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Abstract
We study an optimal liquidation problem with multiplicative price impact in which
the trend of the asset price is an unobservable Bernoulli random variable. The investor
aims at selling over an infinite time horizon a fixed amount of assets in order to max-
imise a net expected profit functional, and lump-sum as well as singularly continuous
actions are allowed. Our mathematical modelling leads to a singular stochastic con-
trol problem featuring a finite-fuel constraint and partial observation. We provide a
complete analysis of an equivalent three-dimensional degenerate problem under full
information, whose state process is composed of the asset price dynamics, the amount
of available assets in the portfolio, and the investor’s belief about the true value of the
asset’s trend. Its value function and optimal execution rule are expressed in terms
of the solution to a truly two-dimensional optimal stopping problem, whose asso-
ciated belief-dependent free boundary b triggers the investor’s optimal selling rule.
The curve b is uniquely determined through a nonlinear integral equation, for which
we derive a numerical solution through an application of the Monte Carlo method.
This allows us to understand the value of information in our model as well as the
sensitivity of the problem’s solution with respect to the relevant model parameters.
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1 Introduction

In this paper, we consider an investor who possesses a fixed amount of assets and
aims at selling them on the market. We assume that the investor faces the issue of
causing an adverse price reaction, so that fast selling depresses the stock price while
splitting the order over time may take too long. This problem – also known as the
optimal execution problem in algorithmic trading – thus deals with the question of
how to trade optimally in order to maximise a given profit, and therefore of how to
determine the times as well as the sizes of the orders.

Dating back to the early works of Bertsimas and Lo [9], Almgren and Chriss [2]
and Almgren [1], the study of optimal execution strategies has received much at-
tention and resulted in a series of important contributions in various settings which,
amongst other modelling features, can be distinguished with respect to the considered
type of price impact: additive or multiplicative. A comprehensive discussion on the
latter class of models can be found in Guo and Zervos [44], who also point out that
models with multiplicative price impact seem to be more natural since they ensure
prices to remain positive. Amongst those works dealing with multiplicative price im-
pact, let us mention Bertsimas et al. [10] for a discrete-time framework, Forsyth et
al. [37] for a continuous-time model à la Black–Scholes, and Guo and Zervos [44]
and Becherer et al. [5] for settings involving singular stochastic controls.

A common feature in the literature is the assumption that the investor has full
information on the trend of the asset. This, however, can be a strong requirement.
As pointed out by Ekström and Lu [30], a statistical estimation of the drift is not
an efficient procedure, and obtaining a reasonable precision would need decades or
even centuries of data under the same market conditions, which is simply not feasible
in reality (see also the discussion in Rogers [58, Sect. 4.2]). In some cases, such as
initial public offerings, this price history does not even exist.

To account for this fact, we propose a model of optimal execution with multiplica-
tive price impact in which the drift of the stock price dynamics is a random variable
which is not directly observable by the investor. Through monitoring the evolution of
the price on the market, the investor is able to update her belief regarding the drift
value. However, that observation is noisy as the investor cannot perfectly distinguish
whether price variations are caused by the drift or by the stochastic driver of the
underlying dynamics. From a mathematical point of view, our model leads to a finite-
fuel singular stochastic control problem under partial observation, and we investigate
how the presence of incomplete information influences the selling strategy of the in-
vestor. In particular, we show that the flow of incoming information – through the
observation of the asset’s market price – has a direct effect on the optimal execution
rule. Indeed, differently from the case of full information treated in Guo and Zervos
[44], the decision to sell is no longer triggered by a constant critical price, but the
execution threshold changes dynamically depending on the investor’s current belief
on the future trend of the asset. Our results show that the optimal execution strategy
is in fact determined by a boundary that is increasing in the belief in the larger drift
value, corresponding to the intuition that the decision maker chooses to delay selling
assets if future prices are expected to increase.

In this regard, our work relates to the strand of economic and financial litera-
ture where questions of optimal decision-making under partial observation have been
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considered; amongst a large number of contributions, we refer to the seminal papers
on portfolio selection by Detemple [26] and Gennotte [42], to Veronesi [64] for an
equilibrium model with uncertain dividend drift, to Sass and Haussmann [59] for
a terminal-wealth portfolio optimisation problem, and to the more recent paper by
Colaneri et al. [15] for an optimal liquidation problem with rate strategies and partial
observation. Notably, the recent papers Drissi [29] and Bismuth et al. [11] incorporate
Bayesian learning in a model of multi-asset optimal execution, although restricting
the agent to absolutely continuous (regular) controls.

Furthermore, we contribute to those models dealing with problems of optimal
stopping and singular stochastic control. To name just a few recent works, we men-
tion Callegaro et al. [13] for public debt control, De Angelis [19] and Décamps and
Villeneuve [25] for dividend payments, Décamps et al. [24] for investment timing,
Ekström and Lu [30] as well as Ekström and Vaicenavicius [31] for asset liquidation,
Federico et al. [33] for inventory management, Johnson and Peskir [45] for quick-
est detection, Gapeev [39] for the pricing problem of perpetual commodity equities,
and Gapeev and Rodosthenous [40] for a zero-sum optimal stopping game associated
with perpetual convertible bonds.

1.1 Our model, approach and overview of the mathematical analysis

We now discuss the mathematical modelling and analysis. Consider an investor hold-
ing a fixed amount y of assets in her portfolio. In the absence of investor actions, the
stock price evolves according to a geometric Brownian motion dSt=βStdt +σStdWt ,
where W is a standard Brownian motion and σ > 0 a constant volatility parameter.
Furthermore, the price process exhibits a random future trend β , which is, however,
unknown to the decision maker and is assumed to be a random variable, independent
of the Brownian noise, taking two values β0 < β1 for some β0, β1 ∈ R and β0 < 0.

The decision maker is able to sell the assets on the market over an infinite time
horizon, and we denote by ξt the cumulative amount of assets liquidated up to time t .
Consequently, the remaining assets in the portfolio follow the dynamics Y

ξ
t = y − ξt .

Clearly, we must have ξt ≤ y at any time t ≥ 0 (finite-fuel constraint) since no more
than the initial amount of assets can be sold. As announced, we assume that the
investor causes an adverse price reaction upon selling which, following Guo and Zer-
vos [44], we assume to be of multiplicative type. Hence, the controlled asset price
evolves as

dS
ξ
t = βS

ξ
t dt + σS

ξ
t dWt − αS

ξ
t ◦ dξt , S

ξ
0− = s > 0,

where α > 0 denotes the parameter of price impact and the operator ◦ is defined
in (2.3) below so as to take care of the continuous and jump components of any
admissible selling strategy ξ . As will become clear later, see (2.6), the multiplicative
price impact structure allows expressing the asset price process as Sξ = exp(Xξ ),
where Xξ is a linearly controlled drifted Brownian motion with volatility σ > 0 and
drift value μ = β − 1

2σ 2.
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The investor aims at maximising the total expected discounted reward upon sell-
ing, net of transaction costs; that is, she looks for

sup
ξ

E

[∫ ∞

0
e−rt (eX

ξ
t − κ) ◦ dξt

]
,

where the optimisation is taken over a suitable admissible class of selling strategies
ξ and the investor discounts her future revenues with a strictly positive factor r > 0
that can be interpreted as her subjective impatience. This yields a finite-fuel singular
stochastic control problem under partial observation.

By relying on classical filtering techniques (cf. Shiryaev [61, Sect. 4.2]), we begin
by determining an equivalent Markovian problem – the so-called separated problem –
under full information (see Fleming and Pardoux [35] as a classical reference on the
separated problem). To this end, we introduce the process � according to which the
investor can update her belief regarding the true value of the drift. This is done by
observing the evolution of the process X0 (denoting the uncontrolled version of the
process Xξ ), whose natural filtration (FX0

t ) models the overall information avail-
able up to time t . More precisely, after forming a prior π := P[μ = μ1] ∈ (0,1), the
investor dynamically updates her belief upon the arrival of new information through
observing the process Xξ so that the belief process is given by �t = P[μ = μ1|FXξ

t ].
Notice that a value of � close to 1 indicates a strong belief in the larger value of the
drift, while � close to 0 displays a strong belief in the lower value. Hence we expect
the investor to change the liquidation strategy dynamically and base it not solely on
the current price on the market, but also on the present belief at that time.

The separated problem turns out to be a three-dimensional degenerate finite-fuel
singular stochastic control problem, so that obtaining explicit solutions through a
traditional “guess-and-verify approach” is in general not feasible. We note that this
approach would be applicable if we take β0 = −β1, which indeed allows a dimension
reduction; see e.g. Décamps and Villeneuve [25]. In the present paper, however, we
do not assume any relation between β0 and β1 other than β0 < β1.

In order to tame the multidimensional nature of the resulting optimal execution
problem under full information, we then follow a direct approach which hinges on
the study of a suitable optimal stopping problem, with value v, that we expect to
be associated to the singular stochastic control problem. This method was studied
and refined by many authors such as Beneš et al. [6], El Karoui and Karatzas [32]
and Karatzas and Shreve [49], or De Angelis [19], De Angelis et al. [20, 21] and
Guo and Tomecek [43] for more recent contributions. The optimal stopping problem,
which involves the underlying two-dimensional diffusion (X0,�) taking values in
R × (0,1), can be interpreted as an optimal selling problem and exhibits a structure
similar to that of the problem treated by Décamps et al. [24] (see also Ekström and
Lu [30] for a parabolic version). We then solve the optimal stopping problem by
relying on techniques from free-boundary theory (as illustrated in the monograph by
Peskir and Shiryaev [57, Chap. 3]) and first show that the optimal stopping rule is
characterised through a belief-dependent free boundary a(π) for π ∈ (0,1).

However, the coupled dynamics of the underlying processes X0 and � as well as
the fact that they are driven by the same Brownian motion makes a further study of
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the free boundary and the value function v not feasible. For that reason, we proceed
by deriving two equivalent representations of the optimal stopping problem which
allow a thorough analysis. First, via a change of measure, the state process (X0,�)

is transformed into (X0,	) taking values in R× (0,∞) and with decoupled dynam-
ics. Here, the process 	 is the so-called “likelihood ratio”. Again, we can express the
optimal stopping strategy in terms of a free boundary ϕ �→ b(ϕ) which results from
a simple transformation of the boundary π �→ a(π). Second, we pass to yet another
formulation by deriving the intrinsic parabolic formulation of the stopping problem
in coordinates (X0,Z), in which the process Z now follows purely deterministic dy-
namics and takes values in R. Even though the monotonicity result of the associated
free boundary z �→ c(z) is not trivial to derive and calls for a rigorous technical anal-
ysis, it is in this formulation that we are able to provide further regularity results for
c and for the transformed optimal stopping value function v̂. In fact, borrowing ar-
guments from De Angelis [19], suitably adapted to the present setting, we achieve a
global regularity of v̂, namely v̂ ∈ C1(R2). The latter result also allows proving that
v̂xx ∈ L∞

loc(R
2) and finally obtaining a nonlinear integral equation uniquely solved

by the optimal stopping boundary c. It is worth mentioning that this characterisa-
tion can be translated back to both optimal stopping boundaries b and a and is thus
tantamount to a complete specification of the optimal stopping rule in the original
(x,π)-coordinates.

The thorough analysis developed for the optimal stopping problem is then ex-
ploited in order to identify an optimal execution strategy. In fact, the derived regular-
ity results for v̂ permit us to prove a verification theorem that identifies an optimal
execution rule and shows that the optimal stopping value function v indeed coincides
with a directional derivative of the separated problem’s value function V . Namely,
we show that

V (x, y,π) := 1

α

∫ x

x−αy

v(x′,π)dx′, (x, y,π) ∈R× (0,∞) × (0,1).

Notice that if α ↓ 0, one finds V (x, y,π) = yv(x,π), which is the value of the prob-
lem in which the investor has no market impact.

The optimal execution rule can be thought of as a “myopic one”. Indeed, it pre-
scribes to sell assets as if the size of the investor’s portfolio were infinite, and to stop
selling once the asset’s inventory is depleted (see also Karatzas [47] and El Karoui
and Karatzas [32]). The optimal selling rule involves lump-sum executions (whenever
the asset price is sufficiently large) that could eventually result in an immediate deple-
tion of the portfolio (if the initial portfolio size is sufficiently small). However, for rel-
atively large portfolios, an initial lump-sum selling is followed by a policy of oblique
reflection type. This is triggered by the belief-dependent boundary ϕ �→ b(ϕ) (equiva-
lently, π �→ a(π)). Notably, given that all the transformations developed for the reso-
lution of the optimal stopping problem are one-to-one and onto, the integral equation
for the boundary z �→ c(z) yields an integral equation for ϕ �→ b(ϕ) and therefore a
complete characterisation of the optimal execution rule. In order to provide insights
about the sensitivity of the optimal decision mechanism of the investor with respect
to the model parameters, we develop a recursive numerical scheme which relies on an
application of the Monte Carlo method. Overall, we believe that the contributions of
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this paper are the following. Even though the literature on optimal execution problems
is extensive (to name just a few, see Almgren and Chriss [2], Almgren [1], Becherer et
al. [5], Bertsimas and Lo [9], Bertsimas et al. [10], Colaneri et al. [15], Gatheral and
Schied [41], Guo and Zervos [44], Moreau et al. [54], Schied and Schöneborn [60]),
the combination of incomplete information on the future price trend while allowing
lump-sum as well as singularly continuous executions constitutes a novelty. Further-
more, the present study on the optimal execution strategy complements as well as
extends the literature on problems with a similar structure under full information. As
a matter of fact, the derived optimal execution rule exhibits a broader structure and
prescribes to take actions depending on the current belief on the future trend of the
asset.

1.2 Our contributions

From a mathematical point of view, to the best of our knowledge, ours is the first
work providing a complete characterisation of the value function and of the optimal
control rule in a finite-fuel singular stochastic control problem under partial obser-
vation (which, in the present setting, is equivalent to a three-dimensional degenerate
singular stochastic control problem). Furthermore, we believe that the optimal stop-
ping (selling) problem studied as a device to characterise the optimal solution of
the optimal execution problem is of interest on its own. By performing a thorough
analysis on the regularity of (a transformed version of) its value function and free
boundary, we are able to provide a complete characterisation of the optimal selling
rule through a nonlinear integral equation, thus extending the results of the related
model studied by Décamps et al. [24]. Notice that an integral equation for the free
boundary has been obtained also in Ekström and Lu [30] and Ekström and Vaicenavi-
cius [31], but in settings where the parabolic nature of the problem arises because of
an explicit time-dependence. Finally, the probabilistic numerical approach developed
for the resolution of the free boundary’s integral equation allows understanding the
dependence of the investor’s optimal execution strategy on relevant model parame-
ters such as volatility and trend. Moreover, based on the numerical evaluation of the
boundary, we can compare the value of the control problem with partial information
with that of an associated average drift problem under full information. This allows
us to numerically evaluate the question on whether the introduction of uncertainty
over the drift actually harms or benefits the investor.

1.3 Organisation of the paper

The rest of the paper is organised as follows. In Sect. 2, we present our setting and
first preliminary results. In Sect. 3, we investigate the benchmark problem under full
information, before we consider a corresponding optimal stopping problem and its
optimal boundary in Sect. 4. In Sects. 5 and 6, we derive two equivalent formula-
tions of the optimal stopping problem under partial observation which allow a more
thorough study. Eventually, in Sect. 7, we return to the optimal control problem and
characterise the optimal selling rule of the investor. A numerical study based on the
derived integral equation of the execution boundary in then carried out in Sect. 8.
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2 Setting and problem formulation

Let (�,F ,P) be a complete probability space rich enough to accommodate a stan-
dard one-dimensional Brownian motion (Wt )t≥0 and an independent random variable
β taking two values β0 and β1. We denote by F

W := (FW
t )t≥0 the filtration generated

by (Wt)t≥0 and augmented by the P-nullsets of F . We assume that in the absence of
any actions of the investor, the asset price on the stock market evolves stochastically
according to a geometric Brownian motion

dS0
t = βS0

t dt + σS0
t dWt , S0

0 = s > 0, (2.1)

where σ > 0 is a constant volatility. The investor holds a finite amount y ≥ 0 of
assets which she is able to sell. We identify the cumulative amount of assets sold up
to time t ≥ 0, which we denote by ξt , as the investor’s control variable. We denote by
F

Z := (FZ
t )t≥0 the natural filtration of any process Z, augmented by the P-nullsets

of F . The set of admissible execution strategies in this context is given by

A(y) := {ξ : � × [0,∞) →R+ : (ξt )t≥0 is FS0
-adapted, increasing, càdlàg

and ξ0− = 0, ξt ≤ y a.s.},

where the last condition naturally arises from the fact that the investor cannot sell
more than the initial amount of assets. Moreover, the remaining assets in the portfolio
evolve according to the dynamics

Y
ξ
t = y − ξt , Y

ξ
0− = y ≥ 0,

where we stress the dependence on the selling strategy ξ . Following Guo and Zervos
[44], we assume in our model that the investor’s transactions on the market have a
proportional impact on the asset price. More precisely, when selling a small amount
ε > 0 of assets at time t , the price exhibits a jump of size

St = St − St− = −αεSt−,

for α > 0 denoting the parameter of permanent price impact (see Almgren and Chriss
[2], Almgren [1] for early works and Becherer et al. [4], Ferrari and Koch [34], Guo
and Zervos [44] for more recent contributions). Hence a small transaction is such that
St = (1 − αε)St− � e−αεSt−, and by interpreting a lump-sum sale of ξt shares as a
sequence of N individual sales of size ε = ξt/N , we have

St = e−αNεSt− = e−αξt St−

for N large enough. It follows that for any ξ ∈ A(y), we can model the controlled
asset price process by

dS
ξ
t = βS

ξ
t dt + σS

ξ
t−dWt − αS

ξ
t ◦ dξt , S

ξ
0− = s, (2.2)
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where
∫ ·

0
S

ξ
t ◦ dξt :=

∫ ·

0
S

ξ
t dξc

t +
∑

t≤· :ξt �=0

1

α
S

ξ
t−(1 − e−αξt )

=
∫ ·

0
S

ξ
t dξc

t +
∑

t≤· :ξt �=0

S
ξ
t−

∫ ξt

0
e−αudu, (2.3)

ξc denotes the continuous part of the process ξ and ξt := ξt − ξt−. The solution to
(2.2) can be explicitly determined via Itô’s formula and is given by

S
ξ
t = s exp

((
β − 1

2
σ 2

)
t + σWt − αξt

)
= S0

t exp(−αξt ), (2.4)

where S0 is the solution to (2.1) and we observe that the price impact of selling is
additive with respect to the logarithm of the asset price.

We assume that the investor aims at maximising the total expected (discounted)
profits, net of the total cost of selling, and thus seeks to solve

sup
ξ∈A(y)

E

[∫ ∞

0
e−rt (S

ξ
t − κ) ◦ dξt

]

= sup
ξ∈A(y)

E

[∫ ∞

0
e−rt (S

ξ
t − κ)dξc

t +
∑

t :ξt �=0

e−rt

∫ ξt

0
(S

ξ
t−e−αu − κ)du

]
. (2.5)

Here, κ > 0 is a proportional transaction cost which, thinking of S
ξ
t as the ask price

of the stock at time t , can also be interpreted as a constant bid–ask spread. Notice
that the structure of the expected net-profit functional in (2.5) can also be justified
through stability results in the Skorokhod M1-topology in probability (see Becherer
et al. [5]). Moreover, (2.5) has a finite value due to ξt ≤ y a.s. Thanks to (2.4), we
have S

ξ
t = exp(X

ξ
t ), where

dX
ξ
t = μdt + σdWt − αdξt , X

ξ
0− = x, (2.6)

with x := ln s and μ := β − 1
2σ 2. In particular, the drift can take two values

μi = βi − 1
2σ 2, i = 0,1. In the following, when needed, we let X0 denote the solu-

tion to (2.6) with ξ ≡ 0, which is then an arithmetic Brownian motion. Furthermore,
we state the following assumption.

Assumption 2.1 We have β1 > β0 and β0 < 0, which implies μ0 < 0.

The maximisation problem (2.5) can thus be rewritten in terms of (2.6) as

sup
ξ∈A(y)

E

[∫ ∞

0
e−rt (eX

ξ
t − κ) ◦ dξt

]
. (2.7)
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Notice that for a constant non-random drift coefficient, a close variant of this problem
was considered and solved by Guo and Zervos [44], who also incorporate the option
of buying shares of assets and the constraint that the whole inventory must be depleted
at the terminal time. However, due to the presence of incomplete information on
the drift of the asset, (2.7) is not of Markovian nature and thus requires a different
analysis. In order to obtain an equivalent Markovian formulation of (2.7), we rely on
classical results from filtering theory, dating back to the contribution of A.N. Shiryaev
in the context of quickest detection models (see Shiryaev [62] for a survey). To this
end, we introduce the belief process

�t := P[μ = μ1|FX0

t ], t ≥ 0,

which reflects the conditional probability at time t that μ = μ1 given the observa-
tions of the price process up to that time (indeed, FS0 = F

X0 = F
Xξ

, noting that ξ

must be F
S0

-adapted). According to this process, the investor is able to update the
belief regarding the true value of the drift, based on the arrival of new information
by observing the asset price evolution on the market. Notice that a large value of �

close to 1 implies a strong belief in the larger drift value μ1, while a low value of �

implies the contrary. It follows (see e.g. Shiryaev [61, Sect. 4.2]) that the dynamics
of Xξ , � and Y ξ can be written as

⎧⎪⎨
⎪⎩

dX
ξ
t = (

μ1�t + μ0(1 − �t)
)
dt + σdWt − αdξt , X

ξ
0− = x ∈R,

d�t = γ�t(1 − �t)dWt , �0 = π ∈ (0,1),

Y
ξ
t = y − ξt , Y

ξ
0− = y ≥ 0,

(2.8)

where γ = (μ1 − μ0)/σ is the signal-to-noise ratio and

dWt = dX0
t

σ
−

(
μ0

σ
+ γ�t

)
dt

denotes the innovation process which is an F
X0

-Brownian motion on (�,F ,P).
Moreover, notice that the value π := P[μ = μ1] reflects the initial subjective be-
lief of the investor regarding the true value of the drift. We do not question the origin
of this initial belief; this can be an instinctive decision or even the result of a con-
structive approach, for instance by observing the trends of similar assets over the
past years. In the new formulation, the process (Xξ ,Y ξ ,�) is an F

X0
-adapted and

time-homogeneous Markov process, as it is the unique strong solution to the system
of stochastic differential equations in (2.8). Furthermore, we observe that the drift μ

is replaced by its conditional estimate, and the process � is a bounded martingale
valued in [0,1] with �∞ ∈ {0,1} as all information will eventually get revealed. De-
noting Ex,y,π [ · ] = E[ · |Xξ

0− = x,Y
ξ
0− = y,�0 = π], we can thus reformulate the

problem of incomplete information as a so-called separated problem (cf. Bensoussan
[7, Chap. 7.1], and Fleming and Pardoux [35])

V (x, y,π) := sup
ξ∈A(y)

J (x, y,π, ξ) (2.9)
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with

J (x, y,π, ξ)

:= Ex,y,π

[∫ ∞

0
e−rt (eX

ξ
t − κ)dξc

t +
∑

t :ξt �=0

e−rt

∫ ξt

0
(eX

ξ
t−−αu − κ)du

]
,

for any (x, y,π) ∈ R × (0,∞) × (0,1). Notice indeed that �t ∈ (0,1) for all t ≥ 0
a.s. if π ∈ (0,1), while �t ≡ π0 for all t ≥ 0 a.s. if π0 ∈ {0,1}. Problem (2.9) is
equivalent to (2.5): They share the same value, and because of the uniqueness of
the strong solution to (2.8), a control is optimal for (2.5) if and only if it is optimal
for (2.9).

2.1 The Hamilton–Jacobi–Bellman equation

Problem (2.9) takes the form of a three-dimensional singular stochastic control prob-
lem with finite-fuel constraint (cf. Baldursson [3], Beneš et al. [6], El Karoui and
Karatzas [32], Karatzas [46] and Karatzas et al. [48] for early contributions). We start
our analysis by providing a heuristic derivation of the dynamic programming equa-
tion that we expect the value function V to satisfy. To this end, we notice that the
investor is faced with two possible actions at the initial time. On the one hand, she
could choose to wait for a short period of time t , not sell any fraction of the as-
sets and then continue with an optimal execution strategy (supposing that one exists).
Since this strategy is not necessarily optimal, we obtain

V (x, y,π) ≥ Ex,y,π [e−rtV (Xt , y,�t )], (x, y,π) ∈R× (0,∞) × (0,1).

If we assume that the value function V has enough regularity, we can apply Itô’s
formula, divide by t and invoke the mean value theorem to let t → 0 and obtain

(LX,� − r)V ≤ 0.

Here, LX,� denotes the second-order differential operator acting on twice-continu-
ously differentiable functions which is given by

LX,� := 1

2
γ 2π2(1 − π)2∂ππ

+ 1

2
σ 2∂xx + (

πμ1 + (1 − π)μ0
)
∂x + σγπ(1 − π)∂xπ . (2.10)

On the other hand, the investor can instantaneously sell an amount ε > 0 of the assets
and then proceed by following an optimal execution strategy. Again, this strategy is
a priori suboptimal, and since this action is associated with the inequality

V (x, y,π) ≥ V (x − αε, y − ε,π) + 1

α
ex(1 − e−αε) − κε,
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adding and subtracting V (x − αε, y,π) and dividing by ε yields

V (x, y,π) − V (x − αε, y,π)

ε
≥ V (x − αε, y − ε,π) − V (x − αε, y,π)

ε

+ 1

α
ex (1 − e−αε)

ε
− κ.

Hence by letting ε ↓ 0, we obtain

αVx(x, y,π) ≥ −Vy(x, y,π) + ex − κ.

Since only one of these actions should be optimal and given the Markovian setting
of (2.9), we thus expect that the value function V should identify with an appropriate
solution to the Hamilton–Jacobi–Bellman equation

max{(LX,� − r)u,−αux − uy + ex − κ} = 0,

(x, y,π) ∈R× (0,∞) × (0,1), (2.11)

with boundary condition u(x,0,π) = 0 since y = 0 implies A(0) = {ξ ≡ 0} and
J (x,0,π,0) = 0. It is worth noticing that the variable y plays the role of a param-
eter in (2.11), which is then a two-dimensional elliptic partial differential equation
with a state-dependent directional derivative constraint, parametrised by y > 0. With
reference to (2.11) and the reasoning above, we can introduce the waiting region

W1 := {(x, y,π) ∈R× (0,∞) × (0,1) : (LX,� − r)V = 0,

− αVx − Vy + ex − κ < 0}
in which it is expected to be suboptimal to sell any assets, and the selling/execution
region, where it should be profitable for the investor to sell a fraction of the assets, as

S1 := {(x, y,π) ∈R× (0,∞) × (0,1) : (LX,� − r)V ≤ 0,

− αVx − Vy + ex − κ = 0}.
Due to the multidimensional structure of the problem, a traditional guess-and-verify
approach as seen for instance in Guo and Zervos [44] and Ferrari and Koch [34] is
not effective. In fact, this would require the construction of an explicit solution to
the second-order PDE with state dependent gradient constraint seen in (2.11) above,
which is not feasible in general. Instead, we use a different approach and construct an
optimal stopping problem connected to the stochastic control problem (2.9), which
is then of a simpler structure. Before we do so and in order to get insights from
a benchmark problem, we briefly discuss the problem under full information, i.e.,
where the drift coefficient is constant and equal to either μ0 or μ1.

3 Benchmark problem under full information

Suppose that the initial subjective belief π = P[μ = μ1] is such that π ∈ {0,1}. Ob-
serve that there exists no uncertainty in the model other than the Brownian one and
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the belief process � will remain constant, as the investor is already certain at the
initial time about the true value of the drift. Hence in this formulation, we are in the
case of full information. The problem we address in this section has a similar struc-
ture to the ones studied by Guo and Zervos [44] as well as Koch [52, Chap. 2] and
we therefore do not provide full details. Let us assume π = 0. We thus obtain �t = 0
for all t ≥ 0, and the dynamics of Xξ and Y ξ then write as

X
ξ
t = x + μ0t + σWt − αξt , Y

ξ
t = y − ξt . (3.1)

We denote the corresponding value function as

V0(x, y) := sup
ξ∈A(y)

Ex,y

[∫ ∞

0
e−rt (eX

ξ
t − κ) ◦ dξt

]
, (x, y) ∈R× (0,∞), (3.2)

where Ex,y[ · ] = E[ · |Xξ
0− = x,Y

ξ
0− = y]. By similar arguments as in the case of in-

complete information, we expect that V0 should identify with an appropriate solution
to the HJB equation

max{(LX − r)w,−αwx − wy + ex − κ} = 0 with LX = 1

2
σ 2∂xx + μ0∂x (3.3)

and w(x,0) = 0. Defining the associated waiting and selling regions as

W
μ0 := {(x, y) ∈ R× [0,∞) : (LX − r)w = 0,−αwx − wy + ex − κ < 0}, (3.4)

S
μ0 := {(x, y) ∈ R× [0,∞) : (LX − r)w ≤ 0,−αwx − wy + ex − κ = 0}, (3.5)

we expect that the investor is only willing to sell shares of the asset when its price
is sufficiently large. Hence we guess that for every y ≥ 0, there exists a critical price
G(y) such that (3.4) and (3.5) rewrite as

W
μ0 = {(x, y) ∈R× [0,∞) : y > 0 and x < G(y)} ∪ (R× {0}),

S
μ0 = {(x, y) ∈R× [0,∞) : y > 0 and x ≥ G(y)}.

Notice that the candidate value function should then satisfy (LX − r)w = 0 on W
μ0 .

It is well known that the latter equation admits two fundamental strictly positive so-
lutions; the only solution that remains bounded as x ↓ −∞ is then given by

w(x,y) = A(y)enx

for some functions A : [0,∞) → R and where n is the positive solution to the
quadratic equation (σ 2/2)n2 + μ0n − r = 0. On the other hand, on S

μ0 , we expect
that the value function V0 should instead satisfy

−αwx − wy + ex − κ = 0 and thus − αwxx − wyx + ex = 0.

In order to derive the solutions for A(y) and G(y), we evaluate the two previous
formulas at x = G(y), require that A(0) = 0 and obtain

G(y) = ln
κn

n − 1
=: x∗

0 , A(y) = κ

αn(n − 1)

(
κn

n − 1

)−n

(1 − e−αny). (3.6)
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Notice that the optimal execution threshold – determining the price at which the in-
vestor should sell – is independent of the current amount of assets in the portfolio.
Moreover, the selling region is partitioned into

S
μ0
1 :=

{
(x, y) ∈R× (0,∞) : x ≥ x∗

0 , y ≤ x − x∗
0

α

}
,

S
μ0
2 :=

{
(x, y) ∈R× (0,∞) : x ≥ x∗

0 , y >
x − x∗

0

α

}
,

and we expect that in S
μ0
1 , it is optimal to sell the complete amount of assets instanta-

neously, while in S
μ0
2 , the investor makes a lump-sum execution and then follows the

strategy that keeps the process (X,Y ) inside W
μ0 until all assets are sold. The candi-

date value function, according to our previous considerations, then takes the shape

w(x,y) =

⎧⎪⎨
⎪⎩

A(y)enx, (x, y) ∈ W
μ0,

A(y − x−x∗
0

α
)enx∗

0 + 1
α
(ex − ex∗

0 ) − κ
α
(x − x∗

0 ), (x, y) ∈ S
μ0
2 ,

1
α
ex(1 − e−αy) − κy, (x, y) ∈ S

μ0
1 ,

(3.7)

and via a verification theorem (cf. Guo and Zervos [44, Prop. 5.1], Koch [52,
Prop. 2.4.1]), one can indeed show that this w is a C2,1 solution to the HJB equa-
tion (3.3) and coincides with the value function V0 of (3.2). Moreover, the process

ξ
μ0
t := y ∧ sup

0≤s≤t

1

α
(x − x∗

0 + μ0s + σWs)
+, t ≥ 0, ξ

μ0
0− = 0, (3.8)

belongs to A(y) and provides an optimal execution strategy for (3.2) (cf. Guo and
Zervos [44, Prop. 5.1]; recall that here we are not assuming limT ↑∞ Y

ξ
T = 0 as ad-

missibility condition, see also Remark 7.6 below). Figure 1 sketches the optimal exe-
cution strategy (3.8) for problem (3.2) under full information. We observe that for an
initial price x strictly larger than x∗

0 , the investor immediately does a lump-sum exe-
cution. The latter can already deplete the whole portfolio, whenever y ≤ 1

α
(x − x∗

0 ),
or bring it to the level (x∗

0 , y − 1
α
(x − x∗

0 )) otherwise. Afterwards, the optimal strat-
egy prescribes to keep the state process (X,Y ) inside the waiting region W

μ0 with

Fig. 1 Illustrative drawing of
the optimal execution strategy
(3.8) under full information
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minimal effort, by reflecting it in the direction (−α,−1) according to a Skorokhod
reflection-type policy (realised through the running supremum in (3.8)).

In light of our subsequent analysis, it is interesting to notice that the derivative
α∂xV0 + ∂yV0 can be checked from (3.7) to identify with the value function of an
optimal stopping problem. More precisely, for any x ∈ R, one has

α∂xV0(x, y) + ∂yV0(x, y) =: v0(x) = sup
τ≥0

Ex[e−rτ (eX0
τ − κ)], (3.9)

where X0 denotes the solution to (3.1) with ξ ≡ 0, the optimisation is performed
over all stopping times of the Brownian filtration and Ex is the expectation under
Px[ · ] = P[ · |X0

0 = x]. Moreover, the stopping time

τ ∗
0 (x) := inf{t ≥ 0 : X0

t ≥ x∗
0 } Px-a.s., x ∈R, (3.10)

is optimal for (3.9). We can interpret (3.10) as the optimal time at which the investor
should sell another unit of shares and notice that it in fact characterises the time
at which the marginal expected profit α∂xV0 + ∂yV0 coincides with the marginal
instantaneous net profit ex − κ from selling.

Remark 3.1 It is easily checked that the results we obtained for the case μ ≡ μ0 can
be replicated for the case μ ≡ μ1. More precisely, considering the dynamics

X
ξ

t = x + μ1t + σWt − αξt , t ≥ 0, (3.11)

and the value function

V1(x, y) := sup
ξ∈A(y)

[∫ ∞

0
e−rt (eX

ξ
t − κ) ◦ dξt

]
, (x, y) ∈ R× (0,∞),

we can verify the existence of an optimal execution threshold x∗
1 which triggers the

selling strategy of the investor through the optimal control ξμ1 , which is of similar
structure as (3.8) with μ0 replaced by μ1. Furthermore, we have

α∂xV1 + ∂yV1 =: v1(x) = sup
t≥0

Ex[e−rτ (eX
0
τ − κ)], (3.12)

where X
0

is the solution to (3.11) with ξ ≡ 0, and τ ∗
1 (x) := inf{t ≥ 0 : X0

t ≥ x∗
1 }

Px -a.s. is the optimal stopping time for problem (3.12).

4 A related optimal stopping problem

Motivated by the observed connection to an optimal stopping problem in the bench-
mark problem of Sect. 3 (see (3.12)), we pursue the following approach in the sub-
sequent analysis: (i) We introduce and study an optimal stopping problem, with
value v, that we expect to be associated to the singular stochastic control problem
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(2.9); (ii) We provide a complete analysis of the optimal stopping problem which
is achieved by studying two equivalent formulations of it (cf. Sects. 5 and 6). More
precisely, we derive regularity results for the value function (cf. Proposition 6.9) as
well as an integral equation for the free boundary (cf. Proposition 6.11); (iii) We
verify the expected connection to the original problem of (2.9) by showing that (cf.
Theorem 7.3)

V (x, y,π) = 1

α

∫ x

x−αy

v(x′,π)dx′, (x, y,π) ∈R× (0,∞) × (0,1),

and that the optimal execution strategy is triggered by the optimal stopping boundary
studied in step (ii). In fact, as in the benchmark case, we can interpret the optimal
stopping problem as the marginal problem in the sense that its value v coincides with
the derivative of the value V of (2.9) in the direction of actions/execution and its
optimal stopping strategy characterises the time at which it is optimal to sell a unit
of assets.

We recall that (X0
t ,�t )t≥0 is the two-dimensional strong Markov process solving

{
dX0

t = (
μ1�t + μ0(1 − �t)

)
dt + σdWt , X0

0 = x,

d�t = γ�t(1 − �t)dWt , �0 = π,
(4.1)

and in the following, in order to simplify notation, we write X instead of X0. For a
stopping time τ of the filtration F

X , we then define

�(x,π, τ) := Ex,y[e−rτ (eXτ − κ)], (x,π) ∈ R× (0,1),

and consider the optimal stopping problem

v(x,π) := sup
τ

�(x,π, τ ). (4.2)

Above and in the following, Ex,π [ · ] = E[ · |X0 = x,�0 = π]. Also, denoting by
(X

x,π
t ,�π

t )t≥0 the unique strong solution to (4.1), we often employ the equivalent
notation E[f (X

x,π
t ,�π

t )] = Ex,π [f (Xt ,�t )] for any integrable measurable function
f : R× [0,1] → R.

We make the next standing assumption.

Assumption 4.1 We assume that

r >

(
μ1 + 1

2
σ 2

)
∨

(
μ1 + 1

2
σ 2 + (2μ1 + σ 2)(μ1 − μ0)

σ 2

)
∨

(
γ

2σ
|μ0 + μ1|

)
.

Remark 4.2 (i) The different conditions we impose on the (subjective) discount factor
r serve distinct purposes. Notice that the first condition is equivalent to imposing
r > β1 and guarantees wellposedness of problem (4.2).

(ii) Moreover, the forthcoming analysis (in particular Sect. 6) reveals that the other
two terms are sufficient to ensure monotonicity of (a transformation of) the optimal
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stopping boundary of problem (4.2) (cf. Propositions 6.3 and 6.5). This result is cru-
cial when deriving the smooth-fit property and thus, by relying on arguments devel-
oped in De Angelis and Peskir [22], the global C1-regularity of (a transformation of)
the value function v of (4.2). When r does not satisfy Assumption 4.1, the mono-
tonicity of the (transformed version of the) boundary is not clear and one needs an
alternative route to achieve the needed regularity of v̂. A possible approach could be
to prove directly the (local) Lipschitz-regularity of the free boundary (cf. De Angelis
and Stabile [23]) and then infer the C1-property of v̂ from the continuity of the opti-
mal stopping time with respect to the initial data. Since this is not straightforward to
obtain in our formulation, we leave it for future research.

In the following, we derive some preliminary results for the optimal stopping prob-
lem (4.2) and its associated free boundary. Noticing that (x,π) �→ X

x,π
t as well as

π �→ �π
t are continuous and nondecreasing due to classical comparison theorems for

strong solutions to stochastic differential equations, the proof of the following lemma
follows from standard arguments and is therefore skipped.

Lemma 4.3 The value function v of (4.2) is such that
i) x �→ v(x,π) is nondecreasing;
ii) π �→ v(x,π) is nondecreasing.

Furthermore, as (x,π) �→ (X
x,π
t ,�π

t ) is continuous P-a.s., Assumption 4.1 and
standard estimates using the fact that � is bounded allow us to invoke dominated
convergence and obtain that

(x,π) �→ E[e−rτ (eX
x,π
τ − κ)]

is continuous, and hence (x,π) �→ v(x,π) is lower semicontinuous. As it is custom-
ary in optimal stopping theory, we introduce the continuation and stopping regions
associated to v as

C1 := {(x,π) ∈ R× (0,1) : v(x,π) > ex − κ}, (4.3)

S1 := {(x,π) ∈ R× (0,1) : v(x,π) = ex − κ}. (4.4)

Then the continuation region C1 is an open set while the stopping region S1 in (4.4)
is closed, and by Peskir and Shiryaev [57, Corollary 1.2.2.9], the stopping time

τ ∗ = τ ∗(x,π) := inf{t ≥ 0 : (Xx,π
t ,�π

t ) ∈ S1}
is optimal whenever it is P-a.s. finite; otherwise it is an optimal Markov time. We set

a(π) := inf{x ∈R : v(x,π) ≤ ex − κ}, (4.5)

with the convention inf∅ = ∞, and state the following lemma.

Lemma 4.4 It holds that

C1 = {(x,π) ∈R× (0,1) : x < a(π)},
S1 = {(x,π) ∈R× (0,1) : x ≥ a(π)}.
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Proof Recalling (2.10), an application of Dynkin’s formula yields

u(x,π) := v(x,π) − (ex − κ)

= sup
τ

Ex,π

[∫ τ

0
e−rt

(
eXt

(
μ1�t + (1 − �t)μ0 + 1

2
σ 2 − r

)
+ rκ

)
dt

]
.

For x1 < x2 and τ ∗ optimal for v(x2,π), we have by Assumption 4.1 that

u(x1,π) − u(x2,π) ≥ E

[∫ τ∗

0
e−rt (eX

x1,π
t − eX

x2,π
t )

×
(

μ1�
π
t + (1 − �π

t )μ0 + 1

2
σ 2 − r

)
dt

]

≥ E

[∫ τ∗

0
e−rt (eX

x2,π
t − eX

x1,π
t )

(
r − μ1 − 1

2
σ 2

)
dt

]
≥ 0.

For (x1,π) ∈ S1 and x2 > x1, we thus obtain 0 ≤ u(x2,π) ≤ u(x1,π) = 0 so that
(x2,π) ∈ S1. �

The free boundary a(π) thus splits R × (0,1) into the continuation and stopping
region. In the following lemma, we derive some preliminary properties.

Lemma 4.5 One has the following properties:
i) π �→ a(π) is nondecreasing on (0,1).
ii) π �→ a(π) is left-continuous on (0,1).
iii) There exist constants such that x∗

0 ≤ a(π) ≤ x∗
1 for all π ∈ (0,1).

Proof i) If π2 > π1 and (x,π2) ∈ S1, we have x ≥ a(π2) and v(x,π2) = ex − κ .
Since π �→ v(x,π) is nondecreasing, v(x,π1) ≤ v(x,π2) = ex − κ , which together
with v(x,π1) ≥ (ex − κ) gives (x,π1) ∈ S1. Therefore a(π2) ≥ a(π1).

ii) For a sequence (πn)n∈N with πn ↑ π , the sequence (a(πn)) is increasing by i)
and a(πn) ≤ a(π). So limn→∞ a(πn) =: a(π−) exists and a(π−) ≤ a(π). Because
v(a(πn),πn) = ea(πn) − κ for all n ∈ N, lower semicontinuity of (x,π) �→ v(x,π)

yields v(a(π−),π) = ea(π−) − κ . Hence a(π) ≤ a(π−) and limn→∞ a(πn) = a(π).
iii) Recall from (3.9) and (3.12) the value functions v0 and v1 in the optimal stop-

ping problems with full information when either μ ≡ μ0 or μ ≡ μ1. The associated
continuation regions are given by

{x ∈ R : x ≥ x∗
1 } = {x ∈R : v1(x) ≤ ex − κ},

{x ∈ R : x ≥ x∗
0 } = {x ∈R : v0(x) ≤ ex − κ},

where x∗
0 and x∗

1 are the optimal execution thresholds (cf. (3.6) and Remark 3.1).
Recalling μ0 < μ1 and �t ∈ (0,1) for π ∈ (0,1), we have X0

t ≤ Xt ≤ X
0
t P-a.s. for

any t ≥ 0 by classical comparison arguments, where X0 and X
0

denote the solutions
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to (3.1) and (3.11) with ξ ≡ 0. Thus v0(x) ≤ v(π, x) ≤ v1(x), which implies

{x ∈ R : v1(x) ≤ ex − κ} ⊆ {(x,π) ∈R× (0,1) : v(x,π) ≤ ex − κ}
⊆ {x ∈ R : v0(x) ≤ ex − κ},

and the latter combined with (4.5) allows concluding that x∗
0 ≤ a(π) ≤ x∗

1 . �

5 Decoupling change of measure and a new optimal selling problem

We notice that the underlying dynamics in (4.1) are coupled. In order to derive further
results about the properties of the optimal stopping problem (4.2) and its associated
free boundary, it is useful to address the problem under a different probability mea-
sure. With reference to related contributions (cf. De Angelis [19], Ekström and Lu
[30], Johnson and Peskir [45] and Shiryaev [62] and references therein), we intro-
duce the so-called likelihood ratio process via

	t := �t

1 − �t

, t ≥ 0.

Through an application of Itô’s formula, we can derive its associated dynamics
given by

d	t = γ	t(γ�tdt + dWt), 	0 = ϕ := π

1 − π
,

and we aim to remove its dependence on the process � through a change of mea-
sure. For a fixed T > 0, we define the measure QT ≈ P on (�,FT ) via the Radon–
Nikodým derivative

ηT := dQT

dP
:= exp

(
−

∫ T

0
γ�sdWs − 1

2

∫ T

0
γ 2�2

s ds

)
(5.1)

and notice that the process

dBt = dWt + γ�tdt

is a Brownian motion under QT on [0, T ]. Rewriting the state process (X,	) under
QT then yields

{
dXt = μ0dt + σdBt , t ∈ (0, T ],X0 = x,

d	t = γ	tdBt , t ∈ (0, T ],	0 = ϕ,
(5.2)

and we notice that the processes decouple under this formulation. In the following,
when needed, we write E

QT
x,ϕ to denote the expectation under QT conditionally on

X0 = x, 	0 = ϕ. To rewrite (4.2) in terms of the new variables (X,	), we introduce

�t := 1 + 	t

1 + ϕ
, t ∈ [0, T ],
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and by an application of Itô’s formula, it can be verified that � admits the represen-
tation

�t = exp

(∫ t

0
γ�sdWs + 1

2

∫ t

0
γ 2�2

s ds

)
= 1

ηt

, t ∈ [0, T ]. (5.3)

Upon using (5.1) and (5.3), we find that

Ex,π [e−r(τ∧T )(eXτ∧T − κ)]
= Ex,π [e−r(τ∧T )(eXτ∧T − κ)ητ∧T �τ∧T ]

= E
QT
x,ϕ

[
e−r(τ∧T )(eXτ∧T − κ)

1 + 	τ∧T

1 + ϕ

]

= (1 + ϕ)−1
E
QT
x,ϕ[e−r(τ∧T )(eXτ∧T − κ

)
(1 + 	τ∧T )] (5.4)

for any stopping time τ and (x,ϕ) ∈ R× (0,∞). With regard to (5.4), we introduce
the stopping problems

v(x,π;T ) := sup
τ

Ex,π [e−r(τ∧T )(eXτ∧T − κ)],

vQT (x,ϕ;T ) := sup
τ

E
QT
x,ϕ[e−r(τ∧T )(eXτ∧T − κ)(1 + 	τ∧T )],

and notice that (5.4) implies vQT (x,ϕ;T ) = (1 + ϕ)v(x,ϕ/(1 + ϕ);T ) for fixed
T > 0. However, since the measure QT changes with T , passing to the limit T → ∞
in (5.4) requires a bit of care. To this end, we define a probability space (�̃, F̃, Q̃)

with a Brownian motion B̃ and a filtration F̃ = (F̃t )t≥0. Moreover, we let (X̃, 	̃) be
the strong solution to the stochastic differential equation (5.2) driven by the Brownian
motion B̃ instead of B . Let Ẽx,ϕ[ · ] denote the expectation under Q̃ and define the
stopping problems

v(x,ϕ;T ) := sup
τ

Ẽx,ϕ[e−r(τ∧T )(eX̃τ∧T − κ)(1 + 	̃τ∧T )],

v(x,ϕ) := sup
τ

Ẽx,ϕ[e−rτ (eX̃τ − κ)(1 + 	̃τ )].

Due to the equivalence in law of the process (X̃t , 	̃t , B̃t )t≥0 under Q̃ and the pro-
cess (Xt ,	t ,Bt )t≥0 under QT , both on [0, T ], we have vQT (x,ϕ;T ) = v(x,ϕ;T ).
Moreover, using Fatou’s lemma and simple comparison arguments, one can show that

lim
T →∞v(x,π;T ) = v(x,π), lim

T →∞v(x,ϕ;T ) = v(x,ϕ).

Hence we finally obtain

v(x,ϕ) = lim
T →∞v(x,ϕ;T ) = lim

T →∞vQT (x,ϕ;T )

= (1 + ϕ) lim
T →∞v

(
x,ϕ/(1 + ϕ);T ) = (1 + ϕ)v

(
x,ϕ/(1 + ϕ)

)
. (5.5)
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For the sake of clarity – and with a slight abuse of notation –, we simply write from
now on (�,F, (Ft )t≥0,Q,EQ,X,	,B) instead of (�̃, F̃, (F̃t )t≥0, Q̃, Ẽ, X̃, 	̃, B̃).
Henceforth, we thus study the optimal stopping problem

v(x,ϕ) = sup
τ

E
Q

x,ϕ[e−rτ (eXτ − κ)(1 + 	τ )]. (5.6)

In the sequel, we often write EQ
x,ϕ[f (Xt ,	t )] = E

Q[f (Xx
t ,	

ϕ
t )], where (Xx

t ,	
ϕ
t )t≥0

is the unique strong solution to (5.2). The continuation and stopping regions associ-
ated to this problem are then given by

C2 := {(x,ϕ) ∈R× (0,∞) : v(x,ϕ) > (ex − κ)(1 + ϕ)}, (5.7)

S2 := {(x,ϕ) ∈R× (0,∞) : v(x,ϕ) = (ex − κ)(1 + ϕ)}. (5.8)

Given the lower semicontinuity of v and (5.5), we find that (x,ϕ) �→ v(x,ϕ) is lower
semicontinuous as well. Hence the stopping region S2 of (5.8) is a closed set, while
the continuation region C2 of (5.7) is open. Also,

τ ∗ := τ ∗(x,ϕ) := inf{t ≥ 0 : (Xx
t ,	

ϕ
t ) ∈ S2}

is optimal by Peskir and Shiryaev [57, Chap. 1] whenever it is Q-a.s. finite. Further-
more, we define

b(ϕ) := inf{x ∈R : v(x,ϕ) ≤ (ex − κ)(1 + ϕ)}, (5.9)

with inf∅ = ∞. In the following lemma, we derive some preliminary properties of
the value function (5.6). In light of the relation (5.5), we notice that some of the
following results are a direct consequence of Lemma 4.3.

Lemma 5.1 The value function v of (5.6) has the following properties:
i) 0 ≤ v(x,ϕ) ≤ K1e

x(1 + ϕ) for all (x,ϕ) ∈R× (0,∞) and some K1 > 0.
ii) x �→ v(x,ϕ) is nondecreasing.
iii) ϕ �→ v(x,ϕ) is nondecreasing.
iv) (x,ϕ) �→ v(x,ϕ) is locally Lipschitz over R× (0,∞).
v) ϕ �→ v(x,ϕ) and x �→ v(x,ϕ) are convex.

Proof ii) follows from Lemma 4.3 i) upon using (5.5).
i) For the lower bound, note that {(x,ϕ) ∈ R× (0,∞) : ex − κ < 0} ⊆ C2. Hence,

since 	ϕ ≥ 0 a.s., we have v(x,ϕ) ≥ 0 for all (x,ϕ) ∈ R × (0,∞). For the upper
bound, we observe that for any stopping time τ , setting π = ϕ/(1 + ϕ) gives

E
Q

x,ϕ[e−rτ (eXτ − κ)(1 + 	τ )] = (1 + ϕ)Ex,π [e−rτ (eXτ − κ)]
≤ (1 + ϕ)E[e−rτ ex+μ1τ+σWτ ] ≤ K1e

x(1 + ϕ),

where the last inequality follows from standard estimates upon using Assumption 4.1.
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iii) Let ϕ,ϕ′ ∈ (0,∞) with ϕ′ > ϕ and notice that 	
ϕ
t = ϕe− 1

2 γ 2t+γBt . For x ∈ R

and τ ∗ := τ ∗(x,ϕ) optimal for v(x,ϕ), we have

v(x,ϕ′) − v(x,ϕ) ≥ E
Q

x,ϕ′ [e−rτ∗
(eXτ∗ − κ)(1 + 	τ∗)]

−E
Q

x,ϕ[e−rτ∗
(eXτ∗ − κ)(1 + 	τ∗)]

= E
Q[e−rτ∗

(eXx
τ∗ − κ)(ϕ′ − ϕ)e− 1

2 γ 2τ∗+γBτ∗ ] ≥ 0,

where the last inequality exploits that {(x,ϕ) ∈R× (0,∞) : ex − κ < 0} ⊆ C2.
iv) Let x, x′ ∈ R, π ∈ (0,1) and ϕ,ϕ′ ∈ (0,∞). Recall v from (4.2). Again, stan-

dard estimates yield

|v(x,π) − v(x′,π)| ≤ K1|ex − ex′ |,
|v(x,ϕ) − v(x,ϕ′)| ≤ K2e

x |ϕ − ϕ′|
for some K1,K2 > 0. Hence using (5.5), we obtain

|v(x,ϕ) − v(x′, ϕ′)| ≤ |v(x,ϕ) − v(x′, ϕ)| + |v(x′, ϕ) − v(x′, ϕ′)|
≤ K1(1 + ϕ)|ex − ex′ | + K2e

x′ |ϕ − ϕ′|, (5.10)

and the local Lipschitz property follows.
v) We first prove convexity with respect to ϕ ∈ (0,∞). For ϕ1, ϕ2 ∈ (0,∞), x ∈R

and λ ∈ (0,1), we set ϕ := λϕ1 + (1 − λ)ϕ2 and obtain

v(x,ϕ) = sup
τ

E
Q

x,ϕ[e−rτ (eXτ − κ)(1 + ϕe− 1
2 γ 2τ+γBτ )]

≤ sup
τ

E
Q[e−rτ (eXx

τ − κ)λ(1 + ϕ1e
− 1

2 γ 2τ+γBτ )]

+ sup
τ

E
Q[e−rτ (eXx

τ − κ)(1 − λ)(1 + ϕ2e
− 1

2 γ 2τ+γBτ )]

= λv(x,ϕ1) + (1 − λ)v(x,ϕ2).

Analogously, upon exploiting the convexity of x �→ ex , one can prove the convexity
of x �→ v(x,ϕ). �

Lemma 5.2 The continuation and stopping region regions in (5.7) and (5.8) satisfy

C2 = {(x,ϕ) ∈R× (0,∞) : x < b(ϕ)}, S2 = {(x,ϕ) ∈ R× (0,∞) : x ≥ b(ϕ)}.

Proof We proceed similarly to Lemma 4.4. We first notice that the second-order dif-
ferential operator associated with the two-dimensional process (X,	) is given by

LX,	f = μ0∂xf + 1

2
σ 2∂xxf + 1

2
γ 2ϕ2∂ϕϕf + γ ϕσ∂xϕf (5.11)
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for f ∈ C2(R× (0,∞)), and we apply Dynkin’s formula to obtain

u(x,ϕ) := v(x,ϕ) − (ex − κ)(1 + ϕ)

= sup
τ

E
Q

x,ϕ

[∫ τ

0
e−rt

(
eXt

(
μ0 + 1

2
σ 2 − r

)
+ rκ

+ 	t

(
eXt

(
μ1 + 1

2
σ 2 − r

)
+ rκ

))
dt

]
. (5.12)

For x2 > x1 and τ ∗ := τ ∗(x2, ϕ) optimal for v(x2, ϕ), we have

u(x1, ϕ) − u(x2, ϕ) ≥ E
Q

[∫ τ∗

0
e−rt

(
(eX

x2
t − eX

x1
t )

(
r − μ0 − 1

2
σ 2

)

+ 	t(e
X

x2
t − eX

x1
t )

(
r − μ1 + 1

2
σ 2

))
dt

]
≥ 0,

where the last inequality follows from Xx2 ≥ Xx1 Q-a.s. and Assumption 4.1. Hence
for (x1, ϕ) ∈ S2 and x2 > x1, we obtain 0 ≤ u(x2, ϕ) ≤ u(x1, ϕ) = 0 and the claim
follows. �

It is interesting to notice that there exists a one-to-one correspondence between
the continuation regions C1 and C2 of (4.3) and (5.7) as well as the stopping regions
S1 and S2 of (4.4) and (5.8). Indeed, introducing the diffeomorphism

T := (T1, T2) : R× (0,1) → R× (0,∞),

(
T1(x,π), T2(x,π)

) :=
(

x,
π

1 − π

)
, (5.13)

with inverse

T −1(x,ϕ) :=
(

x,
ϕ

1 + ϕ

)
, (x,ϕ) ∈ R× (0,∞),

one has

C2 = T (C1) as well as S2 = T (S1).

Furthermore, upon using Lemma 4.4 and Lemma 5.2, we find that

b(ϕ) = a

(
ϕ

1 + ϕ

)
. (5.14)

Due to this explicit relationship between the optimal stopping boundaries, we obtain
some first results on b thanks to Lemma 4.5.

Lemma 5.3 The boundary b(ϕ) of (5.9) has the following properties:
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i) ϕ �→ b(ϕ) is nondecreasing on (0,∞).
ii) ϕ �→ b(ϕ) is left-continuous.
iii) b is bounded by x∗

0 ≤ b(ϕ) ≤ x∗
1 for all ϕ ∈ (0,∞), with x∗

0 and x∗
1 as in

Lemma 4.5.

The relationship (5.14) and the transformation (5.13) allow us to translate back
our results from this section – as well as from the following section – to the initial
optimal stopping problem (4.2). Moreover, (5.14) turns out to be valuable in the proof
of Lemma 5.3, since proving the monotonicity result i) as well as the boundedness iii)
is not straightforward without exploiting the relation between b and a and the results
of Lemma 4.5.

6 A parabolic formulation

Observe that the dynamics of the processes X and 	 in (5.2) are driven by the same
Brownian motion. In order to account for this degeneracy, we pass to yet another
formulation of the optimal stopping problem. To this end, we rely on a transformation
that reveals the true parabolic nature of the generator LX,	 as in (5.11), i.e., that poses
it in its canonical form (cf. Strauss [63, Chap. 1.6]). Define

T := (T 1, T 2) :R× (0,∞) → R
2,

(
T 1(x,ϕ), T 2(x,ϕ)

) :=
(

x,
σ

γ
lnϕ − x

)
, (6.1)

which is a diffeomorphism with inverse given by

T
−1

(x, z) :=
(

x, e
γ
σ

(x+z)

)
, (x, z) ∈ R

2.

With regard to the transformation (6.1), we introduce the process

Zt = σ

γ
ln	t − Xt, t ≥ 0, (6.2)

and an application of Itô’s formula reveals that its dynamics are given by

dZt = −1

2
(μ1 + μ0)dt, Z0 = z := σ

γ
lnϕ − x. (6.3)

Furthermore, we define the transformed version of the value function v of (5.6) via

v̂(x, z) := v(x, e
γ
σ

(x+z)) = sup
τ

E
Q

x,z[e−rτ (eXτ − κ)(1 + e
γ
σ

(Xτ +Zτ ))] (6.4)

for (x, z) ∈ R
2 and where now E

Q
x,z[ · ] = E

Q[ · |X0 = x,Z0 = z]. In light of this
explicit relationship between the value functions v and v̂, we obtain the following
result from Lemma 5.1.
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Lemma 6.1 The value function v̂ of (6.4) is locally Lipschitz-continuous on R
2.

The associated continuation and stopping regions are given by

C3 := {(x, z) ∈R
2 : v̂(x, z) > (ex − κ)(1 + e

γ
σ

(x+z))}, (6.5)

S3 := {(x, z) ∈R
2 : v̂(x, z) = (ex − κ)(1 + e

γ
σ

(x+z))}, (6.6)

where C3 is open and S3 is closed. Furthermore, the global diffeomorphism (6.1)
implies that C3 = T (C2) as well as S3 = T (S2), with C2 and S2 as in (5.7) and (5.8).
Notice that the second-order infinitesimal generator associated to the process (X,Z)

is now such that

LX,Zf = μ0∂xf + 1

2
σ 2∂xxf − 1

2
(μ1 + μ0)∂zf, ∀f ∈ C2,1(R2). (6.7)

We can rely on standard arguments from classical PDE theory as well as optimal
stopping theory (see e.g. Karatzas and Shreve [50, Theorem 2.7.7]) and obtain the
following lemma.

Lemma 6.2 The value function v̂ of (5.5) is the unique classical C2,1-solution to the
boundary value problem

(LX,Z − r)w = 0 in R and w|∂R = v̂|∂R,

for LX,Z as in (6.7) and any open set R such that its closure is contained in the
continuation region C3 of (6.5). In particular, v̂ ∈ C2,1(C3).

In the following, we aim at investigating the geometry of the state space in the co-
ordinates (X,Z). To this end, we define the generalised inverse of the nondecreasing
boundary b by

b−1(x) := inf{ϕ ∈ (0,∞) : b(ϕ) > x} (6.8)

so that the continuation region C2 of (5.7) is rewritten as

C2 = {(x,ϕ) ∈ R× (0,∞) : b−1(x) < ϕ}.
Since ϕ �→ b(ϕ) is nondecreasing by Lemma 5.3, we observe that

(x, z) ∈ C3 ⇐⇒ (x, e
γ
σ

(x+z)) ∈ C2

⇐⇒ e
γ
σ

(x+z) > b−1(x) ⇐⇒ z >
σ

γ
logb−1(x) − x,

and by setting

c−1(x) := σ

γ
logb−1(x) − x, (6.9)
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we can rewrite (6.5) and (6.6) as

C3 = {(x, z) ∈R
2 : z > c−1(x)}, S3 = {(x, z) ∈R

2 : z ≤ c−1(x)}. (6.10)

In contrast to the optimal stopping problems in the formulations (4.2) and (5.6),
deriving the monotonicity of the boundary x �→ c−1(x) is not straightforward. More-
over – and differently to related contributions such as Federico et al. [33] –, we can-
not translate it back to the monotonicity of the boundary b of (5.9) since the gener-
alised inverse b−1 is nondecreasing as well, and this does not imply monotonicity of
x �→ c−1(x). Therefore we follow and adapt arguments presented in De Angelis [19,
Sect. 4.4] who studies separately the two cases in which the deterministic process Z

in (6.3) is either increasing (μ0 + μ1 ≥ 0) or decreasing (μ0 + μ1 < 0).
For the following analysis, it is useful to define

û(x, z) := v̂(x, z) − (ex − κ)(1 + e
γ
σ

(x+z)) (6.11)

as well as

g(x, z) := (LX,Z − r)
(
(ex − κ)(1 + e

γ
σ

(x+z))
)

= ex

(
1

2
σ 2 + μ0 − r

)
+ rκ + e

γ
σ

(x+z)

(
ex

(1

2
σ 2 + μ1 − r

)
+ rκ

)
, (6.12)

and we observe that an application of Dynkin’s formula implies that

û(x, z) = sup
τ

E
Q

x,z

[∫ τ

0
e−rtg(Xt ,Zt )dt

]
, (x, z) ∈R

2. (6.13)

In the following Propositions 6.3 and 6.5, we establish the existence of a mono-
tone boundary c : R → R that splits the state space into continuation and stopping
region. As we verify later in Remark 6.6, the function c−1 in (6.9) is indeed the
right-continuous inverse of this function.

Proposition 6.3 If μ0 + μ1 ≥ 0, there exists a nondecreasing function c :R →R

such that the continuation region C3 of (6.5) is rewritten as

C3 = {(x, z) ∈R
2 : x < c(z)}. (6.14)

Proof Let (x0, z0) ∈ S3, x1 > x0 and notice that (6.10) implies (−∞, z0]×{x0} ⊆ S3.
Furthermore, we have x0 > x∗

0 , and since the process Z is decreasing, we observe
that the process (Xx1,Zz0) crosses the half-line (−∞, z0] × {x0} before reaching the
level x∗

0 . Hence we have Qx1,z0 [τ ∗ < τx∗
0
] = 1, where τx∗

0
:= inf{t ≥ 0 : X

x1
t = x∗

0 }
and Qx1,z0 [ · ] = Q[ · |X0 = x1,Z0 = z0]. Moreover, it can be verified that the second
condition of Assumption 4.1 implies x∗

0 > x̃, with the latter given by

x̃ := log
rκ

r − 1
2σ 2 − μ1

. (6.15)
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Consequently, we have exp(X
x1
s )(r − 1

2σ 2 − μ1) > rκ for all s ∈ [0, τ ∗), and (6.12)
and (6.13) imply û(x1, z0) ≤ 0 for all x1 > x0 and therefore {z0} × [x0,∞) ⊆ S3. We
can thus define

c(z) := inf{x ∈R : (x, z) ∈ S3} (6.16)

and observe that (6.10) implies that z �→ c(z) is nondecreasing. �

In order to establish the same result in the case when μ0 + μ1 < 0, we first state
the following lemma.

Lemma 6.4 We have

v̂z(x, z) = E
Q

x,z

[
γ

σ
e−rτ∗

(eXτ∗ − κ)e
γ
σ

(Xτ∗+Zτ∗ )1{τ∗<∞}
]

(6.17)

for all (x, z) ∈R
2 \ ∂C3 and τ ∗ := τ ∗(x, z).

Proof For (x, z) ∈ S3, the claim follows immediately since Qx,z[τ ∗ = 0] = 1. Hence
we let (x, z) ∈ C3, and for ε > 0, we obtain

v̂(x, z + ε) − v̂(x, z) ≥ E
Q
[
e−r(τ∗∧t)

(̂
v(Xx

τ∗∧t ,Z
z+ε
τ∗∧t ) − v̂(Xx

τ∗∧t ,Z
z
τ∗∧t )

)]
≥ E

Q[e−rτ∗
(eXx

τ∗ − κ)e
γ
σ

Xx
τ∗ (e

γ
σ

Zz+ε
τ∗ − e

γ
σ

Zz
τ∗ )1{τ∗<t}]

+E
Q
[
e−rt

(̂
v(Xx

t ,Zz+ε
t ) − v̂(Xx

t ,Zz
t )

)
1{τ∗>t}

]
, (6.18)

where the first inequality follows from the supermartingale property of the process
(e−r(τ∧t)v̂(Xx

τ∧t ,Z
z+ε
τ∧t )) and the martingale property of (e−r(τ∗∧t)v̂(Xx

τ∗∧t ,Z
z
τ∗∧t ))

for τ ∗ := τ ∗(x, z). Upon employing a change of measure as in Sect. 5, we find

E
Q

x,z[e−rt |̂v(Xt ,Zt )|] ≤ E
Q

x,z[e−rt |v(x, e
γ
σ

(Xt+Zt ))|]
≤ K1E

Q

x,exp(
γ
σ

(x+z))
[e−rt eXt (1 + 	t)]

= K1(1 + e
γ
σ

(x+z))Ex,π [e−rt eXt ],

where π = e
γ
σ

(x+z)/(1 + e
γ
σ

(x+z)). It is then easy to verify that Assumption 4.1 im-
plies

lim
t→∞E

Q

x,z[e−rt v̂(Xt ,Zt )] = 0,

and hence applying dominated convergence in (6.18) as t → ∞ yields

v̂(x, z + ε) − v̂(x, z)

≥ E
Q[e−rτ∗

(eXx
τ∗ − κ)e

γ
σ

Xx
τ∗ (e

γ
σ

Zz+ε
τ∗ − e

γ
σ

Zz
τ∗ )1{τ∗<∞}]. (6.19)
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Similar arguments show

v̂(x, z) − v̂(x, z − ε)

≤ E
Q[e−rτ∗

(eXx
τ∗ − κ)e

γ
σ

Xx
τ∗ (e

γ
σ

Zz+ε
τ∗ − e

γ
σ

Zz
τ∗ )1{τ∗<∞}], (6.20)

and since v̂ ∈ C2,1(C3) by Lemma 6.2, dividing (6.19) and (6.20) by ε and letting
ε ↓ 0 yields the desired result. �

Proposition 6.5 If μ0 +μ1 < 0, there exists a nondecreasing function c : R →R (the
same as in Proposition 6.3) such that the continuation region of (6.5) can be written
as

C3 = {(x, z) ∈R
2 : x < c(z)}.

Proof Let (x, z) ∈ R
2. Notice that x < x∗

0 implies (x′, z) ∈ C3 for all x′ < x and z ∈R

because of Lemma 4.5 and since the transformations T1 and T 1 of (5.13) and (6.1),
respectively, are the identity; hence {(x, z) : x < x∗

0 } ⊆ C3. We can thus focus on the
case x ≥ x∗

0 and distinguish two possibilities:

i) ûx(x, z) ≤ 0 for all x ∈ (x∗
0 ,∞) such that (x, z) ∈ C3;

ii) there exists x0 ∈ (x∗
0 ,∞) such that (x0, z) ∈ C3 and ûx(x0, z) > 0.

In case i), the map x �→ û(x, z) is decreasing for x ∈ (x∗
0 ,∞) and (x, z) ∈ C3. Hence

for any (x, z) ∈ C3, we obtain (−∞, x] × {z} ⊆ C3 and the claim follows in the same
spirit as in Proposition 6.3. In case ii), we establish a contradiction. As a first step,
we show that ii) implies [x0,∞) × {z} ⊆ C3 which will then lead to a contradiction.
We start by noticing that Lemma 6.2 and (6.13) imply

(LX,Z − r)̂u(x0, z) = −g(x0, z) (6.21)

for (x0, z) as in ii). As μ0 < 0 and ûx(x0, z) > 0, we have μ0û(x0, z) < 0 and thus

1

2
σ 2ûxx(x0, z) = rû(x0, z) − μ0ûx(x0, z) + 1

2
(μ0 + μ1)̂uz(x0, z) − g(x0, z)

> rû(x0, z) + 1

2
(μ0 + μ1)̂uz(x0, z) − g(x0, z). (6.22)

Next, we notice that we can rewrite (6.17) as

v̂z(x, z) = γ

σ

(̂
v(x, z) −E

Q[e−rτ∗
(eXx

τ∗ − κ)]), (6.23)

and since

v̂z(x, z) = ûz(x, z) + γ

σ
(ex − κ)e

γ
σ

(x+z),

v̂(x, z) = û(x, z) + (ex − κ)(1 + e
γ
σ

(x+z)),
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(6.23) gives

ûz(x, z) + γ

σ
(ex − κ)e

γ
σ

(x+z) = γ

σ

(̂
u(x, z) + (ex − κ)(1 + e

γ
σ

(x+z))

−E
Q[e−rτ∗

(eXx
τ∗ − κ)]),

which is equivalent to

ûz(x, z) = γ

σ
û(x, z) + γ

σ

(
ex − κ −E

Q[e−rτ∗
(eXx

τ∗ − κ)]).
We can thus plug this last equality into (6.22) and obtain

1

2
σ 2ûxx(x0, z)

> rû(x0, z) + 1

2
(μ0 + μ1)

(
γ

σ
û(x0, z) + γ

σ

(
ex0 − κ −E

Q[e−rτ∗
(eX

x0
τ∗ − κ)])

)

− g(x0, z)

=
(

r + 1

2
(μ0 + μ1)

γ

σ

)(̂
u(x0, z) + ex0 − κ

)

− 1

2
(μ0 + μ1)

γ

σ
E
Q[e−rτ∗

(eX
x0
τ∗ − κ)] − g(x0, z) > 0,

where the last inequality follows from r >
γ
2σ

|μ0 + μ1| in Assumption 4.1 upon
noticing that x0 > x∗

0 . We deduce that ûx( · , z) increases in a right neighbourhood
of x0, and repeating the arguments for every x > x0 yields ûx( · , z) > 0 on [x0,∞).
It follows that û( · , z) is increasing on [x0,∞) so that [x0,∞) × {z} ⊆ C3, and com-
bining the latter with (6.10), we have A := [x0,∞) × [z0,∞) ⊆ C3. However, this
leads to a contradiction. To see this, let (x, z) ∈ A and τx0 := inf{t > 0 : Xx

t ≤ x0}.
Since t �→ Zz

t is increasing, the only possibility for the process (Xx,Zz) to exit A,
and thus eventually the continuation region, is by passing through the horizontal line
[x0,∞) × {z0}. We thus have τx0 ≤ τ ∗

Qx,z-a.s. and moreover, since μ0 < 0, the
stopping time τx0 is finite a.s. Upon using Lemma 5.1 i) and (6.4), it follows that

(ex − κ)(1 + e
γ
σ

(x+z)) < v̂(x, z)

= E
Q

x,z[e−rτx0 v̂(Xτx0
,Zτx0

)]

= E
Q

x,z

[
e−rτx0 v̂

(
x0, z − 1

2
(μ0 + μ1)τx0

)]

≤ K1e
x0E

Q

x,z[e−rτx0 ]
+ K1e

γ
σ

(x0+z)ex0E
Q

x,z[e−(r− 1
2

γ
σ

|μ0+μ1|)τx0 ].
Let now r̂ := r − γ

2σ
|μ0 +μ1| > 0, where the inequality is from Assumption 4.1, and

denote by φr (resp. φ̂r ) the strictly decreasing solution to 1
2σ 2fxx + μ0fx − qf = 0
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for q ∈ {r, r̂}. Then by results on hitting times for one-dimensional diffusions (see
e.g. Borodin and Salminen [12, Chap. II.10]), the above inequality is equivalent to

(ex − κ)(1 + e
γ
σ

(x+z)) ≤ K1e
x0

φr(x)

φr(x0)
+ K1e

x0e
γ
σ

(x0+z) φ̂r (x)

φ̂r (x0)
, (6.24)

which thus holds true for all (x, z) ∈ A. Since A is right-connected, we can let
x → ∞ and notice that (ex − κ)(1 + e

γ
σ

(x+z)) → ∞, while the right-hand side of
(6.24) decreases to 0 due to the decreasing property of x → φq(x) for q > 0. We thus
obtain a contradiction, which concludes our proof. �

Remark 6.6 Due to the implied geometry of the state space, as observed in Proposi-
tions 6.3 and 6.5, we notice that the function x �→ c−1(x) is nondecreasing as well.
Moreover, we notice that

z > c−1(x) ⇐⇒ c(z) > x,

and hence the function c−1 is the right-continuous inverse of c and thus admits the
representation

c−1(x) = inf{z ∈R : c(z) > x}. (6.25)

In light of the connection (6.9) between c−1 and b−1 (the generalised inverse of the
boundary b), (6.25) allows us to translate back our results to the formulation of Sect. 5
and then – through the representation (5.14) – to the original setting of Sect. 4.

6.1 Regularity of the value function and of the optimal stopping boundary

We have established the existence of a nondecreasing boundary z �→ c(z) such that
R

2 is split into the continuation region C3 of (6.5) and the stopping region S3 of (6.6).
In the following, we derive some further properties of the optimal stopping boundary
and of the value function v̂ of (6.4). We first state the following result, which will be
helpful in the forthcoming analysis.

Lemma 6.7 We have ûz(x, z) ≥ 0 for (x, z) ∈ C3.

Proof Due to (6.4) and (6.1), v of (5.6) satisfies v(x,ϕ) = v̂(x, σ
γ

lnϕ − x) for
all (x,ϕ) ∈ R × (0,∞). Since v̂z ∈ C0(C3) by Lemma 6.2, we then also have
vϕ ∈ C0(C2). Furthermore, ϕ �→ v(x,ϕ) is convex on (0,∞) by Lemma 5.1 iv) and
thus so is ϕ �→ u(x,ϕ) of (5.12). Then for (x,ϕ) ∈ C2 and ϕ′ = b−1(x) so that
(x,ϕ′) ∈ ∂C2, we obtain, as uϕ ∈ C0(C2) as well,

0 ≤ u(x,ϕ) = u(x,ϕ) − u
(
x, b−1(x)

) ≤ uϕ(x,ϕ)
(
ϕ − b−1(x)

)
,

and ϕ > b−1(x) implies uϕ(x,ϕ) ≥ 0 for (x,ϕ) ∈ C2. In light of the relation (6.4), we
then obtain ûz(x, z) ≥ 0 on C3. �
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Proposition 6.8 The optimal stopping boundary c(z) is such that x∗
0 ≤ c(z) ≤ x∗

1 for
all z ∈R and with x∗

0 and x∗
1 as in Lemma 4.5. Furthermore, we have c ∈ C(R).

Proof The first assertion follows from Lemma 5.3 iii) and by noticing that the
transformation T 1 of (6.1) is the identity. We derive the continuity of z �→ c(z) in
two steps.

1) Left-continuity. Let z0 ∈ R and zn ↑ z0 as n → ∞. Since z �→ c(z) is nonde-
creasing and S3 is closed, we obtain limn→∞(c(zn), zn) = (c(z0−), z0) ∈ S3, where
c(z0−) denotes the left limit of c at z0. The definition of c in (6.16) implies that
c(z0−) ≥ c(z0); but since c is nondecreasing, we must have c(z0−) = c(z0) and the
claim follows.

2) Right-continuity. We argue by contradiction and assume there exists z0 ∈R

with c(z0) < c(z0+). Using techniques developed in De Angelis [18], we take
c(z0) < x1 < x2 < c(z0+) and a nonnegative function φ ∈ C∞

c (x1, x2) such that∫ x2
x1

φ(x)dx = 1. Recalling (6.21), we have

LX,Zû(x, z) − rû(x, z) = −g(x, z) (6.26)

for (x, z) ∈ (x1, x2) × (z0,∞). In the following, it is helpful to treat the cases
i) μ0 + μ1 ≥ 0 and ii) μ0 + μ1 < 0 separately. Let us start with i) and recall that
ûz(x, z) ≥ 0 for x and z as above, due to Lemma 6.7. Integration by parts yields

0 ≥ −1

2
(μ0 + μ1)

∫ x2

x1

ûz(x, z)φ(x)dx

=
∫ x2

x1

(
rû(x, z) − μ0ûx(x, z) − 1

2
σ 2ûxx(x, z) − g(x, z)

)
φ(x)dx

=
∫ x2

x1

(
rû(x, z)φ(x) + μ0û(x, z)φ′(x) − 1

2
σ 2û(x, z)φ′′(x) − g(x, z)φ(x)

)
dx.

Hence using dominated convergence as z ↓ z0 and û(x, z0) = 0, we get

0 ≥ −
∫ x2

x1

g(x, z)φ(x)dx > 0,

where the latter inequality follows from x1, x2 ≥ x∗
0 and Assumption 4.1, which im-

plies x > x̃ for all x ∈ [x1, x2] and x̃ as in (6.15). We thus obtain a contradiction and
c(z0) = c(z0+).

In case ii), we rely on classical results of internal regularity of PDEs (cf. Friedman
[38, Theorem 3.10]) which allow taking derivatives in (6.26) with respect to x and
have ûx ∈ C2,1(C3) solving

(LX,Z − r)̂ux(x, z) = −gx(x, z), (x, z) ∈ (x1, x2) × (z0,∞).

Then we obtain for z > z0 that
∫ x2

x1

(
(LX,Z − r)̂ux(x, z) + gx(x, z)

)
φ(x)dx = 0. (6.27)
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Let Fφ(z) := ∫ x2
x1

ûxz(x, z)φ(x)dx. Integration by parts allows rewriting (6.27) as

1

2
|μ0 + μ1|Fφ(z)

=
∫ x2

x1

(
rûx(x, z) − 1

2
σ 2ûxxx(x, z) − μ0ûxx(x, z) − gx(x, z)

)
φ(x)dx

=
∫ x2

x1

(
− rû(x, z)φ′(x) + 1

2
σ 2û(x, z)φ′′′(x)

− μ0û(x, z)φ′′(x) − gx(x, z)φ(x)

)
dx,

and using dominated convergence as z ↓ z0 as well as û(x, z0) = 0 results in

Fφ(z0+) = 2

|μ0 + μ1|
∫ x2

x1

−gx(x, z0)φ(x)dx ≥ p0 > 0

for some p0, where the first inequality again follows from Assumption 4.1. Thus there
exists ε > 0 such that Fφ(z) ≥ p0/2 for all z ∈ (z0, z0 + ε), and we finally obtain

1

2
p0ε ≤

∫ z0+ε

z0

Fφ(z)dz =
∫ z0+ε

z0

∫ x2

x1

ûxz(x, z)φ(x)dxdz

= −
∫ x2

x1

∫ z0+ε

z0

ûz(x, z)φ′(x)dzdx

= −
∫ x2

x1

(̂
u(x, z0 + ε) − û(x, z0)

)
φ′(x)dx

=
∫ x2

x1

ûx(x, z0 + ε)φ(x)dx ≤ 0,

where we used û(x, z0) = 0 as well as ûx(x, z) ≤ 0 for x ∈ [x1, x2] and z > z0 (cf.
Proposition 6.5). Hence c(z) = c(z+) for all z ∈R and together with 1), we conclude
that z �→ c(z) is continuous. �

In the next result, we derive the regularity of the value function. Its proof can be
found in Appendix A.

Proposition 6.9 The value function v̂ of (6.4) has v̂ ∈ C1(R2) and v̂xx ∈ L∞
loc(R

2).

In light of Proposition 6.9, we are able to derive an integral equation for the free
boundary c. Let us first recall that by standard arguments based on the strong Markov
property and Proposition 6.9, the value function v̂ and the free boundary c solve the
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free-boundary problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(LX,Z − r)̂v(x, z) ≤ 0, (x, z) ∈ R
2,

(LX,Z − r)̂v(x, z) = 0, x < c(z), z ∈ R,

v̂(x, z) ≥ (ex − κ)(1 + e
γ
σ

(x+z)), (x, z) ∈ R
2,

v̂(x, z) = (ex − κ)(1 + e
γ
σ

(x+z)), x ≥ c(z), z ∈R,

v̂x(x, z) = ex(1 + e
γ
σ

(x+z)) + γ
σ
(ex − κ)e

γ
σ

(x+z), x = c(z), z ∈ R,

v̂z(x, z) = γ
σ
(ex − κ)e

γ
σ

(x+z), x = c(z), z ∈ R.

(6.28)

In the next result, with a suitable application of Itô’s lemma, we derive a probabilistic
representation of the value function v̂. Its proof is postponed to Appendix B.

Proposition 6.10 Recall the free boundary c of (6.16) and the function g of (6.12).
For any (x, z) ∈ R

2, the value function v̂ can be written as

v̂(x, z) = E
Q

x,z

[
−

∫ ∞

0
e−rsg(Xs,Zs)1{Xs≥c(Zs)}ds

]
. (6.29)

Denote now by

G(w;m,v) := 1√
2πv2

e
− (w−m)2

2v2 , w ∈R,m ∈ R, v > 0, (6.30)

the density function of a Gaussian random variable with mean m and variance v2.
Then from Proposition 6.10, we obtain the following result.

Proposition 6.11 Let

M := {f : R �→ R : f is nondecreasing, continuous and x∗
0 ≤ f (z) ≤ x∗

1 }.
Then the free boundary c of (6.16) is the unique solution in M to the integral equa-
tion

(ec(z) − κ)(1 + e
γ
σ

(c(z)+z))

=
∫ ∞

0
e−rs

(∫
R

−g(w,Zs)G
(
w; c(z) + μ0s, σ

√
s
)
1{w≥c(z)}dw

)
ds (6.31)

with g as in (6.12) and G as in (6.30).

Proof We take x = c(z) in Proposition 6.10. Using the continuity of the value func-
tion, we find for z ∈R that

(ec(z) − κ)(1 + e
γ
σ

(c(z)+z)) = E
Q

[
−

∫ ∞

0
e−rsg(Xc(z)

s ,Zz
s )1{Xc(z)

s ≥c(Zz
s )}ds

]
. (6.32)

Because Zz is deterministic and X
c(z)
s is Gaussian under Q with mean c(z) + μ0s and

variance σ 2s, we can reformulate (6.32) as (6.31) upon using (6.30). To show unique-
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ness, one can employ a four-step-approach exploiting the superharmonic character-
isation of v̂ as originally developed in Peskir [55, Theorem 3.1]. Since the present
setting does not exhibit additional challenges, we omit the details for the sake of
brevity. �

Remark 6.12 As is turns out, the integral equation (6.31) allows us to derive an in-
tegral equation for the boundary b−1 of (6.8) as well. Indeed, taking z = c−1(x) in
(6.31) and using (6.9) yields

(ex − κ)
(
1 + b−1(x)

)

= E
Q

[
−

∫ ∞

0
e−rsg

(
Xx

s ,
σ

γ
ln	b−1(x)

s − Xx
s

)
1{	b−1(x)

s ≤b−1(Xx
s )}ds

]
, x ∈R.

In particular, it follows from the latter that

b−1(x) = 1

ex − κ
E
Q

[
−

∫ ∞

0
e−rsg

(
Xx

s ,
σ

γ
ln	b−1(x)

s − Xx
s

)

× 1{	b−1(x)
s ≤b−1(Xx

s )}ds

]
− 1, x ∈R. (6.33)

Notice that the domain of b−1 is given by the interval [x∗
0 , x∗

1 ] (cf. Lemma 5.3), and
hence we do not encounter any problems when dividing by ex − κ since Assump-
tion 4.1 guarantees that ex − κ > 0 for x ≥ x∗

0 .

7 Solution of the optimal execution problem

In this section, we finally return to the optimal execution problem of Sect. 4 and
provide its solution. Before we do so, it is helpful to transform the singular stochastic
control problem (2.9) by arguing as for the optimal stopping problems in Sects. 5
and 6, respectively. Since the arguments are in the same spirit of those developed in
Sect. 5, the details are omitted (see also Federico et al. [33, Sect. 4]). First, we make
a change of measure as in Sect. 5, and for Q as introduced there, we let

dX
ξ
t = μ0dt + σdBt − αdξt , X

ξ
0− = x,

denote the dynamics of the controlled process Xξ underQ. Conditionally on X
ξ
0− = x,

Y
ξ
0− = y and 	0 = ϕ, we then introduce the transformed optimal control problem

V (x, y,ϕ) := sup
ξ∈A(y)

E
Q

x,y,ϕ

[∫ ∞

0
e−rt (eX

ξ
t − κ)(1 + 	t) ◦ dξt

]
,

(x, y,ϕ) ∈ R× (0,∞) × (0,∞), (7.1)
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and observe that V (x, y,ϕ) = (1 + ϕ)V (x, y,
ϕ

1+ϕ
). Furthermore, we set

Z
ξ
t := σ

γ
log	t − X

ξ
t , z := σ

γ
logϕ − x,

for any (x,ϕ) ∈R× (0,∞). An application of Itô’s formula then gives the dynamics

dZ
ξ
t = −1

2
(μ0 + μ1)dt + αdξt , Z

ξ
0− = z. (7.2)

Finally, analogously to (6.4), we define, for (x, y, z) ∈ O := R× (0,∞) ×R,

V̂ (x, y, z) := V (x, y, e
γ
σ

(x+z))

= sup
ξ∈A(y)

E
Q

x,y,z

[∫ ∞

0
e−rt (eX

ξ
t − κ)(1 + e

γ
σ

(X
ξ
t +Z

ξ
t )) ◦ dξt

]
, (7.3)

where E
Q
x,y,z is the expectation conditionally on X

ξ
0− = x, Y

ξ
0− = y and Z

ξ
0− = z.

In the following, we introduce a candidate for the value function V of (2.9) and
– through the explicit relationships between the value functions v, v and v̂ – also for
the value functions V and V̂ of (7.1) and (7.3). To this end, we set

U(x,y,π) := 1

α

∫ x

x−αy

v(x′,π)dx′, (7.4)

where v denotes the value function of (4.2). Upon using the explicit relationship (5.5)
of v and v, it follows that

U(x,y,ϕ) := (1 + ϕ)U

(
x, y,

ϕ

1 + ϕ

)
= (1 + ϕ)

1

α

∫ x

x−αy

v

(
x′, ϕ

1 + ϕ

)
dx′

= 1

α

∫ x

x−αy

v(x′, ϕ)dx′, (7.5)

which gives a candidate for the value function V of (7.1). Furthermore, we let
Û(x, y, z) := U(x,y, e

γ
σ

(x+z)) and exploit the relationship (6.4) to derive

Û (x, y, z) = 1

α

∫ x

x−αy

v̂(x′, x + z − x′)dx′ = 1

α

∫ z+αy

z

v̂(x + z − q, q)dq, (7.6)

where the last equality follows from a change of variables. With regard to Proposi-
tion 6.9, we can state the following result; its proof is based on direct computations.
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Lemma 7.1 The function Û of (7.6) has Û ∈ C1(O). Moreover, Ûxy, Ûyz ∈ C(O) as
well as Ûxx, Ûxz ∈ L∞

loc(O).

Proof Notice that (7.6) gives

Ûx(x, y, z) = 1

α

∫ z+αy

z

v̂x(x + z − q, q)dq,

Ûy(x, y, z) = v̂(x − αy, z + αy), (7.7)

Ûz(x, y, z) = 1

α

∫ z+αy

z

v̂x(x + z − q, q)dq + 1

α

(̂
v(x − αy, z + αy) − v̂(x, z)

)

= 1

α

∫ z+αy

z

v̂z(x + z − q, q)dq, (7.8)

so that Ûx , Ûy and Ûz are continuous due to Proposition 6.9. Moreover, Proposi-
tion 6.9 also implies that

Ûxx(x, y, z) = 1

α

∫ z+αy

z

v̂xx(x + z − q, q)dq (7.9)

is locally bounded, and the mixed derivatives

Ûxy(x, y, z) = v̂x(x − αy, z + αy), Ûyz(x, y, z) = v̂z(x − αy, z + αy)

are continuous, while

Ûxz(x, y, z) = 1

α

∫ z+αy

z

v̂xx(x + z − q, q)dq + 1

α

(̂
vx(x − αy, z + αy) − v̂x(x, z)

)

is locally bounded. Furthermore, it is easy to see that Ûyx = Ûxy , Ûxz = Ûzx and
Ûyz = Ûzy . �

The proof of the next result follows from (7.7), (7.8) and direct computations.

Corollary 7.2 One has

αÛx(x, y, z) − αÛz(x, y, z) + Ûy(x, y, z) = v̂(x, z)

≥ (ex − κ)(1 + e
γ
σ

(x+z)) (7.10)

so that

W3 := {(x, y, z) ∈O : αÛx(x, y, z) − αÛz(x, y, z) + Ûy(x, y, z)

> (ex − κ)(1 + e
γ
σ

(x+z))} = C3 (7.11)



748 F. Dammann, G. Ferrari

with C3 as in (6.5). Furthermore, Ûx − Ûz = Ux as well as Ûy = Uy , and we have

W2 := {(x, y,ϕ) ∈ R× (0,∞) × (0,∞) : αUx(x, y,ϕ) + Uy(x, y,ϕ)

> (ex − κ)(1 + ϕ)} = C2 (7.12)

with C2 from (5.7).

7.1 Construction of the optimal control for the state space process (X,Y,�)

Recall b from (5.9), which is nondecreasing and left-continuous by Lemma 5.3. Then
we define for any (x, y,ϕ) ∈ R× (0,∞) × (0,∞) the admissible control strategy

ξ̂t := y ∧ sup
0≤s≤t

1

α

(
x − b(	ϕ

s ) + μ0s + σBs

)+
, t ≥ 0, ξ̂0− = 0, (7.13)

according to which the investor should only execute a lump-sum amount of shares
whenever Xt− is strictly inside the selling region and hence strictly above the bound-
ary b(	t ). More precisely, if y ≤ 1

α
(x − b(ϕ)), it is optimal to sell the complete

amount of shares instantaneously, while for y > 1
α
(x − b(ϕ)), the system is brought

immediately to the level (X0, Y0,	0) = (b(ϕ), y − 1
α
(x − b(ϕ)),ϕ). Afterwards,

the strategy (7.13) prescribes to take action whenever Xt approaches the bound-
ary b(	t ) from below and the process (X,Y ) is obliquely reflected at the belief-
dependent boundary b(	) in the direction (−α,−1). Hence Xt is kept inside the
interval (−∞, b(	t )] with “minimal effort”. These actions are so-called Skorokhod
reflection-type policies and caused by the continuous part ξ̂ c of the control ξ̂ . Notice
that the nondecreasing process ξ̂ and the induced random measure dξ̂ on [0,∞) are
such that (recall (7.12))

⎧⎪⎨
⎪⎩

(X
ξ̂
t , Y

ξ̂
t ,	t ) ∈W2 Q⊗ dt-a.s.,

dξ̂ has support on {t ≥ 0 : (Xξ̂
t−, Y

ξ̂
t−,	t ) /∈W2},

ξ̂t ≤ y, t ≥ 0.

Furthermore, due to (7.2), (7.3) and Corollary 7.2, we can express the control ξ̂ equiv-
alently in terms of the state-process (Xξ̂ , Y ξ̂ ,Zξ̂ ) by (cf. (7.11))

⎧⎪⎨
⎪⎩

(X
ξ̂
t , Y

ξ̂
t ,Z

ξ̂
t ) ∈ W3 Q⊗ dt-a.s.,

dξ̂ has support on {t ≥ 0 : (Xξ̂
t−, Y

ξ̂
t−,Z

ξ̂
t−) /∈ W3},

ξ̂t ≤ y, t ≥ 0.

(7.14)

In the following, we prove that ξ̂ is in fact an optimal control for problem (7.3) and
that Û = V̂ . As an immediate consequence, we obtain U = V and U = V .
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Theorem 7.3 Let (x, y, z) ∈ R × [0,∞) × R and Û (x, y, z) as in (7.6). Then
Û (x, y, z) = V̂ (x, y, z), and ξ̂ in (7.13) is optimal for the singular control prob-
lem (7.3).

Proof First of all, for y = 0, we have Û (x,0, z) = 0 = V̂ (x,0, z). Hence in the fol-
lowing, we assume (x, y, z) ∈O.

1) We prove Û ≥ V̂ . Take an arbitrary control ξ ∈ A(y) and for R > 0 and N ∈N,
define τR,N := inf{s ≥ 0 : |(Xξ

s ,Z
ξ
s )| > R} ∧ N . Due to Lemma 7.1, we can proceed

as in Fleming and Soner [36, Theorem 8.4.1] to obtain (after performing an approxi-
mation of Û via mollifiers and taking limits)

E
Q

x,y,z[e−rτR,N Û (Xξ
τR,N

, Y ξ
τR,N

,Zξ
τR,N

) − Û (x, y, z)]

= E
Q

x,y,z

[∫ τR,N

0
e−rs(LX,Z − r)Û (Xξ

s , Y ξ
s ,Zξ

s )ds

+ σ

∫ τR,N

0
e−rsÛx(X

ξ
τR,N

, Y ξ
τR,N

,Zξ
τR,N

)dBs

+
∑

0≤s≤τR,N

e−rs
(
Û (Xξ

s , Y ξ
s ,Zξ

s ) − Û (X
ξ
s−, Y

ξ
s−,Z

ξ
s−)

)

+
∫ τR,N

0
e−rs

( − αÛx(X
ξ
s , Y ξ

s ,Zξ
s ) − Ûy(X

ξ
s , Y ξ

s ,Zξ
s )

+ αÛz(X
ξ
s , Y ξ

s ,Zξ
s )

)
dξc

s

]
. (7.15)

Denote by MR,N the dB-integral in (7.15). Notice that

Û (Xξ
s , Y ξ

s ,Zξ
s ) − Û (X

ξ
s−, Y

ξ
s−,Z

ξ
s−)

= Û (X
ξ
s− − αξs,Y

ξ
s− − ξs,Z

ξ
s− + αξs) − Û (X

ξ
s−, Y

ξ
s−,Z

ξ
s−)

=
∫ ξs

0

∂Û(X
ξ
s− − αu,Y

ξ
s− − u,Z

ξ
s− + αu)

∂u
du

=
∫ ξs

0
(−αÛx − Ûy + αÛz)(X

ξ
s− − αu,Y

ξ
s− − u,Z

ξ
s− + αu)du. (7.16)

Hence combining (7.15) and (7.16) and adding the term

E
Q

x,y,z

[∫ τR,N

0
e−rs(eX

ξ
s − κ)(1 + e

γ
σ

(X
ξ
s +Z

ξ
s ))dξc

s

+
∑

0≤s≤τR,N

e−rs

∫ ξs

0
(eX

ξ
s−−αu − κ)(1 + e

γ
σ

(X
ξ
s−+Z

ξ
s−))du

]
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on both sides yields

E
Q

x,y,z

[∫ τR,N

0
e−rs(eX

ξ
s − κ)(1 + e

γ
σ

(X
ξ
s +Z

ξ
s ))dξc

s

+
∑

0≤s≤τR,N

e−rs

∫ ξs

0
(eX

ξ
s−−αu − κ)(1 + e

γ
σ

(X
ξ
s−+Z

ξ
s−))du − Û (x, y, z)

]

= E
Q

x,y,z

[∫ τR,N

0
e−rs(LX,Z − r)Û (Xξ

s , Y ξ
s ,Zξ

s )ds

+ MR,N − e−rτR,N Û (Xξ
τR,N

, Y ξ
τR,N

,Zξ
τR,N

)

+
∑

0≤s≤τR,N

e−rs

×
∫ ξs

0

(
(−αÛx − Ûy + αÛz)(X

ξ
s− − αu,Y

ξ
s− − u,Z

ξ
s− + αu)

+ (eX
ξ
s−−αu − κ)(1 + e

γ
σ

(X
ξ
s−+Z

ξ
s−))

)
du

+
∫ τR,N

0
e−rs

(
(−αÛx − Ûy + αÛz)(X

ξ
s , Y ξ

s ,Zξ
s )

+ (eX
ξ
s − κ)(1 + e

γ
σ

(X
ξ
s +Z

ξ
s ))

)
dξc

s

]
. (7.17)

We observe that (7.7)–(7.9) imply

(LX,Z − r)Û (x, y, z) = 1

α

∫ x

x−αy

(LX,Z − r)̂v(x′, x + z − x′)dx′ ≤ 0, (7.18)

where the last inequality follows from the supermartingale property of the process
(e−rt v̂(Xt ,Zt )), combined with the regularity obtained in Proposition 6.9. Hence
due to (7.10), Û ≥ 0 and E

Q
x,y,z[MR,N ] = 0, (7.17) is written as

Û (x, y, z)

≥ E
Q

x,y,z

[∫ τR,N

0
e−rs(eX

ξ
s − κ)(1 + e

γ
σ

(X
ξ
s +Z

ξ
s ))dξc

s

+
∑

0≤s≤τR,N

e−rs

∫ ξs

0
(eX

ξ
s−−αu − κ)(1 + e

γ
σ

(X
ξ
s−+Z

ξ
s−))du

]
. (7.19)

Taking limits as R ↑ ∞ as well as N ↑ ∞ and invoking the dominated convergence
theorem thanks to Assumption 4.1, we obtain

Û (x, y, z) ≥ E
Q

x,y,z

[∫ ∞

0
e−rs(eX

ξ
s − κ)(1 + e

γ
σ

(X
ξ
s +Z

ξ
s ))dξc

s

+
∑

s:ξs �=0

e−rs

∫ ξs

0
(eX

ξ
s−−αu − κ)(1 + e

γ
σ

(X
ξ
s−+Z

ξ
s−))du

]

= J (x, y, z, ξ).
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Since ξ was arbitrary, we have

Û (x, y, z) ≥ V̂ (x, y, z) (7.20)

for all (x, y, z) ∈ O, that is, Û ≥ V̂ on O.
2) We prove that Û ≤ V̂ . Let ξ̂ satisfy the conditions in (7.14) and define

τ̂R,N = inf{t ≥ 0 : |(Xξ̂
t ,Z

ξ̂
t )| > R} ∧ N for R > 0 and N ∈ N. Notice that the prop-

erties of ξ̂ imply equalities in (7.10) and (7.18), where the equality in (7.18) fol-
lows from the monotonicity of c, and we can deduce that (x′, x + z − x′) ∈ W3 for
(x, y, z) ∈ W3 and x′ ≤ x. The same arguments as in the first part of the proof yield

Û(x, y, z) = E
Q

x,y,z[e−rτ̂R,N Û (X
ξ̂
τ̂R,N

, Y
ξ̂
τ̂R,N

,Z
ξ̂
τ̂R,N

)]

+E
Q

x,y,z

[∫ τ̂R,N

0
e−rs(eX

ξ̂
s − κ)(1 + e

γ
σ

(X
ξ̂
s +Z

ξ̂
s ))dξ̂ c

s

+
∑

0≤s≤τ̂R,N

e−rs

∫ ξ̂s

0
(eX

ξ̂
s−−αu − κ)(1 + e

γ
σ

(X
ξ̂
s−+Z

ξ̂
s−))du

]
.

It is thus left to prove that

lim
N↑∞ lim

R↑∞E
Q

x,y,z[e−rτ̂R,N Û(X
ξ̂
τ̂R,N

, Y
ξ̂
τ̂R,N

,Z
ξ̂
τ̂R,N

)] = 0, (7.21)

because combining this with (7.19) implies that J (x, y, z, ξ̂ ) = Û (x, y, z) and there-
fore V̂ (x, y, z) ≥ Û (x, y, z) for all (x, y, z) ∈ O. Combining the latter with (7.20)
yields Û = V̂ on O.

In order to prove (7.21), we notice that Lemma 5.1 i), (6.4) and (7.6) imply that

Û(x, y, z) ≤ 1

α

∫ z+αy

z

K1e
x+z−q(1 + e

γ
σ

(x+z−q+q))dq

= 1

α
K1e

x(1 + e
γ
σ

(x+z))(1 − e−αy),

and since y �→ Û (x, y, z) is increasing, we obtain

0 ≤ e−rτ̂R,N Û (X
ξ̂
τ̂R,N

, Y
ξ̂
τ̂R,N

,Z
ξ̂
τ̂R,N

)

≤ e−rτ̂R,N Û (X
ξ̂
τ̂R,N

, y,Z
ξ̂
τ̂R,N

)

≤ K1

α
(1 − e−αy)e−rτ̂R,N e

X0
τ̂R,N (1 + e

γ
σ

(X0
τ̂R,N

+Z0
τ̂R,N

)
),
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where we used that X
ξ
t ≤ X0

t as well as X
ξ
t + Z

ξ
t = X0

t + Z0
t a.s. Hence taking

expectations yields

0 ≤ E
Q

x,y,z[e−rτ̂R,N Û (X
ξ̂
τ̂R,N

, Y
ξ̂
τ̂R,N

,Z
ξ̂
τ̂R,N

)]

≤ K1

α
(1 − e−αy)EQ

x,y,z[e−rτ̂R,N e
X0

τ̂R,N (1 + e
γ
σ

(X0
τ̂R,N

+Z0
τ̂R,N

)
)]

= K1

α
(1 − e−αy)(1 + e

γ
σ

(x+z))Ex,y,π [e−rτ̂R,N e
X0

τ̂R,N ]

with π := e
γ
σ

(x+z)/(1 + e
γ
σ

(x+z)), where the last equality follows from a change of
measure as in Sect. 5. Upon using Assumption 4.1, it is easy to check that (7.21)
holds true, thus completing the proof. �

Remark 7.4 We can use the transformation (6.1) from (x, z)- to (x,ϕ)-coordinates in
order to show that ξ̂ is an optimal control for problem (7.1) as well. Indeed, recall
(6.2) and the equality V̂ (x, y, z) = V̂ (x, y, σ

γ
lnϕ − x) = V (x, y,ϕ) to conclude

V (x, y,ϕ) = E
Q

x,y,ϕ

[∫ ∞

0
e−rs(eX

ξ̂
s − κ)(1 + 	s)dξ̂ c

s

+
∑

s:ξ̂s �=0

e−rs

∫ ξ̂s

0
(eX

ξ̂
s−−αu − κ)(1 + 	s)du

]
. (7.22)

Furthermore, (7.22) and (7.5) imply that we have U(x,y,π) = V (x, y,π) for all
(x, y,π) ∈ R× (0,∞) × (0,1).

Remark 7.5 Letting τ̃ (x, y,ϕ) := inf{t ≥ 0 : x + μ0t + σBt ≥ b(	
ϕ
t )}, the optimal

execution strategy ξ̂ as in (7.13) converges as α ↓ 0 to the execution strategy

ξ̃t =
{

0 for t < τ̃ (x, y,ϕ),

y for t ≥ τ̃ (x, y,ϕ),

which prescribes to sell the total amount of shares instantaneously when the pro-
cess X reaches the optimal execution boundary b(	). It is interesting to notice that
the optimal strategy and the value function are robust with respect to the param-
eter α. Indeed, by L’Hôpital’s rule, we see from (7.5) that limα↓0 = yv(x,ϕ) for
(x, y,ϕ) ∈R× (0,∞) × (0,∞), and it is easy to show via a verification theorem
that yv(x,ϕ) and ξ̃ are the value function and the optimal execution rule in the prob-
lem with no market impact.

Remark 7.6 Let σ̂ := inf{t ≥ 0 : Y
ξ
t = 0} denote the time at which the portfolio is

fully depleted. Imposing the constraint that the investor has to sell all assets until the
terminal time (cf. Guo and Zervos [44]), we notice that for y ≤ 1

α
(x − b(ϕ)), the

control strategy ξ̂ of (7.13) still defines an optimal control as the complete amount
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of shares is sold immediately at time t = 0. However, for y > 1
α
(x − b(ϕ)), simple

calculations yield

lim
T ↑∞Q[̂σ > T ] ≥ 1 − exp

(
2μ0

σ 2
(αy + x∗

0 − x)

)
,

and we notice that for increasing y and decreasing x, the probability increases that
the investor does not sell the entire amount of shares until the terminal time. Hence
if we restrict the admissible strategies to all ξ ∈ A(y) such that limT →∞ Y

ξ
T = 0, the

control strategy ξ̂ of (7.13) does not provide an admissible execution strategy. In this
case, arguing as in Guo and Zervos [44, Proposition 5.1], we can use ξ̂ to construct a
sequence of ε-optimal strategies.

8 Numerical study

In this section, we perform a comparative statics analysis on the optimal execution
boundaries a and b of (4.5) and (5.9), respectively, and also investigate the value of
information in our model by comparing the value function V of (2.9) to the value of
an average drift problem.

8.1 Comparative statics analysis

Based on the integral equation (6.31), we implement a recursive numerical scheme
which relies on an application of the Monte Carlo method. Let ζ denote an auxiliary
exponentially distributed random variable with parameter r that is independent of the
Brownian motion B . Recalling that (6.31) can be reformulated as (6.33), we notice
that the latter takes the shape of a fixed point problem

b−1(x) = �
(
b−1(x), x;b−1), (8.1)

for x ∈R and b−1 being the generalised inverse of b as in (6.8). Here, the operator �

is defined via

�(ϕ,x;f ) := 1

ex − κ

1

r
E
Q

[
− g

(
Xx

ζ ,
σ

γ
ln	

ϕ
ζ − Xx

ζ

)
1{	ϕ

ζ ≤f (Xx
ζ )}

]
− 1 (8.2)

for (x,ϕ) ∈ R × (0,∞) and a function f : R → (0,∞). By employing techniques
seen in Christensen and Salminen [14], Dammann and Ferrari [17] and Detemple and
Kitapbayev [27], we aim to solve (8.1) via an iterative scheme. To this end, we let

(b−1)[n](x) = �
(
(b−1)[n−1](x), x; (b−1)[n−1]), x ∈R, n ≥ 1, (8.3)

define a sequence of boundaries and – for a given boundary (b−1)[k] – we estimate
the expectation in (8.2) by

− 1

N

N∑
i=1

g

(
X

i,x
ζi

,
σ

γ
ln	

i,(b−1)[k](x)
ζi

− X
i,x
ζi

)
1{	i,(b−1)[k](x)

ζi
≤(b−1)[k](Xi,x

ζi
)},
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where N denotes the number of realisations of the exponential random variable.
The initial boundary (b−1)[0] can be chosen as a simple exponential function with
(b−1)[0](x∗

0 ) = 0 and (b−1)[0](x) → ∞ for x ↑ x∗
1 with x∗

0 and x∗
1 as in (3.6) and

Remark 3.1, respectively. The numerical scheme (8.3) is then iterated on a grid over
the interval [x∗

0 , x∗
1 ] until the variation of the boundary points between steps falls be-

low a predetermined level. Finally, we calculate b from its generalised inverse b−1

and transform the resulting boundary according to the explicit relationship (5.14).
We can thus study the sensitivity of b(ϕ) as well as a(π) with respect to some of
the model parameters. Furthermore, we can compare the belief-dependent bound-
aries to the strategy of a pre-committed agent, who – after forming an initial belief
π = P[μ = μ1] – restrains from updating her belief and thus acts as if the drift value
was constant and equal to μ1π + μ0(1 − π). The resulting strategy is then triggered
by a constant execution threshold which has a similar structure as the one derived in
Sect. 3. Consequently, such an agent cannot react to price movements on the market
and is thus not able to decrease or increase the target price at which she would like to
sell the asset.

8.1.1 Sensitivity with respect to the drift

In Fig. 2, we can observe the sensitivity of the optimal execution boundaries with
respect to one of the possible drift values. Since an increase in μ1 implies higher

Fig. 2 The optimal execution
boundaries b(ϕ) and a(π) as
well as the pre-committed
strategies for different values of
μ1 and parameters r = 0.07,
μ0 = −0.01, σ = 0.17, κ = 3,
π = 0.6
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expected prices on the market, the investor delays her decision to sell a fraction of
her shares and waits for higher prices to evolve. This effect is strongest for higher
values of π , which reflect a stronger belief in the drift μ1. On the other hand, we
notice that the lower bound x∗

0 remains untouched by a change in μ1, since it results
from the case of full information when μ = μ0. Consequently, for a strong belief in
the drift value μ0, the investor does not significantly change her execution strategy.

8.1.2 Sensitivity with respect to the discount rate

Figure 3 shows the effect on the boundaries a and b of a change in r ; the latter
can be interpreted as the subjective impatience of the investor. For a larger value
of r , the investor gets more impatient and discounts future revenues more heavily.
Consequently, the investor is willing to liquidate her assets earlier, which is realised
by decreasing the target price she aims at achieving on the market. This clear effect
can be observed for every value of belief π ∈ [0,1].

Fig. 3 The optimal execution
boundaries b(ϕ) and a(π) as
well as the pre-committed
strategies for different values of
r and for the parameters
μ0 = −0.01, μ1 = 0.007,
σ = 0.17, κ = 3, π = 0.6
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8.1.3 Sensitivity with respect to the volatility

The sensitivity of the optimal execution boundaries a and b on the volatility of the
underlying asset is more delicate. As pointed out by Décamps et al. [24] who consider
an optimal stopping problem of a structure similar to the one in (4.2), the effect of
an increase in volatility is ambiguous and cannot always be predicted with the help
of standard real option models (see for example Dixit and Pindyck [28, Chap. 6],
McDonald and Siegel [53]). In general, one expects a value function increasing with
rising volatility, as this increases the spread of possible future values of the asset and
thus the maximal possible profit, while the maximal possible loss remains unchanged.
The investor exploits this upside potential by delaying her liquidation decision and
increasing the target price she aims at realising on the market. This effect, widely
known and referred to as the “real option effect” in Décamps et al. [24], can be
observed in the benchmark case (3.2) as well as in the problem (2.9) under partial
information, as Fig. 4 reveals.

However, this effect need not be robust. To understand how an increase in volatil-
ity might indeed harm the investor, we recall the dynamics of the belief process �

given by (2.8). In particular, we observe that increasing volatility lowers the signal-
to-noise ratio γ = (μ1 −μ0)/σ (determining the variance of the process �) and thus
the efficiency of learning. The latter effect is in contrast to the mentioned real option
effect, and the sensitivity of the value function with respect to an increase in volatility

Fig. 4 The optimal execution
boundaries b(ϕ) and a(π) as
well as the pre-committed
strategies for different values of
σ and for the parameters
r = 0.07, μ0 = −0.01,
μ1 = 0.007, κ = 3, π = 0.6
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“depends on which of the real option and the inefficient learning effect dominates”
(Décamps et al. [24, p. 487]). The overall impact of a change in volatility thus clearly
depends on the parameter constellation of the model; however, a division of the pa-
rameter space is not straightforward. For a broader discussion on this subject, we
refer to Décamps et al. [24, Sect. 6.2],

8.2 The value of information

Here, we want to address the question whether incomplete information about the drift
actually harms or benefits the investor. To this end, we introduce the “average drift
problem”, whose value is denoted by V A(x, y) and modelled as in (3.2), but with
constant and known drift μ1π + μ0(1 − π), i.e., the average of μ with respect to the
prior Bernoulli distribution. We then investigate the preference of an investor faced
with the decision of choosing between two portfolios containing assets with either an
unknown drift coefficient, or with a constant and known average drift. An analytical
attempt to answer this question is presented in Décamps et al. [24], although the
derived result does not hold true in general, as pointed out by Klein [51]. Here, we
are able to analyse this question with numerical methods based on the numerical
evaluation of the optimal execution boundary (cf. Sect. 8.1) and the representation
(6.29) of the optimal stopping value function v̂. In order to accomplish that, we plug
in the numerical evaluation of b−1 into (6.29) and we transform the result according
to (5.13). This yields the value function v of (4.2), which can be finally integrated via
(7.4) to obtain a numerical approximation of the control problem’s value function V .

In general, the results derived in Décamps et al. [24] and Klein [51] suggest that
the overall impact of introducing uncertainty over the drift is governed by two sepa-
rate effects: the introduction of uncertainty in general and the impact of learning. If
learning is efficient, which is achieved by – for example – specifying a small volatility
coefficient σ , the latter effect seems to outweighs the former and the investor indeed
prefers the problem with only incomplete information on the return. We observe this
overall effect in Fig. 5.

In their model, Décamps et al. [24] give an analytical proof to this observation
in an optimal stopping environment, although restricting the possible drift values to
0 and 1. For small values of σ , depending on the other parameters in the model,
this result seems to hold true in our more generalised framework. Nevertheless, this
effect cannot be expected to be robust over the whole parameter space. In an example
where the parameter values are aligned such that β0 + β1 = σ 2 (and thus μ0 = −μ1
in our model), Klein [51] obtains an explicit solution to the optimal stopping problem
and shows how the introduction of uncertainty might harm the decision maker. This
effect appears to have the peculiarity of being, at least in some cases, dependent on
the initial value of the price process, as it determines the distance to the target price at
which the investor is willing to execute. We can observe an example of this in Fig. 6.
In particular, if the asset price is close to the target value under the current belief and
learning is inefficient, the investor will not choose a portfolio with drift uncertainty.
This is due to the fact that the downside risk outweighs the upside potential, which
could only be achieved if learning is efficient. On the other hand, we observe that
for low prices the upside potential might still dominate and the investor is willing to
choose the uncertain environment, even if learning is inefficient.
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Fig. 5 The value function V of
(2.9) and the average drift value
function V A as functions of x

and π , respectively. The
parameters of the model have
been specified as r = 0.15,
σ = 0.15, μ0 = −0.012,
μ1 = 0.01, κ = 1, π = 0.3,
x = −0.1

Fig. 6 The value function V of
(2.9) and the average drift value
function V A as functions of x.
The parameters of the model
have been specified as r = 0.2,
σ = 0.5, μ0 = −0.012,
μ1 = 0.01, κ = 1, π = 0.5
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Appendix A: Proof of Proposition 6.9

The proof follows the lines of De Angelis [19, Sect. 4], suitably adapted to the present
setting, and is obtained through a series of intermediate results. Fix (x, z) ∈ R

2, set

σ∗ := σ∗(x, z) := inf{t ≥ 0 : (Xx
t ,Zz

t ) ∈ S3},
σ̂∗ := σ̂∗(x, z) := inf{t ≥ 0 : (Xx

t ,Zz
t ) ∈ int(S3)},

and observe that σ∗ = τ∗ Q-a.s. on R
2 \ ∂C3 due to the continuity of paths. It is

crucial to show that this equality also holds for the boundary points (x0, z0) ∈ ∂C3.
As it turns out, the cases i) μ0 + μ1 ≥ 0 and ii) μ0 + μ1 < 0 should be treated in
different fashions, and ii) exhibits some more technical difficulties than i). We start
with case i), in which the needed result follows upon using the law of the iterated
logarithm.

Proposition A.1 Assume that μ0 + μ1 ≥ 0. Let (xn, zn)n∈N ⊆ C3 be a sequence with
(xn, zn) → (x0, z0) ∈ ∂C3 such that x0 = c(z0). We then have τ ∗(xn, zn) ↓ 0 as well
as σ̂∗(xn, zn) ↓ 0, Q-a.s.

Proof Fix ω ∈ � and assume that lim supn→∞ τ ∗(xn, zn)(ω) =: δ > 0. Hence there
exists a subsequence (still labelled by (xn, zn)) such that

X
xn
t (ω) < c(Z

zn
t ), ∀n ∈ N,∀t ∈ [0, δ/2], (A.1)

which is equivalent to

xn + μ0t + σBt (ω) < c

(
zn − 1

2
(μ0 + μ1)t

)
, ∀n ∈ N,∀t ∈ [0, δ/2].

Using that z �→ c(z) is continuous, we let n → ∞ and obtain for t ∈ [0, δ/2] that

σBt (ω) ≤ c

(
z0 − 1

2
(μ0 + μ1)t

)
− x0 − μ0t ≤ c(z0) − x0 − μ0t = −μ0t, (A.2)

where the last inequality follows from μ0 +μ1 ≥ 0 and Proposition 6.3. On the other
hand, by the law of the iterated logarithm, there exists for each ε > 0 a sequence
tn ↓ 0 such that

Btn ≥ (1 − ε)

√
2tn log

(
log(1/tn)

)
, ∀n ∈N. (A.3)

Combining (A.2) and (A.3) implies

1

t
σ (1 − ε)

√
2t log

(
log(1/t)

) ≤ −μ0;

but since
√

2t log(log(1/t))/t → ∞ for t ↓ 0, (A.1) can only happen on a Q-nullset.
Thus we have τ ∗(xn, zn) ↓ 0, and by replacing “<” in (A.1) by “≤”, we obtain
σ̂∗(xn, zn) ↓ 0 as well. �
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Notice that the proof of Proposition A.1 cannot be replicated for case ii) in which
μ0 + μ1 < 0 since the last inequality in (A.2) no longer applies. To prove the same
result for case ii), we have to take a longer route. The reason lies in the fact that the
process (X,Z) is moving towards the right in the state space and hence – keeping
in mind that the continuation region C3 of (6.14) lies below the increasing boundary
c – could possibly evade from the stopping set. In the following, we show that this
is not the case by adapting the procedure in De Angelis [19, Sect. 4]. As a first step,
we state the following result, whose proof follows the lines of Cox and Peskir [16,
Corollary 8] and is thus omitted for the sake of brevity.

Lemma A.2 If μ0 + μ1 < 0 and r >
γ

2σ
|μ0 + μ1|, then Q[σ∗ = σ̂∗] = 1.

In the next step, we aim at proving regularity of the boundary points for the stop-
ping set S3 in the sense of diffusions, that is, for (x, z) ∈ ∂C3, we have

Qx,z[σ∗ > 0] = 0. (A.4)

It is clear from Blumenthal’s 0–1 law that Qx,z[σ∗ > 0] = 1 if (A.4) does not hold.
Due to the geometry of the problem already mentioned, which implies that the pro-
cess (X,Z) could evade from the stopping set when μ0 + μ1 < 0, proving (A.4) is
not straightforward since we cannot apply an argument similar to the one for Propo-
sition A.1. Instead, we establish (A.4) in two steps and begin by showing that the
classical smooth-fit property, i.e., continuity of v̂x( · , z), holds at the free boundary.

Lemma A.3 Assume that μ0 + μ1 < 0 and r >
γ
2σ

|μ0 + μ1|. For v̂ of (6.4), we have
v̂x( · , z) ∈ C(R) or, equivalently, ûx( · , z) ∈ C(R) for û of (6.11).

Proof From (6.21), we obtain

1

2
σ 2ûxx(x, z) = rû(x, z) − μ0ûx(x, z) + 1

2
(μ0 + μ1)̂uz(x, z) − g(x, z)

for (x, z) ∈ C3, and due to (5.10) (which implies an analogous result for v̂), we deduce
that for a bounded set B , ûxx is bounded on the closure of B ∩ C3. Moreover, we
recall that ûx ≤ 0 in C3 as verified in the proof of Proposition 6.5. Aiming for a
contradiction, we now assume that for (x0, z0) ∈ ∂C3 so that x0 = c(z0), we have

ûx(x0−, z0) < −δ0 (A.5)

for some δ0 > 0. We take a bounded rectangular neighbourhood B of (x0, z0) and
define the stopping time τB := inf{t > 0 : (Xt ,Zt ) /∈ B}. Notice that

û(x0, z0) ≥ E
Q

x0,z0

[
e−r(τB∧t)û(XτB∧t ,ZτB∧t ) +

∫ τB∧t

0
e−rsg(Xs,Zs)ds

]
(A.6)

from the supermartingale property of (e−rt v̂(Xt ,Zt )). By Lemma 6.7 and because
t �→ ZτB∧t is increasing, we have û(X

x0
τB∧t ,Z

z0
τB∧t ) ≥ û(X

x0
τB∧t , z0) Q-a.s. Moreover,

since the integrand on the right-hand side of (A.6) is bounded on B , we obtain

û(x0, z0) ≥ E
Q

x0,z0
[e−r(τB∧t)û(XτB∧t , z0) − cB(τB ∧ t)], (A.7)
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where cB is a constant depending on B . Due to the previously discussed local bound-
edness of ûxx , we can apply the Itô–Tanaka formula to the first term in the expecta-
tion of (A.7). Let LX := 1

2σ 2∂xx + μ0∂x and denote the local time of X at x0 by Lx0 .
Moreover, noticing that ûxx( · , z0) = 0 for x > x0, we obtain

E
Q

x0,z0
[e−r(τB∧t)û(XτB∧t , z0)]

= û(x0, z0) +E
Q

x0,z0

[∫ τB∧t

0
e−rs(LX − r)̂u(Xs, z0)1{Xs �=x0}ds

]

−E
Q

x0,z0

[∫ τB∧t

0
e−rs ûx(x0−, z0)dLx0

s

]
,

and combining this with (A.7) as well as noticing that (LX − r)̂u(Xs,Zs) is bounded
on B , we find upon using the assumption (A.5) that

0 ≥ E
Q

x0,z0

[∫ τB∧t

0
e−rs(LX − r)̂u(Xs, z0)1{Xs �=x0}ds − cB(τB ∧ t)

]

−E
Q

x0,z0

[∫ τB∧t

0
e−rs ûx(x0−, z0)dLx0

s

]

≥ δ0e
−rt

E
Q

x0,z0
[Lx0

τB∧t ] − cBE
Q

x0,z0
[τB ∧ t].

This implies cBE
Q
x0,z0[τB ∧ t] ≥ δ0e

−rt
E
Q
x0,z0 [Lx0

τB∧t ], and because E
Q
x0,z0[τB ∧ t] ≈ t

while E
Q
x0,z0 [Lx0

τB∧t ] ≈ √
t (see e.g. Peskir [56, Lemma 15]), we obtain the desired

contradiction. Hence ûx( · , z) ∈ C(R). �

We can now state the regularity of the boundary points.

Proposition A.4 Assume that μ0 + μ1 < 0 and r >
γ
2σ

|μ0 + μ1|. Then all points
(x, z) ∈ ∂C3 are regular, i.e., we have Qx,z[σ∗ > 0] = 0.

Proof We argue by contradiction and show that if Qx0,z0 [σ∗ > 0] = 1 for a boundary
point (x0, z0) ∈ ∂C3, it follows that ûx(x0−, z0) < 0 which contradicts Lemma A.3.
First, we establish an upper bound for ûx . Fix (x, z) ∈ C3 with x > x̃, with the latter
given by (6.15). Define the stopping time τε := τε(x) := inf{t ≥ 0 : Xx

t = x̃ + ε} and
observe that by the strong Markov property, we have

û(x, z) = sup
τ

E
Q

x,z

[
e−rτε û(x̃ + ε,Zτε )1{τ>τε } +

∫ τε∧τ

0
e−rt g(Xt ,Zt )dt

]
. (A.8)

Moreover, we let τ̃ := τ̃ (x) := inf{t > 0 : Xx
t = x̃}, and for

τ ′ := τ ∗(x, z) = inf{t > 0 : (Xx
t ,Zz

t ) ∈ S3},
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we obtain

û(x − ε, z) ≥ E
Q

x−ε,z

[
e−rτ̃ (x−ε)û(x̃,Zτ̃(x−ε))1{τ ′>τ̃(x−ε)}

+
∫ τ ′∧τ̃ (x−ε)

0
e−rtg(Xt ,Zt )dt

]
. (A.9)

Notice that τε(x) = τ̃ (x − ε) and τ ′ is optimal for (A.8). Hence subtracting (A.9)
from (A.8) yields

û(x, z) − û(x − ε, z) ≤ E
Q
[
e−rτε

(̂
u(x̃ + ε,Zz

τε
) − û(x̃,Zz

τε
)
)
1{τ ′>τε}

]

+E
Q

[∫ τε∧τ ′

0
e−rt

(
g(Xx

t ,Zz
t ) − g(Xx−ε

t ,Zz
t )

)
dt

]
.

Since (x̃ + ε,Zz
τε

) ∈ C3 on {τ ′ > τε} and ûx ≤ 0 in C3 (see Proposition 6.5), we
must have

û(x̃,Zz
τε

) ≥ û(x̃ + ε,Zz
τε

),

and so we obtain

û(x, z) − û(x − ε, z) ≤ E
Q

[∫ τε∧τ ′

0
e−rt

(
g(Xx

t ,Zz
t ) − g(Xx−ε

t ,Zz
t )

)
dt

]
.

If we now divide by ε > 0 and let ε ↓ 0, we obtain (since τε ↓ τ̃ and τ ′ = τ ∗(x, z))

ûx(x, z) ≤ E
Q

[∫ τ̃∧τ ′

0
e−rt gx(X

x
t ,Zt )dt

]
.

In the next step, we assume by contradiction that there exists (x0, z0) ∈ ∂C3 with
Qx0,z0[σ∗ > 0] = 1 and take an increasing sequence xn ↑ x0 such that xn > x̃ for
all n ∈ N, which is possible due to Assumption 4.1. Let τn := τ ∗(xn, zn) and notice
that τn = σn := σ∗(xn, z0) for all n ∈ N due to continuity of paths. Furthermore, σn

decreases in n and σn ≥ σ∗ := σ∗(x0, z0) since x �→ Xx
t is increasing. Set τ̃ n := τ̃ (xn)

and notice that τ̃ n ↑ τ̃ . Moreover, we let σ∞ := limn→∞ σn and have

σ∞ ∧ τ̃ = lim
n→∞(σn ∧ τ̃ n) ≥ σ∗ ∧ τ̃ Q-a.s.

We then obtain

ûx(x0−, z0) = lim
n→∞ ûx(xn, z0) ≤ lim

n→∞E
Q

[∫ τ̃∧σn

0
e−rt gx(X

xn
t ,Z

z0
t )dt

]

= E
Q

[∫ τ̃∧σ∞

0
e−rt gx(X

x0
t ,Z

z0
t )dt

]
< 0,

where we used x0 > x̃ as well as τ̃ ∧ σ∞ > 0 thanks to our assumption that
Qx0,z0[σ∞ ≥ σ ∗ > 0] = 1. As this contradicts Lemma A.3, the claim follows. �



Optimal execution under partial observation 763

As a corollary of Lemma A.2 and Proposition A.4, we obtain

Corollary A.5 Assume that μ0 + μ1 < 0 and r >
γ

2σ
|μ0 + μ1|. Then for all

(x, z) ∈R
2, we have

Qx,z[τ ∗ = σ∗ = σ̂∗] = 1.

This result allows us to state a continuity result for the optimal stopping time with
respect to the initial data.

Lemma A.6 Assume that μ0 + μ1 < 0 and r >
γ

2σ
|μ0 + μ1|. Then we have

lim
n→∞ τ ∗(xn, zn) = τ ∗(x, z)

for any point (x, z) ∈ R
2 and for any sequence (xn, zn) → (x, z). In particular, if

(x, z) ∈ ∂C3, the limit is zero.

Proof Let (x, z) ∈ R
2 and denote τn := τ ∗(xn, zn) as well as τ := τ ∗(x, z) for sim-

plicity. In order to show lower semicontinuity, we fix ω ∈ � outside of a nullset.
For τ(ω) = 0, we are finished and thus assume τ(ω) > δ > 0. Due to Proposi-
tion 6.8, there exists kδ,ω > 0 such that c(Zt (ω)) − Xt(ω) > kδ,ω for all t ∈ [0, δ].
The map (t, x, z) �→ c(Zz

t (ω)) − Xx
t (ω) is uniformly continuous on any compact

[0, δ] × K ; hence we can find Nω ≥ 1 such that for all n ≥ Nω and t ∈ [0, δ],
c(Z

zn
t (ω))−X

xn
t (ω) > kδ,ω, and therefore lim infn→∞ τn(ω) ≥ δ. Since ω and δ were

arbitrary, we obtain lim infn→∞ τn ≥ τ Q-a.s. and thus lower semicontinuity. By em-
ploying similar arguments, we can show lim supn→∞ σ̂n ≤ σ̂ Q-a.s. and the claim
thus follows together with Corollary A.5. �

Before we finally state the proof of Proposition 6.9, we give a probabilistic repre-
sentation of vx by arguments similar to those in the proof of Lemma 6.4.

Lemma A.7 For all (x, z) ∈ R
2 \ ∂C3, we have

v̂x(x, z)

= E
Q

x,z

[
e−rτ∗

(
eXτ∗ (1 + e

γ
σ

(Xτ∗+Zτ∗ )) + γ

σ
(eXτ∗ − κ)e

γ
σ

(Xτ∗+Zτ∗ )

)
1{τ∗<∞}

]
.

We are now ready to prove Proposition 6.9.

Proof of Proposition 6.9 The first statement trivially holds true for (x, z) ∈ int(S3)

and (x, z) ∈ C3, due to Lemma 6.2. It thus remains to prove that �x,zv̂ is continuous
across the boundary ∂C3. Let (x0, z0) ∈ ∂C3 and take a sequence (xn, zn) → (x0, z0)

with τn := τ ∗(xn, zn). For a fixed t > 0, we notice that (Xt ,Zt ) ∈ C3 on {τn > t} and
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thus, upon using the tower and the Markov property, we obtain

v̂x(xn, zn)

= E
Q

xn,zn

[
e−rτn

(
eXτn (1 + e

γ
σ

(Xτn+Zτn )) + γ

σ
(eXτn − κ)e

γ
σ

(Xτn+Zτn )

)
1{τn≤t}

]

+E
Q

xn,zn
[e−rt v̂x(Xt ,Zt )1{τn>t}].

Due to Assumption 4.1, we can invoke dominated convergence as well as Lemma A.6
to obtain

lim
n→∞ v̂x(xn, zn) = ex0(1 + e

γ
σ

(x0+z0)) + γ

σ
(ex0 − κ)e

γ
σ

(x0+z0)

= ∂

∂x

(
(ex − κ)(1 + e

γ
σ

(x+z))
)∣∣∣∣

(x0,z0)

and hence the continuity of v̂x across the optimal boundary. The continuity of
v̂z across the free boundary follows similarly. For the last claim, we observe that
Lemma 6.2 implies

1

2
σ 2v̂xx(x, z) = rv̂(x, z) − μ0v̂x(x, z) + 1

2
(μ0 + μ1)̂vz(x, z) (A.10)

for all (x, z) ∈ C3. But the right-hand side of (A.10) only involves functions which are
continuous on R

2; hence we deduce that v̂xx admits a continuous extension to C3 and
is therefore bounded there. It follows that v̂x( · , z) is locally Lipschitz-continuous on
C3, with a Lipschitz constant K(z) that is locally bounded on R. Because v̂x( · , z)
is infinitely many times continuously differentiable in the stopping region S3 (and
hence locally bounded there as well), we conclude that v̂xx ∈ L∞

loc(R
2). �

Appendix B: Proof of Proposition 6.10

Let R > 0 and define τR := inf{t ≥ 0 : |Xt | ≥ R or |Zt | ≥ R}. Since v̂ ∈ C1(R2) and
v̂xx ∈ L∞

loc(R
2), we can apply a weak version of Itô’s lemma (see e.g. Bensoussan

and Lions [8, Lemma 2.8.1 and Theorem 2.8.5]) up to the stopping time τR ∧ T for
some T > 0, which results in

v̂(x, z) = E
Q

x,z

[
e−r(τR∧T )v̂(XτR∧T ,ZτR∧T )

−
∫ τR∧T

0
e−rs(LX,Z − r)̂v(Xs,Zs)ds

]
. (B.1)

The right-hand-side of (B.1) is well defined because Z is deterministic, X has an
absolutely continuous transition density and LX,Zv̂ is defined up to a set of zero
Lebesgue measure. Since v̂ solves the free-boundary problem (6.28), we have

(LX,Z − r)̂v(x, z) = (LX,Z − r)̂v(x, z)1{x<c(z)} + (LX,Z − r)̂v(x, z)1{x≥c(z)}
= g(x, z)1{x≥c(z)}



Optimal execution under partial observation 765

for almost all (x, z) ∈ R
2. Using again that the transition density of X is absolutely

continuous with respect to Lebesgue measure, (B.1) becomes

v̂(x, z) = E
Q

x,z

[
e−r(τR∧T )v̂(XτR∧T ,ZτR∧T ) −

∫ τR∧T

0
e−rsg(Xs,Zs)1{x≥c(z)}ds

]
.

Now upon employing a change of measure as in Sect. 5, we obtain

E
Q

x,z[e−r(τR∧T ) |̂v(XτR∧T ,ZτR∧T )|]
= E

Q

x,z[e−r(τR∧T )|v(XτR∧T , e
γ
σ

(XτR∧T +ZτR∧T ))|]
≤ K1E

Q

x,exp(
γ
σ

(x+z))
[e−r(τR∧T )eXτR∧T (1 + 	τR∧T )]

= K1(1 + e
γ
σ

(x+z))Ex,π [e−r(τR∧T )eXτR∧T ], (B.2)

where π = e
γ
σ

(x+z)/(1 + e
γ
σ

(x+z)). Due to Assumption 4.1, it is easy to verify that
taking limits in (B.2) yields

lim
T ↑∞ lim

R↑∞E
Q

x,z[e−r(τR∧T )v̂(XτR∧T ,ZτR∧T )] = 0. (B.3)

Furthermore,

E
Q

x,z

[∫ τR∧T

0
e−rsg(Xs,Zs)1{x≥c(z)}ds

]

≤ E
Q

x,z

[∫ ∞

0
e−rs |g(Xs,Zs)|ds

]

≤ E
Q

x,exp(
γ
σ

(x+z))

[∫ ∞

0
e−rs

(
eXs

(
r − 1

2
σ 2 − μ0

)

+ rk + 	s

(
eXs

(
r − 1

2
σ 2 − μ1

)
+ rk

))
ds

]

≤ E
Q

x,exp(
γ
σ

(x+z))

[∫ ∞

0
e−rs

(
eXs

(
r − 1

2
σ 2 − μ0

)
+ rk

)
ds

]

+ (1 + e
γ
σ

(x+z))Ex,π

[∫ ∞

0
e−rs

(
eXs

(
r − 1

2
σ 2 − μ1

)
+ rk

)
ds

]
< ∞, (B.4)

where π = e
γ
σ

(x+z)/(1 + e
γ
σ

(x+z)) and the last inequality follows again from As-
sumption 4.1. Hence given the finiteness of the expectation in (B.4), we can apply
dominated convergence to interchange expectation and limits as R ↑ ∞ and T ↑ ∞.
Combining this with (B.3) gives (6.29), which completes our proof. �
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