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Abstract: This article tries to estimate the operating effi-
ciency among 30 years (1989–2018) in the information
technology (IT) industry, where technologies are everchan-
ging. The balanced panel data model of Kneip et al. is
extended to an unbalanced panel data model for more gen-
eric applications. The estimation results based on listed IT
firms in the US stock market provide evidence that the law
of the jungle is applicable to the IT industry. The industry
survivors, which often obtain and maintain market power
through merger and acquisition, create economic moats by
setting high barriers to entry to defend against risk and
uncertainty and dominate the capital-intensive and tech-
nology-intensive IT industry. At the same time, the estima-
tion results also demonstrate that the global IT industry is
highly sensitive to technological waves and business cycles.
Though thriving start-ups and spin-offs stimulate innova-
tion and generate a richer diversity, economies of scale
are still essential for sustainable development in the IT
industry.

Keywords: information technology industry, economies
of scale, total factor productivity, factor model

1 Introduction

Information technology (IT), which produces deep-rooted
and widespread changes in society, has long been one of
the major forces that transform the global economy (Martin,
2017). Moore’s law¹, first observed by Gordon Moore in 1965,
has guided the exponential growth in the global IT industry
for over 50 years (Mack, 2011). On the one hand, the cost per

transistor, or in other words, the cost of computing power to
the customer, falls dramatically, but on the other hand, the
lithography tool cost to fabricate transistors, or in other
words, the investment in manufacturing chips and compo-
nents, soars (Thompson & Parthasarathy, 2006). Benefiting
from the increasing capacity and decreasing cost of com-
puting, applications powered by semiconductor chips, such
as consumer electronics, artificial intelligence, machine
learning, and advanced quantum computing, have been
thriving in the past few decades. The rapid pace of evolution
in the IT industry helped with expedite technological diver-
sification. Niche companies, either start-ups or spin-offs
that are more likely to possess the adjustments necessary
to take advantage of new opportunities, flourished under
such fast-paced innovations (Dosi & Nelson, 2010).

However, innovations are heavily dependent on research
and development (R&D) investment and hence are capital-
intensive and risky. Since the firm size is correlated with the
ability to generate funds, start-ups are hampered by the con-
straint of financial and human resources to support contin-
uous R&D activities, whereas the market dominants taking
advantage of their large sizes reduce the risk associated with
the prospective returns to innovation (Cohen, 2010). There-
fore, in the IT industry, whether incumbent large companies
which are benefitted from economies of scale or specified
niche companies which are benefitted from economies of
scope lead the trends of innovation and operate more effi-
ciently remains a challenging empirical question.

According to the Schumpeterian theory of innovation,
profits and operating efficiencies are generated either by
reducing the overall cost of production or increasing the
demand for products. Bartelsman et al. (2015), Kumbhakar
et al. (2012), Siliverstovs (2016), and others examined the
nonlinear relationship between R&D and productivity.
Kumbhakar et al. (2012) and Siliverstovs (2016) pointed
out that firms in high-tech sectors not only invest more
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1 Moore’s law is the observation that the number of transistors in a
dense integrated circuit doubles about every 2 years.
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in R&D but also achieve more productivity gains con-
nected with research activities, while Bartelsman et al.
(2015) emphasized the large heterogeneity in the returns
of human capital. Ortega-Argilés et al. (2014) compared
the productivity performance between Europe and the
USA and found that firms in the USA are more efficient
in translating their R&D investments into productivity both
in sectors of manufacturing and services, and especially in
high-tech related industries.

Many other factors might also affect productivity in
the innovation-driving IT industry. Ding et al. (2016)
examined the foreign competition effect on growth and
innovation from a global point of view and argued that
import competition stimulates domestic firms’ produc-
tivity growth and R&D expenditure for firms and their
industries closer to the worldwide frontier. Gopinath
et al. (2017) focused on the impact of capital allocation
and observed that misallocated capital flows would cause
a decline in total factor productivity (TFP). Shu & Stein-
wender (2019) revealed interesting heterogeneities of trade
liberalization to spur productivity and innovation at both
the country level and the firm level. Lanfranchi & Grassi
(2021) showed evidence that in a competitive market
where new players are entering, industrial incumbents
have to defend their market position by leveraging tech-
nology to improve their efficiencies. On the contribution
of institutional factors to a firm’s productivity, Agostino
et al. (2020) argued that better local institutions can
help firms, especially small and medium enterprises
(SMEs), to reduce transaction cost and become more
productive, while Añón Higón et al. (2022) found that
higher governance quality can improve firms’ opera-
tional efficiencies.

However, the productivity comparisons involved in
the aforementioned empirical studies were either at the
country level or across many industries or sectors but not
dedicated to the IT industry. The roles and contributions
of IT investments to IT-using industries have been widely
discussed (e.g., Casolaro & Gobbi, 2007; Chen & Zhu,
2004; Sabherwal & Jeyaraj, 2015). But few empirical stu-
dies have evaluated the productivity performance of the
IT industry, especially for the changes and trends in the
long run. Yang et al. (2013) examined the entry barrier’s
difference between information and communication tech-
nology (ICT) and non-ICT industries, but their data mixed
companies from both the manufacturing sector and the
service sector, which are hardly comparable. Madudova
et al. (2018) situated the process of economic sustainability
in the ICT industry at marco-level.

This article aims to extend the literature on produc-
tivity analysis in the IT industry with a long-term perspec-
tive. We collect data from the IT industry in the Compustat

North America database over 30 years (1989–2018) for IT
firms listed in the US stock market. The data include 510,
706, and 458 firms that have full observations in the 10
years periods: 1989–1998, 1999–2008, and 2009–2018,
respectively. For the whole observing period of 30 years,
an interesting finding is that there are 1,355 firms that have
at least 10 years of continuous annual records, but only 112
firms that have continuous 30-years annual record. The
phenomenon that a small number of corporations have
survived and come to dominate the IT industry raises a
debate of whether a winner takes all in the market (e.g.,
Chattergoon & Kerr, 2022; Inoue, 2019).

On the one hand, the average lifespan of an S&P 500
company went down from 60 years in the 1950s to under
20 years nowadays, while the 5-year survival rate of all
US establishments was roughly 50% (Mauboussin et al.,
2017). Furthermore, the survival time of innovative enter-
prises, which involve heavily in high-risk radical innova-
tion activities, is significantly lower than that of the non-
innovative ones (e.g., Boyer & Blazy, 2014; Buddelmeyer
et al., 2010). On the other hand, the market position of the
incumbents has also changed dramatically in the past
few decades. In the annals of the IT industry, cutting-
edge technology had upgraded from personal computer
in the 1980s and the World Wide Web in the 1990s to
multimedia and smartphone applications in the twenty-
first century. The leading companies in the IT industry
have updated constantly, from IBM in the 1980s and
Microsoft in the 1990s to HP² in the 2000s and Apple in
the 2010s. Few companies in the highly competitive IT
industry could ride one wave of technology to its fullest and
then change coursequickly enough to catchanother bigone.
We plan to take a long-term perspective (1989–2018) and
follow the productivity frontier analysis approach to further
dig out the shift in operational efficiency in the IT industry.

The productivity frontier analysis, which provides a
convenient and comparable standard, is a popular approach
for performance evaluation. In the literature on productivity
and efficiency analysis in the IT industry, Chou et al. (2012)
and Shu & Lee (2003) selected the stochastic frontier ana-
lysis (SFA) approach to examine cross-country performance
worldwide, but their investigations use aggregated country-
level data, not reflecting firm-level heterogeneities. Mathur
(2007) chose data envelopment analysis (DEA) to examine
India’s IT industry, but the measurement based on the
Malmquist index was more suitable for balanced panel
applications. Gökgöz and Güvercin (2018) and Halkos &



2 HP Inc. (NYSE: HPQ), an American company that develops per-
sonal computers, printers, and related supplies, was formerly
known as Hewlett-Packard.
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Tzeremes (2007) used the DEA approach to study TFP
changes worldwide, but their works restricted the survey
to the top 50–60 companies in the global IT industry. This
article aims to evaluate the operating efficiencies in the IT
industry with a firm-level perspective, dedicated to IT firms
listed in the US stock market.

This article also chooses a novel semiparametric SFA
approach, which bridges the DEA and SFA approaches to
overcome some of the estimation errors. The tradeoff
between the DEA approach and the SFA approach is a
vexing problem for performance evaluation. The DEA
approach, introduced by Banker et al. (1984), Charnes
et al. (1978), and Deprins et al. (1984), has not only the
advantage of being nonparametric but also the disadvan-
tage of not allowing for statistical noise. In contrast, the
SFA approach, proposed independently by Aigner et al.
(1977), Battese & Corra (1977), and Meeusen & van Den
Broeck (1977), has the attraction of allowing for both an
inefficiency term and an error term and also has the draw-
back of requiring a priori parametric functional form of the
frontier and the inefficiency distribution. Semiparametric
models have come a long way to bridge the gap between
the deterministic DEA approach and the econometric SFA
approach. Fan et al. (1996), Kuosmanen & Kortelainen
(2012), etc., suggested the nonparametric stochastic fron-
tier approach, but their estimation retains a homoscedas-
ticity assumption of the stochastic terms. Park & Simar
(1994) and Park et al. (1998) analyzed the semiparametric
stochastic frontier model for dealing with panel data, but
their approach assumed time-invariant firm-specific tech-
nical inefficiency. Kneip et al. (2012) proposed a general
and flexible semiparametric model by allowing for a
time-varying firm-level inefficiency term and using factor
models for estimation.

This article mainly follows the Kneip et al.’s (2012)
approach to measure the long-term trends of TFP in the IT
industry. Unfortunately, the Kneip et al. (2012) approach
was based on balanced panel data, limiting its applica-
tions. In the real world, especially in the highly competi-
tive IT industry, unbalanced panel data are unavoidable.
On the one hand, continuous innovations in the IT
industry accelerated market diversification, reduced entry
barriers, and gave birth and growth to industry start-ups.
However, the operating records of these niche companies
were often unobservable until they grew up to a certain
extent, for example, after the company had gone public.
Since the lifespan of more than half of US establishments
is less than 5 years, the destination of most of the niche
companies in the IT industry was either bankrupt or taken
over. On the other hand, the market incumbents were
benefited by high capital investment thresholds. Hence,

they would have continuous business records that could
be traced back for over decades. In order to match the
econometric model with the reality in the IT industry to
improve the estimation accuracy, this article extends the
Kneip et al.’s (2012) approach to unbalanced panel data
applications.

The estimation results indicate that the industry sur-
vivors, taking advantage of the economies of scale, have
relatively higher technical efficiencies in the IT industry.
At the same time, the estimation results also imply that
the IT industry is highly sensitive to technological waves
and global business cycles. Diversified preferences and
rising demands and expectations from customers have
stimulated continuous technological innovation of new
products and services in the IT industry, leveraging com-
panies to concentrate on a specific area in the IT industry
to enhance their differentiating competitive advantages.
The diversity of products and applications, either at firm-
level or industry-level, has generated huge heterogene-
ities in the IT industry. These heterogeneities twisting to
the ups and downs in the global economic cycle have
generated high uncertainty of commercial success in
the IT industry. Most of the industry survivors that
operate with less uncertainty and more steady growth
are capital-intensive large-scale companies in the IT
industry, which are benefitted by the economics of scale
by and large.

The rest of the article is organized as follows. Section 2
introduces the Kneip et al.’s (2012) model and extends the
model to unbalanced panel data applications. Section 3
describes the dataset and defines the variables for this
research. Section 4 gives the estimation results with a com-
parison for both balanced panel and unbalanced panel
models. Section 5 provides a summary.

2 The Model

The seminal work of Solow (1957) provides a measure of
productivity growth that is usually referred to as the
Solow residual or TFP. For a production technology
with one output and p inputs, the output distance func-
tion is given as follows:

∏
≤

Y
X

1,
j
p

j
βj (2.1)

where βj is the weight of input Xj. By taking log transfor-
mation in equation (2.1), a stochastic frontier model can
be derived as follows:
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( )∑= − +Y β X u t εln ln ,
j

j j i it (2.2)

where ( )u ti is the nonnegative firm-specific inefficiency
term, and εit is the adding statistical noise term. Traditional
parametric SFA approaches, such as Battese & Coelli (1992),
Cornwell et al. (1990), Greene (2005), and Kumbhakar (1997)
are based on the maximum likelihood estimation (MLE) tech-
nique, which needs ex-ante functional form assumptions.

Kneip & Sickles (2011) introduce an alternative approach
to decompose the TFP into exogenous technical change and
endogenous efficiency change by modifying (2.2) as follows:

( ) ( )∑= + + +

= … = …

=

y β t x β ν t ε

i N t T

,

1, , , 1, ,

it
j

p

itj j i it0
1 (2.3)

where [ ]=y Ylnit it, [ ]=x Xlnitj j it, ( ) ( )= ∑ =β t u tN i
N

i0
1

1 , and

( ) ( ) ( )= − −ν t β t u ti i0 . Note that ( )∑ == ν t 0i
N

i1 by construc-
tion. Hence, the sources of TFP growth are split into an
external technical change term ( )β t0 due to an exogenous

long-term trend and an internal technical efficiency (TE)
term ( )ν ti due to endogenous productivity performance.
Taking the advantage of panel data, the exogenous term

( )β t0 in equation (2.3) can be eliminated trivially by cen-
tering the variables. In detail, we define = − ∑∗

=y y yit it N i
N

it
1

1 ,

= − ∑∗
=x x xitj itj N i

N
itj

1
1 , and = − ∑∗

=ε ε εit it N i
N

it
1

1 . Hence, the

model in equation (2.3) is simplified to

( )∑= + +∗

=

∗ ∗y x β ν t ε .it
j

p

itj j i it
1

(2.4)

As the TE term ( )ν ti in equation (2.4) is unobservable, we
recommend estimating the model semiparametrically.
More specifically, we can use cubic splines and factor
models to estimate (2.4) without extra functional restric-
tions on the TE term ( )ν ti . By using cubic splines, the
estimation of equation (2.4) is to optimize

( ( ))

( ( ))∫

∑∑ ∑

∑

− −

+ ″

= =

∗

=

∗

=

T
y β x ϑ t

κ
T

ϑ s s

1

1 d ,

i

N

t

T

it
j

P

j itj i

i

N T

i

1 1 1

2

1 1

2

(2.5)

where ( )ϑ ti denotes a nonparametric approximation of

( )ν ti , and ( )″ϑ ti denotes the second derivative of ( )ϑ ti . To
further simplify the notation, the objective function (2.5)
can be written in matrix form as follows:

( ) ( )∑= ‖ − − ‖ +
=

S β ζ Y X β Zζ κζ Rζ, ,
i

N

i i i i
T

i
1

2 (2.6)

where ( )= …∗ ∗Y y y, ,i i iT
T

1 , Xi is a ×T P matrix with elements
∗Xitj, Z and R are ×T T matrices to be decided by cubic

splines, ( )= …ζ ζ ζ, ,i i iT
T

1 , and κ is a preselected para-
meter to control the smoothness of ( )ϑ ti . Hence, the esti-
mators of β and ζi in equation (2.6) can be expressed
explicitly as follows:







⎜ ⎟ ⎜ ⎟
⎛

⎝
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⎞

⎠

⎛

⎝

( )
⎞

⎠

( ) ( )

∑ ∑= − −

= + −

=

−

=

−

β X I Z X X I Z Y

ζ Z Z κR Z Y X β

,

,
i

n

i
T

k i
i

n

i
T

k i

i
T T

i i

1

1

1

1

(2.7)

where ( )= + −Z Z Z Z κR Zk
T T1 . Based on the results

in equation (2.7), the estimator of νi can be written
as  ( )= −ν Z Y X βi k i i .

Furthermore, the unknown structure of ( )ν ti can be
derived by factor models as follows:

( ) ( )∑=
=

ν t λ f t ,i
l

D

il l
1

(2.8)

where D is the number of unknown factors, ( )f tl is one of
the unknown factors, and λil is the corresponding indivi-
dual loading. Using principal component analysis (PCA)
with suitable normalization conditions, the factor ( )f tl and
loading λil in equation (2.8) can be expressed as follows:





 

( )

( ( ) )

=

= − − −

f t T γ

λ
T

f Y Y X X β

,
1 ¯ ¯ ,

l lt

il l
T

i i
(2.9)

where γl is the lth eigenvector of the covariance matrix

∑ = ∑ = ν νN i
N

i i
T1

1 , γlt is the tth element of the eigenvector γl,

and   ( ( ) ( ))= …f f f T1 , ,l
T

l l
T . In practice, applications with

missing observations are common. As discussed in the
introduction, the average lifespan of an S&P 500 com-
pany is less than 20 years, and the lifespan for a firm in
the IT industry is even shorter. For a study of firms in the
IT industry for 30 years (1989–2018), the dataset is com-
monly an unbalanced panel. Therefore, the balanced
panel data model in equations (2.4)–(2.6) needs to be
modified into an unbalanced panel data model.

In order to distinguish the notation between the
balanced panel data model and the unbalanced panel
data model, we introduce additional variables of Nt, Ti,
and Iit, where Nt represents the number of observations in
period t,Ti represents the sum of years with observations,
and Iit is a dummy variable that Iit = 1 if i is observed in
period t, and Iit = 0 if i is not observed in period t . Then
the unbalanced panel data model is modified from equa-
tion (2.4) to
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( )∑= + +∗∗

=

∗∗ ∗∗y β x ν t ε ,it
j

P

j itj i it
1

(2.10)

where = − (∑ )
∗∗

=y y y Iit it N i
N

it it
1

1t
, = − (∑ )

∗∗
=x x x Iitj itj N i

N
itj it

1
1t

,

and = (∑ )
∼

=ε ε It N i
N

it it
1

1t
. Note that = ∑ =N It i

N
it1 and = ∑ =T Ii t

T
it1 .

The estimation procedures for the unbalanced panel
model are similar to what has been done for the balanced
panel model above. In detail, the objective function in
equation (2.10) can be reformulated in matrix form as
follows:

( ) ( )͠ ͠ ͠∑= ‖ − − ‖ +
=

S β ζ Y βX Z ζ κ ζ R ζ, ,
i

N

i i i i i i
T

i i
1

2 (2.11)

where ( )͠ = …∗∗ ∗∗Y y y, ,i i iT
T

1 , X͠i is a ×T P matrix with ele-
ments ∗∗Xitj , Zi and Ri are ×T T matrices, and κi is the
smoothing parameter to control the smoothness of ( )ϑ ti .
The estimators of β and ζi are obtained by optimizing

( )S͠ β ζ, in equation (2.11) as follows:
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i
T
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T
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1
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1

(2.12)

It is straightforward from (2.12) that ( )͠͠͠ ͠= −∼ν Z Y X βi i i i ,
where ( )͠ = + −Z Z Z Z κ R Zi i i

T
i i i i

T1 . The main difference
between (2.7) and (2.12) is that in a balanced panel,
both Zk and κ are constant for all firms, but in an unba-
lanced panel, the parameters Zi and κi are specific for
each individual firm i. To further study the unknown
structure of ( )ν ti in unbalanced panel model, we follow
the functional PCA approach of Paul & Peng (2009) to
derive the unknown heterogenous term ( )ν ti as follows:

( ) = +∼ν t λ F ξ ,i i
T

t it (2.13)

where Ft can be presented by basis functions as ≈Ft
T

( ( ) ( ))…ϕ t ϕ t B, , M1 , that { } ≤ϕj j M is a set of orthonormal
basis functions and B is an orthonormal coefficient
matrix. Note that =B B IT . If suppose ( )λ N Σ~ 0,i

iid
λ and

( )ξ N σ~ 0,it
iid 2 , the time-varying inefficiency term ( )∼ν ti in

(2.13) can be identified by MLE.

3 The Data

The data are collected from the IT industry in the Compustat
North America database, covering IT firms listed in the US
stock market over 30 years (1989–2018). The US equity mar-
kets have long been the largest and most liquid in the
world, continuously attracting technology companies to

raise equity capital from public investors. Since 30 years
include many ups and downs of the technological waves
of innovation in the IT industry, we further split the sample
by each of the 10 years to compare operational efficiencies
between the mid-term and the long-term. Hence, in a
balanced panel data point of view, the data include 510,
706, and 458 firms, which have full observations in the
10 years periods: 1989–1998, 1999–2008, and 2009–2018,
respectively. Meanwhile, in the whole sample period
of 30 years, there are 112 firms that have continuous
30 years’ annual data, while in an unbalanced panel
data point of view, the data include 1,355 firms that
have at least 10 years of continuous annual records in
the 30 years 1989–2018.

We specify one output (revenue (REVit)) and =p 3
inputs (direct production cost (PROit); overhead cost,
measured by the sales and marketing expenditure
(OVEit); and capital investment, measured by property,
plant, and equipment (PPEit)). Table 1 gives summary
statistics for the variables in each of the 10 years of
balanced panels, and in 30 years of balanced and unba-
lanced panels. All the values in Table 1 are in log-form,
with units in thousand dollars for the original data before
the log transformation.

The drastic difference between the number of firms in
different periods in Table 1 is rooted in the feature that the
IT industry is both technology and capital-intensive. As a
technology-intensive industry, the IT industry is driven
by continuous innovations that reduce entry barriers and
give birth and growth to the start-ups. Unfortunately, the
operating records to the start-up companies are often
unobservable until these companies grow up to a certain
extent. As a capital-intensive industry, the IT industry is
dominated by industry giants, which take advantage of
capital investment to set up economic moats and mini-
mize competition. One frequently used strategy by the
incumbents to maintain and intensify their market power
is to scale up by mergers and acquisitions (M&A). This is
why the industry survivors are so few in the IT industry
that many of the SMEs have already been integrated
into industry giants before they grow into formidable
competitors.

4 Estimation and inference

In order to derive consistent estimation in equations (2.6)
and (2.11), Bada & Liebl (2014) propose to use a parameter
iteration algorithm together with generalized cross-vali-
dation (GCV). The iteration algorithm starts with certain
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initial values of β, defined as β b0 in the balanced panel

model and β u0 in the unbalanced panel model, then iter-
ates until the estimates of β converge at certain βb and

βu
in the balanced panel and unbalanced panel models,

respectively. The initial values of β b0 and β u0 are derived
by
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where Gb and Gu are ×T D matrices of the eigenvectors
corresponding to the first D eigenvalues of the aug-
mented covariance matrices Γb and Γu, which are defined
as follows:
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Though there are many methods to estimate the optimal
dimension D, a convenient approximation of the suitable
dimension D is given by { }=D N Tmin , . Thereafter,
we optimize (2.6) and (2.11) with respect to ζi to obtain
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where ζib and ζiu are estimates of ζi in the balanced and
unbalanced panel models, respectively. Using the results
in equation (4.3), we can optimize equations (2.6) and
(2.11) with respect to β to obtain

Table 1: Descriptive statistics

Min Q1 Median Mean Q3 Max N Unique firm

Balanced panel
1989–1998
REV 3.81 9.56 10.88 11.02 12.33 18.26 5,100 510
PRO 2.20 8.89 10.23 10.38 11.68 17.82 5,100 510
OVE 1.39 8.46 9.67 9.88 11.12 17.15 5,100 510
PPE 3.43 8.28 9.63 9.83 11.20 18.04 5,100 510
1999–2008
REV 3.78 10.41 11.72 11.85 13.16 18.59 7,060 706
PRO 1.61 9.61 10.98 11.10 12.44 18.29 7,060 706
OVE 5.64 9.62 10.77 10.89 11.97 17.21 7,060 706
PPE 3.26 9.12 10.50 10.66 11.98 18.22 7,060 706
2009–2018
REV 3.87 10.93 12.71 12.65 14.27 19.40 4,580 458
PRO 1.95 10.17 11.90 11.87 13.47 18.85 4,580 458
OVE 6.67 9.99 11.53 11.51 12.89 17.43 4,580 458
PPE 3.66 9.71 11.41 11.43 13.18 18.55 4,580 458
1989–2018
REV 7.08 10.62 12.44 12.63 14.55 19.40 3,360 112
PRO 3.53 10.04 11.83 11.96 13.68 18.85 3,360 112
OVE 6.23 9.40 11.13 11.35 13.18 17.43 3,360 112
PPE 5.45 9.57 11.40 11.55 13.40 18.55 3,360 112
Unbalanced panel
1989–2018
REV 0.69 10.13 11.53 11.67 13.09 19.40 24,188 1,355
PRO 1.39 9.33 10.79 10.92 12.36 18.85 24,188 1,355
OVE 1.39 9.29 10.52 10.65 11.88 17.43 24,188 1,355
PPE 0.69 8.73 10.25 10.42 11.87 18.55 24,188 1,355

Note. All the values are in log-form. N = n(firms) T× (years) in the balanced panel. N = n(firms) T× (years) excludes the missing observa-
tions in the unbalanced panel. REV represents the output variable of revenue. PRO represents the input variable of direct production cost.
OVE represents the input variable of overhead cost. PPE represents the input variable of capital investment in property, plant and
equipment.
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where βb and βu are estimates of β in the balanced and
unbalanced panel datamodels, respectively. The smoothing
parameters κ and κi are determined by the GCV criterion as
follows:
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We can iterate from (4.3) to (4.5) until the estimates of β
and ζ converge.

Table 2 provides the estimates of βPRO, βOV E, and βPPE
in both balanced and unbalanced panels. The variance of
βb and βu are calculated by
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where the estimators of σb
2 and σu

2 can be obtained by
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The estimates in Table 2 show that in the production
function, the weights of direct production costs are about
60% or higher, and the weights of overhead are around
30%. However, the weights of property, plant, and equip-
ment (PP&E) are 5% or less in the production function.
Furthermore, the coefficients of βPRO and βOVE are statis-
tically significant in every situation, but the coefficient of
βPPE is not statistically significant in more than half of the
cases.

The trivial weights of PP&E in the production func-
tion may be caused by the popularity of the light-asset
mode in the IT industry (e.g., Sarma & Sun, 2017; Wang
et al., 2020). Since the capital expenditure (CAPEX)
for manufacturing leading-edge products has become
prohibitive for all but a few vendors in the IT industry,
it creates high barriers to entry. In order to optimize the
limited resource, many start-up and spin-off companies
in the IT industry choose to specialize in R&D and
direct their limited funding to human capital investment
instead of fixed capital investment. On the contrary, the
industry giants who can afford the burden of CAPEX may
gain monopoly power and dominate the market through
risky but profitable capital investment.

Once the time-varying individual effects are esti-
mated, we follow the approach of Schmidt & Sickles
(1984) to calculate TE for firm i at time t as follows:

( ) ( ( ) ( ))= − = …t eTE .i
ν t ν tmaxi j N j1, , (4.8)

Note that ( )< ≤t0 TE 1i by construction. Figures 1 and 2
plot the densities of estimated TE in the balanced and
unbalanced panel models, respectively. In Figure 1, the
densities of annual TE have only small shifts within each
of the 10-year periods. The slight differences in the TE
density curves are more likely affected by business cycles
than structural changes driven by technological waves
in the IT industry. Oppositely, also in Figure 1, the density
curves of annual TE in the 30-year balanced panel change
drastically. That is, the densities of annual TE for the sur-
viving companies in the 30-year balanced panel have a
steady trend shifting to the right. Such distinct structure
changes of TE imply that the industry survivors gain market
power as time passes so that they have relatively higher and
closer TEs. As products and applications keep diversifying

Table 2: Estimates by various groups

Period Intercept βPRO βOV E βPPE D

Balanced panel
1989–1999 1.55∗∗∗ 0.71∗∗∗ 0.19∗∗∗ 0.02 2

(0.19) (0.01) (0.01) (0.01)
1999–2008 1.56∗∗∗ 0.64∗∗∗ 0.28∗∗∗ 0.02 3

(0.21) (0.01) (0.02) (0.01)
2009–2018 1.59∗∗∗ 0.57∗∗∗ 0.32∗∗∗ 0.05∗∗∗ 3

(0.21) (0.01) (0.02) (0.01)
1989–2018 0.97∗∗∗ 0.57∗∗∗ 0.42∗∗∗ 0.00 5

(0.21) (0.01) (0.02) (0.01)
Unbalanced panel
1989–2018 0.69∗∗∗ 0.60∗∗∗ 0.32∗∗∗ 0.05∗∗∗ 4

(0.18) (0.00) (0.01) (0.01)

t statistics in parentheses.
p 0.05<∗ , p 0.01<∗∗ , p 0.001<∗∗∗ .
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through technological waves and evaluations, although
no single company could maintain monopoly power and
domain of the market in the long run, a few companies,
such as Intel for semiconductor chips, Apple for smart-
phones, and Microsoft for desktop operating systems, may
raise monopoly power at some level in one of the subsectors
in the IT industry.

In Figure 2, we also observe apparent shifts of the den-
sity curves of TE in the 30-year unbalanced panel, but in a
different way. In detail, the curves first shift to the left till
around the end of the first decade of the 2000s, then shift

backward to the right in the 2010s. It is worth mentioning
that the shifting trend of the density curves has a turning
point during the 2008 financial crisis, which could hardly
be a coincidence. Starting in the 1990s, the trend of globa-
lization provided incentive to incumbents in the IT industry
to intensify their market power through cross-border M&A
activities. However, this M&A wave ended in the 2008
financial crisis (Junni & Teerikangas, 2019). After the great
recession of 2008, with the gradual recovery of the global
economy, another innovation wave led largely by the tran-
sition to mobile and the rise of data has accelerated the

Figure 1: Distribution of TE in the balanced panel.
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growth of artificial intelligence, e-commerce, and social
media and radically changed our day-to-day lives. The
flourished IT industry not only attracts more start-ups to
enter the market but also pushes most firms into more chal-
lenging conditions. The intensified competition in the IT
industry impels companies to improve their operationsman-
agement andhence pushes the TE curves to shift to the right.

Figure 3 plots the average annual TEs in both balanced
and unbalanced panels. Consistent with the findings shown
in Figures 1 and 2, the curves in Figure 3 provide evidence
that the industry survivors, which are often the capital-
intensive large scale companies, take the advantage of their
market power to defend against the threats from techno-
logical evolution, market uncertainty, and global economic
ups and downs, have relatively higher average TEs. Figure 3
also demonstrates cyclic fluctuations of the average annual
TEs, especially in the long run. In the 30-year balanced
panel, the two wave troughs of the average annual TEs
correspond to the periods of the dot-com crash in 2000
and the subprime mortgage crisis in 2008. Despite the
market fluctuations by business cycles, the curve of average
annual TEs in the 30-year balanced panel shows a steady
upward trend, implying that the market incumbents keep
gaining operating efficiencies in the long run. On the con-
trary, the curve of average annual TEs in the 30 years unba-
lanced panel shows a U-shaped trend (or aW-shaped trend,
though a little bit vague) implying that the whole market is
suffering and losing operating efficiencies during the hard
times of the dot-com crash and the global financial crisis.
Furthermore, it is not surprising that in Figure 3 the esti-
mates of average TEs in the balanced panel aremuch higher
than the estimates of average TEs in unbalanced panel,
since the balanced panel is dominated by the survival
market giants.

Figure 2: Distribution of TE in the unbalanced panel.

Figure 3: Mean TE in the IT industry.
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5 Summary and conclusions

It is an intimidating subject to analyze the operating effi-
ciency in the IT industry where technologies are ever-
changing. This article chooses the data from listed IT
firms in the US stock market to study the operating effi-
ciency in the IT industry with a long-term perspective
(1989–2018). The estimation results in this article provide
evidence that the law of the jungle is applicable to the IT
industry. Despite the market ups and downs either by
technological evolutions or by business cycles, the industry
survivors, which often obtain and maintain market power
through M&A, dominate the highly competitive IT industry
in the long run. As the development of internet technologies
has helped to overcome the obstacles in border regions and
facilitate a global product chain and supply chain in the IT
industry, quite a number of the listed IT firms in the US
stock market are multinational corporations with R&D cen-
ters, manufacturing sites, customers, and businesses all
over theworld. Hence, the estimation results based on listed
IT firms in the US stock market are also applicable to a
worldwide picture. In the capital-intensive and technology-
intensive global IT industry, the incumbent market giants
take advantage of high barriers to entry and create economic
moats to defend against the threats and risks either from
competition with new entrants in the global market or from
the uncertainty of technological investments in R&D.

However, although the economies of scale are still
essential in the IT industry, they are not the only driving
forces for sustainable technology development. Diverse
preferences and rising expectations from customers have
stimulated continuous technological innovation of new
products and services in the IT industry. More and more
companies choose to concentrate on a specific subsector
in the IT industry to differentiate and enhance their com-
petitive advantages. The diversity of products and appli-
cations, either at the firm-level or industrial-level, has
generated huge heterogeneities in the IT industry. Further
studies of the operating efficiency in the IT industry could
either focus on a more specific subindustry or develop more
advanced econometric tools to control and monitor the
impacts of heterogeneities. With the expansion of market
scale and market scope, the flourishing and prosperity of
the IT industry depend on the contributions of both inno-
vative sparks from start-ups and continuous capital invest-
ments from market incumbents.
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