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Abstract
This paper presents new mixed-integer linear programming formulations for multi-activity shift scheduling problems
(MASSP). In these formulations, the rules governing shift feasibility are encoded in block-based state-expanded networks
in which nodes are associated with states and arcs represent assignments of blocks of work or break periods inducing state
transitions. A key advantage of these formulations is that for the anonymous MASSP in which all employees are considered
as equal only a single network with integer flow variables is needed as long as the network encodes all shift composition
rules. A challenging aspect is that the networks can become very large, yielding huge models that are hard to solve for large
problem instances. To address this challenge, this paper proposes two exact modeling techniques that substantially reduce
the size of the model instances: First, it introduces a set of aggregate side constraints enforcing that an integer flow solution
can be decomposed into paths representing feasible shifts. Second, it proposes to decouple the shift composition from the
assignment of concrete activities to blocks of work periods, thereby removing a large amount of symmetry from the original
model. In a computational study with two MASSP instance sets from the literature dealing with shift scheduling problems,
we demonstrate the effectiveness of these techniques for reducing the both size of the model instances and the solution time:
We are able to solve all instances, including more than 70 previously open instances, to optimality–the vast majority of them
in less than 30min on a notebook computer.

Keywords Multi-activity shift scheduling · State-expanded networks · Mixed-integer linear programming

1 Introduction

Inmany industries, particularly in the service sector, employ-
ees incur a major part of the direct costs and have a key
impact on the quality of the products and services delivered
by organizations. Making effective use of the workforce by
devising high-quality personnel schedules is thus a critical
success factor. For a good overview of the literature dealing
personnel scheduling problems, see, e.g. (Van den Bergh et
al., 2013).

This paper deals with the Multi-Activity Shift Schedul-
ing Problem (MASSP) consisting of composing anonymous
work shifts that cover demands specified in terms of a time
period (e.g. an interval of 15min) and an activity (a type
of work). The composition of work shifts needs to account
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for a set of rules governing aspects such as the length and
placement of breaks, the total work hours and the maximum
number of consecutive periods for which a certain activity
can be performed. The objective function typically involves
minimizing the total work hours scheduled and/or penal-
ties for violating rules under- and/or over-covering demand.
Typically, both the shift composition rules and the objective
function vary between different MASSP variants.

A classical formulation for shift scheduling problems is
the set covering formulation proposed by Dantzig (1954)
where each of the main decision variables corresponds to
a complete feasible shift. For many shift scheduling prob-
lems, however, the number of shifts is too large to enumerate
explicitly. In particular, this is the case for multi-activity shift
scheduling problems. As an example, the biggest instances
considered in this paper exhibit billions of feasible shifts.

To avoid an explicit enumeration of all feasible shifts,
many approaches for the MASSP rely on Branch-and-Price
techniques in which the shift variables are generated as
needed throughout the solution process by solving column
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generation subproblems. As an example, Demassey et al.
(2005) use Constraint Programming for solving the shift
generation subproblem; more specifically, they use a cost-
regular constraint that allows modeling shift feasibility using
a regular language. Restrepo et al. (2012) solve the subprob-
lems using a resource-constrained shortest path algorithm
on an expanded graph, and Côté et al. (2013) formulated the
subproblem using a grammar and solve it by dynamic pro-
gramming.

Interestingly, the idea of describing the set of feasible
shifts with formal languages is also used in approaches using
(monolithic) MILP formulations: As an example, Côté et al.
(2011a) represent the set of feasible shifts by a network flow
component where the network is a directed acyclic graph
derived from an automaton. Furthermore, Côté et al. (2011b)
present a formulation in which shift rules are expressed using
context-free grammars. The grammars are used to derive a
hypergraph which is embedded into a MIP formulation. This
formulation is very efficient since it does not require using
a separate hypergraph per shift/employee, but only a single
hypergraphwith an integer hyperflow. A set of shifts can then
be determined in a postprocessing step by decomposing the
hyperflow into hyperpaths.

Another stream of shift scheduling research deals with so-
called implicit formulations: In these formulations, shifts are
not modeled explicitly but certain aspects such as the place-
ment of breaks are considered implicitly using certain types
of constraints such as the forward- and backward constraints
proposed by Bechtold and Jacobs (1990). After solving the
implicit problem, shifts can be recovered from the solution
in a postprocessing step. Dahmen et al. (2018) are the first
to propose such an implicit model for multi-activity shift
scheduling problems. Their approach relies on enumerating
partial shift schedules (pre- and post-break work stretches)
forming the main decision variables; the allocation of breaks
between these stretches is then implicitly modeled using for-
ward and backward constraints.

In addition to the exact approaches sketched so far, there
are also some heuristic approaches for the MASSP that
have been proposed in the literature, for example a large
neighbourhood search (Quimper & Rousseau, 2010) and a
recently published Lagrangian relaxation-basedmatheuristic
(Hernández-Leandro et al., 2019). The latter article focuses
on the personalizedMASSP, but it also includes experiments
with the MASSP instances from Demassey et al. (2005) that
we also consider in this paper.

This paper presents an efficient MILP formulation for the
MASSP that is based on the idea of encoding MASSP rules
in state-expanded networks. Formulations based on state-
expanded networks were previously applied to personnel
scheduling problems such as airline crew scheduling (Mel-
louli, 2001) and nurse rostering (Römer & Mellouli, 2016).
Recently, Porrmann and Römer (2021) introduced a formu-

lation based on a state-expanded network for the MASSP
variant introduced by Demassey et al. (2005).

In a state-expanded network, nodes are associated with
rule-relevant states and arcs represent transitions between
states, typically induced by assigning pieces of work (e.g.
flights in airline crew scheduling or shifts in nurse roster-
ing). The network is designed in a way that each path in the
network corresponds to a schedule (or crew pairing) that is
feasible with respect to a set of rules. The network is then
embedded into a MILP model as a network flow component.
An important advantage of this type of model is demon-
strated in Mellouli (2001) for the case of the airline crew
pairing chain problem: If certain employees (crewmembers)
can be considered to be identical/anonymous and if the state-
expanded network encodes the full set of schedule (pairing)
legality rules, then one can use an aggregated integer-valued
flow in a single network for these employees instead of intro-
ducing a separate network each employee. Similar to the
implicit grammar model from Côté et al. (2011b), one can
then decompose the integer flow into paths to obtain feasible
schedules (crew pairing chains).

Since in the MASSP, all employees are considered iden-
tical, a state-expanded network model for this problem can
also use a single network with integer flow variables. It turns
out, however, that a state-expanded network that encodes
all shift composition rules quickly becomes huge; this leads
to the fact that for complex large-scale MASSPs, a “plain”
state-expanded network model is neither practically use-
ful nor competitive with state-of-the art approaches such as
the grammar-based models from (Côté et al., 2011b) or the
implicit formulation proposed in (Dahmen et al., 2018). To
address this issue, Porrmann and Römer (2021) proposed to
employ a machine learning approach for heuristically reduc-
ing the size of the state-expanded network. The downside of
such a heuristic reduction is that the state-expanded network
no longer represents all feasible shifts, rendering the whole
approach non-exact. The main contribution of this paper is
to propose a new formulation based on block-based state-
expanded networks that can be efficiently solved without
resorting to such heuristic network reduction to the extent
that it outperforms other state-of-the art exact approaches.

1.1 Contributions

This paper presents a new efficient formulation for the
MASSP that relies on efficiently representing shifts in block-
based state-expanded networks. A key design decision in the
proposed model is to use full activity blocks (consecutive
assignments of the same activity) as the basis for construct-
ing arcs of the state-expanded network. While this idea by
itself does not yield a model that is competitive with the
state-of-the art, it provides the basis for two exact techniques
that, in particular when being combined, help to substantially
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reduce the size of the model instances. First, we introduce a
set of constraints that implicitly ensure that the (aggregated)
flow in the state-expanded network can be decomposed into
shifts in which two consecutive activity blocks do not have
the same activity. This means that this requirement does not
need to be encoded in the network, resulting in a reduction
in the number of nodes (and activity block arcs) by a fac-
tor of about |A| − 1 where |A| is the number of activities in
the instance. Second, we introduce the idea of activity block
templates: An activity-block template is an activity-agnostic
block associated with the arcs in the state-expanded network.
By making the state-expanded network activity-agnostic, its
size is reduced by a factor of |A|−1. The assignment of activ-
ities to the block templates is then performed by assignment
variables that are linked to the flow in the state-expanded net-
work. Finally, we show how these two ideas can be combined
by embedding the activity assignment variables in a second
state-expanded network that is used for composing (activity-
specific) work blocks. For complex MASSP problems such
as the problem considered in Dahmen et al. (2018), applying
both ideas results to a reduction in the size of the main state-
expanded network in the order of the square of the number
of activities in a given instance.

In the experimentswith two sets of problem instances from
the literature that include more than 70 previously unsolved
instances, we show that our approach is able to solve all
instances to optimality on a notebook computer in less than
one hour; more specifically, only five out of more than 1000
instances requiremore than 30min to be solved to optimality.

The remainder of this paper is structured as follows: The
next section provides a description of multi-activity shift
scheduling problems (MASSPs), in particular including the
MASSP variants introduced in Demassey et al. (2005) and
(Dahmen et al., 2018) studied in our computational exper-
iments. Section3 describes how to construct block-based
state-expanded networks encoding the shift composition
rules typically arising in MASSPs, and in particular how to
construct networks encoding the rules from the two problem
variants presented in Demassey et al. (2005) and Dahmen et
al. (2018). Section4 presents how to embed these networks
into a MILP formulation for MASSPs, and it also presents
a set of implicit constraints ensuring that an aggregate flow
can be decomposed into feasible paths without having to
encode the activity change requirement in the network. Sec-
tion5 presents the idea of activity block templates and shows
how they can be used for reducing the overall model size;
furthermore it shows how they can be used to create models
involving two coupled state-expanded networks operating on
different levels of detail. Section6 presents the results from
our computational experiments, followed by the conclusions
in Sect. 7.

2 Multi-activity shift scheduling problems

A MASSP deals with compiling (anonymous) work shifts
that are used to cover a fixed work demand given per period
p ∈ P where P is a set of time periods constituting a work
day. The number of shifts to be compiled can either be given
or free, and the objective typically consisting of minimiz-
ing an objective involving total scheduled work time and
penalties for under- or overcovering demand or for violating
soft shift legality rules. What sets the MASSP apart from a
classical (mono-activity) shift scheduling problem is the fact
that demand in each period p is provided for different work
activities a ∈ A. For each of these activities, there is usually
a minimum and a maximum number consecutive periods for
which it can be assigned before switching to another activity
or to a break. Note that in the “plain” MASSP considered in
this paper, it is assumed that each employee can be assigned
to each activity. The presence of employee-specific activi-
ties turns the problem in to a personalized MASSP which
is studied in Côté et al. (2013), for example. A key feature
of shift scheduling problems is the fact that the shifts need
to respect a (problem-specific) rule set that governs aspects
such as break requirements and the number and duration of
consecutive work periods. In many MASSP problem vari-
ants, the rule set involves multiple shift types (e.g. short and
long shifts) affecting the parameters of certain rules. As an
example, the maximum allowed shift duration is typically
different for short and long shift types.

To facilitate the description of typical types of rules (and
to lay the ground for the modeling approach presented later),
let us introduce the following terms that view a shift as a
hierarchical composition of blocks:

• An elementary assignment or elementary block is an
assignment of an activity a ∈ A to a period p ∈ P

• An activity block is a block of consecutive elementary
assignments of one type of activity

• A work block is a block of consecutive activity blocks
• A break block is a block of consecutive break periods
• A shift is an alternating sequence of work and break
blocks starting and ending with a work block

These components or “building blocks” of shifts can be
used to express shift composition rules typically arising in an
MASSP in a straightforward way. This is due to the fact that
many of these rules can be expressed as constraints regarding
the properties of blocks (e.g. minimumormaximumduration
of activity blocks, work blocks or break blocks; and number
of breaks and number of work periods in shifts) or as con-
straints affecting the composition of blocks fromother blocks
(e.g. alternation of work and break blocks in shifts, no con-
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secutive blocks of the samework activity in one work block).
To see examples for concrete rule sets and concrete MASSP
variants, let us now discuss two MASSP variants from the
literature.

2.1 MASSP variant from (Demassey et al., 2005)

In this problem variant, which will be referred to as the
Demassey problem in the rest of this paper, each instance
has a fixed number of employees and a given number of dif-
ferent activities. There are two shift types (short and long
shifts); short shifts have a single short break and long shifts
have two short breaks and one long break. Shifts must com-
pletely fall into awork day consisting of 96 periods of 15min;
demand is given for each activity and for each period. Under-
and overcovering of demand are allowed, but penalized in
the objective function. The other part of the (minimization)
objective involves the costs associated with each scheduled
work period. The shift legality rules can be stated as follows:

1. Each activity block has a minimum duration of four peri-
ods

2. Each work block is composed of a single activity block
3. The duration and composition of a shift depends on the

shift type:

(a) Short shifts exhibit at least 3 and less than 6h ofwork;
they consist of two work blocks separated by a short
break of 15min

(b) Long shifts exhibit least 6h and at most 8h of Work;
they consist of four blocks work blocks separated by
two short breaks of 15min and a long break of 1h
(breaks can placed in arbitrary order)

2.2 MASSP variant from (Dahmen et al., 2018)

In contrast to the Demassey problem, the MASSP variant
presented by Dahmen et al. (2018) (subsequently called the
Dahmen problem), does not deal with a fixed number of
employees/shifts, but the number of shifts can be freely cho-
sen. Depending on the instance, there are different numbers
of activities and different shift types affecting the length of
the break (each shift involves a single break, irrespective of
the shift type), the length of the work blocks and the total
shift duration.

The time granularity is either 15, 30min or 1h, and
shifts can exceed the planning horizon of 1day. Activity
blocks exceeding the planning horizon do not contribute to
demand covering, but they contribute to the objective func-
tion that consists in minimizing the total number of periods
worked. The demand has to be covered (undercovering is not
allowed), and overcovering is allowed and not penalized.

The shift legality rules in the Dahmen problem can be
stated as follows:

1. A shift can only start at certain periods Pstart ⊂ P .
2. There are activity-specificminimumandmaximumactiv-

ity block durations.
3. There are minimum and maximum durations for work

blocks that depend on the type of shift and on whether
the work block is before or after the break.

4. A work block can be composed of multiple consecutive
activity blocks; if a work block is composed of multiple
activity blocks, then two consecutive activity blocks need
to have different activity types (we will subsequently call
this rule the activity change requirement).

5. Each instance may have multiple shift types; the type of
shift governs:

(a) The minimum and maximum duration of a shift
(break periods are counted).

(b) The minimum andmaximum duration of the pre- and
post-break work blocks.

(c) The (fixed) duration of the break.

In addition to these rules, Dahmen et al. (2018) discuss
a “restricted” variant of their problem in which it is only
allowed to assign two different activities within a single work
block. In other words, in that variant, each work block con-
tains activity blocks with at most two different activity types.

3 Modeling shifts with block-based
state-expanded networks

Our approach for the MASSP relies on the central idea
to encode all shift composition rules in a (directed) state-
expanded network G = (N , E) in a way that each path
from the source node vsource to the sink vsink corresponds
to a feasible shift and the set of all source-sink paths in G
corresponds to the set of all feasible shifts. Each node in
N state = N\{vsource, vsink} is associated with a rule-related
state sv which typically consists of a tuple of state attributes.
The arc ecirc = (vsink, vsource) ∈ E is denoted as the flow
circulation arc, and in case of a given number of employees
n, its flow value is fixed to n. All arcs between the nodes
in N state represent state transitions induced by assigning a
feasible work activity block or a break block. Note that by
associating arcs with full activity and break blocks, all rules
related to activity blocks (e.g. minimum andmaximum dura-
tion) and break blocks (e.g. the possible break lengths) are
satisfied by design since only legal activity and rest blocks are
considered in the network. Observe that a difference to other
related approaches such as the automaton models discussed
in Côté et al. (2011a) where each transition is associated
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Fig. 1 Block-based state-expanded network for the example

with an elementary (single-period) assignment, and also to
the state-expanded network representation proposed by Por-
rmann and Römer (2021) where transitions are associated
with partial activity blocks.

Example To illustrate the construction of such a block-based
state-expanded network, let us consider a small and simpli-
fied single-activity shift scheduling problem with a planning
horizon of seven periods. In the example problem, a feasible
shift needs to satisfy the following (hard) shift composition
rules: A shift needs to contain either five or six periods of
work spread across twowork blocks that have to be separated
by a single-period break. An activity block has a minimum
duration of two periods and a maximum duration of three
periods.

To model this problem, we assign each node v ∈ N state a
state sv consisting of four state attributes:

• spv is the period index of the node.
• sprevWork

v is a Boolean attribute denoting whether the last
assignment was a work activity work or not.

• s#workv is a counter of the number ofworkperiods assigned
so far.

• s#breakv corresponds to the number of breaks taken so far
(in the example, either 0 or 1).

The resulting network with all feasible nodes and arcs is
displayed in Fig. 1. The attributes spv and s#workv of the nodes
in N state are visualized using the position of the node (spv
corresponds to the x-axis, s#workv to the y-axis); the attribute

s#breakv is used as node label and the value of sprevWork
v is

indicated by the color of the node.
The arcs between nodes in v ∈ N state represent state tran-

sitions induced by assigning activity blocks and break blocks.

In particular, the arcs emanating from a node v for which
the value of sprevWork

v = false represent the feasible activity
blocks that can start from the state sv and end in a feasible
state (e.g. for a node v with sprevWork

v = false and s#workv = 4,
only a single activity block with a duration of two results in
a state that respects the maximum number of work periods
per shift).

The nodes forwhich sprevWork
v = true and s#breakv = 0 have

an outgoing break arc representing a single-period break.
The rule that shifts need to be composed of two work blocks
separated by a rest block is ensured by the fact that there
are only arcs to the sink from a node with s#breakv = 1 and

sprevWork
v = true. Similarly, the rule limiting the number of
total work periods to be either five or six is ensured by the
fact that there are only arcs from nodes v ∈ N state to vsink if
5 ≤ s#workv ≤ 6. The remaining arcs represent the connec-
tions between vsource and the initial state nodes (for which
sprevWork
v = false) and the flow circulation arc ecirc connect-
ing the sink to the source node.

Multi-activitywork blocks. A simplifying assumption in
the example above is that there is a single type of activity. In
such a setting, each work block consists of a single activity
block. In a multi-activity setting, a work block can consist
of multiple consecutive activity blocks with different work
activities. Activity blocks with the same start period and end
period and different activities are represented by a separate
(parallel) activity block arc for each activity.

In order to model constraints on the duration of work
blocks,we introduce a state attribute s#pWb

v counting the num-
ber ofwork periods in thework block.Given an activity block
arc from node v to nodew with length p, the transition func-
tion with respect to that attribute is s#pWb

w = s#pWb
v + p. After

a break, this attribute is reset, that is, a nodew that forms the
target of a break arc has s#pWb

w = 0.
If a work block can consist of multiple activity blocks, a

natural rule is that two consecutive activity blocks must be
assigned to different activities. To encode this rule in the net-
work, we can introduce a state attribute sprevActv indicating
the previously assigned activity. Then, if the previous block
was assigned to activity a, that is, sprevActv = a, only arcs rep-
resenting blocks with activities a′ �= a can emanate from v.
If the number of different activities per work block is limited,
this can be represented by a set-valued state attribute sactWb

v

that records the set of activity types assigned in a work block.
That state attribute is reset to the empty set after the end of a
work block.

Modelling different shift types Let us now see how we
can deal with multiple shift types imposing different break
patterns and shift lengths, denoting the set of shift types with
Q. It turns out that we do not need to include an extra state
attribute for representing shift types. Instead, for each partial
shift ending at node v, we can determine the subset Qsv ⊂ Q
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of shift types for which sv is a feasible state. At the beginning
of a shift, say, in the first work block, a state is likely to be
feasible for various or all shift types. Later on, in particular
depending on the break periods assigned, a state may only
be feasible for a single shift type. In the construction of the
state-expanded network, thismeans that it is checked for each
possible transition after a node vwhether the target state after
the transition is feasible for at least one shift type. Only if
this is the case, the corresponding target node and the arc
corresponding to the transition is included in the network.

3.1 State model for the Demassey problem

The Demassey problem is a MASSP, but it has the special
(and simplifying) rule that every work block consists of a
single activity block. As a result, we do not have to explicitly
model rules governing the composition of work blocks from
activity blocks, and also the workblock duration rules are
dealt with by the fact that each activity block assignment
represents a full work block. The state variable thus only
needs to keep track of whether the last assignment was work
or not; we use the state variable sprevWork

v for this purpose.
There are, however, two types of shifts that not only vary
with respect to the minimum andmaximum duration but also
with respect to their break configuration. To keep track of the
break configuration, our state variable represents the number
of short and long breaks assigned so far in the state attributes
s#shortbreakv and s#longbreakv . Finally,weuse the attribute s#workv

to count the total number of work periods.
To summarize, the state attributes needed are:

• spv period p.
• sprevWork

v Boolean state indicating whether the previous
assignment was work or not.

• s#shortBreakv number of short breaks assigned.

• s#longBreakv number of long breaks assigned.
• s#workv number of total work periods assigned in the path

so far.

3.2 State model for the Dahmen problem

While in the Demassey problem, each work block consists
of a single activity block, the Dahmen problem permits work
blocks with multiple consecutive activity blocks as long as
two consecutive activity blocks within a work block do not
exhibit the same activity (the activity change requirement)
andworkblock length constraints are respected.As explained
above, we can model these multi-activity work blocks using
the state variables s#pWb

v and sprevActv . In the Dahmen prob-
lem, a shift only has a single break and the length of the break
depends on the shift type. In order to determine the shift type
implied by the break, we need an attribute that does not only

record if there was a break but also the length of that break,
we use the attribute sbreakLengthv (which is 0 if there was no
break) for this purpose.

To summarize, the state attributes needed to represent the
shift rules for the Dahmen problem are:

• spv period p.
• sprevActv previously assigned activity if the previous

assignment was work, otherwise (e.g. in case of a break),
the value is None.

• s#pWb
v number of work periods assigned in the current
work block.

• s#workv number of total work periods assigned in the path
so far.

• sbreakLengthv length of the break in the path (0 if there was
no break).

As explained above, the restricted variant of the Dahmen
problem only permits two different activities to be assigned
per work block. To model this constraint, we introduce an
additional state attribute:

• sactWb
v set of activity types that have occurred in the work
block so far.

This state attribute is set to the empty set for each node rep-
resenting the beginning of a work block. A transition induced
by the assignment of a work activity adds the type of the
activity to the set sactWb. If the set sactWb

v has a cardinality
|sactWb| = 2, only one of the two activities in the set can be
chosen next, namely the activity type sactWb \ sprevActv which
does not induce a violation of the activity change require-
ment.

4 MILP formulations

The state-expanded network explained in the previous sec-
tion constitutes a core element of our MILP formulation for
theMASSP. In this section, we first describe the basic formu-
lation and then an implicit formulation of the activity change
requirement that allows moving this rule out of the state-
expanded network, reducing its size by a factor of about
|A| − 1 where |A| is the number of activities in the prob-
lem.

4.1 Basic MILP formulation

The state-expanded network enters the model in form of a
network flow component. The flow on an arc e ∈ E is repre-
sented by the integer decision variable Xe. The cost of a unit
flow on arc e is denoted as ce. As an example, if arc e repre-
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sents a work activity block, this cost factor may include the
cost induced by the number ofwork periods in that block. The
other two sets of decision variables are Y u

a,p and Y
o
a,p which

model the under- and overcovering of the demand da,p of
activity a in period p; these variables are associated with
penalties cu and co for under- and overcovering. Note that
in case of hard demand covering limits as in the Dahmen
problem, the corresponding variables can be forced to 0.

Using the described symbols, theMILPmodel can bewrit-
ten as follows:

min
∑

e∈E
ceXe +

∑

a∈A

∑

p∈P

(
coY o

a,p + cuY u
a,p

)
(1)

∑

e∈vin
Xe =

∑

e∈vout
Xe ∀v ∈ N (2)

Xecirc = n (3)
∑

e∈Ecov
a,p

Xe + Y u
a,p − Y o

a,p = da,p ∀a ∈ A, p ∈ P (4)

Xe ∈ Z
+
0 ∀e ∈ E (5)

Y o
a,p ≥ 0, Y u

a,p ≥ 0 ∀a ∈ A, p ∈ P (6)

The objective function (1) contains the cost induced by
the flow in the state-expanded network and the penalties for
over- and undercovering demand. (2) are the flow balance
constraints for each node v ensuring that the flow on the
incoming arcs vin equals the flow on the outgoing arcs vout,
and constraint (3) fixes the flow on the circulation arc ecirc

to the number n of employees. In case that the number of
employees is not fixed but part of the scheduling problem,
this constraint can be dropped, and the cost of an employee
can be modeled in the cost coefficient ccirce . Constraint set (4)
models the demand covering for each activity and period; the
set Ecov

a,p ⊂ E is the set of arcs representing an assignment
that covers activity a in period p. The other two constraint
sets determine the domains of the decision variables.

A solution to problem (1)–(6) contains the integer flow in
network G; the solution flow X∗

ecirc
on the circulation arc

corresponds to the total number of units flowing through
the network. Using flow decomposition, we can obtain
X∗
ecirc

paths between the source and the sink each of which
corresponds to a shift. Note that in general, such a flow
decomposition is not unique; that is, a given flow solution
may be decomposable in different paths (representing differ-
ent sets of shifts).

4.2 Implicit activity change constraints

As explained in Sect. 3, representing the rule that two con-
secutive work activity blocks need to have different activities
requires introducing a state attribute that stores the activity

assigned in the previous block.Given that |A| is the number of
activities, introducing this state attribute increases the num-
ber of nodes (and arcs) by a factor of about |A| − 1. In order
to avoid this increase, we propose a set of linear constraints
that implicitly enforce that the flow in the state-expanded
network is decomposable into a set of shifts respecting the
activity change requirement.

If we assume that the activity change rule is not embedded
in the state-expanded network, it may happen that the flow
through a node v representing the connection of two consec-
utive activity blocks is not decomposable in a way that for
each path through v, the activity associated with the in-arc
of v in the path is different from the activity of the out-arc
of v. We refer to a node connecting two activity blocks as an
interior node of a work block; the set of these nodes will be
written as N inWb. Using the state attribute s#pWb

v introduced
in Sect. 3, we can state that N inWb is the set containing all
nodes with s#pWb

v > 0 that have a least one outgoing arcs
representing an activity block.

To enforce that for each of the nodes v ∈ V inWb, there
exists a flow decomposition respecting the activity change
rule, we impose a set of constraints that ensures that the total
flow on the out-arcs of v representing a block with activity
a (the set of these arcs is denoted as vouta ) is smaller or equal
than total flow on the arcs in vin¬a representing the in-arcs
associated with activity blocks for activities other than a.
This set of constraints can be written as:

∑

e∈vin¬a

Xe ≥
∑

e∈vouta

Xe ∀v ∈ N inWb, a ∈ A (7)

Proposition 4.1 Constraints 7 ensure that the flow through
node v ∈ N inWb can be decomposed in a way that the
resulting (partial) work blocks respect the activity change
requirement, that is, that a work block does not contain two
consecutive activity blocks assigned to the same activity.

Proof Wewill now give a constructive proof for the existence
of a such a feasible decomposition.

We consider a node v ∈ N inWb for which constraints
(7) hold, and we assume that we have a non-negative flow
through v. A flow unit on an incoming (outgoing) arc of
such a node represents an activity block that we denote as
incoming (outgoing) activity block. Recall that we want to
show that each outgoing block with a certain activity a can
be linked to an incoming block with an activity a′ �= a.

Constraints (7) ensure that in a feasible solution, the num-
ber of outgoing activity blocks with activi t y(bout) = a
is smaller or equal than the number of incoming blocks
not assigned to a. The question we address in this proof is
whether this is sufficient to guarantee that we can assign a
correct incoming block bin to every outgoing block bout in
a way that activi t y(bin) �= activi t y(bout). We will show
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this by providing a decomposition procedure that, given that
constraints (7) hold, is guaranteed to find such an assignment.

A key concept for our decomposition procedure is that of
complementary pairs: Two activity block pairs (bin1 , bout1 )

and (bin2 , bout2 ) are complementary if activi t y(bin1 ) =
activi t y(bout2 ) and activi t y(bin2 ) = activi t y(bout1 ). If there
exists such a set of complementary pairs in the flow through a
node v, we can extract the corresponding flow and obtain two
partial work blocks respecting the activity change require-
ment.

Observe that if we have a flow solution for which the
constraints (7) hold for a node v and ifwe extract the flowcor-
responding to two complementary pairs from that solution,
then the two constraints associated with v and the involved
activities will also hold after that operation since for both
constraints, both the left-hand side and the right-hand side
are reduced by one.

Our decomposition procedure for a flow through a node
v starts with the full flow solution and extracts complemen-
tary pairs until no more such pairs are found. After having
removed all complementary pairs, either each outgoing activ-
ity block is assigned a feasible incoming block (there is no
residual flow on an activity-block arc going out of v) or there
are outgoing blocks left which are not part of any comple-
mentary pair given the remaining incoming blocks. As noted
above, however, the constraints are still valid for the residual
flow solution, thus for each outgoing block with activity a
there must exist at least one incoming block with an activity
other than a. In addition, since there do not exist any comple-
mentary pairs in the residual flow, this means that the set of
activities associatedwith residual incoming blocks is disjoint
from the set of activities associatedwith the outgoing activity
blocks. This means that we can randomly assign one of the
incoming blocks represented by the residual flow to each of
the outgoing blocks to obtain a feasible decomposition. 
�

5 Reducingmodel size and symmetry with
activity block templates and coupled
networks

The state-expanded network formulation discussed above
gives rise to large model instances exhibiting a considerable
amount of symmetry. To illustrate the symmetry which is
inherent in many MASSPs, see Fig. 2 depicting four shifts
for a small example with three activities. Each shift consists
of two activity blocks separated by a two-period break. In this
schedule, certain activity blocks with the same start and end
period can be exchanged between the shifts without affecting
the quality of the solution: As an example, the first activity
blocks in the first two shifts can be exchanged. In addition,
the last activity block in the first shift and the first activity

Composing Shifts from Activity Blocks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3

3 2

2 1

1 3

Fig. 2 Example: a multi-activity shift schedule with a lot of symmetry

block in third shift can be exchanged, as well as the last block
in the second shift and the first block in the fourth shift.

In a state-expanded network in which activity blocks are
associated with arcs, these symmetrical shifts correspond to
symmetrical paths in the network. In particular, the exchange-
able blocks in shifts one and three (and those in shifts two
and four) correspond to arcs emanating from nodes associ-
ated with different states. For each of the states and for each
feasible block, the network contains a parallel arc for each
activity. This means that the decision which activity should
be assigned to a block is “repeated” for each possible state,
despite the fact that for a solution like the one displayed in
Fig. 2, many solutions with arcs starting in different states
are equivalent.

We propose to avoid this symmetry by moving the activ-
ity assignment decision out of the state-expanded network
and replace the activity-specific activity block arcs with arcs
associated with “anonymous” activity block templates. This
means that the flow in the state-expanded network only
decides that certain activity blocks with a given start and
end time are placed in a shift, but not to which activity this
block is assigned. The assignment of concrete activities is
then delegated to a separate model part that ensures that for
each activity block template (characterized by start and end
period), the number of matching “concrete” activity blocks
that are assigned equals the flow on all arcs representing the
corresponding activity block template.

For the example from Fig. 2, this idea is illustrated in
Fig. 3: In the top part, the shifts from Fig. 2 are displayed as
“anonymous” blocks or activity block templates. The bottom
part of the figure displays the number of times each activ-
ity type is assigned to each template block. As an example,
there exist two templates representing an activity block from
period 7 to period 9. The bottom part of the figure shows that
these two templates will be “filled” with one block assigned
to activity 2 and one block assigned to activity 3–the crucial
idea here is that the template-based model does not explic-
itly assign the activity-specific blocks to the activity-agnostic
template blocks butmerely ensures that they can be assigned.
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Fig. 3 Avoiding symmetrybydecoupling shift composition and activity
assignment

In otherwords, in contrast to the originalmodel, the template-
based model does not need to decide between solutions that
are equivalent anyways:All solutions that are symmetricwith
respect to the assignment of activity blocks to template blocks
correspond to a single solution in the template-based model,
while all of them represent different solutions (paths in the
state-expanded network G) in the original model.

5.1 Model reformulation based on activity block
templates

To formulate the MASSP using activity block templates, we
first create a state-expanded network that uses activity block
templates instead of activity blocks. The network construc-
tion follows the description in Sect. 3, assuming that there is a
single “template activity” (which can, depending on the rule
set, appear multiple times in a single work block) that rep-
resents the activity block template. The lower / upper bound
for the duration of the template activity is chosen as the min-
imum / maximum of the the lower / upper bounds of all
activities in the problem instance under consideration, and
the set of all possible activity block templates is referred to
as B˝ . In the following exposition (and in the mathematical
model discussedbelow),weuse the symbolG to represent the
template-based network, that is, we assume that it replaces
the original activity-specific network. Note that compared to
the original network, the number of activity block arcs in the
template block network is reduced by a factor of |A| − 1,
where |A| is the number of activities in the problem instance
under consideration.

The assignment of a concrete activity a ∈ A to an activity
block template b ∈ B˝ is represented by the nonnegative
integer decision variable X˝

b,a . Observe that while there is a

single variable X˝
b,a for each of b ∈ B˝ and each activity

for which b is a feasible block, every activity block template
b ∈ B˝ is associated with multiple arcs in G (these arcs start
in nodes with different states, e.g. before and after a break);
we denote the set of all arcs e ∈ E associated with a block b
as E˝

b .
The newmodel then consists of the objective function (1),

the flow balance constraints (2), the flow size constraint (3)
to model a fixed number of employees, the variable domains
(5) and (6), and the constraints (8)–(10) to be explained next.

∑

e∈Eb

Xe =
∑

a∈Ab

X˝
b,a ∀b ∈ B˝ (8)

∑

b∈Bcov
a,p

X˝
b,a + Y u

a,p − Y o
a,p = da,p ∀a ∈ A, p ∈ P (9)

X˝
b,a ∈ Z

+
0 ∀a ∈ A, B ∈ Ba (10)

The linking constraints (8) ensure that for each activity
block template b, the total number of assigned concrete activ-
ity blocks from activities a ∈ Ab for which block b is a valid
activity block equals the total flow on the arcs e ∈ E˝

b in G
that represents b. The constraints (9) reformulate the cover
constraints (4) using the activity block assignment variables
X˝
b,a ; the set B

cov
a,p is the set of blocks that are valid for activity

a and demand period p. Finally, (10) establish the domains of
the block assignment variables, using the set Ba representing
the set of all feasible activity blocks for activity type a.

5.2 Dealing with work block composition rules by
coupling state-expanded networks

The template-based state-expanded network discussed above
does not consider concrete activities at all, and the math-
ematical model does not relate the (concrete) activity block
variables X˝

b,a to each other. Thismeans that themodel above
can be used for problems such as the Demassey problem, but
not for problems such as the Dahmen problem in which a
work block can be composed of multiple activity blocks and
there are rules governing the feasibility of this composition.

In order to account for work block composition rules, we
propose a more complex formulation in which the composi-
tion of activity blocks into feasible work blocks is ensured by
a separate state-expanded network G = (V, E) that we will
refer to as thework block composition network in the follow-
ing. Like the original network, G contains a source and a sink
node that are connected by a circulation arc from the sink to
the source. All arcs e ∈ E other than the circulation arc and
the arcs from the source and to the sink are associated with
activity blocks assigned to concretework activitiesa ∈ A and
each path in G corresponds to a feasible (activity-assigned)
work block. Depending on the rules to be considered, the
state variable sv associated with each node v ∈ N state (that
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is, each node that is neither the source nor the sink) has (a
subset of) the following attributes:

• spv the period p.
• s#pWb

v The number of work periods in the current work
block.

• sprevActv The activity type of the previous activity, (None
if it is the first activity in the block).

• sactWb
v The set of activity types that have occurred in the
work block so far.

The flow variables associated with the edges e ∈ E are
denoted as XG

e , and, like for G, the network flow component
associated with G needs respect the flow balance constraints:

∑

e∈vin
XG
e =

∑

e∈vout
XG
e ∀v ∈ N (11)

To make sure that the work blocks corresponding to the
flow in G (consisting of “concrete” activity blocks) match
the work blocks corresponding to the flow in G (consisting
of activity block templates), the flows in both networks need
to be linked. In order to achieve this, it does not suffice to
simply link blocks based on the start- and end period of the
block, but one also need to account for the position of the
activity blocks in the work blocks. This can be achieved by
using the relative start period k of a block b within the work
block as additional matching criterion. Note that this infor-
mation is present in form of the state attribute s#pWb

v in the
state nodes of both networks G and G. Using the block b
(characterized by start and end period) associated with an
activity block arc and the relative position k obtained from
the arc’s source node, we can define the arc set E˝

b,k of all
arcs in E representing a template activity block b (identified
by start and end period) that starts in the relative period k
of a work block. Analogously, we define the corresponding
arc sets Ea

b,k in E that represent the activity blocks with start-
and end period given by block b that are assigned to activity
a ∈ A and start at the relative period k in a work block.

Assuming that the set Kb represents all possible work-
block relative start periods of an activity block template b,
we are ready to formulate the linking constraint that connects
the flows in G and G:

∑

e∈Eb,k

Xe =
∑

a∈A

∑

e∈Ea
b,k

XG
e ∀b ∈ B˝, k ∈ Kb (12)

Then, using set Ecov
a,p referring to the set of all arcs in E

representing activity blocks that cover activity a in period p,
we formulate the following covering constraints, followed
by the domains of the flow variables associated with the arcs

e ∈ E .
∑

e∈Ecov
a,p

XG
e + Y u

a,p − Y o
a,p = da,p ∀a ∈ A, p ∈ P (13)

XG
e ∈ Z

+
0 ∀e ∈ E (14)

In addition to the constraints (11) – (14) described in this
subsection, the full model with two coupled state-expanded
networks contains the objective function (1), the flowbalance
constraints (2) for G, the flow size constraint (3) to model
a fixed number of employees, and the variable domains (5)
and (6).

Finally, observe that forMASSP variants such as the flexi-
ble variant of the Dahmen problem that only need to consider
the activity change rule and minimum and maximum dura-
tion rules, the implicit activity change constraints introduced
in Subsection 4.2 ensuring the correct decomposability into
work blocks can be applied for the work block composi-
tion network G. This way, the state attribute sprevActv can be
dropped from the state definition of the work block compo-
sition network. The implicit activity change constraints read
as follows when applied to G:

∑

e∈vin¬a

XG
e ≥

∑

e∈vouta

XG
e ∀v ∈ N inWb, a ∈ A (15)

6 Computational results

In this section, we report the results from our experiments
with two sets of instances, one for the Demassey problem,
and one for the Dahmen problem. We start in Subsection
6.1 with experiments comparing the different model variants
proposed in the last section bothwith respect to the size of the
model instances andwith respect to solution times. InSubsec-
tion 6.2, we compare the results from the best model variants
to those obtained with state-of-the-art exact approaches from
the literature.

All models were implemented in Python, and solved with
Gurobi 9.1 with standard settings, except that the barrier
method was used to solve the root relaxation. The computer
used for the experiments was a Notebook with an Intel Core
i7 10750H processor clocked at 2.66 GHz with 6 cores and
32 GB RAM.

6.1 Experiments with different model variants

In this section,wecompare themodel variants proposed in the
Sects. 4 and 5 for two sets of instances, one for the Demassey
problem, and one for the Dahmen problem.
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6.1.1 Demassey problem

The first set of experiments is conducted with the Demassey
problem described in Sect. 2.1. The instances were first intro-
duced in Demassey et al. (2005) and later used in several
other papers such as Côté et al. (2011b), Côté et al. (2013)
and Dahmen et al. (2018). The instance set comprises 100
instances consisting of 10 groups. Each of the groups is char-
acterized by a given number of activities from 1 to 10, and the
instances within each group vary with respect to the demand
profile and with respect to the number of employees.

As described in 2.1, in the Demassey problem, each block
of work needs to be assigned to a single activity, or, in other
words, a change between different activities is only legal if
there is a break in between. From a modeling perspective,
this means that we do not need to deal with the composi-
tion of work blocks from multiple activity blocks, making it
unnecessary to deal with work block composition rules such
as the activity change requirement. As a consequence, we
only compare two modeling approaches for the Demassey
instances:

• ActivitySEN: The plain model from Sect. 4 in which all
rules are encoded in a single state-expanded network that
is based on concrete activity blocks.

• TemplateSEN: The model from Sect. 5.1 using a tem-
plate block-based state-expanded network. Note that for
the Demassey problem, we do not need a second state-
expanded network for composing work blocks.

Table 1 presents the results from experiments with these
two model variants. For both approaches, the table reports
results for each of the 10 instance groups. Note that within
one instance group, the problem structure is identical which
means that for each instance group and for each model vari-
ant, the number of variables (Vars) and constraints (Cons) is
identical. The other columns reported for each model vari-
ant are the number of instances solved to optimality with a
time limit of 30min and the average solution time in seconds;
instances not solved to optimality are counted with 1800s.

The results show that for the group with a single activ-
ity (yielding a mono-activity shift scheduling problem), the
“plain” activity-based model yields smaller model instances
and a shorter solution time. This is due to the fact that the
template-based model introduces a “template flow” that is
then only mapped to a single activity and thus, in that case,
using the template-based model does not make much sense.

With an increasing number of activities, the template-
based models can play out their strength: While the number
of variables rapidly increases for the plain activity-based
model, the size of the template-based model instances only
grows moderately. Specifically, for the 10-activity instances,
the activity-based model exhibits about eight times as many

variables as the template-based model. Clearly, the model
size impacts the performance: For the biggest instances, the
activity-based model instances were not always solved to
optimalitywithin 30min; in total, only 90of the 100 instances
are solved to optimality and the average solution time is
365s. This contrasts with the template-based model: Using
this model, all instances are optimally solved within half an
hour, and the average solution time time is only 60s.

6.1.2 Dahmen problem

The second set of experiments deals with the Dahmen prob-
lem described in Sect. 2.2. For this problem, Dahmen et al.
(2018) presents experiments with 540 instances that vary
with respect to the following features:

• Time granularity / length of a single time period (15, 30,
or 60min).

• Number of activities (3, 6 or 9).
• Degree of block flexibility (1, 2 or 3).
• Number of shift types (1 or 2).
• The set of possible shift start periods (shifts can start
every i th period with i ∈ {1, 2, 3}).

• Demand profile index (1–5).

By grouping the 540 instances according to the first five
features, one obtains 108 instance groups. Within each of
these groups, all five instances have the same problem struc-
ture and only vary with respect to the demand profile.

In contrast to the Demassey problem, in the Dahmen
problem, activity changes can happen within a work block.
Furthermore, Dahmen et al. (2018) consider two problem
variants: A basic (“flexible”) variant that imposes no restric-
tion on the number of different activities assigned in a single
work block, and a “restricted” variant in which at most two
different activities are allowed per work block. In this sec-
tion, we first deal with deal with the flexible variant, followed
by results for the restricted variant.

In our computational experiments with the flexible variant
of theDahmenproblem,we use the followingmodel variants:

• ActivitySEN: The plain model from Sect. 4 in which all
rules are encoded in a single state-expanded network that
is based on concrete activity blocks.

• ActivitySEN+ChangeCons: A model with a single activ-
ity block-based network that does not encode the activity
change requirement and instead uses the activity change
constraints introduced in Sect. 4.2.

• TemplateSEN: The model from Subsection 5.2 in which
a template-block-based state-expanded network is linked
to a second state-expanded network for work block com-
position that encodes the activity change requirement.
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Table 1 Results for the
Demassey instances

ActivitySEN TemplateSEN

Group Vars Cons Opt Time Vars Cons Opt Time

1 58,979 12,413 10 24 60,909 14,344 10 42

2 133,458 15,180 10 22 62,937 14,533 10 19

3 194,407 15,276 10 127 64,965 14,722 10 74

4 255,356 15,372 10 146 66,993 14,911 10 53

5 316,305 15,468 10 194 69,021 15,100 10 64

6 377,254 15,564 9 364 71,049 15,289 10 47

7 438,203 15,660 9 548 73,077 15,478 10 57

8 499,152 15,756 9 476 75,105 15,667 10 62

9 560,101 15,852 8 631 77,133 15,856 10 65

10 621,050 15,948 5 1,120 79,161 16,045 10 116

Total 345,426 15,249 90 365 70,035 15,194 100 60

• TemplateSEN+ChangeCons: The model from Subsec-
tion 5.2 in with a template-block-based state-expanded
network linked to state-expanded network for work block
composition; the activity change requirement is enforced
by activity change constraints 15.

The result from using these model variants on the 15-
minute instances from the Dahmen instance set are displayed
in Table 2. Results for the other instances (all of which are
optimality, most in less than 10s) can be found in Tables 6
and 7 in the appendix.

Regarding the model sizes, it turns out that the last model
variant TemplateSEN+ChangeCons yields much smaller
instances than the “plain” model: For the largest model
instances, the plain model has almost 20 times as many vari-
ables and 5 times as many constraints. The difference in the
model sizes is reflected in the solution time and the solution
quality: With the plain model variant, only 150 of the 180
instances are solved to optimality within the time limit of
30min. With the last model variant, in contrast, all instances
are solved to optimality in slightly more than one minute on
average; the biggest instances being solved in 5min on aver-
age. Interestingly, when comparing the two variants in the
middle, the variant with a single network and activity change
constraints yield bigger model instances than the model vari-
ant with template blocks without the constraints but at the
same time allows to solve more instances to optimality.

Let us now turn to the restricted variant of the Dahmen
problem in which at most two different activities are allowed
to be assigned per work block. Table 3 compares the results
from using the best model (TemplateSEN) for this variant
with those from the best model for the flexible variant (Tem-
plateSEN+ChangeCons). Note that we do not use the model
with the activity change constraints here since the state infor-
mation needed for modeling the “at-most-two activities” rule
already contains all the information needed to model the

activity change requirement. See Sect. 3.2 for a description
of this state model and 5.2 for a description of the mathemat-
ical model involving two coupled state-expanded networks.
Since the model instances for the restricted model are bigger
(on average, about twice as big in terms of variables and con-
straints) and thus harder to solve, we increased the solution
time limit to one hour for these models. The results show that
while the model instances are bigger and the solution times
are higher, still all instances could be solved to optimality in
less than 30min on average for each instance group—only
for five instances, more than 30min were needed.

(Dahmen et al., 2018) raise the interesting question if the
two-activity restriction has a negative impact on solution
quality. Dahmen et al. (2018) suspected that there was no
negative impact, but they were not able to solve all instances
to optimality and thus could not give a definite answer for
all instances in the problem set. In the experiments presented
here, however, all instances were solved to optimality for
both variants. The rightmost column (ObjDiff) in Tables 3, 6
and 7 reports the average difference in the objective between
the restrictive and the flexible variant; and it turns out that
indeed, for all instances, the optimal objective function value
from the restricted variant is the same as the optimal objective
from the flexible variant.

6.2 Comparison to other exact approaches from the
literature

In this section, we compare the results from our experiments
to the results reported in the literature for existing state-of-
the-art exact approaches for the MASSP. To the best of our
knowledge, while exact approaches for the Demassey prob-
lem were considered in various publications, for example in
Demassey et al. (2005), Demassey et al. (2006),Côté et al.
(2011b), Côté et al. (2013) andDahmen et al. (2018), the only
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Table 3 Results for the flexible
and the restricted variant of the
Dahmen problem: instances
with time granularity of 15min

Flexible Restricted

Group Vars Cons Opt Time Vars Cons Opt Time ObjDiff

3.1.1.3 28,280 14,832 5 4 27,766 12,800 5 6 0

3.1.1.2 37,784 17,063 5 4 37,266 15,014 5 5 0

3.1.1.1 66,296 23,756 5 6 65,766 21,656 5 7 0

3.1.2.3 44,280 19,312 5 10 43,766 17,280 5 27 0

3.1.2.2 61,784 23,783 5 9 61,266 21,734 5 14 0

3.1.2.1 114,296 37,196 5 38 113,766 35,096 5 43 0

3.2.1.3 34,782 16,110 5 10 47,788 18,740 5 10 0

3.2.1.2 44,338 18,349 5 8 57,459 21,004 5 9 0

3.2.1.1 73,006 25,066 5 20 86,472 27,796 5 22 0

3.2.2.3 50,782 20,590 5 19 63,788 23,220 5 19 0

3.2.2.2 68,338 25,069 5 63 81,459 27,724 5 61 0

3.2.2.1 121,006 38,506 5 25 134,472 41,236 5 40 0

6.1.1.3 36,446 17,216 5 10 58,876 23,308 5 20 0

6.1.1.2 46,016 19,462 5 98 68,643 25,609 5 79 0

6.1.1.1 74,726 26,200 5 45 97,944 32,512 5 50 0

6.1.2.3 52,446 21,696 5 40 74,876 27,788 5 100 0

6.1.2.2 70,016 26,182 5 44 92,643 32,329 5 59 0

6.1.2.1 122,726 39,640 5 74 145,944 45,952 5 134 0

6.2.1.3 49,026 19,192 5 28 151,128 39,616 5 286 0

6.2.1.2 58,700 21,454 5 34 161,685 42,055 5 95 0

6.2.1.1 87,722 28,240 5 57 193,356 49,372 5 408 0

6.2.2.3 65,026 23,672 5 131 167,128 44,096 5 511 0

6.2.2.2 82,700 28,174 5 115 185,685 48,775 5 671 0

6.2.2.1 135,722 41,680 5 82 241,356 62,812 5 598 0

9.1.1.3 44,400 19,310 5 31 112,306 37,040 5 61 0

9.1.1.2 54,036 21,571 5 17 122,532 39,456 5 59 0

9.1.1.1 82,944 28,354 5 48 153,210 46,704 5 277 0

9.1.2.3 60,400 23,790 5 133 128,306 41,520 5 252 0

9.1.2.2 78,036 28,291 5 65 146,532 46,176 5 278 0

9.1.2.1 130,944 41,794 5 210 201,210 60,144 5 567 0

9.2.1.3 63,270 22,274 5 21 328,996 73,856 5 518 0

9.2.1.2 73,062 24,559 5 54 341,079 76,584 5 606 0

9.2.1.1 102,438 31,414 5 52 377,328 84,768 5 856 0

9.2.2.3 79,270 26,754 5 304 344,996 78,336 5 1581 0

9.2.2.2 97,062 31,279 5 230 365,079 83,304 5 1288 0

9.2.2.1 150,438 44,854 5 307 425,328 98,208 5 1051 0

Total 73,404 26,019 180 68 152,978 42,323 180 296 0

publication dealing with the Dahmen problem is the original
publication.

As pointed out in Dahmen et al. (2018), probably the best
existing exact approach for the Demassey problem is the
implicit grammar model proposed in Côté et al. (2011b). In
Table 4, we compare the results from our best model variant
to those reported in Dahmen et al. (2018) for the implicit
grammar model which are, to the best the of our knowledge,
the most recent results reported for the grammar model. Like

in the original paper (Côté et al., 2011b; Dahmen et al., 2018)
solved the grammar model only until a MIP gap of 1% was
reached. To allow a better comparison, we also ran a series of
experiments with the same MIP gap the results of which are
reported in Table 4.When comparing the number of variables
and the number of constraints, our model is smaller than the
grammar model; this difference increases with the number
of activities per instance. For the 10-activity instances, the
grammar model instances exhibit about 25% more variables
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Table 4 Comparing our
approach to the state-of-the-art
for the Demassey instances

SEN+Template Grammar

Group Vars Cons 1% Opt Time Vars Cons 1%-Opt Time

1 60,909 14,344 10 38 68,200 16,277 10 7

2 62,937 14,533 10 19 71,465 18,131 10 22

3 64,965 14,722 10 74 74,734 19,987 10 36

4 66,993 14,911 10 53 78,013 21,845 10 26

5 69,021 15,100 10 65 81,300 23,707 10 21

6 71,049 15,289 10 44 84,591 25,569 10 74

7 73,077 15,478 10 54 87,898 27,437 10 77

8 75,105 15,667 10 56 91,148 29,286 10 27

9 77,133 15,856 10 63 94,387 31,132 10 65

10 79,161 16,045 10 98 97,712 33,006 10 152

Total 70,035 15,194 100 56 82,945 24,638 100 51

and 50% more constraints than our model instances. Both
approaches solved all instances to 1%-optimality within less
than a minute on average.

Observe, however, that the results were obtained on differ-
ent hardware, and with different MILP solvers. Specifically,
regarding hardware, our computer is a notebookwith a newer
processor clocked at 2.66GHzwith 6 cores, 12 threads and 32
GB RAM, while the experiments from Dahmen et al. (2018)
with the grammar models were carried out on a server with
a Dual Intel Xeon X5650 processor clocked at 2.66 GHz
with in total 12 cores and 24 threads and 72 GB of RAM.
With respect to the solvers, it can be expected that the solver
used in our experiments (Gurobi 9.1) is faster than CPLEX
12.6 used in Dahmen et al. (2018). Taking into account all
these aspects, at this point, we cannot tell which of the mod-
els performs better with respect to solution time. However, it
appears unlikely that if evaluatedwith the same hardware and
the same solver, one approach would completely outperform
the other.

Table 5 deals with the Dahmen instances. For these
instances, Dahmen et al. (2018) show that their implicit
formulation yields much better results than the grammar for-
mulation. Table 5 compares the results obtained with this
implicit formulation to those obtained with our best model
(TemplateSEN+ChangeCons) for the instances with a time
granularity of 15min intervals for the flexible variant of the
Dahmen problem.

It turns out that the implicit model has much less con-
straints than our model for all instances. This is due to the
fact that in the implicit model, all pre- and post-break work
blocks are explicitly enumeratedwhile in ourmodel, thework
blocks are composed by a flow in a state-expanded network in
which each node corresponds to a constraint. When it comes
to the number of variables, for the smallest instances with
three activities, the instances from the implicit formulation
also exhibit amuch smaller number of variables. This is again

related to the enumeration of the pre- and post-break work
blocks in the implicit model: For the instances with only
three activities and little flexibility, the number of enumer-
ated work blocks is relatively small. The opposite is the case
for the instances with nine activities and a lot of flexibility
where the number of work blocks to enumerate is very large.
For these instances, our model exhibits much less variables;
for the biggest instance, the implicit model exhibits more
than 20 times as many variables as our model.

With regard to the solution performance of the models,
the statements from above regarding hardware and solver
software also hold here. However, the differences in perfor-
mance are much bigger than those reported for the Demassey
problem, in particular when it comes to the large instances:
With our model, all instances are solved to optimality, and
even the largest instances are optimally solved in 5min or
less on average. The implicit model from (Dahmen et al.,
2018), however, seems to struggle with the large instances:
Even within 3h of computation time, 45 of the instances are
not solved to optimality. These results, in combination with
the huge difference with respect to the number of variables,
indicate that our model performs substantially better than the
implicit model for large instances, despite the fact that one
needs to be careful with such statements given differences in
hardware and software mentioned above.

Regarding the “restricted” variant, we do not include an
explicit comparison here since Dahmen et al. (2018) do
not report detailed figures with respect to model size and
instances solved to optimality per instance group. Nonethe-
less, it is interesting to note that while ourmodel instances for
the restrictedvariant are larger than those for the basicflexible
variant (see above), the opposite is the case for the implicit
model from (Dahmen et al., 2018): Since it relies on enu-
merating feasible work blocks, the instances get smaller for
restricted variant (29 % on average as reported in the paper).
This makes the restricted models easier to solve: instead of
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Table 5 Comparing our
approach to the state-of-the-art
for the Dahmen instances with
time granularity of 15min

TemplateSEN+ChangeCons Implicit formulation

Group Vars Cons Opt Time Vars Cons Opt Time

3.1.1.3 28,280 14,832 5 4 6041 657 5 2

3.1.1.2 37,784 17,063 5 4 6995 802 5 1

3.1.1.1 66,296 23,756 5 6 9678 1235 5 5

3.1.2.3 44,280 19,312 5 10 12,946 1426 5 25

3.1.2.2 61,784 23,783 5 9 15,099 1908 5 15

3.1.2.1 114,296 37,196 5 38 21,190 3350 5 55

3.2.1.3 34,782 16,110 5 10 29,598 657 5 27

3.2.1.2 44,338 18,349 5 8 33,829 802 5 13

3.2.1.1 73,006 25,066 5 20 45,522 1235 5 249

3.2.2.3 50,782 20,590 5 19 60,450 1426 5 199

3.2.2.2 68,338 25,069 5 63 69,071 1908 5 377

3.2.2.1 121,006 38,506 5 25 93,284 3350 5 523

6.1.1.3 36,446 17,216 5 10 38,164 894 5 33

6.1.1.2 46,016 19,462 5 98 43,515 1039 5 113

6.1.1.1 74,726 26,200 5 45 58,440 1472 5 188

6.1.2.3 52,446 21,696 5 40 77,466 1663 5 901

6.1.2.2 70,016 26,182 5 44 88,312 2145 5 2094

6.1.2.1 122,726 39,640 5 74 118,942 3587 5 1661

6.2.1.3 49,026 19,192 5 28 282,116 899 3 4538

6.2.1.2 58,700 21,454 5 34 319,779 1046 3 4539

6.2.1.1 87,722 28,240 5 57 425,918 1479 4 2615

6.2.2.3 65,026 23,672 5 131 562,752 1670 1 10,779

6.2.2.2 82,700 28,174 5 115 637,588 2152 1 9361

6.2.2.1 135,722 41,680 5 82 850,568 3594 3 5790

9.1.1.3 44,400 19,310 5 31 129,511 1090 4 2597

9.1.1.2 54,036 21,571 5 17 147,029 1235 5 523

9.1.1.1 82,944 28,354 5 48 196,242 1668 5 870

9.1.2.3 60,400 23,790 5 133 259,450 1859 3 6213

9.1.2.2 78,036 28,291 5 65 294,375 2341 4 4029

9.1.2.1 130,944 41,794 5 210 393,542 3783 5 4363

9.2.1.3 63,270 22,274 5 21 1,048,918 1113 3 6705

9.2.1.2 73,062 24,559 5 54 1,186,487 1258 1 9941

9.2.1.1 102,438 31,414 5 52 1,577,274 1691 0 10,800

9.2.2.3 79,270 26,754 5 304 2,082,958 1882 0 10,800

9.2.2.2 97,062 31,279 5 230 2,356,341 2364 0 10,800

9.2.2.1 150,438 44,854 5 307 3,138,116 3806 0 10,800

Total 73,404 26,019 180 68 464,375 1791 135 3404

45 instances not being solved to optimality within 3h for
the flexible problem, only 28 instances cannot be solved to
optimality within that time for the restricted variant. Recall,
however, that our model instances for the restricted prob-
lem can be solved to optimality within 296s on average for
the 15-minute instances; for the largest instance groups, the
average solution time to optimality is around 20min.

7 Conclusions

This paper presents a new MILP modeling approach for
multi-activity shift scheduling problems based on state-
expanded networks. In particular, it presents two techniques
for dealing with the explosion of the size of the networks
for large-scale instances: A set of implicit constraints ensur-
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Table 6 Results for both
variants of the Dahmen
problem: instances with time
granularity of 30min

Flexible Restricted

Group Vars Cons Opt Time Vars Cons Opt Time ObjDiff

3.1.1.3 4427 3126 5 0.1 4754 2948 5 0.2 0

3.1.1.2 5647 3541 5 0.2 5980 3360 5 0.3 0

3.1.1.1 9271 4747 5 0.3 9616 4560 5 0.6 0

3.1.2.3 6411 3846 5 0.7 6738 3668 5 0.9 0

3.1.2.2 8623 4621 5 0.4 8956 4440 5 0.6 0

3.1.2.1 15,223 6907 5 1.3 15,568 6720 5 3.2 0

3.2.1.3 5571 3466 5 0.6 8665 4214 5 0.6 0

3.2.1.2 6809 3885 5 0.4 9960 4648 5 0.7 0

3.2.1.1 10,469 5099 5 0.7 13,734 5892 5 1.1 0

3.2.2.3 7555 4186 5 1.0 10,649 4934 5 1.2 0

3.2.2.2 9785 4965 5 0.8 12,936 5728 5 1.1 0

3.2.2.1 16,421 7259 5 2.8 19,686 8052 5 3.5 0

6.1.1.3 6155 3894 5 0.7 12,119 5864 5 1.2 0

6.1.1.2 7403 4318 5 0.6 13,476 6325 5 0.6 0

6.1.1.1 11,083 5542 5 1.1 17,374 7623 5 1.9 0

6.1.2.3 8139 4614 5 2.3 14,103 6584 5 3.1 0

6.1.2.2 10,379 5398 5 2.0 16,452 7405 5 2.3 0

6.1.2.1 17,035 7702 5 6.0 23,326 9783 5 9.6 0

6.2.1.3 8303 4384 5 1.5 29,739 10,094 5 5.6 0

6.2.1.2 9587 4816 5 0.9 31,408 10,629 5 3.1 0

6.2.1.1 13,339 6056 5 1.9 35,930 12,075 5 7.2 0

6.2.2.3 10,287 5104 5 2.1 31,723 10,814 5 7.0 0

6.2.2.2 12,563 5896 5 2.2 34,384 11,709 5 5.6 0

6.2.2.1 19,291 8216 5 7.4 41,882 14,235 5 29.0 0

9.1.1.3 7813 4567 5 0.5 24,526 10,120 5 1.6 0

9.1.1.2 9089 5000 5 0.8 26,104 10,654 5 2.4 0

9.1.1.1 12,825 6242 5 2.1 30,444 12,098 5 5.1 0

9.1.2.3 9797 5287 5 1.5 26,510 10,840 5 3.7 0

9.1.2.2 12,065 6080 5 2.4 29,080 11,734 5 4.5 0

9.1.2.1 18,777 8402 5 7.8 36,396 14,258 5 20.7 0

9.2.1.3 11,035 5302 5 1.6 65,653 19,708 5 11.8 0

9.2.1.2 12,365 5747 5 1.3 67,960 20,410 5 9.4 0

9.2.1.1 16,209 7013 5 2.4 73,758 22,190 5 18.7 0

9.2.2.3 13,019 6022 5 3.4 67,637 20,428 5 14.2 0

9.2.2.2 15,341 6827 5 3.6 70,936 21,490 5 15.6 0

9.2.2.1 22,161 9173 5 10.3 79,710 24,350 5 87.9 0

Total 11,118.7 5,479.2 180 2.1 28,552 10,294 180 7.9 0

ing that an aggregated flow can be decomposed into shifts
respecting the activity change requirement, and the concept
of template blocks that allows modeling different aspects
of composing shifts in different and coupled state-expanded
network. When combined, the two techniques allow reduc-
ing the size of the main state-expanded network by a factor
in the order of the square of the number of activities in the
instance under consideration.

We show how this approach can be used tomodel different
MASSP problems. In particular, we provide experimental
results for two big sets of MASSP instances with 100 and
540 instances, respectively.

Our experiments show that our approach is at least com-
petitive with the best approach on the first set of instances,
and is clearly better than the previously best approach for
large instances from the second set. This is shown by the fact
that we are able to solve all instances to optimality, including
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Table 7 Results for both
variants of the Dahmen
problem: instances with time
granularity of 60min

Flexible Restricted

Group Vars Cons Opt Time Vars Cons Opt Time ObjDiff

3.1.1.3 945 805 5 0.1 1155 830 5 0.1 0

3.1.1.2 ,165 906 5 0.1 1383 932 5 0.1 0

3.1.1.1 1785 1,167 5 0.1 2011 1194 5 0.1 0

3.1.2.3 1265 941 5 0.1 1475 966 5 0.1 0

3.1.2.2 1645 1110 5 0.1 1863 1136 5 0.1 0

3.1.2.1 2745 1575 5 0.1 2971 1602 5 0.1 0

3.2.1.3 1185 909 5 0.1 2043 1131 5 0.1 0

3.2.1.2 1412 1012 5 0.1 2304 1244 5 0.1 0

3.2.1.1 2039 1275 5 0.1 2965 1517 5 0.1 0

3.2.2.3 1505 1045 5 0.1 2363 1267 5 0.1 0

3.2.2.2 1892 1216 5 0.1 2784 1448 5 0.1 0

3.2.2.1 2999 1683 5 0.1 3925 1925 5 0.1 0

6.1.1.3 1413 1090 5 0.1 3307 1783 5 0.1 0

6.1.1.2 1648 1197 5 0.1 3616 1918 5 0.1 0

6.1.1.1 2283 1464 5 0.1 4325 2213 5 0.1 0

6.1.2.3 1733 1226 5 0.2 3627 1919 5 0.3 0

6.1.2.2 2128 1401 5 0.2 4096 2122 5 0.2 0

6.1.2.1 3243 1872 5 0.1 5285 2621 5 0.3 0

6.2.1.3 1827 1214 5 0.1 7271 2923 5 0.2 0

6.2.1.2 2076 1325 5 0.1 7728 3100 5 0.3 0

6.2.1.1 2725 1596 5 0.1 8585 3437 5 0.3 0

6.2.2.3 2147 1350 5 0.2 7591 3059 5 0.5 0

6.2.2.2 2556 1529 5 0.2 8208 3304 5 0.5 0

6.2.2.1 3685 2004 5 0.1 9545 3845 5 0.4 0

9.1.1.3 1848 1333 5 0.1 6887 3238 5 0.2 0

9.1.1.2 2098 1446 5 0.1 7331 3425 5 0.2 0

9.1.1.1 2748 1719 5 0.1 8175 3772 5 0.3 0

9.1.2.3 2168 1469 5 0.2 7207 3374 5 0.4 0

9.1.2.2 2578 1650 5 0.2 7811 3629 5 0.3 0

9.1.2.1 3708 2127 5 0.2 9135 4180 5 0.3 0

9.2.1.3 2469 1519 5 0.1 16,115 5839 5 0.6 0

9.2.1.2 2740 1638 5 0.1 16,904 6122 5 0.5 0

9.2.1.1 3411 1917 5 0.1 18,093 6565 5 1.0 0

9.2.2.3 2789 1655 5 0.1 16,435 5975 5 0.9 0

9.2.2.2 3220 1842 5 0.2 17,384 6326 5 1.4 0

9.2.2.1 4371 2325 5 0.2 19,053 6973 5 1.0 0

Total 2283 1432 180 0.1 6971 2968 180 0.3 0

70 previously unsolved instances from the second set within
less than 45min of computation time, most of the instances
being solved much faster.

Preprint and relation to prior work

Apreprint version of this paper can be found at https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=3798667. The previ-

ous title of the preprint was “State-Expanded Network
Formulations for Multi-Activity Shift Scheduling”. In its
latest revision, the title was changed to “Block-based state-
expandednetwork formulations formulti-activity shift schedul-
ing” in order to emphasise the important modeling decision
of basing the state-expanded network on blocks of con-
secutive assignments and to highlight the difference to the
state-expanded network model used in (Porrmann & Römer,
2021).
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The article (Porrmann & Römer, 2021) was published
before submitting this work to the Journal of Scheduling.
The key differences between the contributions of (Porrmann
& Römer, 2021) and those presented in this manuscript are
discussed in the main text and can be summarised as follows:

• Porrmann and Römer (2021) use a different state model
which implies a different structure of the state-expanded
network underlying theMILP formulation. In (Porrmann
& Römer, 2021), a single activity block, that is, a
sequence of consecutive assignments of the same activ-
ity, can be composed of multiple arcs. This requires that
the state model contains a state attribute that allows com-
puting the duration of an activity block. In the model in
the present paper, every arc that represents an assignment
corresponds to a full activity or break block, making it
unnecessary to track any activity block-related aspects in
the state model.

• This block-based network structure allows us to develop
the exact techniques (the implicit modeling of the activity
change rule and the two-level model combining a model
layer based on template blocks with an activity assign-
ment layer) that form key contributions of this paper.
While, as can be seen in the computational results, the
block-based model itself still struggles with the largest
instances, applying both techniques eventually permits
solving all Demassey and Dahmen instances to optimal-
ity, many of them for the first time. Since using the model
employed in (Porrmann & Römer, 2021) did not per-
mit to efficiently solve all Demassey instances, the key
contribution of that paper was to introduce a Machine
Learning-based approach to heuristically remove nodes
and arcs from the state-expanded network.

• (Porrmann&Römer, 2021) only considers theDemassey
MASSP variant; the present paper considers both the
Demassey and the Dahmen variants and the respective
instances.
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A Additional result data

Table 3 discussed in Sect. 6 presented results for the hard-
est instances from the Dahmen instance set, namely the
instances with a time granularity of 15min. The following
tables present the results for the remaining instances with a
time granularity of 30 and 60min.
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