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ABSTRACT
This study examines the dynamics of human reliance on algorithmic advice in a situation with strategic interaction. Participants 
played the strategic game of Rock–Paper–Scissors (RPS) under various conditions, receiving algorithmic decision support while 
facing human or algorithmic opponents. Results indicate that participants often underutilize algorithmic recommendations, par-
ticularly after early errors, but increasingly rely on the algorithm following successful early predictions. This behavior demon-
strates a sensitivity to decision outcomes, with asymmetry: rejecting advice consistently reinforces rejecting advice again while 
accepting advice leads to varied reactions based on outcomes. We also investigate how personal characteristics, such as algorithm 
familiarity and domain experience, influence reliance on algorithmic advice. Both factors positively correlate with increased 
reliance, and algorithm familiarity significantly moderates the relationship between outcome feedback and reliance. Facing an 
algorithmic opponent increases advice rejection frequencies, and the determinants of trust and interaction dynamics differ from 
those with human opponents. Our findings enhance the understanding of algorithm aversion and reliance on AI, suggesting that 
increasing familiarity with algorithms can improve their integration into decision-making processes.

1   |   Introduction

The field of machine learning and its rapid advancements in ar-
tificial intelligence (AI) have garnered significant attention in 
recent years (Littman et  al.  2021). Machine learning focuses on 
generating knowledge from experience through the use of learn-
ing algorithms to develop complex models. Learning algorithms 
are poised to increasingly produce decision-relevant results. 
Consequently, organizations have increasingly employed algo-
rithms over the past years to create business value. Despite this, 
decisions in many domains are unlikely to be fully delegated to 
algorithms. Instead, human decision-makers will interact with 
these algorithms, retaining the final decision rights. In these sce-
narios of human–machine decision-making, it is crucial to under-
stand the conditions under which human decision-makers adhere 
to algorithmic advice (Burton, Stein, and Jensen  2020; Glikson 
and Woolley  2020). The decision to accept or reject algorithmic 
advice depends on factors inherent to both the individual and 

the algorithm, as well as the dynamics of human–machine inter-
action. Dietvorst, Simmons, and Massey (2015), in their seminal 
study on algorithm aversion, highlight a dynamic phenomenon 
where decision-makers initially rely on an algorithm but lose trust 
in it after witnessing errors. Our exploratory study investigates the 
dynamics of human–algorithm interaction in that it analyzes de-
terminants of reliance on algorithmic advice in a situation where 
individuals repeatedly interact with an algorithm and receive im-
mediate outcome feedback after each decision to accept versus re-
ject the algorithm's advice. Although most previous studies have 
focused on situations where the algorithm's task is to estimate an 
unknown fact or forecast an uncertain event, this study models 
a scenario of strategic interaction where decision-makers try to 
make accurate predictions of their strategic counterparts' behav-
iors in order to gain an advantage. Investigating such a scenario is 
crucial to deepen our understanding of human–algorithm inter-
action for several reasons. As the range of tasks AI can perform 
rapidly expands, it is essential to broaden research by exploring 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2024 The Author(s). Journal of Behavioral Decision Making published by John Wiley & Sons Ltd.

https://doi.org/10.1002/bdm.2414
https://doi.org/10.1002/bdm.2414
mailto:julia.ortner@uni-mainz.de
https://orcid.org/0000-0002-5388-5047
mailto:julia.ortner@uni-mainz.de
http://creativecommons.org/licenses/by/4.0/


2 of 20 Journal of Behavioral Decision Making, 2024

new decision domains (Glikson and Woolley 2020). Strategic in-
teraction is one such domain. It is prevalent within markets and 
organizations, characterized by its repetitive and dynamic nature. 
Moreover, strategic interaction necessitates algorithms that extend 
beyond statistical models, which have been the primary focus of 
early research but are no longer representative of AI applications 
in many decision domains. In strategic interaction, a successful 
algorithm must predict the choices of its strategic counterpart, re-
quiring it to be a sufficiently sophisticated learning algorithm that 
identifies patterns in the counterpart's behavior and continuously 
updates its predictions during the interaction.

Our analysis is guided by a framework that builds upon theoretical 
research on trust in automation and AI (Glikson and Woolley 2020; 
Hoff and Bashir  2015; Marsh and Dibben  2003) and focuses on 
three research questions we address. First, we aim to understand 
how humans dynamically interact with an algorithm in a strategic 
setting, specifically examining how an individual's decision to fol-
low the algorithm, combined with the feedback the individual gets 
by observing the outcome of that decision, influences subsequent 
behavior. Second, we investigate whether prior evidence regarding 
the determinants of individuals' basic willingness to trust algo-
rithms extends to the decision domain we explore. Additionally, 
we examine whether factors such as participants' familiarity with 
algorithms, experience with the decision domain and task, and 
other personal characteristics moderate the dynamics of human–
algorithm interaction. Third, we assess whether the findings re-
lated to the first two research questions are unique to scenarios 
where the individual receiving decision support faces a human 
counterpart or if they also apply to situations where the counter-
part is an algorithm.

To investigate these research questions, we conducted a con-
trolled, incentivized experiment in which participants engaged 
in the strategic game of Rock–Paper–Scissors (RPS) over an ex-
tensive number of rounds. RPS is characterized by its symmetric 
structure and straightforward rules: Rock defeats scissors but is 
defeated by paper; scissors defeat paper but are defeated by rock; 
and paper defeats rock but is defeated by scissors. During the 
experiment, participants played RPS against either a human or 
an algorithm. They were provided with decision support from 
a heuristic reinforcement learning algorithm to guide their 
choices throughout the game. All three research questions refer 
to the determinants of human decision-makers' reliance on al-
gorithmic advice (Burton, Stein, and Jensen  2020; Jussupow, 
Benbasat, and Heinzl  2020). Theoretical frameworks (Glikson 
and Woolley 2020; Hoff and Bashir 2015) categorize these deter-
minants into factors that influence an individual's basic willing-
ness to rely on an algorithm in a given situation and factors that 
determine the dynamics of human–algorithm interaction. To 
position this study, we review the research streams addressing 
both sets of determinants, with a particular focus on dynamic 
human–algorithm interaction.

1.1   |   Dynamic Human-Algorithm Interaction

Building on early evidence of algorithm aversion (Dzindolet 
et al. 2003; Önkal et al. 2009), recent research has contributed 
to building theory about drivers of human trust in algorithms. 
In an influential study, Dietvorst, Simmons, and Massey (2015) 

identified algorithm aversion as a dynamic phenomenon, show-
ing that decision-makers lose trust in an algorithm after expe-
riencing it making erroneous forecasts. Participants of their 
experiments are averse to algorithms in that they prefer to not 
delegate a forecasting task to an algorithm, and prefer to dele-
gate the task to another human rather than to an algorithm, even 
after experiencing the algorithm to be more accurate than both 
their own and the other human's forecasts. Despite the influ-
ence of Dietvorst, Simmons, and Massey (2015), few subsequent 
experimental studies have replicated its dynamic setting. Prahl 
and Van Swol  (2017) manipulate the source of advice (human 
expert versus algorithm) and observe that after a round where 
advice turns out to be poor, the weight decision-makers give to 
algorithmic advice declines considerably more sharply than the 
weight they give to human advice. Similarly, Chacon, Kausel, 
and Reyes  (2022) find that reliance on algorithmic advice in 
financial forecasting decreases more rapidly than reliance on 
human advice after witnessing algorithmic errors. Conversely, 
other studies (Bastani, Bastani, and Sinchaisri  2021; Berger 
et al. 2021; Filiz et al. 2021; Snyder, Keppler, and Leider 2022; 
Yin, Wortman Vaughan, and Wallach  2019; Zhang  2023) 
demonstrate an increase in reliance on algorithms when partic-
ipants experience accurate algorithmic predictions. Although 
these studies focus on humans' evaluations of the algorithms 
they receive advice from, Chong et al. (2022) emphasize the role 
of self-confidence, showing that not only a decision-maker's 
confidence in the algorithm but also in herself decreases after 
inaccurate advice from the algorithm.

Field studies have further explored human–algorithm interac-
tion in practical settings such as retail product planning and 
pricing (Caro and de Tejada Cuenca  2023; Kawaguchi  2021) 
and taxi positioning (Liu et  al.  2023). However, few provide 
direct evidence of reactions to algorithmic recommendations. 
Liu et al. (2022) find that store managers maintain their initial 
attitudes toward an algorithm even after positive outcomes. 
Similarly, Lin, Kim, and Tong (2022) observe that diabetes pa-
tients' reliance on algorithmic advice increases following their 
own mistakes but not after the algorithm's errors.

Our study extends this research into a new decision domain—
strategic interaction. We investigate whether human decision-
makers show negative reactions to algorithm errors but also 
whether participants increase their reliance on the algorithm 
when they (repeatedly) receive helpful advice. Both observa-
tions—losing trust after seeing an algorithm err (Dietvorst, 
Simmons, and Massey  2015; Merritt et  al.  2015; Prahl and 
Van Swol 2017) and learning to rely on an algorithm (Bastani, 
Bastani, and Sinchaisri 2021; Berger et al. 2021; Filiz et al. 2021; 
Yin, Wortman Vaughan, and Wallach 2019) have been made in 
prior studies. In contrast to prior studies, though, our design al-
lows us to capture reactions to correct and incorrect predictions 
made by both the algorithm and the human decision-maker 
herself.

1.2   |   Reliance on Algorithms in Forecasting and in 
Strategic Interaction

This study also relates to research on determinants of an in-
dividual's basic willingness to rely on algorithms. Theoretical 
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frameworks (e.g., Hoff and Bashir 2015; Mahmud et al. 2022) 
have categorized determinants of trust in algorithms into sets 
referring to the characteristics of the person, the algorithm 
(e.g., its opaqueness and explainability; Gunning et al. 2019), 
the decision domain (e.g., business vs. medical decisions, ob-
jective vs. subjective judgments; Castelo, Bos, and Lehmann 
2019; Lee  2018), and the organizational and social environ-
ment (e.g., how algorithm use affects perception by others 
or replaces human roles; Bigman and Gray  2018; Prahl and 
Van Swol 2021; Venkatesh and Davis 2000). We collected data 
on participants' personal characteristics, including famil-
iarity with algorithms and domain and task experience, and 
analyzed their impact on reliance on a machine learning al-
gorithm in strategic interaction. These determinants belong 
to the within the decision-maker category; studies investi-
gating determinants from the other categories are reviewed, 
for example, in Cabiddu et al. (2022), De Freitas et al. (2023), 
or Mahmud et al.  (2022). Research indicates that familiarity 
with algorithms positively affects reliance on algorithmic 
advice (Castelo, Bos, and Lehmann 2019; Logg, Minson, and 
Moore 2019; Whitecotton 1996), whereas domain experience 
has a negative (Kim et al. 2022; Logg, Minson, and Moore 2019) 
or inversely U-shaped effect (Allen and Choudhury 2022; Luo 
et  al.  2021). Typically, studies investigating these determi-
nants of reliance on algorithmic advice model tasks that in-
volve predicting uncertain events or making judgments about 
unknown facts, and they show that reliance on algorithms 
varies by decision domain (Castelo, Bos, and Lehmann 2019; 
Himmelstein and Budescu  2023) and is lower for more sub-
jective tasks (Commerford et  al.  2022; Logg, Minson, and 
Moore 2019; Yeomans et al. 2019).

In this study, participants are tasked with predicting human be-
havior in real-time, a complex and subjective endeavor requir-
ing the identification of behavioral patterns and consideration 
of strategic interdependencies. Although previous studies have 
introduced machine learning in strategic play settings (Crandall 
et  al.  2018; Normann and Sternberg  2023), these typically in-
volve human players facing algorithms without receiving de-
cision support. An exception is Schauer and Schnurr  (2023), 
who find that algorithmic decision support influences pricing 
decisions in a duopoly game when facing an algorithmic com-
petitor but not a human one. Erlei et al. (2020) observe that al-
gorithmic decision support benefits proposers in an ultimatum 

game by promoting fairer offers, yet proposers underweight the 
algorithm's recommendations. Our study uniquely provides evi-
dence on how the personal characteristics of human users affect 
reliance on an algorithm designed to assist in strategic encoun-
ters. Our analyses relate to prior findings about the influence 
of familiarity with algorithms (e.g., Araujo et al. 2020; Castelo, 
Bos, and Lehmann 2019; Logg, Minson, and Moore 2019; Önkal 
et al., 2009; Whitecotton 1996) and of domain experience (e.g., 
Logg, Minson, and Moore 2019; Luo et al. 2021; Kawaguchi 2021; 
Kim et al. 2022). Our analyses go beyond prior research in that 
we check whether such personal characteristics are moderators 
of dynamic human–algorithm interaction, that is, whether they 
affect the direction and/or strengths of individuals' reactions to 
outcomes following acceptance versus rejection of algorithmic 
advice.

1.3   |   The Present Study

We designed the strategic interaction setting for this study 
around the repeated play of the RPS game over a substantial 
number of rounds. RPS is particularly compelling because the 
complexity arises not from the game itself, as seen in traditional 
strategy games like Go or chess, but from the behaviors exhib-
ited by humans playing the game. Increasing the chances of 
winning a round necessitates anticipating the opponent's choice. 
Therefore, our experimental task requires an effective algorithm 
to predict patterns in human behavior and give recommenda-
tions based on these predictions. Although it is impossible to gain 
an advantage over an opponent who fully randomizes their play, 
research shows that human choices in RPS often follow non-
random patterns (Dyson et al. 2016; Wang, Xu, and Zhou 2014). 
For instance, players tend to choose rock as their opening move 
(Dyson et al. 2016; Xu, Zhou, and Wang 2013) or employ a win–
stay–lose–shift strategy (Wang, Xu, and Zhou 2014), where they 
repeat a winning choice but switch to a different option after 
losing. An effective algorithm exploits these patterns, and for 
this experiment, an algorithm was specifically programmed and 
trained to do so successfully.

Figure  1 illustrates our analysis framework which builds 
upon theoretical research on trust in algorithms (Glikson and 
Woolley 2020; Hoff and Bashir 2015; Marsh and Dibben 2003) 
and illustrates the three research questions we address. The 

FIGURE 1    |    Analysis framework. The figure shows the framework and the three research questions (RQ1, RQ2, and RQ3) that guide the data 
analyses.
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middle level of the figure depicts the dynamic interaction 
between a human decision-maker and an algorithm in our 
setting. In each round, the decision-maker makes an initial 
(provisional) choice, receives the algorithm's advice, and then 
decides either to follow the advice (switch to the recommended 
option) or reject it and stick with the initial choice. The round's 
result provides feedback about both the actual outcome of the 
choice made (accept vs. reject advice) and the potential out-
come had the opposite choice been made. All outcomes (win, 
draw, and lose) are unambiguous, as are the evaluations of the 
algorithm's and the decision-maker's predictions. We first as-
sume that the strategic opponent is a human without decision 
support.

Our first research question (RQ1) examines the impact of 
this feedback on the decision-maker's subsequent choice be-
tween accepting and rejecting advice in the following round. 
Specifically, we explore how the decision to accept or reject 
advice, combined with the feedback from the outcome of that 
decision, influences subsequent behavior. Although comple-
menting prior studies (Dietvorst, Simmons, and Massey 2015; 
Prahl and Van Swol  2017) by contrasting early-round ex-
periences with later-round reliance on advice, our focus 
is on the dynamics of the decision to follow the algorithm 
round-by-round. Previous research suggests that decision-
makers may lose trust in an algorithm after observing errors 
(Chacon, Kausel, and Reyes  2022; Dietvorst, Simmons, and 
Massey  2015; Dzindolet et  al.  2003; Muir and Moray  1996; 
Prahl and Van Swol 2017) but may also learn to trust the algo-
rithm over time (Bastani, Bastani, and Sinchaisri 2021; Berger 
et al. 2021; Filiz et al. 2021; Snyder, Keppler, and Leider 2022; 
Yin, Wortman Vaughan, and Wallach  2019; Zhang  2023). 
In our setting, decision-makers observe both the actual and 
potential outcomes in each round, allowing us to draw con-
clusions about their perspectives and evaluations of the algo-
rithm's advice versus their own choices.

The top level of Figure 1 addresses our second research ques-
tion (RQ2), showing selected determinants of an individual's 
basic willingness to trust algorithms derived from previous 
studies in other decision domains. These include demographic 
variables (e.g., gender and age), familiarity with algorithms 
(experience with algorithms in various decision domains and 

understanding of their capabilities), experience with the de-
cision domain and the specific task, and personality traits, 
including the Big Five (Barnett et  al.  2015; Rammstedt and 
John 2007) and competitiveness. We investigate whether prior 
evidence about these determinants of trust in algorithms 
applies to the strategic interaction domain we study. More 
specifically, we analyze whether personal characteristics ex-
plain general reliance on algorithms in strategic interaction 
and whether these characteristics influence the dynamics of 
human–algorithm interaction. For instance, individuals fa-
miliar with algorithms may evaluate round outcomes differ-
ently than those with low familiarity; individuals confident in 
their task skills may react more strongly to algorithm errors. 
The bottom level of Figure  1 illustrates our third research 
question (RQ3), which is related to prior research on the im-
pact of the decision context on trust in algorithms (Chiou and 
Lee  2023; Mahmud et  al.  2022, with further references). In 
the experiment, participants play against both human and 
algorithmic opponents. Our third research question explores 
whether the results for the first two questions are unique to 
facing a human opponent or also apply when the opponent is 
an algorithm. This inquiry is crucial as the use of algorithms 
becomes more widespread, increasing the likelihood of facing 
an algorithmic opponent in strategic encounters.

2   |   Experimental Design

2.1   |   Treatments and Procedures

The experiment employs a mixed between-within-subject de-
sign to manipulate the conditions under which participants 
play RPS while receiving decision support from an algorithm 
(All participants provided informed consent upon registration 
for the experiment. The requirement for ethics approval was 
waived by the ethics committee based on its ethics approval 
principles). Participants engage in RPS over a computer net-
work, completing four sets of 50 rounds each. In the first stage 
of the experiment, all participants play against each other 
(human vs. human, HvH). In the second stage, all partici-
pants play against the RPS algorithm (human vs. algorithm, 
HvA). Subsequently, two treatments follow in which partic-
ipants receive algorithmic decision support: In the human 

FIGURE 2    |    Computer interface of the RPS game. The figure shows the computer interface of the Rock–Paper–Scissors game. Players having no 
algorithm support (Figure 2a) choose an option, send it, and then see the outcome of the round. Players with algorithm support make an initial choice 
(Figure 2a), send it, then receive advice (Figure 2b), and make the decision to stay with their initial option or switch.
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with algorithm versus human (HAvH) treatment, half of the 
participants are randomly selected to receive advice from the 
algorithm while playing against the other half, that is, against 
an unsupported human opponent. In the human with algo-
rithm against algorithm (HAvA) treatment, all participants 
receive support from the algorithm while playing against the 
machine, essentially a clone of the algorithm. In each round of 
play with algorithmic decision support, the respective player 
makes an initial choice, receives advice from the algorithm, 
and then decides either to stay with the initial choice or revise 
it based on the recommendation. Participants select options by 
clicking on one of three pictograms. When they play with the 
algorithm, its recommendation is displayed after the initial 
choice has been made (see Figure 2). The first set of 50 rounds 
(HvH) begins after five training rounds against a human op-
ponent. Participants receive a show-up fee of 8 EUR, plus a 
payoff of 2 EUR for a win, 1 EUR for a draw, and 0 EUR for a 
loss over 12 randomly selected rounds, three from each of the 
four stages.

Sessions were conducted at the university computer laboratory 
(The participant pool is managed using ORSEE; Greiner 2015). 
A total of 176 subjects participated, with 62% being business, 
economics, or information systems students, 50.6% male, and an 
average age of 23 years. All participants received algorithmic ad-
vice in the HAvA treatment, whereas only half of them (N = 88) 
had algorithm support in the HAvH treatment. We thus have a 
total of 4400 observations from participants interacting with the 
algorithm in the HAvH treatment (88 participants × 50 rounds) 
and 8800 observations for the HAvA treatment. Participants had 
12 s to make a choice. If they did not manage to do this, they 
would lose the respective round. Overall, there were 110 such 

incidents, amounting to 0.3% of the data. HAvH was tested be-
fore HAvA in half of the sessions, and the sequence was reversed 
in the other half.

2.2   |   The Algorithm

The algorithm was sourced from a website hosting a pro-
gramming contest (www.​rpsco​ntest.​com). We selected a top 
performer, “RPS_FSm” by “TeleZ” (the source code is publicly 
available at http://​www.​rpsco​ntest.​com/​entry/​​57317​16400​
414720) and trained it over approximately 10,000 rounds 
of play against test subjects. It is a heuristic reinforcement 
learning algorithm, meaning that it does not explicitly model 
a Markov decision process with a reward function but re-
lies on heuristics to determine the best choices for a round. 
Irrespective of the score, the algorithm continuously strives to 
win each round, which aligns with the incentive structure of 
the experiment. To derive the best choice, the algorithm ana-
lyzes the history of play in each round, comparing it with the 
cumulative experience from prior training rounds. It exam-
ines sequences in the opponent's play history, starting with 
up to 25 previous rounds, and uses the frequencies of these 
sequences to make decisions. The algorithm learns to iden-
tify and exploit patterns in the opponent's behavior, such as 
a tendency to use a win–stay–lose–shift strategy. In pretests, 
the algorithm aggressively exploited such naive strategies. In 
the experiment, the algorithm performed effectively: In the 
HvA stage, it won against 59.7% of participants, lost to 33.5%, 
and tied with 6.8%. In the HAvH treatment, participants who 
consistently accepted the algorithm's advice increased their 
chances of winning from 30.8% to 35.2% and reduced their 

TABLE 1    |    Descriptive data on algorithm utilization in the HAvH treatment.

Panel A: Game outcome and advice rejection frequencies

Average score of participants having algorithmic decision support (N = 88) 50.13

Participants that win|tie|lose the 50-round game: 47.7%|2.3%|50.0%

Frequencies of advice rejection All rounds Rounds 1–25 Rounds 26–50

all advice 35.2% 33.8% 36.6%

contradicting advice 50.2% 49.0% 51.3%

supporting advice 6.1% 6.1% 6.3%

Panel B: Early experience and subsequent advice rejections: Correlations

Number of rounds from 1 to t, in which … t = 5 t = 10 t = 15 t = 20 t = 25

… the algorithm's advice would lose 0.14 0.17 0.22** 0.31*** 0.30***

… the algorithm's advice would win −0.29*** −0.26** −0.22** −0.26** −0.26**

… the participant's initial choice would lose −0.03 0.06 0.01 −0.02 0.02

… the participant's initial choice would win 0.14 0.12 0.10 0.08 0.01

Note: Panel A of the table shows, for the N = 88 participants receiving algorithmic decision support in the HAvH treatment, the average score and frequencies with 
which they win, tie, or lose the 50 rounds game, and the frequencies with which they reject advice over all 50 rounds, over the first 25 rounds, and over the last 25 
rounds. Panel B of the table shows Spearman rank correlations between four proxies of the game‘s history up to round t and the frequencies with which participants 
reject advice after round t. The histories span the first 5, 10, 15, 20, and 25 rounds, respectively, and the corresponding rejection frequencies are calculated over rounds 
6–50, 11–50, 16–50, 21–50, and 26–50, respectively. Panel B includes only cases of contradicting advice.
– score is the sum of all 50 rounds‘ outcomes, with a win (draw, loss) giving 2 (1, 0) points.
– supporting (contradicting) advice is a recommendation given by the algorithm that is equal (unequal) to the participant‘s initial choice.
– advice rejection is an indicator variable equal to 1 if the participant‘s final choice is not the recommended choice.
*, **, and ***indicate significance levels of p < .10, p < .05, and p < .01.

http://www.rpscontest.com
http://www.rpscontest.com/entry/5731716400414720
http://www.rpscontest.com/entry/5731716400414720


6 of 20 Journal of Behavioral Decision Making, 2024

chances of losing from 35.3% to 30.6%, which translates into 
an overall chance of winning the 50-round game that roughly 
equal to the actual 59.7% win rate observed in the HvA stage.

2.3   |   Measures

Advice is categorized as either supporting (the algorithm's rec-
ommendation matches the participant's initial choice) or contra-
dicting. Contradicting advice allows a clear distinction between 
advice acceptance and rejection, whereas with supporting ad-
vice only rejection is clearly defined. We thus measure reliance 
on algorithmic advice with the indicator variable reject, which is 
equal to 1 when the final choice differs from the algorithm's sug-
gestion. Each round's outcome is coded with scores of 2, 1, and 
0 points for a win, draw, and loss, respectively; a total score of 
50 ties a 50-round game. A postexperimental questionnaire col-
lected information on participants' familiarity with algorithms, 
prior experience with the experimental task (RPS), experience 
in the decision domain (other strategic interaction tasks), demo-
graphics (e.g., age, gender, and work experience), and personal-
ity traits. Regarding algorithm familiarity, participants reported 
their experiences with online recommendation systems (e.g., on-
line shops or streaming platforms), their evaluations of strategy 
game engines (e.g., chess, Go, and poker), and their program-
ming knowledge. Since there is no public knowledge about the 
sophistication of RPS algorithms, participants likely had no pre-
conceived notions about the algorithm's strength. Their perfor-
mances in the HvA stage serve as a proxy for their experience 
with the algorithm. For domain experience, participants self-
assessed their skills in strategy games and reported their experi-
ence with real-time online strategy games (e.g., Dota, League of 
Legends, and StarCraft), as these involve algorithms, interaction 
with other players, and quick decision-making. Participants also 
self-assessed their skills in playing RPS, and their scores in the 
initial HvH stage serve as a proxy for their actual RPS skills. 
For personality traits, we used a short version of the Big Five 
inventory (Rammstedt and John  2007) and included items on 
competitiveness. The postexperimental questionnaire also in-
cluded three questions of the cognitive reflection test (Frederick 
2005) and an incentivized dictator game decision that we use 
as a proxy for distributive fairness preferences. As none of the 
collected measures explains behavior in the experiment, we do 
not further comment on them.

3   |   Results

3.1   |   Dynamics of Algorithm Utilization in 
Playing RPS

We start the presentation of results addressing the first research 
question and show how participants interact with the algorithm 
in playing RPS. Our analyses focus on the HAvH treatment, 
where participants receive algorithmic decision support while 
facing a human opponent without such support. Table 1 presents 
descriptive statistics on scores and frequencies of rejecting al-
gorithmic advice in the HAvH treatment. Given the algorithm's 
strong performance in the HvA stage, where it outperforms ap-
proximately 60% of participants, having algorithm support while 
facing an unsupported human opponent should theoretically 

confer an advantage. However, this advantage is contingent on 
participants' willingness to accept the algorithm's advice. Panel 
A of Table 1 shows that participants do not fully leverage this 
advantage, achieving an average score of 50.13, only marginally 
higher than the neutral score of 50. Participants lose 50% (win 
47.7%, tie 2.3%) of the 50-round games. They reject contradicting 
advice 50.2% of the time—approximately every second round—
but rarely reject supporting advice (6.1%). Overall, the average 
overall rejection frequency is 35.2%. The table also presents 
rejection frequencies for early (rounds 1–25) and late (rounds 
26–50) stages of the game, showing a slight increase in rejec-
tions in the latter half. There is considerable variation among 
participants: A median split of overall rejection rates reveals that 
participants in the below-median group have a rejection rate of 
19.8%, outperforming their human opponents, whereas those 
in the above-median group have a rejection rate of 50.9% and 
underperform. Rejection rates between these groups do not con-
verge but diverge over the course of the game.

Dietvorst, Simmons, and Massey  (2015) coined the term algo-
rithm aversion to describe the phenomenon where decision-
makers lose faith in an algorithm after observing its errors. We 
test for such behavior by examining whether experience with 
the algorithm's correct or incorrect advice in early rounds influ-
ences participants' decisions to accept or reject advice in later 
rounds. Panel B of Table 1 presents Spearman rank correlations 
between proxies for early experiences and the frequency of re-
jecting advice in later rounds. Two proxies for early experiences 
with the algorithm are derived from counting the number of 
rounds from round 1 to round t (t = 5, 10, 15, 20, and 25) in which 
the algorithm has (i) erred (i.e., recommended a losing choice: 
“algorithm's advice would lose”) or (ii) has provided correct ad-
vice (i.e., recommended a winning choice: “algorithm's advice 
would win”). We calculate the same proxies for the participants' 
own judgments, that is, we count the number of rounds from 
1 to t in which the participant's initial choice has been (iii) in-
correct (“participant's initial choice would lose”) or (iv) correct 
(“participant's initial choice would win”). The analysis focuses 
on cases of contradicting advice, where acceptance and rejection 
are clearly defined. The data reveal both algorithm aversion and 
appreciation: Early algorithm errors correlate positively with 
later advice rejections, with the strength and significance of 
this correlation increasing over time. Conversely, early correct 
predictions correlate strongly with reliance on the algorithm, 
particularly in the earliest rounds (1–5 and 1–10). Unlike previ-
ous studies (Dietvorst, Simmons, and Massey 2015), we do not 
observe an asymmetry that exclusively establishes algorithm 
aversion. Moreover, participants' long-term reactions to their 
own initial choice accuracy are not significant, suggesting that 
reliance on advice is more influenced by the quality of the algo-
rithm's advice than by their own choices.

Table  1 provides insights into whether a participant's reliance 
on advice is correlated with early algorithmic recommendations 
turning out right or wrong. We further investigate the dynamics 
of human–algorithm interaction on a round-by-round basis to 
address our first research question, as illustrated in Figure 1. We 
examine how a participant's decision to accept or reject advice 
in round t and the feedback stemming from observing the out-
come of that round affect their behavior in the following round. 
We hypothesize that participants sensitive to the success of their 
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strategy in round t will be less likely to reject advice in round t + 1 
after losing with rejected advice in t or winning with accepted ad-
vice in t, and more likely to reject advice after winning with re-
jected advice or losing with accepted advice. Panel A of Table 2 
presents participants' advice rejection frequencies in round t + 1 
based on the six possible events in round t: {reject|not reject ad-
vice} × {win|draw|loss}. The descriptive data indicate distinct 
effects of round outcomes on subsequent decisions. After not re-
jecting advice, the rejection frequency in t + 1 is 21.1% following 

a win, increases to 28.1% following a draw, and rises to 33.4% fol-
lowing a loss. Conversely, after rejecting advice, participants ex-
hibit an asymmetry: They continue rejecting advice with similar 
frequencies after a win (55.2%) and a draw (56.3%), but the fre-
quency drops to 39.9% after a loss. This pattern is consistent when 
considering only contradicting advice. The asymmetry in behavior 
suggests that participants' reactions are influenced more by their 
success in predicting their opponents' behavior than by their as-
sessments of the algorithm's advice.

TABLE 2    |    Decision to reject advice in round t + 1 as a response to round t‘s outcome.

Panel A: Descriptive statistics: Frequencies of rejecting advice in round t + 1

Reject advice in round t + 1: 
Frequency [observations|groups] All advice Contradicting advice only

decision in round t: Not reject Reject Not reject Reject

outcome of round t: 	 win 21.1% [979|88] 55.2% [464|82] 15.5% 
[322|70]

79.0% [291|78]

draw 28.1% [897|88] 56.3% [512|81] 27.5% 
[298|78]

79.4% [325|74]

loss 33.4% [887|88] 38.9% [529|85] 37.1% 
[267|80]

58.0% [324|80]

total 27.3% [2763|88] 49.8% [1505|86] 26.0% 
[887|85]

71.9% [940|85]

Panel B: Logistic regressions

Dependent variable: reject advice in round t + 1 All advice Contradicting advice only

Independent variables: (1) (2) (3)

prior round t:  not reject ∩ win −0.365*** −0.705*** −0.636***

not reject ∩ win × potential loss −0.144

not reject ∩ loss 0.224** 0.451*** 0.238

not reject ∩ loss × potential win 0.483**

reject ∩ draw 0.553*** 0.954*** 0.797***

reject ∩ draw × potential loss 0.315

reject ∩ win 0.569*** 0.942*** 0.905***

reject ∩ win × potential loss 0.088

reject ∩ loss −0.122 0.276* 0.490***

reject ∩ loss × potential win −0.434**

N (groups) 4170 (86) 2719 (86) 2719 (86)

Note: Panel A shows the frequencies with which participants having algorithm decision support in the HAvH treatment rejected advice in round t + 1, classified by the 
six potential events of round t ({reject|not reject} × {win|draw|lose}). Panel B presents fixed effects logistic regressions estimating the decision to reject advice in round 
t + 1 based on the same round t events, with not reject × draw being the baseline in each respective regression. As two participants never rejected the advice, the group 
size is 86 in all regressions. All regressions include round as control variable.
Wald tests of regression coefficients:	

model (1), H0: b (reject ∩ draw) = b (reject ∩ win), χ2 = 0.01, p = .904;	
model (1), H0: b (reject ∩ draw) = b (reject ∩ loss), χ2 = 25.57, p < .001;	
model (2), H0: b (reject ∩ draw) = b (reject ∩ win), χ2 = 0.01, p = .931;	
model (2), H0: b (reject ∩ draw) = b (reject ∩ loss), χ2 = 24.30, p < .001;	
model (3), H0: b (reject ∩ loss) + b (reject ∩ loss ∩ potential win) = 0, χ2 = 0.09, p = .77.

– reject (not reject) is an indicator variable equal to 1 if the participant‘s final choice is not (equal to) the recommended choice.
– win, draw, and loss are indicator variables for the round‘s outcome.
– not reject ∩ win etc. are indicator variables for the respective events, that is, a win after not rejecting advice, etc.
– potential win and potential loss are indicator variables for hypothetical outcomes of a round: In case the participant rejected the advice, potential loss (potential win) 
is equal to one if the actual outcome of the round was no loss (no win) but would have been a loss (a win) if the participant had not rejected the advice. In case the 
participant did not reject advice, potential loss (potential win) is equal to one if the actual outcome of the round was no loss (no win) but would have been a loss (a win) 
if the participant had rejected advice.
*, **, and ***indicate significance levels of p < .10, p < .05, and p < .01.
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To compare participants' reactions after accepting versus reject-
ing advice, we conduct fixed effects logistic regressions estimat-
ing the likelihood of rejecting advice in round t + 1. Panel B of 
Table 2 presents three models: Model (1) includes all observa-
tions and estimates the likelihood of rejecting advice in round 
t + 1 based on indicator variables reflecting the actual events of 
round t. Models (2) and (3) consider only contradicting advice in 
round t. Model (2) replicates Model (1) for robustness, whereas 
Model (3) includes additional measures to test the impact of po-
tential outcomes on decision-making. All models control for the 
round number.

The baseline for all regression models is not reject ∩ draw, 
that is, the case where the participant accepts advice and the 
outcome is a draw. Model (1) results conform to the descrip-
tive data from Panel A. They show that relative to the base-
line (not reject ∩ draw), a different outcome after accepting 
advice significantly affects the likelihood of rejecting advice 
in the next round, with a win decreasing and a loss increas-
ing it. Instead, for outcomes after rejecting advice, a win and 
a draw have nearly identical coefficients (0.569 and 0.553), 
that is, both outcomes equally increase the likelihood of re-
jecting advice in the next round, whereas a loss reduces the 
propensity to repeat rejecting advice relative to a draw as its 

coefficient is significantly lower (coefficients: reject ∩ loss 
vs. reject ∩ draw, Wald test, χ2 = 25.57, p < .001). The coeffi-
cient for reject ∩ loss is insignificant, indicating that losing 
after rejecting advice does not significantly alter the propen-
sity to reject advice again relative to accepting advice and 
experiencing a draw. This asymmetry supports the notion of 
self-serving evaluations, as participants are stricter towards 
the algorithm than towards themselves. Model (2) corrobo-
rates these findings, with larger coefficients and a positive, 
though marginally significant, coefficient for experiencing 
a loss after rejecting advice (p = .089). Model (3) examines 
the effect of potential outcomes. It reveals that participants 
ignore potential outcomes after wins, whether they accepted 
(coefficient: −0.144, p = .630) or rejected advice (coefficient: 
0.088, p = .667). Realizing that the potential outcome would 
have been a win after an actual loss affects behavior, and the 
effect is again asymmetric: After not rejecting contradicting 
advice, seeing that the decision resulted in a loss because the 
algorithm erred does not significantly impact behavior per se 
(not reject ∩ loss: 0.238, p = .244), but realizing that the own 
initial choice would have won—rather than only drawn—sig-
nificantly increases the rejection likelihood in t + 1 (not reject 
∩ loss × potential win: 0.483, p = .043). Conversely, after re-
jecting contradicting advice, an actual loss even increases the 

TABLE 3    |    Random effects logistic regressions.

Dependent variable:

reject advice in round t + 1 (1) (2) (3) (4) (5) (6) (7)

Independent variables:

round t: not reject ∩ win −0.373*** −0.373*** −0.374*** −0.372*** −0.373*** −0.374*** −0.376***

round t: not reject ∩ loss 0.230** 0.230** 0.229** 0.229** 0.230** 0.230** 0.226**

round t: reject ∩ draw 0.671*** 0.669*** 0.673*** 0.671*** 0.671*** 0.670*** 0.670***

round t: reject ∩ win 0.678*** 0.678*** 0.676*** 0.681*** 0.678*** 0.677*** 0.676***

round t: reject ∩ loss −0.025 −0.024 −0.025 −0.026 −0.025 −0.025 −0.026

familiarity with algorithms −0.350*** −0.277***

experience with online 
strategy games

−0.280*** −0.192**

self-assessment of strategy 
game skills

−0.216** −0.160*

score HvH −0.003 0.087

score HvA 0.100 0.106

N (groups) 4170 (86) 4170 (86) 4170 (86) 4170 (86) 4170 (86) 4170 (86) 4170 (86)

Note: The table shows results from random effects logistic regressions estimating the likelihood of rejecting advice in round t + 1 based on the events in round t and 
proxies for the experience made prior to or within the experiment. For all measures representing events, not reject × draw is the baseline in each respective regression. 
As two participants never rejected the advice, the group size is 86 in all regressions. All regressions include round as control variable.– reject (not reject) is an indicator 
variable equal to 1 if the participant's final choice is not (equal to) the recommended choice.
– win, draw, and loss are indicator variables for the round's outcome.
– not reject ∩ win etc. are indicator variables for the respective events, that is, a win after not rejecting advice, etc.
– familiarity with algorithms is the average of four items, scaled to lie in (0, 5). Items ask for assessments of (i) the helpfulness of recommendations in online shopping 
and (ii) on streaming platforms, of (iii) the strengths of strategy game (chess, Go, and poker) engines, and for a self-assessment of programming know-how.
– experience with online strategy games is a two-item average. Items ask for experience with both playing online strategy games and watching others playing such 
games on streaming platforms (like Twitch)
– self-assessment of strategy game skills is a two-item average, scaled to lie in (0, 5). Items ask for self-assessments of participants' skills in playing strategy games (card 
games and board gamers) in general as well as Rock–Paper–Scissors.
– score HvH is the standardized score in the HvH stage, and score HvA is the standardized score in the HvA stage. Standardization is based on the mean and standard 
deviation of scores from the N = 88 participants having algorithm support.
*, **, and *** indicate significance levels of p < .10, p < .05, and p < .01.
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likelihood of rejecting advice in the next round (reject ∩ loss: 
0.490, p = .009); only if the decision-maker sees that following 
the algorithm would have given a win (reject ∩ loss × potential 
win: −0.434, p = .026) neutralizes this effect of the actual loss 
(Wald test, χ2 = 0.09, p = .77).

3.2   |   Personal Characteristics as Determinants 
and Moderators of Algorithm Utilization

We now address our second research question, which has two 
parts: Do the determinants of individuals' basic willingness to 
trust an algorithm explain the heterogeneity in their behav-
iors? Do these determinants moderate the relationship between 
dynamic experience and reliance on advice identified in the 
main analyses? Our focus remains on the HAvH treatment. 
Descriptive data on the postexperimental questionnaire items 
are presented in Table A1 in Appendix A.

3.2.1   |   Main Effects of Personal Characteristics on 
Algorithm Utilization

We first examine whether participants' demographics, person-
ality traits, familiarity with algorithms, and experience with 
the decision domain and the specific experimental task have 
a main effect on participants' decisions to reject versus accept 
algorithmic advice by incorporating each measure into the lo-
gistic regression of Panel B, Table 2, Model (1). Table 3 presents 
selected results. To include these measures in the regression, we 
estimate random effects models instead of fixed effects mod-
els. Model (1) compares random and fixed effects estimations, 
showing similar results. Models (2) to (6) include one measure 
each, whereas Model (7) includes all measures. The results in-
dicate that decisions to accept or reject advice are significantly 
related to prior experience measures but not to the experience 
made in the first two stages of the experiment (scores in HvH 
and HvA): Participants who have outperformed their human 
counterparts in HvH do not show higher rejection frequencies, 
nor do those who have performed better against the algorithm 
in HvA use its advice significantly less. Measures of familiar-
ity with algorithms, experience with online strategy games, and 
self-assessed strategy game skills all negatively correlate with 
rejecting advice. This finding is expected for algorithm famil-
iarity and online strategy game experience, but the negative 
correlation with self-assessed strategy game skills is surprising, 
implying that participants who perceive themselves as stronger 
players rely more on the algorithm.

Table 3 does not present results for demographic characteristics 
or personality traits. Regarding demographics, we find a sig-
nificant gender effect: Male participants are less likely to reject 
advice than female participants, but this effect disappears once 
experience measures are controlled for. No systematic relation-
ships are found between personality traits (including competi-
tiveness) and reliance on algorithmic advice. Model (7), which 
includes all variables, shows stable effects identified in Models 
(2) to (6), although the significance of experience with online 
strategy games and self-assessed strategy game skills dimin-
ishes. Robustness checks (untabulated) for contradicting advice 
only yield similar results.

3.2.2   |   Personal Characteristics as Moderators

The second part of the research question examines whether 
determinants of heterogeneity in algorithmic advice reli-
ance moderate the relationship between dynamic experi-
ence and advice reliance found in the first research question. 
Specifically, we explore whether participants with varying 
familiarity with algorithms, domain and task experience, or 
personality traits respond differently to dynamic experiences 
with the algorithm. We repeat the regression analyses from 
Table  2, interacting the identified drivers of algorithm reli-
ance with measures reflecting events of round t. Table 4 pres-
ents these results, starting with the reference model (Model 
[1] from Table  2). It then shows results for familiarity with 
algorithms, experience with online strategy games, self-
assessment of strategy game skills, and scores in the HvH and 
HvA stages.

The results demonstrate that neither experience with online 
strategy games nor self-assessment of strategy game skills sig-
nificantly moderates the effects of dynamic experience on be-
havior. Strategy game skills interactions are not significant, and 
only the experience with online strategy games interaction with 
losing after not rejecting advice shows an effect. Scores in the 
HvH and HvA stages also have minimal and selective effects 
on dynamic behavior. In stark contrast, familiarity with algo-
rithms strongly moderates the effects of round outcomes after 
rejecting advice: Interactions with reject ∩ draw and reject ∩ win 
are highly significant. These effects only occur after rejecting 
advice; interactions after not rejecting advice are insignificant. 
This indicates that participants familiar with algorithms are sig-
nificantly more sensitive to the consequences of rejecting, but 
not following, algorithmic advice. We also estimate regressions 
for demographic characteristics and personality traits (results 
untabulated), but we find no systematic moderation regarding 
any of these variables.

3.3   |   Human Opponent Versus Algorithmic 
Opponent

In the settings investigated in the literature, decision support 
from algorithms typically refers to judgment and decision-
making situations where the human decision-maker needs to 
forecast a future event or estimate an unknown fact. Our setting 
differs significantly as it involves the human decision-maker 
facing an opponent in a strategic interaction. To address our 
third research question, which examines whether our findings 
about the dynamics of human–algorithm interaction and overall 
trust in the algorithm are unique to the HAvH treatment, we im-
plemented an additional treatment: HAvA. In this treatment, all 
human participants play RPS with the support of the algorithm, 
but their opponent is not another human; it is an algorithm. 
Specifically, for each participant, the computer system runs two 
independent clones of the identically trained algorithm: one 
serving as an advisor to the human participant and the other as 
the opponent. Appendix B (Tables B1, B2, B3, and B4) provides 
detailed results of repeating all analyses from Sections 3.1 and 
3.2 for the HAvA treatment. These results indicate that facing an 
algorithmic opponent, as opposed to a human opponent, signifi-
cantly alters participant behavior.
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First, advice rejections become substantially more frequent in 
the HAvA treatment (43.9%) compared to the HAvH treatment 
(35.2%). Second, in the HAvA treatment, only the experience 
of the algorithm giving winning advice (not advice that loses 
the round) is significantly correlated with rejection frequen-
cies in later rounds. Third, the dynamic behavior over the 
game rounds changes: After accepting advice, a loss no longer 
predicts the subsequent decision to reject advice, and after re-
jecting advice, a draw is no longer equivalent to a win in pre-
dicting behavior in the following round. Fourth, none of the 
proxies for experience with algorithms or the decision domain 
significantly relate to the decision to accept or reject advice. 
The only variable showing an effect is performance against 
the algorithm in the HvA stage, which negatively affects re-
liance on the algorithm's advice. Lastly, none of the determi-
nants investigated moderates the effect of a round's outcome 
on the decision to follow the advice in the subsequent round. 
These findings suggest that the dynamics of human–algo-
rithm interaction and trust in the algorithm observed in the 
HAvH treatment do not fully translate to the HAvA treatment, 
highlighting the impact of the type of opponent on behavior 
and decision-making processes.

4   |   Discussion

This exploratory study investigates the dynamics of human–al-
gorithm interaction in a setting of strategic interaction. We or-
ganize our discussion of its results and their implications along 
with the three research questions guiding the analyses. Then, 
we address some of the study's limitations.

4.1   |   Dynamics of Human-Algorithm Interaction

Our observation that individuals make suboptimal use of al-
gorithmic recommendations aligns with prior studies, but our 
results provide a more nuanced understanding of human–
algorithm interaction dynamics and uniquely capture reac-
tions to correct and incorrect predictions by the algorithm 
and participants' own predictions. The regression results in 
Table 2, Panel B, indicate that participants are highly sensitive 
to the outcome of their decision both to accept and to reject 
advice, but with asymmetric reactions: Participants who fol-
low the algorithm's advice increase reliance after a success-
ful prediction, and decrease reliance after a failed prediction, 
particularly when their initial choice was correct, whereas 
they treat a draw as neutral. Conversely, after rejecting ad-
vice, both a win and a draw reinforce the tendency to con-
tinue rejecting advice. Hence, participants who reject advice 
tend to continue doing so, showing greater tolerance for their 
own errors than for the algorithm's errors, consistent with 
findings from Dietvorst, Simmons, and Massey  (2015). Even 
losing a round does not break their tendency to reject advice 
unless they see that following the algorithm would have led 
to a win (Table 2, Panel B, Model [3]). This is consistent with 
participants who are reluctant to follow the algorithm having 
a high threshold for changing their behavior, even though it 
is clear that in our setting the algorithm cannot guarantee a 
win. Such a threshold would also explain why participants' 
overall experience with the algorithm (HvA stage score) does 

not significantly affect their reliance on it. Our findings on 
the dynamics of algorithmic advice reliance have no direct 
parallels in the literature, but related studies offer insights. 
Dietvorst and Bharti (2020) suggest that decision-makers are 
particularly averse to algorithms and less sensitive to predic-
tion errors when facing (high) outcome uncertainty. They pre-
fer their own judgment, despite its lower accuracy. Similarly, 
Burton, Stein, and Jensen (2023) argue that human–machine 
interaction dynamics change under uncertainty, where future 
events' probabilities cannot be reliably calculated. Our finding 
that participants persist in rejecting advice aligns with these 
arguments, as our setting involves a decision-maker who can-
not expect the algorithm to eliminate uncertainty but only to 
offer a strategic edge. Participants evaluate algorithmic advice 
based on its perceived utility in predicting their opponent's 
behavior and their own predictive ability, indicating that 
they do not expect their opponents to randomize their play 
effectively.

A prevalent argument in discussions of algorithm aversion is 
that human behavior hinders the adoption of superior forecast-
ing and decision-making methods (e.g., Dietvorst, Simmons, 
and Massey 2018). Although our study reveals under-reliance on 
algorithmic advice and persistence among those who reject it, 
we are careful with drawing the same conclusion without res-
ervations. This is because this study's task involves predicting 
human behavior in strategic interactions, where algorithmic de-
cision support can influence the very behavior being predicted. 
In the RPS game, no algorithm can aid a player if the opponent 
successfully randomizes their moves. Awareness of algorithmic 
support may prompt human players to attempt randomization. 
Broadly, this suggests that in strategic interaction settings, algo-
rithm aversion is driven by multiple factors. These include the 
belief that personal intuition about human behavior surpasses 
the algorithm and the notion that winning is feasible only be-
tween human players.

4.2   |   Personal Characteristics as Determinants 
of Reliance on Algorithms

Our second research question asks whether the personal char-
acteristics of decision-makers receiving algorithmic advice 
explain their basic willingness to rely on the algorithm in our 
setting of strategic interaction and whether these character-
istics influence the dynamics of human–algorithm interac-
tion. Our findings on participants' willingness to rely on an 
algorithm align with the growing literature on trust in algo-
rithms. Regarding familiarity with algorithms, our results 
confirm previous research that suggests “algorithm literacy” 
is necessary for appreciating algorithmic recommendations. 
Trust in algorithms is influenced by multiple factors, includ-
ing the algorithm's opacity—how transparent and explainable 
its processes are (Burrell 2016). Research shows that trust in-
creases when the “black box” is made transparent (Mahmud 
et  al.  2022). Although users are generally more hesitant to 
trust opaque algorithms, familiarity can mitigate this reluc-
tance. In our study, participants were only informed that the 
algorithm was professionally programmed for RPS, and their 
interactions with it during the HvA stage provided practical ex-
posure. Our findings indicate that familiarity with algorithms 
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moderates dynamic behavior: Participants familiar with algo-
rithms are more likely to follow its advice but are also more 
critical, as they tend to reject advice more frequently after a 
successful personal play. This suggests that familiarity with 
algorithms enhances both trust and critical evaluation, high-
lighting the need for future research to consider the dynamics 
of human–algorithm interaction.

We also discover that domain experience positively influ-
ences reliance on the algorithm. Participants with higher 
self-assessed strategy game skills and more experience with 
online strategy games were more likely to follow the algo-
rithm. This contrasts with previous findings of a negative 
(Arkes, Dawes, and Christensen 1986; Kim et al. 2022; Logg, 
Minson, and Moore 2019; Sieck and Arkes 2005) or inversely 
U-shaped relationship (Allen and Choudhury  2022; Luo 
et  al.  2021). Instead, we find a monotonic positive relation-
ship. Allen and Choudhury  (2022) argue that two opposing 
effects drive the inverse U-shaped relationship: More experi-
enced individuals are more resistant to algorithms, but also 
have superior assessments, increasing reliance on algorithms 
when they prove helpful. In our setting, the latter effect ap-
pears dominant. Additionally, our finding that experience 
with online strategy games enhances reliance on advice 
aligns with Araujo et  al.  (2020), who found that online self-
efficacy positively relates to algorithm reliance, unlike general 
self-efficacy.

Lastly, we examined whether personality traits affect reli-
ance on the algorithm's recommendations. Previous studies 
have shown that personality traits can influence evaluations 
of algorithmic judgments, particularly dutifulness (a facet of 
conscientiousness), neuroticism, and extraversion (Barnett 
et al. 2015; Lee 2018; Mahmud et al. 2022; Neumann, Niessen, 
and Meijer 2023). We found no significant correlation between 
personality traits and participants' willingness to follow the al-
gorithm's advice; finding no such effects might be due to a lack 
of reliability in our Big Five measures, though, which consisted 
of two items only.

4.3   |   Facing a Human Versus Algorithmic 
Opponent in Strategic Interaction

Our final research question asks whether our results are 
unique to the HAvH treatment where decision-makers face a 
human opponent or carry over to the HAvA treatment where 
the opponent is an algorithm. The overall picture is that 
the results are unique to facing a human opponent: When 
decision-makers face the algorithm, overall rejection frequen-
cies increase, dynamic behaviors change, and the determi-
nants of individuals' basic willingness to follow the algorithm 
no longer contribute to explaining behavior. A potential expla-
nation for these results can be derived from an argument in 
Burton, Stein, and Jensen (2020, 2023), who discuss incentive 
structures as potential determinants of trust in algorithms: If 
the incentive of a human decision-maker is to make the “best” 
judgment or decision, the decision-maker may refrain from 
using an algorithm if the situation is such that even the best 
algorithms cannot provide perfect predictions. In our study, 
when facing the algorithm as their opponent, participants may 

have rejected algorithmic advice more frequently for a similar 
reason: Receiving algorithmic decision support while facing 
an algorithm of comparable strength does not give decision-
makers a competitive advantage (but only levels the playing 
field). Overall, our finding that the dynamics of human–algo-
rithm interaction crucially depend on whether the opponent 
is a human or an algorithm highlights the importance of the 
exact context in which algorithmic advice is used.

4.4   |   Limitations

This study is subject to several limitations. First, we collected 
data on personal characteristics in a postexperimental ques-
tionnaire, that is, after participants played all four stages of 
the experiment. The self-assessments regarding familiarity 
with algorithms and especially domain experience we elicit 
may thus be influenced by the experience made within the 
experiment. However, placing the questionnaire before the 
experiment may have similar carryover effects (see Asay 
et al. 2022; Pirlott and MacKinnon 2016; and Spencer, Zanna, 
and Fong  2005, for methodological discussions of carryover 
and reverse causality effects in experiments). Second, when 
receiving algorithmic advice, participants have only the op-
tion to either keep their initial choice or switch to a different 
choice, that is, they cannot compromise between their own 
initial prediction and that of the algorithm. We do not see this 
as a weakness of the design, though, as many real-world ap-
plications are such that advice comes in the form of a recom-
mendation that can only be fully accepted or fully rejected. 
Also, we control for individuals' general reluctance to follow 
advice when we estimate fixed-effects regressions. Still, we do 
not provide evidence on the role of individuals' fundamental 
tendency to stick with their initial judgments even though 
switching is the better strategy. Providing such direct evi-
dence would have required contrasting the actual with a dif-
ferent manipulation of how the decision-maker interacts with 
the algorithm. A related point is that the experimental design 
does not allow participants to opt out of receiving recommen-
dations, which may affect how advice is utilized in real-world 
settings. Furthermore, we do not contrast reliance on algorith-
mic advice with human advice directly, which could provide 
additional insights into algorithm aversion. Finally, the com-
plexity of understanding the algorithm's functioning without 
explicit information may have influenced participants' behav-
ior, suggesting the need for further research on the effects of 
algorithm transparency.

5   |   Conclusion

This study provides crucial insights into human decision-
makers' reliance on algorithmic advice, particularly within 
the context of strategic interactions exemplified by the RPS 
game. By exploring the dynamics of human–algorithm inter-
action, we address three key research questions concerning 
the utilization of algorithmic advice, the drivers of reliance 
on algorithms, and the influence of the type of opponent on 
decision-making behavior. Our findings reveal that partic-
ipants generally underutilize advice from a machine learn-
ing algorithm, especially after experiencing algorithmic 
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errors early in the game. Conversely, those who witness the 
algorithm making successful predictions early on are more 
likely to rely on its advice in subsequent rounds. This dy-
namic behavior underscores the sensitivity of participants to 
the outcomes of their decisions, whether they accept or reject 
advice. Notably, participants show asymmetric reactions to 
these outcomes: Rejecting advice tends to reinforce this be-
havior regardless of the outcome, whereas accepting advice 
leads to varied responses based on the result of the round. We 
also examine whether individuals' basic willingness to trust 
algorithms is influenced by personal characteristics such as 
familiarity with algorithms, experience with the decision do-
main, and other traits. Our results indicate that familiarity 
with algorithms and domain experience positively correlate 
with reliance on algorithmic advice. Moreover, familiarity 
with algorithms significantly moderates dynamic behavior, 
with more familiar individuals exhibiting stronger reactions 
to outcomes after rejecting advice but not after accepting it. 
Our study further differentiates between the effects observed 
when participants face a human opponent versus an algorith-
mic one. When playing against an algorithmic opponent, par-
ticipants' behavior notably changes: They reject advice more 
frequently, and their reliance on the algorithm's advice is 
primarily influenced by the algorithm's performance in early 
rounds. Additionally, the determinants of trust in the algo-
rithm and the dynamics of interaction observed with a human 
opponent do not fully translate to interactions with an algo-
rithmic opponent. This highlights the significant impact of 
the opponent's nature on decision-making processes and trust 
in algorithmic advice.

Our findings contribute to the expanding body of research on 
algorithm aversion and reliance, confirming and extending pre-
vious insights into how individuals interact with and trust algo-
rithms. The evidence suggests that enhancing familiarity with 
algorithms can improve their integration into decision-making 
processes, potentially mitigating underutilization and fostering 
more effective human–algorithm collaboration. As algorithms 
have entered various areas of human life and are used not only 
for an increasing number of private but also business decisions, 
it is vital to deepen and broaden our understanding of the de-
terminants of successful human–algorithm interaction. Future 
research should explore additional contexts and task domains to 
help build a broader body of knowledge about the factors driving 
the dynamics of human–algorithm interaction. Additionally, 
examining how different types of feedback and varying levels 
of transparency in algorithmic decision support influence trust 
and reliance could provide deeper insights into optimizing 
human–algorithm interaction. Overall, our study underscores 
the nuanced and dynamic nature of human–algorithm inter-
action, emphasizing the importance of experience and context 
in shaping trust and reliance on algorithmic decision support 
systems.
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Appendix A: Postexperimental Questionnaire Items

TABLE A1    |    Postexperimental questionnaire items.

(N = 176) Mean SD p25|p50|p75

Prior experience with algorithms and strategy games, assessment of skills

Knowledge of programming languages (JavaScript, PhP, and C++ …) (1 to 4) 1.65 0.73 1|2|2

Usefulness of recommendations in online shops (e.g., Amazon) (1 to 5) 2.64 0.96 2|3|3

Usefulness of recommendations on streaming platforms (e.g., Netflix) (1 to 5) 3.39 0.99 3|3|4

Use of digital assistants (e.g., Alexa, Siri) (1 = never, 5 = daily) 1.72 1.04 1|1|3

Evaluation of strategy games engines (agreement, 1 to 5) 3.68 1.07 3|4|4

(“Whether chess, Go or poker: I am convinced that computer programs are already better than the best human players today, or will be in the 
near future”)

Online strategy games (e.g., Dota, League of Legends, and StarCraft) (agreement, 1 to 5)

I regularly watch players stream their play 1.57 1.06 1|1|2

I regularly play them myself 1.73 1.15 1|1|2.5

When I play them, I am successful 1.91 1.24 1|1|3

Evaluation of own strategy play skills (agreement, 1 to 5) 3.70 0.94 3|4|4

(“In many games (like card or board games) you need not only luck, but also a good strategy to win. I am pretty good in such games”)

Evaluation of own RPS skills (agreement, 1 to 5) 3.29 0.78 3|3|4

(“If I had to play Rock–Paper–Scissors against everyone else in this room, I would win more often than lose the game”)

Demographics

age (years) 22.9 3.85 20|22|25

work experience (month part-time or full-time employment) 21.3 32.8 1|8|30

gender: 50.6% male, 49.4% female (other: 0%)

course of studies: business or economics: 62%, other programs: 27%, no student: 11%

Personality traits (“R” indicates that the original items were reversed): I see myself as …

… reserved, quiet (extraversion) [R] 3.13 1.17 2|3|4

… extraverted, enthusiastic (extraversion) 3.47 1.07 3|4|4

… sympathetic, warm (agreeableness) 3.38 1.13 3|4|4

… critical, quarrelsome (agreeableness) [R] 2.84 1.05 2|3|4

… disorganized, careless (conscientiousness) [R] 2.67 1.09 2|3|3

… dependable, self-disciplined (conscientiousness) 3.91 0.87 3|4|4.5

… calm, emotionally stable (neuroticism) [R] 2.95 1.23 2|3|4

… anxious, easily upset (neuroticism) 3.05 1.17 2|3|4

… conventional, uncreative (openness) [R] 3.09 1.35 2|3|4

… open to new experiences, (openness) 3.57 1.11 3|4|4

… who likes to prove their skills in competitions with others (competitiveness) 3.53 1.13 3|4|4

Other

Dictator proposal (pie size: 4 Euros): 41% give 0, 25% give 1, 32% give 2, 2.2% give 3 or 4

Correct answers to cognitive reflection test:  bat and ball 67%

machines, minutes, widgets 90%

lily pads 69%

Note: The table shows descriptive statistics for the postexperimental questionnaire items. Familiarity with algorithms is measured as the average of the four items 
knowledge of programming languages, usefulness of recommendations in online shops, usefulness of recommendations, and evaluation of strategy games engines. A 
participant's self-assessment of her/his strategy game skills is measured as the average of the two items evaluation of own strategy play skills and evaluation of own 
RPS skills. The proxy for experience with online strategy games is the average of the two items online strategy games: I regularly watch players stream their play and I 
regularly play them myself.
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Appendix B: Data Analyses for the HAvA Treatment

TABLE B1    |    Descriptive data on algorithm utilization in the HAvA treatment.

Panel A: Game outcome and advice rejection frequencies

Average score of participants having algorithmic decision support (N = 88) 49.27

Participants that win|tie|lose the 50-round game: 38.6%|8.0%|53.4%

Frequencies of advice rejection All rounds Rounds 1–25 Rounds 26–50

all advice 43.9% 43.5% 44.4%

contradicting advice 61.3% 60.6% 62.1%

supporting advice 10.3% 10.1% 10.3%

Panel B: Early experience and subsequent advice rejections: Correlations

Number of rounds from 1 to t, in which … t = 5 t = 10 t = 15 t = 20 t = 25

… the algorithm's advice would lose 0.03 0.12 0.14* 0.12 0.22***

… the algorithm's advice would win −0.19** −0.26*** −0.17** −0.17** −0.23***

… the participant's initial choice would lose −0.07 −0.11 −0.09 −0.02 −0.07

… the participant's initial choice would win 0.05 0.08 0.07 0.03 0.08

Note: Panel A of the table shows, for the N = 176 participants receiving algorithmic decision support in the HAvA treatment, the average score and frequencies with 
which they win, tie, or lose the 50 rounds game, and the frequencies with which they reject advice over all 50 rounds, over the first 25 rounds, and over the last 25 
rounds. Panel B of the Table shows Spearman rank correlations between four proxies of the game‘s history up to round t and the frequencies with which participants 
reject advice after round t. The histories span the first 5, 10, 15, 20, and 25 rounds, respectively, and the corresponding rejection frequencies are calculated over rounds 
6–50, 11–50, 16–50, 21–50, and 26–50, respectively. Panel B includes only cases of contradicting advice.
– score is the sum of all 50 rounds‘ outcomes, with a win (draw, loss) giving 2 (1, 0) points.
– supporting (contradicting) advice is a recommendation given by the algorithm that is equal (unequal) to the participant‘s initial choice
– advice rejection is an indicator variable equal to 1 if the participant‘s final choice is not the recommended choice.
*, **, and ***indicate significance levels of p < .10, p < .05, and p < .01.
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TABLE B2    |    HAvA: Decision to reject advice as a response to prior rounds outcome.

Panel A: Descriptive statistics: Frequencies of rejecting advice in round t + 1

Reject advice in round t + 1: Frequency 
[observations|groups] All advice Contradicting advice only

decision in round t: not reject reject not reject reject

outcome of round t: 	 win 31.4% [1676|176] 63.4% [1166|164] 26.0% [516|143] 86.1% [722|159]

draw 36.9% [1516|176] 54.6% [1263|167] 37.2% [486|145] 75.0% [756|163]

loss 39.3% [1611|176] 46.4% [1352169] 38.9% [509|143] 66.6% [820|164]

total 35.8% [4803|176] 54.4% [3781|172] 34.0% [1511|162] 75.5% [2298|168]

Panel B: Logistic regressions

Dependent variable: reject advice in round t + 1 All advice Contradicting advice only

Independent variables: (1) (2) (3)

prior round t:  not reject ∩ win −0.270*** −0.589*** −0.529***

not reject ∩ win × potential loss −0.114

not reject ∩ loss 0.085 0.020 0.080

not reject ∩ loss × potential win −0.122

reject ∩ draw 0.096 0.210* −0.020

reject ∩ draw × potential loss 0.457***

reject ∩ win 0.434*** 0.588*** 0.617***

reject ∩ win × potential loss 0.055

reject ∩ loss −0.235*** −0.032 0.171

reject ∩ loss × potential win −0.366***

N (groups) 8473 (172) 5522 (169) 5522 (169)

Note: Panel A shows the frequencies with which participants having algorithm decision support in the HAvA treatment rejected advice in round t + 1, classified by 
the six potential events of round t ({reject|not reject} × {win|draw|lose}). Panel B of the table presents fixed effects logistic regressions estimating the decision to reject 
advice in round t + 1 based on the same round t events, with not reject × draw being the baseline in each respective regression. All regressions include round as control 
variable. Wald tests of regression coefficients:

model (1), H0: b (reject ∩ draw) = b (reject ∩ win), χ2 = 15.23, p < .001	
model (1), H0: b (reject ∩ draw) = b (reject ∩ loss), χ2 = 16.50, p < .001	
model (2), H0: b (reject ∩ draw) = b (reject ∩ win), χ2 = 17.78, p < .001	
model (2), H0: b (reject ∩ draw) = b (reject ∩ loss), χ2 = 8.16, p = .004

– reject (not reject) is an indicator variable equal to 1 if the participant‘s final choice is not (equal to) the recommended choice.
– win, draw, and loss are indicator variables for the round‘s outcome.
– not reject ∩ win etc. are indicator variables for the respective events, that is, a win after not rejecting advice, etc.
– potential win and potential loss are indicator variables for hypothetical outcomes of a round: In case the participant rejected the advice, potential loss (potential win) 
is equal to one if the actual outcome of the round was no loss (no win), but would have been a loss (a win) if the participant had not rejected the advice. In case the 
participant did not reject advice, potential loss (potential win) is equal to one if the actual outcome of the round was no loss (no win), but would have been a loss (a win) 
if the participant had rejected advice.
*, **, and ***indicate significance levels of p < .10, p < .05, and p < .01.
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TABLE B3    |    HAvA: Random effects logistic regressions.

Dependent variable:

reject advice in round t + 1 (1) (2) (3) (4) (5) (6) (7)

Independent variables:

round t: not reject ∩ win −0.271*** −0.271*** −0.271*** −0.271*** −0.271*** −0.271*** −0.271***

round t: not reject ∩ loss 0.089 0.089 0.089 0.089 0.089 0.089 0.089

round t: reject ∩ draw 0.188** 0.188** 0.188** 0.188** 0.188** 0.187** 0.187**

round t: reject ∩ win 0.537*** 0.537*** 0.537*** 0.537*** 0.536*** 0.536*** 0.537***

round t: reject ∩ loss −0.151* −0.151* −0.151* −0.151* −0.151* −0.150* −0.151*

familiarity with algorithms −0.070 −0.038

experience with online strategy 
games

−0.074 −0.067

self-assessment of strategy game 
skills

−0.017 0.001

score HvH −0.027 −0.015

score HvA 0.155** 0.151**

N (groups) 8473 (172) 8473 (172) 8473 (172) 8473 (172) 8473 (172) 8473 (172) 8473 (172)

Note: The table shows results from random effects logistic regressions estimating the likelihood of rejecting advice in round t + 1 based on the events in round t and 
proxies for the experience made prior to or within the experiment. For all measures representing events, not reject × draw is the baseline in each respective regression. 
As four participants never rejected the advice, the group size is 172 in all three regressions. All regressions include round as control variable.
– reject (not reject) is an indicator variable equal to 1 if the participant‘s final choice is not (equal to) the recommended choice.
– win, draw, and loss are indicator variables for the round‘s outcome.
– not reject ∩ win etc. are indicator variables for the respective events, that is, a win after not rejecting advice, etc.
– familiarity with algorithms is the average of four items, scaled to lie in (0, 5). Items ask for assessments of (i) the helpfulness of recommendations in online shopping 
and (ii) on streaming platforms, of (iii) the strengths of strategy game (chess, Go, and poker) engines, and for a self-assessment of programming know-how.
– experience with online strategy games is a two-item average. Items ask for experience with both playing online strategy games and watching others playing such 
games on streaming platforms (like Twitch)
– self-assessment of strategy game skills: is a two-item average, scaled to lie in (0, 5). Items ask for self-assessments of participants‘ skills in playing strategy games (card 
games, board gamers) in general as well as Rock–Paper–Scissors.
– score HvH is the standardized score in the HvH stage, and score HvA is the standardized score in the HvA stage. Standardization is based on the mean and standard 
deviation of scores from the N = 88 participants having algorithm support.
*, **, and ***indicate significance levels of p < .10, p < .05, and p < .01.
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TABLE B4    |    HAvA: Personal characteristics as moderators of human–algorithm–interaction.

Panel B: Logistic regressions: Decision to reject advice in round t + 1

Dependent 
variable: reject 
advice in round 
t + 1 Referencemodel

Familiarity with 
algorithms

Experience with 
online strategy games

Strategy 
game skills

Score 
HvH Score HvA

Indep. variables (round t):

not reject ∩ win −0.270*** −0.268*** −0.269*** −0.267*** −0.270*** −0.269***

not reject ∩ win 
interacted

0.118 0.056 0.169** −0.031 0.005

not reject ∩ loss 0.085 0.088 0.085 0.086 0.083 0.085

not reject ∩ loss 
interacted

0.113 0.036 0.036 0.064 0.078

reject ∩ draw 0.096 0.097 0.097 0.095 0.096 0.103

reject ∩ draw 
interacted

0.021 0.043 −0.043 −0.009 −0.136*

reject ∩ win 0.434*** 0.437*** 0.433*** 0.435*** 0.435*** 0.440***

reject ∩ win 
interacted

0.099 0.049 −0.060 0.042 −0.165*

reject ∩ loss −0.235*** −0.244*** −0.238*** −0.235*** −0.236*** −0.234***

reject ∩ loss 
interacted

−0.067 −0.003 0.012 0.035 −0.129

N (groups) 8473 (172) 8473 (172) 8473 (172) 8473 (172) 8473 (172) 8473 (172)

Note: The table shows results from fixed effects logistic regressions estimating the likelihood of rejecting advice in round t + 1 based on the events in round t. In each 
model (except for the reference model), the indicator variable for the respective event is included both in isolation and interacted with the measure that gives the model 
its name. All measures that are interacted with the indicator variables are z-standardized. The event not reject ∩ draw is the baseline in each respective regression. As 
four participants never rejected the advice, the group size is 172 in all regressions. All regressions include round as control variable.– reject (not reject) is an indicator 
variable equal to 1 if the participant's final choice is not (equal to) the recommended choice.
– win, draw, and loss are indicator variables for the round's outcome.
– not reject ∩ win etc. are indicator variables for the respective events, that is, a win after not rejecting advice, etc.
– familiarity with algorithms is the average of four items; experience with online strategy games is a two-item average; self-assessment of strategy game skills is a two-item 
average; see Table 3 for details.
– score HvH is the standardized score in the HvH stage, and score HvA is the standardized score in the HvA stage.
*, **, and *** indicate significance levels of p < .10, p < .05, and p < .01.
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