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Research Article

Juan Ángel Lafuente*, Mercedes Monfort, Rafaela Pérez, and Jesús Ruiz

Disentangling Permanent and Transitory
Monetary Shocks with a Nonlinear Taylor Rule

https://doi.org/10.1515/econ-2021-0010
received September 23, 2021; accepted December 02, 2021

Abstract: This article provides an estimation method to
decompose monetary policy innovations into persistent and
transitory components using the nonlinear Taylor rule pro-
posed in Andolfatto, Hendry, and Moran (2008) [Are infla-
tion expectations rational? Journal of Monetary Economics,
55, 406–422]. To use the Kalman filter as the optimal signal
extraction technique, we use a convenient reformulation for
the state equation by allowing expectations to play a signi-
ficant role in explaining the future time evolution of mone-
tary shocks. This alternative formulation allows us to perform
the maximum likelihood estimation for all the parameters
involved in the monetary policy as well as to recover condi-
tional probabilities of regime change. Empirical evidence on
the US monetary policy making is provided for the period
covering 1986-Q1 to 2021-Q2. We compare our empirical esti-
mates with those obtained based on the particle filter. While
both procedures lead to similar quantitative and qualitative
findings, our approach has much less computational cost.

Keywords: Taylor rule, monetary shocks, Kalman filter,
particle filter

JEL classification: C22, F31

1 Introduction

State-space models are useful for many economic appli-
cations. As it is well known, under normality, the classical
Kalman filter provides the minimum-variance estimate of
the current state considering the most recent signal. This

prediction is just the conditional expectation. However,
under nonlinearity and/or nonnormality, the filtering pro-
cedure developed by Kalman (1960) becomes nonoptimal.
Two alternatives have been developed in the literature to
deal with this aspect: (a) the use of first-order Taylor series
expansion to get linearized equations (transition and/or
observation) and (b) the use of simulations techniques
based on sequential estimation of conditional densities
through lot of replications. The first alternative leads to
biased estimators. As to the second approach, the seminal arti-
cles of Fernández-Villaverde and Rubio-Ramírez (2005, 2007)
show how to deal with the likelihood-based estimation of
nonlinear dynamic stochastic general equilibrium (DSGE)
models with nonnormal shocks using a sequential Monte-
Carlo method (particle filter). This procedure requires a
heavy computational burden.

This article rethinks about the nonoptimality of the
Kalman filter by revisiting the signal extraction problem
proposed in Andolfatto, Hendry, and Moran (2008). These
authors consider a nonlinear Taylor rule where regime
shifts reflect the updating of the central bank’s inflation
target. Such rule could be useful not only to analyze mone-
tary policy making through the lens of a Taylor rule but
also in the context of New-Keynesian models that incorpo-
rate imperfect monetary policy credibility and/or changes
in the Central Bank’s inflation target (see, e.g., Aruoba &
Schorpheide, 2011; Cogley, Primiceri, & Sargent, 2010;
Grossi & Tamborini, 2012; Ireland, 2007; Kozicki & Tinsley,
2005; Milani & Treadwell, 2012). The article contributes
to the literature by providing an optimal use of the Kalman
filter to estimate persistent and transitory monetary shocks
when permanent shifts in the inflation target take place.
Therefore, we focus on how to estimate a Taylor rule
where central banks’ smoothing of interest rates is time
varying because of time-varying inflation targeting. Our
nonlinear framework from the perspective of conventional
monetary policymaking is also interesting even in scenarios
with interest rates close to the zero-lower bound. The recent
study of Anzuini (2021) provides empirical evidence on the
presence of nonlinearities in the transmission mechanism
of unconventional large-scale asset purchases made by the
Federal Reserve after the global financial crisis of 2008.
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We consider a new state-space representation that
requires the use of state-contingent matrices, and expec-
tations play a significant role in monetary policy making.
Our procedure has two clear advantages over the standard
particle filter: (a) the possibility of performing a maximum
likelihood estimation of the parameters involved in the
monetary policy and, therefore, the estimation of condi-
tional time-varying probabilities of regime switching and
(b) a remarkable lower computational cost. Moreover, it
could be incorporated into simulation algorithms for DSGE
models in a straightforward manner.

To provide an empirical comparison between our
estimation procedure and the particle filter, we estimate
permanent and transitory monetary shocks from the quar-
terly US data covering the period 1985–2021. We find that
the evidence of a regime change in the US monetary policy
making during the period 1984–1999 is weak. However,
after the Great Moderation, 9/11, the recession that started
in March 2001 and the subprime crisis are three events
clearly affecting inflation targets in terms of the long-
term nominal anchor. Moreover, the financial crisis and
the arising of the COVID-19 pandemic are crucial events
that influence the US monetary policy making. To further
examine the performance of our estimation procedure, we
compare our results with those obtained using the particle
filter.We showhow, after thefinancial crisis, both approaches
lead to not only very close point estimates of the parameters
governing the dynamics of the nonlinear Taylor rule but also
similar probability distributions of the estimated deviations of
the current inflation target from its long-term mean.

The rest of the article is organized as follows: The next
section reminds the nonlinear Taylor rule in which we
focus. Section 3 describes the reformulation of the state-
space representation proposed. Section 4 presents empirical
evidence for the US, while Section 5 compares our empirical
findings with those based on the particle filter. Finally,
Section 6 summarizes and provides concluding remarks.

2 The Econometric Problem

Consider the following Taylor rule with time-varying
inflation targeting (Andolfatto et al. (2008)):

( )[ ( ) ( )]= − + + − + − +

+

−
i ρ r π α π π β y y ρi

u

1

,
t t t t t t

t

⁎ ⁎ ⁎ ⁎
1 (1)

where r⁎ is the long-run equilibrium real interest rate, πt
⁎

denotes the inflation target, −y yt t
⁎ is the output gap, ρ is

the parameter accounting for monetary policy inertia,
and ut represents the monetary shocks, which can be

interpreted as errors underlying the central bank’s con-
trol over the policy instrument. We suppose that the time
evolution of this shock can be represented as follows:

( )= + < ≪ ∼
+ + +

u φ u e φ e N σ, 0, 1, 0, .t t t t e1 1 1
2 (2)

Following Andolfatto et al. (2008), a second distur-
bance to monetary policy is considered. This noise repre-
sents the change in the proper rate of inflation the central
bank should pursue because of changes in the economic
outlook. We express these shifts as = −z π πt t

⁎ ⁎, so that
zt represents the deviation of the current target (πt

⁎)
from its long-term (time-invariant) mean (π⁎). Increases
of zt in the range of positive values mean that monetary
policy stance becomes more expansionary because the
central bank relaxes its short-run inflation target. On
the contrary, decreases of zt in the range of negative
values represent a tightening of monetary policy. It
is expected that these shifts will exhibit significant
duration:

⎧
⎨⎩

=

−

+

+

z
z p
g p

, with probability ,
, with probability 1 ,t

t

t
1

1
(3)

with ( )∼
+

g N σ0,t g1
2 .

Combining the definition of zt with equation (1), the
Taylor rule can be rearranged as follows:
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+ + − − +
−

i ρ r π α π π β y y
ρi ρ α z u

1
1 1 .
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1

t

(4)

Therefore, monetary shocks in the above Taylor rule
(εt) are a combination of a persistent (( )( )− −ρ α z1 1 t)
and a transitory (ut) innovation.

Researchers interested in incorporating the above
monetary rule as a plausible representation scheme for
monetary policy making into a DSGE model consider that
agents need to learn about the decisions by the central bank
in two ways: (a) they should solve a signal extraction pro-
blem to break down the aggregate shock into the permanent
and the transitory components and (b) they should act as
econometricians to estimate parameters φ, σe

2, σg
2, and p.

The next section explains how to deal with both aspects.

3 State-Space Representation and
Maximum Likelihood Estimation

Andolfatto et al., 2008 propose the following state-space
representation for the monetary shocks in the above-
mentioned Taylor rule:

Disentangling Monetary Shocks with a Nonlinear Taylor Rule  151



⎡
⎣

⎤
⎦

⎡

⎣⎢
⎤

⎦⎥
⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎧
⎨⎩

( )

( )( ) ⎡
⎣

⎤
⎦

= +

=

−

− −

= [ − − ]

+

+

+

+

+

+

z
u

p
ϕ

z
u

N
e

N
p z p

g pz p

ε ρ α z
u

0
0 , where

1 , with prob. ,
, with prob. 1 ,

ˆ 1 1 1 ,

t
t

t
t

t
t

t
t

t t

t
t
t

1
1

1
1

1
1

(5)

where the observable signal, ε̂t, is the ordinary least
squares estimate of the error term in the Monetary
Authority’s reaction function (equation (4)).

As pointed out by Andolfatto et al. (2008), the use of
the Kalman filter is not fully optimal because zt is a mix-
ture of a Bernoulli process and a Gaussian noise. To over-
come the absence of nonnormality, let us consider an
alternative formulation of the time evolution of zt that
requires a state-space representation with state-contin-
gent matrices in the state equation.¹ This alternative for-
mulation is as follows:
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Proposition 1. If   
+ +

ϖ and δS St t1 1 are defined as in equation
(7), the dynamics of zt is observationally equivalent to
equation (5) from the perspective of conditional mean.

Proof. From equation (6), we have that
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Equations (10) and (11) define a system for the vari-
ables { }

= =
+ +

ϖ ϖ,S S1 0t t1 1 , with the following solution:

=

−

= −
= =

+ +

ϖ ϕ
p

ϖ ϕ
p

1 ; .S S1 0t t1 1 □

Note that the representation that we propose is a
function of the parameter ϕ. Next, we demonstrate that
there is a unique value of ϕ in terms of probability p that
yields the same conditional variance as in equation (5) for
the zt process.

Proposition 2. Our representation yields the same condi-
tional variance as in equation (5) for the zt process if

= /φ p 2.



1 It is very well known that the state-space representation of a
dynamic system is not unique. In the problem at hand here, a sim-
pler and more intuitive representation is as follows:
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However, under this representation, numerical problems are
very likely to arise because matrix As t, either has three zero elements
when St = 0 or a unit eigenvalue when St = 1, which implies non-
stationarity concerns. However, our state-space representation over-
comes these problems.
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Proof. In accordance with equation (4), the conditional
variance of zt is as follows:
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Using our representation, we have:
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Substituting = /φ p 2 into equation (13) is straightfor-
ward to get expression in equation (12). □

Our state-space formulation, which is characterized
by having Gaussian innovations, is:
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ϖ δandS St t1 1 are defined as in (P).
Equations (14) and (15) define a state-space system

(see Hamilton, 1994, chapter 13), where equation (14) is
the state equation and equation (15) is the observation
equation.

For each of the two relevant histories, =S kt ( { }=k 0, 1 ),
the equations for the Kalman filter are²:
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Step 2: Computing the marginal density function of ε̂t
conditional to

−
Y :t 1

( | ) ( | ) [ ]∑= = =
−

=

−
f ε Y θ f ε Y S k θ P S kˆ ; ˆ , ; .t t

k
t t t t1

0

1

1

Step 3: Obtaining the log-likelihood function of ε̂:
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Once the parameters have been estimated, the prob-
ability of a regime change in the current period condi-
tional on a given shock can be estimated as follows:
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where θ̂ denotes the vector of estimated parameters.

4 Empirical Evidence

In this section, we show how to use our estimation
method to provide empirical evidence on monetary policy
making for the United States through the lens of a Taylor
rule. We use quarterly data retrieved from the Federal
Reserve Bank of St. Louis. In particular, we collect infor-
mation on the federal fund rate, which is the interest rate
at which depository institutions trade federal funds with
each other overnight, inflation, gross domestic product
(GDP), and the output gap, measured by the difference of
the real gross domestic product and the real potential
gross domestic product as a percentage of the real poten-
tial gross domestic product. We consider the sample
period covering the first quarter of 1986 to the second



2 We derive in the Appendix A the equations for the Kalman filter
using our state-space representation.
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quarter of 2021. We start in 1986 due to the Fed changing
approach to monetary policy in the late 1970s and early
1980s. In October 1979, the Federal Open Market
Committee (FOMC) began to target the quantity of money
(nonborrowed reserves) instead of the price of bank
reserves. As a consequence, the average fed funds rate
fluctuated greatly between 1979 and 1982, and M1 started
to showwide fluctuations that do not appear to have been
related to economic conditions. Starting in late 1982, the
Federal Reserve shifted back to its approach of targeting
the price rather than the quantity of money. Figure 1
depicts the time evolution of the data used.

A least square regression of the following Taylor rule:

( )= + + + − +
−

i β β i β π β y y ε ,t t t t t t0 1 1 2 3
⁎ (16)

yields the following parameter estimates (standard devia-
tions in brackets):

( )

[ ] [ ] [ ] [ ]

= + + + − +

  

−
i i π y y ε0.0024 0.9347 0.0292 0.1103 ˆ

0.0001 0.0003 0.0110 0.0005 .
t t t t t t1

⁎

Consistent with previous empirical research, a signif-
icant point estimate of the lagged policy rate is detected,
suggesting very slow partial adjustment in the US

monetary policy making. Also, the estimated response
for the deviation of the short-run inflation target from
its long-run counterpart is consistent with the Taylor
principle, that is, the nominal interest rate raises more
than point for point when inflation exceeds the target
inflation rate.

Figure 2 depicts the time evolution for the probability
of regime change conditional to a given monetary shock,
as well as the permanent component of the monetary
shock, that is, the deviation of the current inflation target
from its long-term mean (

| −
ẑt t 1).

Our empirical findings show a high probability of
regime change in the latter half of the 1980s. This is
consistent with historical monetary policy making in
the US³: The Fed responded to the October 1987 stock
market crash in a number of ways: (a) accommodated
the increased demand for currency and bank reserves
with extensive open market purchases and (b) it also
dropped its federal fund rate target from around 7.5%
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Figure 1: Time series for inflation, output-gap and interest rate for the US economy.



3 See Orphanides (2003) for a detailed analysis of US monetary
policy and the usefulness of the Taylor-rule framework to interpret
it.
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to about 6.75%. Later, in the spring of 1988, with the core
consumer price index (CPI) inflation running at about
4.5%, the Fed reacted to inflationary pressures and began
to raise the fund rate to nearly 10% in March 1989.

After the Great Moderation, the probability of regime
change approaches unity just in March and December
2001. On November 26, 2001, the National Bureau of
Economic Research announced that the US economy
had been in recession since March 1, 2001. However, as
Mostaghimi (2004) notes, there was some speculation
that even though the US monetary authorities had antici-
pated the severity of the problems in the US economy in
2000, they hesitated to act promptly because of the pro-
longed the US presidential election process. Another
probable regime change detected is immediately after
the unexpected shock of 9/11 event, which undoubtedly
accelerated the decline in consumer confidence first noted
in August 2001. After the terrorist attack, the Fed took up
the challenge of maintaining and managing countercy-
clical policy in a stable price environment. To face the
crisis, target federal funds rates were lowered quickly,
and the US monetary policy was easy during the period
2002–2006.

It is also observed two potential regime changes in
the first quarter of 2008 and 2009, which are both related
to the subprime mortgage crisis. The initial signals for the
crisis in financial markets can be dated in June–July 2007
(problems at the Bear Stearns hedge fund); next, eco-
nomic growth weakened, and the recession officially
started in December 2007. In March 2008, Bear Stearns
collapsed, while Lehman Brothers followed in September
2008. By late 2008, nominal interest rates were close to the
zero bound, but financial markets were not responding as
expected. The Fed took additional measures. On March 18,
2009, the press release made by the Fed stated: “to provide
greater support to mortgage lending and housing markets,
the Committee decided today to increase the size of the
Federal Reserve’s balance sheet further by purchasing up
to an additional $750 billion of agency mortgage-backed
securities, bringing its total purchases of these securities to
up to $1.25 trillion this year, and to increase its purchases
of agency debt this year by up to $100 billion to a total of
up to $200 billion. Moreover, to help improve conditions in
private credit markets, the Committee decided to purchase
up to $300 billion of longer-term Treasury securities over
the next six months.”
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Figure 2: Monetary policy with time-varying inflation target.
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As to the time-varying estimates of the difference
between the current and the long-term targeted rates,
Figure 2 suggests that the short-run inflation target has
been close to a constant since 1984 and extremely more
volatile (relative to the post-1984 period) in the early
1980s. Such extreme realizations are at odds with a
variety of estimates previously reported in the literature
(e.g., Aruoba & Schorpheide, 2011; Cogley et al., 2010;
Ireland, 2007), probably reflecting that the 1980–1984
period, roughly corresponding to the Volcker disinfla-
tion, is difficult to model with the rule under scrutiny.
However, after the Great Moderation, the regime changes
detected in monetary policy making are matched with
substantial updates in the current inflation target.

It is also remarkable that our empirical evidence sug-
gests that, during the period 1994–2000, the monetary
policy implemented by the Federal Reserve was, in gen-
eral, based on short-run inflation targets below the long-
term target. This path for flexible inflation targeting is
consistent with no accommodative monetary policy, in
line with the Fed’s policy during this period. The eco-
nomic environment at the beginning of the past decade
was sharply affected by the terrorist attack of September
11, 2001. During the period covering 1999–2001, our esti-
mates reveal two significant updates of inflation target, in
the fourth quarter of 1999 and 2001, respectively. These
two “regime shifts” are motivated not only by geopolitical
uncertainties derived from the terrorist attack but also by
the weak recovery of the US economy after the moderate
recession between March and November 2001. For the
period 2001–2004, the estimated discrepancy between
the current inflation target and the long-term inflation
target is, on average, positive, revealing that inflation
did not appear as a serious concern in the short run for
the FOMC during this period. Therefore, the maximum
sustainable employment arises now as the only relevant
goal in this period. Both aspects explain the aggressive
response of the Fed in 2002 and 2003. As pointed out by
Bernanke (2010), the discrepancy between the actual fed-
eral funds rates and the values implied by the Taylor rule
during this time period is the most commonly cited evi-
dence that monetary policy was too easy to prevent further
bubbles in financial markets. However, our empirical find-
ings suggest that the Fed managed the federal fund rates
in accordance with short-run and long-run inflation tar-
gets. However, we can observe that the period 2004–2006
is characterized by negative differences between current
inflation targets and the long-term inflation target. This
suggests that, as a difference with the previous period
(2001–2004), the Fed should now face the classical trade-
off between employment and inflation in monetary policy

making. And to prevent for inflationary pressures that might
cause the US economic growth, especially encouraged by
the aggressive response of the Fed after 2001, just in June
2004 the Federal Market Committee began to raise the target
rate, reaching 5.25% in June 2006. In a similar way as
Svensson (2010), we can conclude that our empirical evi-
dence on flexible inflation targeting suggests that the US
monetary policy was implemented accordingly with the
macroeconomic conditions after the Great Moderation.⁴

In 2007–2009 period, called as the Great Recession,
two clear changes in inflation targeting are detected.
Indeed, the FOMC lowered its target for the federal funds
rate from 4.5% at the end of 2007 to 2% at the beginning
of September 2008. The recession ended in June 2009,
but given that economic weakness still was persisted,
and the Fed applied a forward guidance intended to con-
vince the public that rates would stay low. For example,
in December 2012, the committee anticipates that excep-
tionally low interest rates would be appropriate while
unemployment rate remains above a threshold value
of 6.5%.

Our empirical findings suggest that no regime change
occurred between the aftermath of the financial crisis and
the outbreak of Coronavirus Disease 2019. Along the pan-
demic scenario, our estimations suggest two additional
regime changes in the fourth quarter of 2019 and the third
quarter of 2020, respectively. As to the first one, it should
be remembered that due to muted inflation pressures, the
FOMC lowered the target range for the federal funds rate
at its July, September, and October meetings by 25 basis
points each. The second regime change is related to the
implementation note released by the FOMC on June 16,
2021. In this note, the FOMC stated that “The Committee
seeks to achieve maximum employment and inflation at
the rate of 2 percent over the longer run. With inflation
having run persistently below this longer-run goal, the
Committee will aim to achieve inflation moderately above
2 percent for some time so that inflation averages 2 per-
cent over time and longer-term inflation expectations
remain well anchored at 2 percent.” The regime change
for the third quarter of 2020 is also reflecting the massive
purchase of securities made by the Fed. Between mid-
March and early December of 2020, the Fed’s portfolio
of securities held outright, which includes commercial
mortgage-backed securities, grew about 70%.



4 In the aftermath of the financial crisis of 2008, an extensive
debate about the role played by the US monetary policy making
was created. Some researchers claimed that the loose monetary
policy implemented was a factor influencing the crisis.
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5 An Alternative Approach: The
Particle Filter

An alternative approach to estimate deviations of the
current inflation target from its long-term mean is the
particle filter.⁵ We now explore whether this approach
leads to important qualitative and quantitative differ-
ences compared to results obtained using our state-space
representation equation (4).

We compare initially the performance of parameter
estimations governing the dynamics of zt, which is what
we are mainly interested in this application. As to point
estimates, the next table shows the estimated parameters
with the two alternatives using 5,000 particles. We show
the estimated probability of regime change (p), the esti-
mated volatility of permanent and transitory shocks (σe

2

and σg
2, respectively) and the autoregressive (AR) equa-

tion (1) parameter that corresponds to the time evolution
of the transitory shock (φ).

Except for the volatility associated with the sta-
tionary component, confidence intervals based on the
particle filter contain the point estimates we get using
the state-space representation proposed. However, our
method tends to underestimate the unconditional prob-
ability of regime change and the volatility of the shock
arising under regime change.

As to the variable zt, Figure 3 shows the time evolu-
tion of the estimated discrepancies between the current
inflation target and its long-term counterpart using both
procedures.

While the qualitative pattern looks like pretty similar,
the variation range of zt is clearly different. We use the
Wilcoxon rank-sum test to compare the two samples, and
we cannot accept the null of zero median difference
between both time series. But the lower limit of the 99%
confidence interval is very close to zero⁶, suggesting that
both density functions should not dramatically depart
from each other, as we can observe in the next figure.
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Figure 3: Deviation estimated of the current inflation target from its long-term mean.



5 Appendix B describes technical details for the implementation of
the particle filter to our estimation problem.



6 This interval is [−0.0278, −0.0013].
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5.1 Robustness Check

To check whether the above pattern is representative for
the entire period analyzed, we now focus on the period
after the 2008 financial crisis. In particular, we consider
the subsample period from 2008-Q4 to 2021-Q2. This
period is characterized by inflation remaining persis-
tently below the inflation targets of central banks in
many advanced economies despite an unprecedented
monetary expansion (Fiedler, Gern, Jannsen, & Wolters,
2019). Also, by the use of additional monetary instru-
ments beyond the traditional federal fund rate (forward
guidance about the future policy rate, Large-Scale Asset
Purchases) due to transitory liquidity traps.⁷ However, as
stated by Svensson (2010), flexible inflation targeting
remained as the best-practice monetary policy before,
during, and after the financial crisis.

The next table summarizes the point estimates as well
as the nonparametric testing using the Wilcoxon test.

For the most recent period, the point estimates with
both estimation techniques become almost identical with
the exception of the volatility of the noise associated
with regime changes. However, the difference does not
appear as remarkable, in the sense that the point estimate
with the Kalman filter is compatible with the 95% con-
fidence interval obtained for that parameter with the par-
ticle filter. But interestingly enough, we cannot reject the
null hypothesis that the median difference is zero. This
way, we conclude that, for the most recent period, both
estimation procedures lead to similar probability

Figure 4: Density functions of zt variable using both estimating approaches.

Table 1: Estimates of structural parameters using the particle filter
and the Kalman filter with the proposed representation,
respectively

p̂ φ̂ σ̂g σ̂e

Kalman filter (our
formulation)

0.7170 0.4922 0.1541 0.0013

(0.0669) (0.0928) (0.0202) (0.0002)
Particle filter (5,000
particle)

0.9008 0.5709 0.3416 0.0023

(0.1027) (0.0233) (0.1532) (0.0004)



7 The recent article of Bu, Rogers, and Wu (2021) develop a US
monetary policy shock series that stably bridges periods of conven-
tional and unconventional policymaking.
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distributions of the estimated deviations of the current
inflation target from its long-term mean.

6 Conclusion

This article proposes an estimation procedure to decom-
pose monetary shocks into permanent and transitory
components using an inertial Taylor rule and the mone-
tary innovations scheme proposed in Andolfatto et al.
(2008). We developed a novel state-space representation
that allows us an optimal use of the Kalman filter. Our
convenient reformulation of the state-space model repre-
sentation enables the maximum likelihood estimation of
the parameters involved in the time evolution of persis-
tent and transitory monetary shocks, including the con-
ditional probability of regime change. Researches inter-
ested in using new Keynesian DSGE models could take
advantages of our estimation procedure in order to incor-
porate imperfect knowledge of the monetary policy rule
implemented by the Central Bank.

We provide empirical evidence on the US historical
monetary policy making through the lens of a Taylor
during the period 1985–2021. Consistent with previous
findings, the evidence for a regime change in the inflation
target during the nineties is extremely weak. However,
9/11, the recession that started in March 2001 and the
subprime crisis were significant events that affected the
US monetary policy making in the last decade. We check
the robustness of our empirical findings on flexible infla-
tion targeting by comparing our estimations with those
obtained using the particle filter. It is showed that the
estimated deviations of the short-run inflation target
from its long-run counterpart are remarkably similar

over time. Beyond the 2008 financial crisis both estima-
tion procedures lead to similar probability distributions
for this variable.

With a lower computational burden, our estimation
procedure has the clear advantage of recovering condi-
tional probabilities of time varying inflation targeting.
This allows to compare such probabilities with those
obtained based on a regime-switching approach with a
constant long-term inflation target but with time-varying
responses to output gap and inflation as in Klingelhöfer
and Sun (2018). In the case of both estimated probabil-
ities being close to one for a given time period, it might be
interesting to assess whether regime change is jointly due
to, not only a new targeting regime but also the updating
of responses. We leave this extension as a topic for
further research.
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Appendix A

This Appendix describes how to get equations for the
Kalman filter using our state-space representation with
Gaussian innovations.

Following Hamilton (1994), we consider the following
state-space system:

 ⏟⏟ ⏟ ⏟⏟ ⏟= + +

+

×

×

×

×

+

×
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(A.2)

with

( ) ⎧
⎨⎩

′ =

=E υ υ Q t τ, for
0, otherwise,t τ (A.3)

( ) ⎧
⎨⎩

′ =

=E w w R t τ, for
0, otherwise.t τ (A.4)

We assume that { }y y y, , ... , T1 2 are observable vari-
ables and that, B, U, H, Q, and R are known with
certainty.

The Kalman filter calculates the forecasts
+ |

ξ̂t t1 recur-
sively, and, associated with each of these forecasts,
the Kalman Filter computes the Mean Squared Error
matrix:

[( )( ) ]≡ − − ′
+ |

+ + | + + |

P E ξ ξ ξ ξˆ ˆt t t t t t t t1 1 1 1 1 .
The forecasting of yt is as follows:
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The associated mean squared error is:
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Next we update ξt considering the information set
available at time t as follows:
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with mean squared error:
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Next, we forecast
+

ξt 1 given the current set of avail-
able information as follows:
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where, given that
+

υt 1 and wt are Gaussian, we use that
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Rearranging the above equation we have
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Substituting equation (A.7) into equation (A.9):
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obtain the expression for the forecasting error:
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Substituting equation (A.6) into equation (A.8):

= − +
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′ ′
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Summarizing, given      

|
|

ξ Pˆ and1 0 1 0, the Kalman Filter

computes recursively      

+ |
+ |

ξ Pˆ andt t t t1 1 using the equations
(A.8), (A.9) and (A.11).
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Appendix B

The particle filter is an alternative to overcome nonnorm-
ality. In this appendix, we describe how to evaluate the
likelihood function ofmonetary innovations using a Sequential
Monte Carlo Filter when the AHM-representation is considered.

The Andolfatto et al. (2008) specification is:

= +
+ +

z pz N ,t t t1 1 (A.12)

( )( )= − − +ε ρ α z u1 1 ,t t t (A.13)

where

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎧

⎨

⎪

⎩
⎪

( )

( )

( )

=

−

− −

∼

= + ∼

+ +

+

+ + +

N

p z p
g pz p

g N σ

u φ u e e N σ

1 , with prob.
, with prob. 1 ,

where 0,

, where 0, .

t

t

t t

t g

t t t t e

1 1

1
2

1 1 1
2

Assuming that =z 00 , we proceed as follows:

Step 1: Evaluate the probability of
| −

ut t 1:
i) We draw a random sample of size I = 10,000 from the

uniform distribution in (0,1) and from a Normal dis-
tribution with zero mean and σg

2 variance. We call

each observation of these two initial samples as Ui
1

and = …x i I, 1, 2, ,i
1 . Now, we use these two samples

to generate a new sample the we denote |N 1 0 as
follows:

⎧

⎨
⎩

=

≤

>

= …

|N
U p

x U p
i I

0, if ,
, if ,

1, 2, , ,i
i

i i

1 0
1

1 1

where − p1 is the probability of a regime change. We
use the sample |N 1 0 to generate an additional sample
that we denote |z1 0 as follows:

= + = …

| |z pz N i I, 1, 2, , ,i i
1 0

0
1 0

Without loss of generality, we assume =z 00
ii) Next, we use the estimated value for the first element

of the noise vector εt, that we denote as ε1, to generate
a random sample for the innovation ut as follows:

 ( )( )= − − − = …

| |u ε ρ α z i I1 1 , 1, 2, , ,i i
1 0

1
1 0

iii) We evaluate the relative weight for each observation
|ui

1 0:

( )

( )
=

∑

= …

|

=

|

|q
p u

p u
i I, 1, 2, , ,u

i

i
I

i

1 0

1
1 0i

1 0

where the probability ( )|p ui
1 0 corresponds to a Gaussian

distribution with zero mean and
−

σ
ϕ1

e
2

variance.

iv) We update the initial sample |z1 0 by performing a
weighted sampling with replacement in accordance
with the above-mentioned weights.

v) We repeat the process described in i) to v) for each
estimated component of the noise vector εt.

Step 2: Using the Law of the Large Numbers:

( | ) ( | )∑≈ = …
−

=

−
p ε ε

I
p u u i I1 , 1, 2, , ,t t

i

I

i t i t1
1

, , 1

where the conditional distribution ofui t, is ( | )
−

N ϕu u σ,i t i t e, , 1
2 .

Once the conditional probabilities for monetary innovations
are computed, we can evaluate the likelihood function
as: ( ) ⎡⎣

( | )⎤⎦
… = ∏ ∑

= =
−

p ε ε ε p u u, , , T i
T

I i
I

i t i t1 2 1
1

1 , , 1 , where T
denotes the sample size.

Step 3: We maximize the likelihood with respect to the
parameters parameters ϕ, σe

2, σg
2 and p.
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