2011). Foundries are also becoming
technology transferors rather than merely manufacturing
capacity providers in the semiconductor value chain (Li
et al., 2011). In addition, the collaboration between the
asset-light fabless and the pure-play foundry provides
more robust protection of IP rights (Sarma & Sun, 2017).
When the fabless firms pass on their design blueprints to



9 EUV uses extreme ultraviolet light with a wavelength of near
13.5 nm to create intricate patterns on silicon wafers, allowing for
the production of smaller and more complex ICs.
10 Advanced semiconductor material lithography (ASML) is a Dutch
multinational corporation and the sole supplier in the world of EUV
photolithography machines used to manufacture the most advanced
chips, targeting 5 and 3 nm process nodes.
11 Fab-lite, also called fab-light, refers to a semiconductor company
that retains some in-house fabrication facilities but also relies on out-
sourcing a large portion of its production to external foundries.
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pure-play foundries, the threats of replication and the risk
of IP theft are relatively low, comparing with the early
years when fabless firms’ ICs could only be manufactured
by their rival IDMs.

On the other hand, despite a trend toward vertical
specialization driven by the entry of fabless firms, the ver-
tically integrated IDMs have continued to persist and
coexist with the fabless entrants in the semiconductor
industry. Dibiaggio (2007) and Monteverde (1995) credit
the efficiency of IDMs to the internalization of transaction
costs. Ernst (2005), Macher (2006), and Kapoor and Adner
(2012) hold the knowledge-based view that the IDMs achieve
performance advantages when technological developments
involve complex problems. Kapoor (2013) proposed and
found that the incumbents who persist with vertical integra-
tion increase their emphasis on systemic innovations. Due to
the inherently increasing complexity of the semiconductor
supply chain, currently there does not exist an adequate refer-
ence model for the semiconductor industry, and more appro-
priate and state-of-the-art models are in great demand to ana-
lyze the semiconductor supply chain (Monch et al., 2012).

The semiconductor industry is commonly character-
ized as both technology-intensive and capital-intensive.
Much research on the topic of structural change in the
semiconductor industry emphasizes the evolution of tech-
nology (Chen et al., 2019; Cho, 2020; Hwang & Choung, 2014;
Shin et al., 2017). The impacts of capital investments in the
semiconductor industry have not been discussed adequately.
Besides the research shown earlier that focus on analyzing
the impacts of technology evolution in the semiconductor
industry, this study plans to emphasize the feature of capital
intensive in comparing the trade-offs of business model in the
semiconductor industry. This study applies up-to-date econo-
metric methods to handle the impacts of CAPEX as a lump
sum fixed input and explores the differences of operating
efficiency by business model in the highly dynamic semicon-
ductor industry in the past two decades. The methodolo-
gical contributions of article will be discussed in the next
subsections.

1.4 Brief Literature Review

Taking advantage of a flexible functional form, data envelop-
ment analysis (DEA) is one of the most popular approaches
for efficiency estimation. There are rich records for perfor-
mance evaluation in the semiconductor industry using the
DEA approach. For instance, Kozmetsky and Yue (1998) exam-
ined the cost efficiency of 56 IC companies worldwide and
showed that US, Japanese, South Korean, and Taiwanese IC
companies had become the major participants in the global

semiconductor industry in the early 1990s. Lu and Hung
(2010) compared the managerial performance efficiency of
48 leading vertically disintegrated firms in Taiwan’s IC value
chain and noted that fabless companies perform better than
foundries and OSATs. Jang et al. (2016) measured the cumu-
lative change in R&D efficiency of 49 global leading fabless
companies and noted that during the period 2007–2013, the
overall R&D efficiency declined slightly. Li et al. (2019)
explored 64 major Chinese enterprises in the semiconductor
industry and found that the most significant factor limiting
future improvements to innovation efficiency was a low
level of scale efficiency.

One common problem of these studies, among others,
such as Lu et al. (2013), Hsu (2015), Hung et al. (2014), and
Tsai et al. (2017), is the slow convergence rate of the non-
parametric DEA estimator.12 Accompanied by the increasing
numbers of input and output dimensions, the convergence
rate in DEA estimation is decreasing sharply. In cases when
the observations are restricted to a small number either by
geographic boundary or by business model boundary, the
issue of slow convergence rate in DEA estimation may
become severe and critical. For example, the research of
Kuo and Yang (2012), Lu and Hung (2010), and Wu et al.
(2006) used a small number of 38–39 companies to evaluate
the performance of the fabless corporations in Taiwan,
while in some extreme cases, such as Chen and Chen
(2011), Hung and Lu (2008), Lin et al. (2019), and Liu and
Wang (2008), the studies contained only 10–25 companies.
The effective parametric sample size of the DEA estimators
in these approaches was very small, which might lead to
unconvincing results.13

1.5 Methodological Features

The main methodological feature in this study, after high-
lighting the slow convergence rate in DEA estimation, is to
provide an empirical example of choosing the appropriate
estimation methods in analyzing the operational efficiencies
of the semiconductor industry, aiming to gain a faster con-
vergence rate and hence a lower order of estimation error.



12 The convergence rate quantifies how fast the estimation error
decreases when increasing the sample size n. Generally, the conver-
gence rate in a linear regression is −

n

1

2 , while the convergence rate of a
nonparametric estimator is slower than its parametric counterpart.
13 For example, Hung and Lu (2008) used the DEA to estimate effi-
ciencies of 25 companies by 4 input and 3 output variables. The effec-
tive parametric sample size of Hung and Lu (2008) was only ≈+25 3

2

4 3 .
Appendix A explains how to calculate the effective parametric
sample size.
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The semiconductor industry is, indeed, a highly globalized
industry. For example, Silicon Valley, located in the southern
San Francisco Bay Area of California, US, renowned for its
collaborative ecosystem that fosters entrepreneurship and
innovation, has attracted a cluster of famous fabless semicon-
ductor companies, such as Nvidia, Qualcomm,14 AMD,15 and
Xilinx.16 While the US has a strong presence in the fabless
semiconductor sector, there are also fabless companies based
in other countries such as the UK, Israel, Japan, and China. In
order to support the growth of the fabless semiconductor
industry on a global scale, foundries and OSATs are located
in various regions around the world to cater to the global
demand for semiconductor production and ensure a diverse
supply chain for semiconductor manufacturing. Hence, this
study considers the deeply globalized semiconductor value
chain as an aggregated industry and collects data on 470
semiconductor companies all over the world with 5,136 obser-
vations in 1999–2018. The global database not only provides a
worldwide perspective of the semiconductor industry, but
also gains a faster convergence rate in DEA estimation.
Furthermore, this study uses a dimensionality reduction tech-
nique to further improve the convergence rate.

Another methodological feature in this article is to
treat the CAPEX as a fixed input by using the directional
distance measure. CAPEX is a kind of lump sum invest-
ment, which involves significant upfront expenses that
are expected to yield long-term benefits. By allocating
funds toward acquiring new technology, upgrading infra-
structure, and expanding facilities, companies can enhance
productivity, improve operational efficiency, and leverage the
latest technological advancements to stay competitive in the
market. Although CAPEX decisions play a crucial role in deter-
mining the level of productivity and technology within an
organization, in the short run, CAPEX is not under managers’
direct control. The directional distance estimator provides a
convenient method to distinguish the non-discretionary fixed
input CAPEX with other variables. The setting of this method
will be discussed further in the next section.

Another methodological feature in this article is to
investigate the impacts of the business model in the semi-
conductor industry through a conditional nonparametric
frontier approach. Recent developments in nonparametric

frontier estimation (Daraio & Simar, 2014; Daraio et al.,
2020) provide tools to analyze the operating efficiencies
in the semiconductor industry under various types of con-
straints such as capital investments and the business model.
While the heterogeneity by CAPEX is treated as a fixed input
variable by the directional distance estimator (Daraio et al.,
2020), the heterogeneity by the business model is handled by
the conditional efficiency estimators (Daraio & Simar, 2007). In
addition, separability test recommended by Simar and Wilson
(2020) is applied to choose the optimal conditions considering
both the heterogeneities by the business model and time.

1.6 Findings and Organization

This article aims to follow the Daraio et al.'s (2020) approach
to shed light on disentangling the impact of capital invest-
ments and comparing the technical efficiencies between
IDMs and vertically disintegrated fabless and foundry firms
in the semiconductor industry. The estimation results indi-
cate that CAPEX plays a crucial role in the semiconductor
industry and vertically integrated manufacturers dominate
the industry. Since semiconductor companies heavily rely
on CAPEX to acquire advanced equipment, to establish and
upgrade manufacturing facilities, and to develop cutting-
edge technologies, the capital-intensive IDMs and OSATs
operate more efficiently than the asset-light fabless firms on
average. It is worth noting that such kind of operating effi-
ciency is probably not attributed to management improve-
ment, but generated from subsidies or M&A (VerWey, 2019).
In fostering a healthy and competitive semiconductor eco-
system, we suggest to tilt the subsidies of the semiconductor
industry towards the fabless sector to encourage more innova-
tion and diversification.

This article is organized as follows. Section 2 explains
the nonparametric frontier framework and discusses the
diagnostics and test statistics to choose a suitable estimator
in this research. Section 3 introduces the data and defines
the variables. Section 4 presents the empirical results and
discusses the effect of capital investment and business
model in the semiconductor industry. Section 5 concludes.

2 Methodology

2.1 DEA Approach

The economic theory of efficiency in production can be
traced to Farrell (1957). Attributed by its flexibility and
adaptability, DEA (Charnes et al., 1978) is considered the



14 Qualcomm holds significant IPs and patents related to Code
Division Multiple Access (CDMA) technology and has established itself
as a leader in mobile technology with its Snapdragon processors.
15 Advanced Micro Devices, Inc. (AMD), headquartered in Santa
Clara, is a major fabless semiconductor company known for its
CPUs. AMD competes with Intel in the computer processor market.
16 Xilinx, Inc., located in San Jose, is a well-known fabless company
specializing in field-programmable gate arrays (FPGAs) and SoCs.
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mainstream approach in frontier analysis for assessing
technical efficiency.17 A large and growing literature has
developed on the application of the DEA approach in the
semiconductor industry (e.g., see Jang et al., 2016; Li et al.,
2019; Sueyoshi & Ryu, 2020; Tsai et al., 2017; Zhou et al.,
2020). This article follows the DEA approach and applies
the latest methodological advancements of Bădin et al.
(2012), Daraio et al. (2020), and Simar and Wilson (2020)
to address the impacts of CAPEX, business model, and
time in the ever-evolving semiconductor industry.

Production theory primarily examines how the pro-
duction process works within a firm to combine p inputs
to achieve the desired level of q outputs and analyzes the
factors that affect production decisions. The idea in the DEA
approach is to estimate the efficiency score of a production
plan (x y, ), or the distance from (x y, ) to the boundary of the
production set =Ψ �{( ) ∣ }∈ +

+
x y x y, can produce

p q . As a
nonparametric approach, DEA does not require explicit
assumptions about the underlying production function,
allowing for a flexible data-driven analysis. Hence, we
select the DEA approach in handling the efficiency estima-
tion of the semiconductor industry.

2.2 Directional Distance Measure

There are four kinds of commonly used efficiency measures
in the DEA approach, namely, input-oriented Debreu–Farrel
measure, out-oriented Debreu–Farrel measure, hyperbolic
measure (Wilson, 2012), and directional distance measure
(Chambers et al., 1998). The input-, output-, and hyperbolic
oriented measures are radial measures that allow for only
nonnegative values. In contrast, the directional distance
measure is an additive measure. The directional distance
measure is given by:

( ∣ ) { ∣( ) }= − + ∈β x y d d β x βd y βd, , , Ψ sup , Ψ ,x y x y (2.1)

which projects (x , y) onto the technology in a specified direction
(−dx , dy). The directional distance measure ( ‖ )β x y d d, , , Ψx y

nests the input- and output-oriented measure as a special
case by setting the direction vector (d d,x y) as (x , 0) and
( y0, ), respectively.

The directional distance measure allows for negative
values of x and y, as it adds the feasible quantities to a
unit’s output and simultaneously subtracts proportional

quantities from its input. The choices of the directions dx

and dy are also flexible. Some direction can be set equal to
zero to represent a non-discretionary input or output
(Simar & Vanhems, 2012). This feature is used to proxy
CAPEX in the semiconductor industry in this study, by
categorizing CAPEX into a fixed input that is not under
managers’ direct control in the short run.

2.3 Estimation of the Frontier

The attainable set Ψ is unobserved. Nonparametric methods
such as DEA and free disposal hull (FDH) are developed to
estimate the unobservable production set Ψ. The FDH esti-
mator ΨFDH is defined as:

 �
�

{( ) ∣ }= ⋃ ∈ ≥ ≤
∈

+
+

x y x X y YΨ , , ,
X Y

p q

i iFDH

,i i n

(2.2)

where � {( )}= X Y,n i i . FDH estimator  ( ∣ )β x y d d, , , Ψx yFDH
is

obtained by replacing Ψ with ΨFDH. DEA estimator ΨDEA is
the convex hull of ΨFDH (Banker et al., 1984).18

The trade-off between FDH and DEA is not trivial.
Simar and Wilson (2015) summarized that the FDH and
DEA estimators converge to limiting distributions at rates
of +np q

1

and + +np q

2

1 , respectively. The convergence rate for the
FDH and the DEA estimator slows down with the increasing
of dimensionality +p q.19 To minimize the estimation error
empirically, we can either increase the sample size n or
decrease the total dimensions of +p q. If the sample size
n is restricted to a small number by real-world constraints,
including the market scale or scope of the industry, geogra-
phical or political restrictions, and the high cost of data
collection, dimension reduction such as the principal com-
ponent analysis (PCA) may become an attractive solution.
Appendix A provides an introduction of PCA.

After the diagnostics of dimension reduction, a test of
convexity is recommended for the trade-off between ΨFDH

and ΨDEA (Kneip et al., 2015). If the null hypothesis of con-
vexity is rejected, the FDH estimator is the only consistent
estimator. Alternatively, if the null hypothesis is not rejected,
the DEA estimator might be preferred. However, the test of
convexity (Kneip et al., 2015; Kneip et al., 2016) depends on
randomly split the original sample into two independent sub-
samples for the bias term calculations. This study applies a



17 Lampe and Hilgers (2015) surveyed 4,782 publications on perfor-
mance measurement in 1978–2012 and found that 4,021 were for DEA,
and 761 were for stochastic frontier analysis (SFA).



18 To be more precise, the notation DEA is for the variable-returns-to-
scale DEA in this study.
19 The estimation error will increase with the slowdown of conver-
gence rate. This is known as the curse of dimensionality in nonpara-
metric estimation.
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bootstrap algorithm (Simar & Wilson, 2020) for the convexity
test to overcome this issue.

2.4 Conditional Efficiency Measures

There exist factors such as the business model, constraints
of technology and regulatory, and differences in ownership,
which are beyond control of the manager but may influence
the production process. These factors are denoted as envir-
onmental factors �∈Z

r. Daraio and Simar (2005) proposed
to investigate the joint behavior of ( )X Y Z, , in probability
terms by defining the conditional attainable set as =Ψz

�{( ) ∣ }∈ =+
+

x y x y Z z, can produce when
p q . Note that

= ⋃ ∈Ψ Ψz Z

z. The probability distribution of (X Y, ) condi-
tional on =Z z can be written as:

( ∣ ) ( ∣ )= ≤ ≥ =∣H x y z X x Y y Z z, Prob , .X Y Z, (2.3)

A conditional directional distance measure is given by:

( ∣ ) { ∣ ( ∣ )

}

= − +

>
∣β x y d d z β H x βd y βd z, , , sup ,

0 .

x y X Y Z x y, (2.4)

Plugging a nonparametric estimator of ( )⋅∣HX Y Z, into equa-
tion (2.4) can derive the estimation of the conditional effi-
ciency score accordingly.20

2.5 Second Stage Analysis

In a particular case, Z has no impact on the boundaries of
the Ψz and =Ψ Ψz . Simar and Wilson (2007, 2011) called it
the separability condition and argued that if the separability
condition is not hold, naive regression in a second-stage
analysis may provide inconsistent estimation. Alternatively,
Bădin et al. (2012, 2014) suggested a flexible nonparametric
location-scalemodel ( ∣ )= =β X Y Z z, ( ) ( )+μ z σ z ε in a second-
stage regression, where ( )μ z measures the average effect of z

and ( )σ z provides additional information on the dispersion of
the efficiency distribution.

Bădin et al. (2012) derived the pure efficiency from the
location-scale model as:

( )
( ∣ ) ( )

( )
=

−
ε z

β x y z μ z

σ z

,
. (2.5)

The pure efficiency in equation (2.5) provides a measure of
inefficiencywhitened from themain effect of the environmental

factors. This article uses the pure efficiency to measure the
impacts of business model and time in the semiconductor
industry.

3 Data and Variable Specification

The data are collected from the Sub-Industry of Semiconductors
in the Compustat database. In order to provide a global
perspective for the semiconductor value chain, we com-
bined data from both the Compustat North America data-
base and the Compustat Global database to cover companies
in the industry worldwide. As the semiconductor industry is
famous for being a cyclical industry (e.g., see Rastogi et al.,
2011; Tan & Mathews, 2010), we gather 20 years of data in
1999–2018 to cover a sufficient period with multiple business
cycles in the industry. We exclude liquid crystal display
manufacturers, light-emitting diode manufacturers, and
photovoltaic producers from the dataset, limiting the sample
to only IC manufacturers in a narrow sense. Hence, the
panel data include 5,136 observations from 470 unique com-
panies in the global semiconductor industry in 1999–2018.

The reason for the data to begin in 1999 is twofold.
First, the global semiconductor value chain has been pre-
liminarily established in the late 1990s since the inception
of the fabless–foundry business model in the late 1980s.
Since 1999, there are plenty of available annual reports for
the fabless and foundry firms on the open market. Second,
the year 1999 is a suitable starting point to observe the
development trend in the global semiconductor industry.
Two years after the 1997 Asian financial crisis, the semicon-
ductor industry is in a golden decade without massive exo-
genous shocks until the 2008 financial crisis.

Identifying the inputs and outputs of the production
function has always been a subject of controversy, either
in parametric or in nonparametric frontier estimations,
without exception in the semiconductor industry. Hence,
we sort the most commonly used variables in 37 empirical
studies, which apply the DEA approach in the semicon-
ductor industry. Besides a few variables chosen for specific
topics, the commonly used variables in these articles are
highly concentrated into two input and two output cate-
gories. The first input category measures variable inputs,
including labor, raw material, R&D, sales, and marketing
expenditure, while the second input category measures
fixed assets. Therefore, we specify p = 5 inputs (labor, mea-
sured by the number of employees [X1]; COGS [X2]; R&D
expenditure [X3]; sales and marketing expenditure [X4];
and fixed assets, measured by property, plant, and equip-
ment [PP&E] [Xf ]). Note that we distinguish the notation of



20 Appendix B introduces a fast and efficient computation of the
directional distance measure.
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the fixed input Xf from the other variable inputs X1, X2, X3,
and X4.

Comparably, the first output category measures rev-
enue and the second output category measures the market
value of the firms. Hence, we specify q = 2 outputs (total
revenue [ ]Y1 ; and shareholders’ equity, measured by common
ordinary equity [CEQ] [ ]Y2 ). For the output variableY2, we use
shareholders’ equity instead of the market value of a firm,
because the variable of market value is suffering from
missing data in the Compustat database, and the variable
shareholders’ equity is also a widely used proxy for the value
of a firm. The same dataset had been used in Qiao and Wang
(2021), but in this approach, we add the variable Xf to empha-
size the impact of CAPEX, and measure it as a fixed input by
the directional distance estimator to achieve more robust
results.

Table 1 gives the summary statistics for the variables
in 1999–2018 pooled data. In order to provide a uniform
standard across years, all the variables except X1 are
expressed in US$ millions, and their values have been
adjusted to 2018 US dollar by GDP deflator. The distribution
of all the variables is heavily skewed to the right, owning to
the domination of several semiconductor giants in the
market.

Besides inputs and outputs, we specify r = 2 environ-
mental variables (business model [Z1]; and time, measured
by the years 1999–2018 [Z2]). The business model Z1 is a
discrete variable, which categorizes the business models of
fabless, IDM, foundry, and A&T into three groups. The first
group contains the fabless, which are labor-intensive for IC
design. The second group contains foundries and OSATs,
that are capital-intensive for fabrication. The third group
contains IDMs that are both labor-intensive and capital-
intensive. Alternatively, Z2 can either be a continuous

variable or a discrete one. If Z2 is treated as a continuous
variable, choosing the optimal time windown for Z2 is cri-
tical, which will be discussed further in the next section.

Table 2 breaks down the 5,136 observations by the
business model. It is no surprise that over half of the com-
panies are fabless. As the barriers to entry, which rely
heavily on CAPEX, are much lower for fabless than for
the others, fabless companies spring up like the mush-
rooms in the late 1990s to the early 2000s. At the same
time, the number of firms operating in other kinds of busi-
ness models remains relatively stable. After the golden
decade of fast growth in the semiconductor industry come
to an end in the mid-2000s (e.g., see Flamm, 2017), the pro-
portions of firms in each business model are gradually fixed.
Around 60% of the firms are fabless, while 20% of the firms
are IDMs and the rest 20% are either front-end wafer fabs or
back-end OSATs.

4 Empirical Results

Most nonparametric estimators suffer from the curse of
dimensionality. Based on the three diagnostics introduced
in Appendix A, the necessity for dimension reduction is
unambiguous. With seven dimensions ( =p 5 and =q 2) in
the original data, the effective parametric sample size m for
annual data is small, no matter using FDH or DEA estima-
tors. We calculate the values of the largest eigenvalue of the
moment matrices of ′XX and ′YY to the corresponding sum
of eigenvalues to be =R 91.19%x and =R 98.31%y , indicating
high correlations among the inputs and among the outputs.
Therefore, dimension reduction can reduce estimation error.
A slight difference in processing PCA for the directional

Table 1: Summary statistics for 1999–2018 pooled data

Variable Min Q1 Median Mean Q3 Max

X1 0.001 0.160 0.486 3.082 2.011 107.600
X2 0.001 24.170 88.008 475.252 301.645 18226.000
X3 0.000 4.302 18.330 160.217 67.001 13543.000
X4 0.549 5.885 20.087 125.406 67.185 1982.015
Xf 0.005 6.065 27.787 554.060 174.405 48976.000

Y1 0.003 47.283 161.799 1064.110 563.655 70848.000
Y2 0.175 44.279 151.749 1114.748 487.730 74563.000
Obs. 5,136
Uniq. Obs. 470

Note. X1 denotes the labor, X2 denotes the cost of goods sold (COGS), X3 denotes the R&D expenditure, X4 denotes the sales and marketing
expenditure, Xf denotes the fixed assets,Y1 denotes the revenue,Y2 denotes the shareholders’ equity, Obs. denotes the observations, and uniq. obs.
denotes the companies. The unit of X1 is thousand employees, and units of other variables are US$ million. All values have been adjusted to 2018 US$
by GDP deflator.
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distance estimator is that PCA is only on the variable inputs
and outputs, but not on the fixed input Xf . Hence, after PCA,
there remain three dimensions, namely, X͠ (PCA from X1 to
X4), Xf , and Y͠ (PCA fromY1 toY2). The following analyses are
based on data with PCA.

Among studies that use the nonparametric frontier
approach to estimate efficiency and benchmark perfor-
mance of firms in the semiconductor industry, the vast
majority choose the DEA estimator, without comparing
the pros and cons between the FDH estimator and the
DEA estimator. The DEA estimator is probably a better
choice without dimension reduction, as the slower conver-
gence rate of FDH estimator may increase measurement
error rapidly with increasing dimensions. However, it is
worth to reevaluate the trade-off between the FDH and
DEA estimators with dimension reduction. The drawback
of the DEA estimator is imposing convexity on the produc-
tion set Ψ, while the FDH estimator is free of this assump-
tion. The test of convexity is applied to measure this
trade-off.

Table 3 provides the results of the convexity test.21 At
95% confidence level, the null hypotheses of convexity are
rejected for over 80% of the 20 years’ annual data, except 3

years (2009, 2011, and 2012) in the hyperbolic measure.
Simar and Vanhems (2012) linked the directional distance
measure with the hyperbolic measure by a monotonic
transformation, so that the results in Table 3 are also valid
for the directional distance estimator. Hence, we choose
the FDH estimator.

In order to consider a discrete environmental variable
such as the business model Z1 for the estimator in equation
(2.4), the separability condition needs to be examined. We
use a bootstrap algorithm (Simar & Wilson, 2020) for the
separability test on the discrete environmental variable
Z1.22 The first portion in Table 4 show the separability
test results with respect to the business model Z1. Though
the test statistics τ1 and τ2 not always give the same results,
there is strong evidence to reject the separability condition.
In other words, each of the three business models in semi-
conductor industry has a unique production frontier.

For the environmental variable Z2, which represents
the years 1999–2018, there is flexibility to treat it either as a
discrete variable or as a continuous variable (Mastromarco
& Simar, 2015). To treat Z2 as a discrete variable, the 20

Table 2: Number of companies by business model

Year All IDM Foundry A&T Fabless

1999 125 38 10 9 68
2000 149 43 10 15 81
2001 155 46 10 16 83
2002 213 48 17 27 121
2003 241 49 19 30 143
2004 264 54 21 30 159
2005 260 54 17 27 162
2006 267 56 20 30 161
2007 269 52 21 33 163
2008 278 51 20 35 172
2009 290 53 21 36 180
2010 300 59 23 38 180
2011 298 60 22 39 177
2012 301 61 22 38 180
2013 313 65 24 41 183
2014 302 62 25 43 172
2015 288 59 24 42 163
2016 283 54 23 44 162
2017 275 51 23 45 156
2018 265 48 22 44 151
Obs. 5,136 1,063 394 662 3,017
Uniq. Obs. 470 83 36 63 288

Obs. denotes the observations, and uniq. obs. denotes the companies.

Table 3: Results of convexity test

Year N Statistic p-value

1999 125 2.222 0.011
2000 149 1.594 0.006
2001 155 1.853 0.040
2002 213 3.138 0.005
2003 241 2.901 0.001
2004 264 3.440 0.000
2005 260 3.238 0.000
2006 267 3.651 0.000
2007 269 3.915 0.003
2008 278 3.227 0.008
2009 290 2.162 0.057
2010 300 2.890 0.006
2011 298 2.102 0.088
2012 301 1.014 0.174
2013 313 1.989 0.020
2014 302 3.552 0.001
2015 288 1.452 0.041
2016 283 2.053 0.018
2017 275 4.831 0.000
2018 265 4.963 0.000

We use 100 splits and 1,000 bootstrap replications.



21 We use the FEAR package (Wilson, 2008) for the convexity test.



22 In the directional distance measure, step [5] in Simar and Wilson
(2020, p. 293) which is originally designed for the radial measures
should be revised as = − × + ×X X β d β d* *

i i i x
i

x and = + ×Y Y β*
i i i

− ×d β d*
y

i
y, where the directions of dx and dy are the sample mean

of X and Y .

Operating Efficiency in the Capital-Intensive Semiconductor Industry  9



years of 1999–2018 can be splitted into ten 2-year groups
(two adjacent years as a group), five 4-year groups (four
adjacent years as a group), or four 5-year groups (five
adjacent years as a group). In this case, the separability
test with respect to Z2 is similar to the separability test
with respect to Z1.

Although Z2 can be treated as 20 individual years, it is
not recommended. From the economic point of view, the
technology life cycle and business cycle in the semicon-
ductor industry are typically 2–4 years (Tan & Mathews,
2010), so it is more natural to assume a uniform produc-
tion frontier for the semiconductor companies within one
industry cycle. From the econometric point of view, since
there are 100–300 observations in each year, the effective
parametric sample size =m n

2

3 for the directional distance
measure in each year is very small. In either way, the
approach to treat Z2 as 20 individual years is less attractive.

Alternatively, treating Z2 as a continuous variable, the
optimal time window of Z2 needs to be fixed in advance.
The optimal bandwidth is =h 5.5 for fabless, IDM, and
pooled data, implying that the smoothing window of year t

is [ − +t t5, 5], while the optimal bandwidth is =h 7.5 for
OSAT with the smoothing window of year t to be [ − +t t7, 7]
(Appendix C explains how to calculate the optimal band-
width). The second portion and the third portion in Table 4
show the separability test results with respect to the optimal
time Z2, and with respect to the business model Z1 and the
time Z2, respectively. In any case, the separability conditions
are strongly rejected. Hence, we will estimate the efficiency
scores defined in equation (2.4) with separated production
frontiers per the constraints of both Z1 and Z2.

Table 5 shows the summary of the efficiency scores
conditional on both the business model Z1 and time Z2.
Whether the time Z2 is treated as a discrete variable or a
continuous variable, the distributions of the efficiency
scores are skewed to the right in all kinds of business
models, especially for the fabless firms, implying more
intensive competition for the fabless. Nevertheless, on con-
ditions that Z2 is treated as a discrete variable, the first
quartiles are either equal to zero or very close to zero,
no matter how the years are grouped. It is a sign that the
measurement error by slow convergence rate still exists
(e.g., see the second diagnostic in Appendix A). Thus, to
treat Z2 as a continuous variable is preferred, rewarding
a larger subsample size and a faster convergence rate, and
hence more accurate estimates.

Figure 1 visualizes the trends of the annual mean effi-
ciencies by the business model and year. Treating Z2 either
as a discrete variable or as a continuous variable, the
curves of the annual mean efficiencies for the fabless firms
are above the curves for the other business models. This
phenomenon is more visible in the bottom-right panel,
where Z2 is defined as a continuous variable. As a higher
efficiency score infers a lower technical efficiency in the
directional distance measure, the curves in Figure 1 imply
that the fabless firms are operating less efficiently on
average.

Figure 1 also demonstrates that if Z2 is a discrete vari-
able, the differences of operating efficiency among business
models are fading away over time. Driving by increasing
complexity of ICs, technological convergence, and time-to-
market and cost optimization pressure, the fab-lite model
became popular in the semiconductor industry in late 1990s
and early 2000s, and has continued to evolve and gain pro-
minence. Some IDMs and fabless companies are forming
strategic partnerships and collaborations to leverage each
other’s strengths. Furthermore, associations such as SEMI
(Semiconductor Equipment and Materials International),
SIA and ESIA (European Semiconductor Industry Associa-
tion), contribute to the establishment of industry stan-
dards and provide platforms for networking and collabora-
tion among industry stakeholders. The boundary between
IDMs and fabless companies is becoming increasingly
ambiguous.

M&A activities in the semiconductor industry also con-
tribute to the blurring of boundaries between IDMs and
fabless companies. The industry has seen numerous mergers,
acquisitions, and strategic partnerships aimed at expanding
product portfolios, accessing new markets, and driving inno-
vation. On the one hand, fabless giant Qualcomm has made
over 41 acquisitions and 108 investments, such as the acquisi-
tion of Atheros (a leading provider of wireless networking

Table 4: Test of separability conditional on Z1 and Z2

τ1 τ2

Statistic p-value Statistic p-value

Conditional on Z1

Fabless vs IDM 7.567 0.000 0.992 0.925
Fabless vs OSAT 4.126 0.000 1.000 0.000
IDM vs OSAT 3.883 0.000 0.870 0.715
Conditional on Z2

Pooled vs optimal time 3.230 0.000 0.983 0.000
Conditional on Z1 and Z2

2-Year groups 26.273 0.000 1.000 0.000
4-Year groups 18.572 0.000 1.000 0.000
5-Year groups 17.242 0.000 1.000 0.000
Optimal time 19.891 0.000 1.000 0.000

Z1 denotes the business model, and Z2 denotes the time. We use 10
splits and 1,000 bootstrap replications. τ1 is the averaging of the statis-
tics across 10 splits. τ2 is the Kolmogorov–Smirnov statistic obtained
earlier.
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Table 5: Summary statistics of the efficiency scores

Sample set Sample size Min Q1 Median Mean Q3 Max

2-year groups
Fabless 3,017 0.000 0.000 0.023 0.097 0.085 13.859
IDM 1,063 0.000 0.000 0.002 0.046 0.033 1.943
OSAT 1,056 0.000 0.000 0.000 0.041 0.029 1.167
4-year groups
Fabless 3,017 0.000 0.005 0.036 0.129 0.107 15.171
IDM 1,063 0.000 0.000 0.009 0.067 0.061 1.939
OSAT 1,056 0.000 0.000 0.005 0.064 0.055 1.901
5-year groups
Fabless 3,017 0.000 0.009 0.042 0.147 0.115 15.179
IDM 1,063 0.000 0.000 0.012 0.074 0.069 2.377
OSAT 1,056 0.000 0.000 0.008 0.074 0.071 2.000
Optimal time
Fabless 3,017 0.000 0.027 0.073 0.258 0.175 19.151
IDM 1,063 0.000 0.006 0.043 0.131 0.171 2.087
OSAT 1,056 0.000 0.004 0.036 0.142 0.146 2.660
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Figure 1: Mean β conditional on business model and year.
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solutions) in 2011 and CSR (a England-based fabless known for
its wireless chips) in 2015, continuously diversifying its pro-
duct portfolio and strengthening its position in the mobile and
networking markets. The merger of Avago and Broadcom in
2015 combined Avago’s expertise in analog and mixed-signal
semiconductor solutions with Broadcom’s strengths in connec-
tivity and networking technologies. On the other hand, IDM
giant Intel has so far acquired more than 90 companies,
including the acquisition of Altera Corporation (a prominent
manufacturer of programmable logic devices) in 2015. This
acquisition enabled Intel to integrate Altera’s FPGA technology
with its processors, offering customized solutions for various
applications.

Another interesting discovery is that the curves of dif-
ferent business models in the bottom-right panel of Figure 1
tend to converge in 2008, the year of global finanical crisis.
That is, under a severe condition such as the 2008 financial
crisis, the differences in operating efficiency become uncon-
spicuous among business models. However, it is important
to note that different business models still play a role in
determining how companies weather the crisis. While the
differences in operating efficiency might not be as apparent
during extreme conditions, they can still influence a com-
pany’s ability to adapt, survive, and eventually recover. As
the economy recovered from the 2008 crisis, the differences
in operating efficiency among business models once again
became noticeable in the semiconductor industry.

Figure 2 shows the annual mean efficiency curves by
business model and optimal time, with 95% confidence
interval. The confidence interval is derived by new central
limit theorem (Kneip et al., 2015, p. 409). The variances for
the fabless firms are higher compared with the IDMs or
OSATs, implying higher risks and uncertainties for the
fabless business model.

As the separability condition does not hold (Table 4),
we use a flexible nonparametric location-scale model for a

second-stage regression. The pure efficiency can be derived
from equation (2.5). In practice, we obtain ( )μ z by regres-
sing ( ∣ )β x y z, on the environmental variable z. Similarly,
we obtain ( )σ z by regressing the squared residuals of the
preceding regression on z. The upper panel in Figure 3
illustrates the pure efficiency ( )ε z z,1 2 that cleanses effi-
ciency scores from the influence of both the environmental
factors Z1 and Z2. In the upper panel, the curves of ( )ε z z,1 2

by different business model twist together with no clear
structures, similar to white noise vibrating at small values
around zero.

The lower panel in Figure 3 illustrates the pure effi-
ciency ( )ε z2 that cleanses efficiency scores from the influ-
ence of only Z2, but not the business model Z1. In the lower
panel, the curves of ( )ε z2 demonstrate clear separation by
business models. Since ( )ε z2 only cleanses the influence of
time, the lower panel in Figure 3 maintains the structure of
the differences in technical efficiency by the business
model in Figures 1 and 2. The contrast between the upper
and lower panels in Figure 3 provides further evidence
that the technical efficiencies do vary in the semiconductor
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Figure 2: Mean β with 95% confidence interval.

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Year

M
ea

n 
Pu

re
 E

ffi
ci

en
cy

Pure Efficiency Conditional on Business Model and Time

whole industry
fabless
foundry+OSAT
IDM

5102010250020002

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Year

M
ea

n 
Pu

re
 E

ffi
ci

en
cy

Pure Efficiency Conditional on Time

whole industry
fabless
foundry+OSAT
IDM

5102010250020002

Figure 3: Pure efficiency.
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by the business model, and the asset-light fabless firms
are operating less efficiently on average in the past two
decades.

5 Summary

The semiconductor industry is famous for the high barriers
to entry, especially in the capital-intensive manufacturing
portion. The incumbent IDMs, benefitted by the economy
of scale and protected by the economic moat by huge
CAPEX, have dominated the semiconductor industry since
the onset of the industry in the 1960s. However, wagering
on novel technologies and processes with the ever-
expanding complexity of ICs becomes a weighty burden
even for the giant IDMs. The fabless–foundry business
model alleviates the financial risks of capital investment,
reduces the barriers to entry, accelerats technology itera-
tions, and leads to a flourishing of fabless design houses for
various applications.

This study compares the operating efficiencies between
the IDMs and the fabless–foundry business models to shed
light on which business model will be the market trend
and dominate the semiconductor industry in the long run.
Based on the capital-intensive feature of the semiconductor
industry, this study chooses a directional distance measure
to handle the constraint of CAPEX. At the same time, condi-
tional FDH estimators are used to handle the effects of
business model and time in the nonparametric frontier
approach. The empirical results provide clear evidence
that the IDMs are operating more efficiently, while fabless
firms are operating less efficiently by and large. A second-
stage nonparametric location-scale regression is used to
further check the robustness of the finding. By setting dif-
ferent conditions in the second-stage regression, we show
strong evidence that the technical efficiencies do vary in the
semiconductor by the business model, and the asset-light
fabless firms are operating less efficiently comparing with
the capital-intensive IDMs, foundries, and OSATs on average.

Nevertheless, there are several limitations in this study.
The method is mainly econometric. Criteria for PCA, the
separability condition, the optimal bandwidth, etc. are sta-
tistical, lacking solid ground in economics. The dynamics in
the semiconductor industry had not been fully measured,
which may need more advanced econometric methods and
data with more technical details for further research.

Though the fabless–foundry business model encourages
entrance of the fabless startups, the CAPEX barriers accom-
panying with technical barriers still limit the fields and

applications for the fabless firms to growth and development.
The IDMs, having more room to optimize the operation and
lead the technology development with a strategic product
roadmap by vertical integration, will continuously dominate
the semiconductor industry in the foreseeable future. At the
same time, the fabless–foundry business model is an impor-
tant complement of the IDMs to explore a broader scope in the
semiconductor industry. In fostering a healthy and compe-
titive semiconductor ecosystem, we suggest to tilt the sub-
sidies of the semiconductor industry toward the fabless
sector to promote innovation, to support entrepreneurship
and startups, to leverage specialization and expertise, and to
encourage more diversification.
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Appendix

A Principal Component Analysis

PCA is a mapping ⟼+
+

+
+

R RΨ :
p q 1 1. In matrix notation,

×p n matrix X and ×q n matrix Y are transformed to
× n1 matrices ′ XΛ

x1
and ′ YΛ

y
1

by pre-multiplying the first
eigenvector Λx1

and Λ y
1
of the moment matrices ′XX and

′YY , respectively. Unfortunately, there is no theorem that
precisely identifies situations where dimension reduction
should be used. Wilson (2018) provides three diagnostics
for empirical research.

The first diagnostic is to compute the effective para-
metric sample size m, in case of n observations in a non-
parametric estimation. Setting =m n

κ
1

2 , and thus, ≈ ⌊ ⌉m n
κ2 ,

where the convergence rate = +κ
p q

1 for FDH estimator and

= + +κ
p q

2

1
for DEA estimator, and ⌊ ⌉a denotes the integer

nearest a. Hence, the criterion of judging the minimum
sample size m in parametric estimation can be used as
reference in judging the minimum sample size n in non-
parametric estimation.

Figure A1: Optimal time window of Z2 by LSCV.
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A second diagnostic is to consider the proportion of n

observations that yield efficiency scores equal to one. Since
the, FDH estimator converges slower than the DEA esti-
mator, a robust diagnostic for the curse of dimensionality
should use the FDH efficiency estimator. If more than
25–50% of the observations yield efficiency scores equal
to one, the estimation results are not convincing.

A third diagnostic is to determine the ratios Rx and Ry

of the largest eigenvalue of the moment matrices ′XX and
′YY to the corresponding sum of eigenvalues for ′XX and
′YY . The ratios of Rx and Ry provide measures of how close

the corresponding moment matrices are to rank-one. For
example, if Rx = 0.9, then the matrix with dimension reduc-
tion ′ XΛ

x1 contains 90% of the independent linear informa-
tion in the original matrix X.

In practice, Wilson (2018) proposed standardizing the
matrices X and Y before PCA to ensure that the inputs or
outputs have the same scale, in case of excessive number of
inputs or outputs.

B Computation of the Directional
Distance Measure

This study follows the Daraio et al. (2020) approach to
compute the directional distance measure using the FDH
estimator.

First, use the Hadamard component-wise division of
vectors ⊘ to do a monotonic transformation of the data as:

= ⊘ = ⊘X X d Y Y d* and * .x y

Then, the directional distance estimator in equation (2.1)
can be expressed explicitly as:

( ∣ ) { ∣ (

∣ ) }

[ { }]
{ ∣ }

= > −

+ >
= − −

∣

≤

β x y d d β H x β y

β x

x X Y y

, , sup 0 * , *

0 ,

max min * *, * * ,

x y n X Y X

f

i X x

i i

, * *
f

f i f,

(A1)

where n is the sample size, { }∈i n1, 2, …, , and Xf is the
fixed input.

Similarly, the conditional directional distance esti-
mator in equation (2.4) can be expressed as:

( ∣ ) [ {

}]

{ ∣ ∣ ∣ }
=

− −

≤ − ≤
β x y d d z x

X Y y

, , , max min *

*, * * ,

x y

i X x Z z h

i i

,f i f i, (A2)

where Z denotes a vector of environmental variables.

C Kernel Method

A nonparametric estimator of ( )⋅∣HX Y Z, in equation (2.3) can
be obtained by standard kernel smoothing, i.e.,

 ( ∣ )

( )

=
∑ ≤ ≥ ⎛

⎝
⎞
⎠

∑ ⎛
⎝

⎞
⎠

∣

−

−
H x y z

X x Y y K

K

I

,

,

,X Y Z

i

n

i i

Z z

h

i

n Z z

h

,

i

i

where ( )⋅K is a kernel function and h is a vector of band-
widths ( )=h h h, …, r1 . Bădin et al. (2010, 2012), Hall et al.
(2004), Jeong et al. (2010), and Li et al. (2013) had discussed
extensively how to choose the optimal bandwidth h by
least-square cross-validation (LSCV).

In this study, the optimal bandwidth h of the time Z2 is
calculated by minimizing

( )

( )

͠ ͠ ͠ ͠
( ) ( )

( )

͠ ͠ ͠ ͠

∑ ∑
⎡

⎣
⎢ ≤ ≤ ≥ −

⎤

⎦
⎥

−

= ≠

∑ ≤ ≤ ≥

∑

≠

− ≠
x x x x y y

n n

I , ,

1
,

i

n

j i

n

i j f i f j i j

x x x x y y K z z

K z z

I

1 , ,

, , ,

,

2

n
k i

n

k j f k f j k j h i k

n
k i

n

h i k

1

, ,

1

1

where ( ) ( )=K t Kh
h

t

h

1 . The patterns in Figure A1 represent
the optimal time window by the business model using LSCV.
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