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I. Introduction

During the COVID-19 pandemic, there are significant 

challenges for global supply chains. The closures 

of country borders and shut downs of factories and 

workplaces slow or even stop the flow of raw materials 

and products. For instance, the widespread and prevalent 

supply chain issues in semiconductor arise shortage 

of chips used by companies in other industries such 

as automakers and home appliance companies. Thus, 

global supply chain becomes more unpredictable and 

managers in firms sometimes make decisions about 
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supply chain management based on significantly 

imprecise information.

To model the extremely uncertain circumstances 

of global supply chain, this study allows for ambiguity 

faced by inventory managers. Ambiguity means multiple 

prior beliefs about a probability distribution. In 

traditional models dealing with inventory policy such 

as Arrow et al. (1951), Veinott and Wagner (1965), and 

Weiss (1980), it is assumed that managers have the 

exact information about related probability distributions.1) 

Indeed, recent studies about stochastic inventory model 

also do not care about ambiguity. Inderfurth and 

Vogelgesang (2013) suggest stochastic inventory model 

under periodic review and Kim et al. (2015) try to 

1) See also Inderfurth (1991) and Song (1994).
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optimize total logistic cost for perishable product 

in a multi-period newsvendor model. However, these 

studies develop models with certain probability 

distributions. To the best of our knowledge, there 

is not study which allows for ambiguity faced by 

managers in charge of inventory management.

The purpose of this study is to investigate how 

ambiguity faced by the risk-neutral manager affects 

the firm’s optimal level of safety stock. To do this, 

the study adopts the traditional model of Arrow et 

al. (1951) and employ a manager who has multiple 

prior beliefs about probability distribution of the lead 

time. Our one-period model assumes stochastic demand 

and lead time, but for simplicity, this study only 

considers ambiguity for the lead time. To minimize 

total cost, the managers chooses the level of stock 

to hold after reordering and optimal amount of safety 

stock. To analyze the behavior of the manager under 

ambiguity evidenced by Ellsberg (1991) paradox, this 

study adopts maxmin expected utility (MEU) model 

(Giboa and Schmeidler, 1989), in which the manager 

makes inventory choice in extremely conservative 

way. According to the experimetnal study of Ahn 

et al. (2014), the MEU model explains the behavior 

of managers with ambiguity aversion.2)

This study finds that facing lead time ambiguity, 

the manager becomes more conservative when choosing 

the optimal stock level to hold and the amount of 

safety stock. In the presence of ambiguity, the manager 

increases the level of stock after reordering to 

minimize the cost. Furthermore, as the degree of 

ambiguity increases, the manager holds more stocks 

in a warehouse. The effects on the optimal safety 

stock depends on the type of ambiguity. The manager 

prepares more safety stock under ambiguity about 

the variance of lead time than without it, and moreover, 

an increase in degree of lead time variance ambiguity 

leads to a higher level of the safety stock. On the 

other hand, the amount of safety stock is not affected 

2) We would consider smooth ambiguity model of Klibanoff et 

al. (2005), which allows for changes in the degree of ambiguity 

averse. In this study, however, we use MEU model to capture 

the behavior of managers who make extremely conservative 

choices to avoid the shortage of stock.

by ambiguity about the mean of lead time. Irrespective 

of the presence of ambiguity about the mean of the 

lead time, the manager chooses the same level of 

safety stock. This study also finds that the optimal 

service level is not affected by ambiguity. As long 

as the cost structure remains unchanged, the manager 

chooses the equivalent service level to minimize the 

cost when ambiguity is absent and when it is present.

Our result conforms to economic models in which 

market participatns have multipe beliefs about 

probability distirbution. In the presence of ambiguity, 

the ambiguity-averse inventory manager takes worst 

probability distiribution, which makes the manager 

choose more conservative level of safety stock. This 

behavior of the manager is evidenced by Ellsberg 

(1991) paradox and the maxmin expected utility 

axiomized in Giboa and Schmeidler (1989). Economic 

models assuming ambiguity faced by market participants 

reveal simialr results. In Ozsoylev and Werner (2011) 

and Illeditsch (2011), market participants under 

ambiguity have extremely conservative order schedule 

in the way that they refuse to take positions in 

intermediate price regions. 

The rest of the paper is organized as follows. In 

Section 2, this paper introduces a model of safety 

stock with ambiguity. The optimal level of safety 

stock is derived in Section 3. In Section 4, our results 

are numerically examined. Concluding remarks are 

given in Section 5.

A. Related Literature

In general, inventory control deals with trade-off 

relationship between meeting customer demand and 

the profit of of firms. Since Harris (1913) proposes 

the first inventory model and Wilson (1934) develops 

the formula of economic order quantity (EOQ), a 

vast amount of literature tries to construct models 

with more realistic assumptions, in which lead time 

or demands cannot be expressed as deterministic 

functions. Classical models such as Galliher et al. 

(1959) and Hadley and Whitin (1962) introduce 

stochastic demand in their models and characterize 
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the optimal inventory level. Further, Eppen and Martin 

(1988) derive optimal level of safety stock when 

both demand and lead time are random variables. 

Recently, traditional stochastic inventory models 

are extended to dynamic models. Farahvash and Altiok 

(2011) develop multi-period stochastic model under 

reverse auction. Zhang et al. (2009) propose stochastic 

programming models for single and multi-period 

when the demand has probability distribution. They do 

now show closed-form solution, but employ numerical 

methods to explain the optimal stock level to minimize 

expected loss. In the model of Song and Wang (2017), 

fixed order cost and uniform random yield are assumed. 

They find the lower and upper bound structure of 

the optimal order level. On the other hand, Qiu et 

al. (2017) employ robust optimization approaches 

to solve multi-period inventory management problem 

when the distribution of demand is not certain. 

Two-dimensional multi-period stochastic inventory 

model with random demand is developed in M'Hallah 

et al. (2020). In their model, there are two items 

to be controlled and each item has the sequence of 

independent identical distribution of demand. 

Implications of ambiguity faced by decision makers 

have been extensively studied in economics and financial 

literature. Gilboa and Schmeidler (1989) axiomize the 

maxmin expected utility in which decision makers 

maximiae their utility under the worst-case probability 

distribution. Ozsoylev and Werner (2011) and Mele 

and Sangiorgi (2015) characterize financial markets 

where a fraction of rational traders has ambiguous 

beliefs for the future value of assets. Epstein and 

Schneider (2008) and Illeditsch (2011) find that, in 

the presence of ambiguity, the value of asset becomes 

highly unpredictable since the volatility of asset value 

may diverge to infinity.

II. The Model

There is a firm which manufactures a single product. 

Our model assumes that the product is replenished 

in continuous units and it does not deteriorate and 

has an infinite life time. Our model allows for 

stochastic demand and lead time. The demand  

during the one period is normally distributed with 

mean  and variance 
. Lead time   has normal 

distribution with mean  and variance 
. Assuming 

the amount of demand is not affected by the time 

period, our model obtains the distribution of lead time 

demand  whose mean and variance are given by 

  

 





respectively.

The model considers three types of costs: per unit 

production cost , per unit effective holding cost , 

and penalty cost for shortage . Let  be the level 

of stock after reordering. Let  denote the 

probability density function of : 


 


exp

 

Then the total expected cost function is given by 

 











∞



The first term on the left side is the production 

cost and the second and third ones are, respectively, 

the total expected holding cost and expected shortage 

cost.

The manager of the firm does not observe the 

realization of the demand  and the lead time   

when making decision about the level of safety stock. 

Further, the manager has ambiguous belief about the 

distribution of  . That is, the manager does not have 

the exact information about the probability distribution 

of   and takes into account multiple probability 

distributions. This model assumes that the manager’s 
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belief set  consists of normal distributions with mean 

and variance lying on interval 


   and 



  , 

respectively. As the size of interval 


   ( 



 ) 
increases, the manager becomes more uncertain about 

the true  (, respectively). Thus, this study measures 

the degree of ambiguity by the size of each interval.

Let the mean and variance under probability 

distribution ∈ of the lead time be denoted by 


 and 


, respectively. Then the mean and variance 

of the lead time demand  when the manager takes 

∈ as a lead time probability distribution can be 

written by 

 







 






respectively. Thus, probability function of lead time 

demand  when ∈ is picked by the manager is 

given by 


 


exp

 

Let 



≡




 ≡

and for each 
∈ 








≡


 






 


≡


 





Obviously,  (
) is lying on the interval 



   

(



 ) and it is minimized at  


  

 

and is maximized at    (

 

, respectively).

Equipped with MEU preferences of Gilboa and 

Schmeidler (1989), the ambiguous manager solves 

cost minimization problem under the worst-case 

probability distribution. Facing ambiguity, the manager 

solves 





∈

 



∈








 


∞

 

The manager chooses the optimal safety stock level 

through a two-step process: () the manager takes 

the worst case probability distribution which 

maximizes the cost () the manager chooses the level 

 of the stock after reordering to minimize the cost.

To find the worst-case probability distribution, 

partially differentiate  with  and 
. Let 




 











Then,

∂


∂



 






 





exp








 




 

 




 (2.1)

and

∂


∂

 




exp



 








 

exp








 exp












(2.2)

Now the following proposition is obtained.

Proposition 2.1 The following hold.

1. For a given 
∈ 


  , the cost-maximizing 

probability distribution is achieved at    

if the shortage cost is sufficiently high such that 

〉 (2.3)

2. For a given ∈ 


  , the cost-maximizing 

probability distribution is achieved at 
  

  
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when the stock level  after reordering is 

sufficiently high such that 

〉 
 (2.4)

Proof: (1) Since 〈 for ∈∞∞,

∂


∂  

〉
 






 





exp







  





by (2.1). Thus, if 〉, then ∂  ∂〉 

and     is maximized at   .

(2) Note that 

∂


∂  
exp









 

exp










 exp












 

 
exp










which is greater than zero if (2.4) holds. Since 

∂  ∂
〉 at  , it is always greater 

than zero. Therefore, when (2.4) holds,     

increases in 
 and is maximized at 

  
. 

Note that the inequality 2.3 holds when the firm’s 

cost minimizing service level is sufficiently high.3) 

This would be examined in the next section.

III. Optimal Safety Stock

At the beginning of this section, as a benchmark, 

this study reviews cost minimizing safety stock level 

when the manager has the exact information about the 

lead time  . Then, this study extends the benchmark 

3) Numerically, it holds when the cost minimizing service level 

is higher than 0.842, which is achieved when  is sufficiently 

higher than .

to our model in which the manager faces ambiguity. 

Thus study derives the optimal safety stock level 

when the manager multiple prior beliefs about the 

lead time probability distribution. Finally, the optimal 

safety stock level is characterized.

 

A. The Manager without Ambiguity

In this subsection, let us assume that the manager 

resolves ambiguity and knows the exact probability 

distribution of the lead time. In the absence of 

ambiguity, set 

 




   

 




  




Then this implies that 

 


    

  




The total cost function is given by 


∘ 










∞



Thus the manager solves minimization problem: 



∘













∞



Let 




 
∞






The total cost is minimized when 


 


≡∘
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Note that ∘ is the cost minimizing service level. 

Then the following proposition is obtained.

Proposition 3.1 Suppose the manager has the exact 

information about the probability distribution of the 

lead time. Then the following hold.

1. The cost minimizing stock level after reordering 

is given by 

∘ 

 

2. The optimal level of safety stock is 


∘

 

where  is the inverse function of .

3. The cost minimizing service level is ∘.

The optimal level ∘ of the stock after reordering 

increases in the mean  and volatility  of lead 

time demand. On the other hand, the safety stock 

level is not affected by , but it increases in lead 

time demand volatility. The cost minimizing service 

level ∘ consists of production cost, holding cost, 

and shortage cost, but is not affected by the probability 

distributions of demand and lead time. The manager 

provides a higher service level as  increases or 

 and  decreases regardless of the probability 

distributions.

B. The Manager under Ambiguity

Now this study extends the benchmark and derive 

optimal safety stock level under ambiguity. For 

simplicity, henceforth, let assume that (2.3) and (2.4) 

hold. As a worst-case probability distribution, the 

manager picks probability distribution of lead time 

demand  with mean  and variance 
. Let denote 

probability distribution with mean  and variance 


 by ∈. Then





∈

 



∈








 


∞

 










 




∞


 

where 
 is the probability density function when 

  . Similar to the benchmark, the total cost is 

minimized when 


 




Then the optimal safety stock level is obtained.

 

Theorem 3.1 Suppose that the manager has multiple 

prior beliefs ∈ about probability distribution of 

the lead time and inequalities (2.3) and (2.4) are 

satisfied. Then the following hold. 

1. The cost minimizing stock level after reordering 

is given by 

  

 

2. The optimal level of safety stock is 


 

 

3. The cost minimizing service level is 

 ∘ 





Theorem 3.1 shows that the manager chooses more 

conservative stock management policy under ambiguity 

than without it. Facing ambiguity, the manager allows 

for increased mean and variance of the lead time 

demand. Then, for a given service level, the manager 
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needs to hold a higher level of stock after reordering 

and prepare more safety stock compared to the 

benchmark. Note that the optimal safety stock is not 

affected by , but increases in 
. As long as the service 

level remains unchanged from the benchmark (i.e., 

 ∘), the effect of ambiguity on the safety stock 

is determined by variance ambiguity of lead time 

demand irrespective of mean ambiguity. On the other 

hand, the cost minimizing service level is not affected 

by ambiguity. It is because the service level is not 

affected by probability distribution but only depends 

on production cost, holding cost, and shortage cost 

as in the benchmark. Ambiguity effects on stock 

management are summarized in the next proposition.

Proposition 3.2 Suppose that the manager has 

multiple prior beliefs ∈ about probability 

distribution of the lead time and inequalities (2.3) 

and (2.4) are satisfied. Then the following hold.

1. As the mean or variance of lead time demand 

becomes more unpredictable, the cost minimizing 

stock level  after reordering increases.

2. As the variance of lead time demand becomes 

more unpredictable, the optimal safety stock 


 increases.

3. The cost minimizing stock level is not affected 

by ambiguity.

IV. Numerical Implications

This study finds that, in the presence of ambiguity, 

the manager holds a higher level of stock after reordering 

and prepares more safety stock. In this section, this 

study numerically examines how the lead time 

ambiguity affects the level of optimal safety stock.

In Figure 1, the dashed line illustrates total inventory 

cost when the manager knows the exact information 

about the probability distribution of the lead time 

while the solid line illustrates that when the manager 

faced by ambiguity. This study finds that, at the 

minimum cost stock level, total cost is higher when 

ambiguity is present than otherwise. Furthermore, 

as the degree of ambiguity increases, the cost minimum 

total inventory cost increases.

Figure 2 illustrates how ambiguity affects the cost 

minimizing level of stock after reordering. On the 

left side, this study investigates the relationship between 

the degree of ambiguity about the lead time variance 

and the holding stock level and on the right side, 

it is observed that between the degree of ambiguity 

about the lead time mean and the stock level. In 

both cases, the cost minimizing stock level is higher 

under ambiguity than without it and it linearly increases 

as the degree of ambiguity increases.

Figure 3 shows the effects of ambiguity on the 

optimal safety stock level. The relationship between 

the degree of ambiguity about the lead time variance 

and the optimal safety stock level is illustrated on 

the left side and it is observed that between the degree 

of ambiguity about the lead time mean and the optimal 

safety stock level on the right side. The increase 

in the degree of ambiguity about the lead time variance 

raises the optimal level of safety stock while the 

Figure 1. The effect of ambiguity on the total inventory 
cost at the cost minimizing stock level. The horizontal 
axis represents the level  of stock after reordering. 
The vertical axis measures total inventory cost. The 
dasheed line illustrates total inventory cost when 
ambiguity is absent and the solid line illustrate that 
when ambiguity is present. The common parameters 
are   ,  ,  , 

, and  . In 

the dashed line, 
 . In the solid blue line, 


  . In the solid red line, 

  . In the 

solid gray line, 

 


.
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ambiguity about the lead time mean does not 

contribute to the increase in the optimal safety stock.

V. Concluding Remarks

This study investigates the effects of lead time 

ambiguity on the level of optimal safety stock. To 

do this, this study develops a model, in which there 

are stochastic demand and lead time and the manager 

has multiple prior beliefs about the distribution of 

lead time. This study finds that the manager under 

lead time ambiguity holds more stocks after reordering 

and prepares a higher level of safety stock compared 

to the case where there is no ambiguity. Further, the 

increasing degree of variance ambiguity of the lead 

time raises both the amount of the stock after reordering 

and the safety stock. On the other hand, the increase 

in mean ambiguity of lead time only increases the 

level of holding stock after reordering but has no 

influence on the optimal safety stock level.

In practice, it would be unlikely that inventory 

managers in firms have the exact information about 

the probability distribution of lead time. During the 

Figure 2. The effect of ambiguity on the cost minimizing stock level after reordering. The horizontal axis on 
the left side represents the maximum variance of the lead time and that on the right side represents the 
maximum mean of the lead time. The vertical axis of both plots measures the cost minimizing stock level. 

The common parameters are   ,  ,  , 
. On the left side, 

 
. On the right side, 



 


. 

Figure 3. The effect of ambiguity on the level of optimal safety sotck. The horizontal axis on the left side 
represents the maximum variance of the lead time and that on the right side represents the maximum mean 
of the lead time. The vertical axis of both plots measures the optimal safety stock level. The common 

parameters are   ,  ,  , 
. On the left side, 

. On the right side,  . 
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period of Covid 19 pandemic, furthermore, the managers 

take into account multiple probability distributions 

when they determine the level of safety stock. This 

study shows that, facing multiple beliefs about the 

probability distribution of lead time, the inventory 

manager cares more about the loss by the shortage 

of stocks than holding costs. Therefore, the manager 

is willing to raised holding cost generated by the 

increase level of the safety stock. 

This study employs maxmin expected utility model, 

in which the manager chooses extremely conservative 

lead time probability distribution. However, in reality, 

inventory managers in firms would reveal different 

attitude toward lead time ambiguity. This model could 

be extended by adopting smooth ambiguity model 

of Klibanoff et al. (2005). Then the research may control 

the degree of ambiguity averse and would observe 

the relationship between the manager’s ambiguity 

preference and level of the optimal safety stock.

In the future research, one would consider a risk- 

averse manager. Indeed, since our model does not 

take into account managerial compensation, this study 

assumes a risk-neutral manager who makes decision 

only depending on overall cost. However, if the manager 

would be compensated or punished as a result of 

stock management, the manager may become risk 

averse when deciding safety stock level. Adopting 

risk-averse manager, the research would examine the 

interactive effects of the manager’s risk aversion and 

lead time ambiguity on the optimal safety stock level.
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