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ABSTRACT
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Inherited Inequality:  
A General Framework and a ‘Beyond-
Averages’ Application to South Africa*

Scholars have sought to quantify the extent of inequality which is inherited from past 

generations in multiple ways, including a large body of work on intergenerational mobility 

and inequality of opportunity. This paper makes two contributions to that broad literature. 

First, we show that many of the most frequently used approaches to measuring mobility 

or inequality of opportunity fit within a general framework which involves, as a first step, 

a calculation of the extent to which inherited circumstances can predict current incomes. 

Second, we suggest a new method – within that broad framework – which is sensitive to 

differences across the entire distributions of groups with different inherited characteristics, 

rather than just in their means. This feature makes it particularly well-suited to measuring 

inequality of opportunity, as well as to any inequality decomposition approach that requires 

going beyond means in assessing between-group differences. We apply this approach 

to South Africa, arguably the world’s most unequal country, and find that almost three-

quarters of its current inequality is inherited from predetermined circumstances, with race 

playing the largest role but parental background also making an important contribution.

JEL Classification: D31, D63, J62

Keywords: inequality, opportunity, mobility, transformation trees, South 
Africa

Corresponding author:
Pedro Salas-Rojo
International Inequalities Institute
London School of Economics
Houghton Street
London WC2A 2AE
United Kingdom

E-mail: p.salas-rojo@lse.ac.uk

* We are grateful to Torsten Hothorn and Achim Zeileis for very helpful advice, and to Pedro Torres for superb 
research assistance. We also thank seminar participants at the European Commission, the London School of 
Economics, the World Bank, and the Universities of Bari, Bicocca, la Laguna, Leeds, Queen Mary, and Tilburg for 
useful comments. All errors are ours.



2 
 

1.  Introduction 

 

People’s educational and professional achievements, their incomes, and their wealth are generally 

not independent of their background. Various attributes that are determined at or before birth – 

such as biological sex; race or ethnicity; parental income and other aspects of family background – 

are powerful predictors of a person’s own economic outcomes later in life. Economists have 

typically considered this an important fact: a copious literature has sought to quantify the extent to 

which inherited or pre-determined characteristics shape people’s life outcomes, and to compare 

results across societies or over time. There is very little in that literature that attempts to 

disentangle the multiple causal pathways or to estimate full structural models with behavioral 

parameters, because it was quickly understood that the identification problems are almost 

insurmountable.2  

Although there are obviously multiple studies that seek to estimate the causal effects of specific 

characteristics – say, race or gender – on specific outcomes – say, wages or job interviews – all of 

the dominant approaches used to quantify the overall extent to which the variation in current 

incomes reflects the effects of inherited factors have been descriptive. These approaches include 

the literatures on intergenerational mobility; inequality of opportunity; and sibling correlations.  

Although these empirical literatures originated in rich countries, there has long been a great deal 

of interest in the intergenerational transmission of inequality in developing countries, going back at 

least to the 1980s (e.g., Heckman and Hotz, 1986, and Behrman and Wolfe, 1987). More recently, 

comparative work on mobility and inequality of opportunity in Latin America (e.g., Ferreira and 

Gignoux, 2011; Neidhöfer et al, 2018) and Africa (Alesina et al., 2021; Brunori et al., 2019a; 

Atamanov et al., 2024) has documented very high levels of intergenerational persistence in the 

developing world. In a recent global comparison of intergenerational educational mobility across 

 
2 Parental education, for example, will generally affect both the quantity and quality of the parent’s time 
inputs into the child’s development at home. It will also affect, or interact with, school choice and 
neighborhood location, each of which are likely to have their own separate effects. It may also affect the 
child’s employment and marriage (or household formation more broadly) opportunities later in life. Some of 
these effects of parental education will operate through parental income, others will operate directly. They 
will potentially operate differently across sexes, races or castes. They will likely interact with family wealth, 
separately from parental income. They may be confounded with genetic endowments, which are also 
transmitted separately. And so on. See Haveman and Wolfe (1995) for a classic discussion of (some of) these 
multiple pathways.  
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153 countries, van der Weide et al. (2024) find the transmission of advantage (and thus of 

inequality) across generations tends to be stronger in the developing world than in rich countries 

and, worryingly, that inequality-invariant measures of mobility have, if anything, declined in those 

countries (on average) across recent cohorts.3 

This paper contributes to the broad literature on the transmission of inequality across generations 

in two ways.  First, we note that all these descriptive approaches rely on using observed inherited 

characteristics (often termed ‘circumstances’) to predict future outcomes – hereafter incomes, for 

simplicity. We suggest a simple general framework for the measurement of inherited inequality 

which relies on comparisons of inequality in observed and predicted incomes and show that a wide 

range of measures in current use are special cases.   

In this general framework, we define a situation in which inequality is not inherited as one in which 

circumstances beyond individual control are not predictive of the distribution of outcomes later in 

life – that is, current-generation income (y) is orthogonal to circumstances (C): 𝐹(𝑦|𝐶) = 𝐹(𝑦). 

Although this independence condition implies that the full conditional distributions of income be 

identical across groups that share the same circumstances, most approaches that use categorical 

variables, such as race or parental occupation, to measure inherited inequality require only a 

weaker condition on conditional means: 𝐸(𝑦|𝐶) = 𝐸(𝑦) for all C.  

Our second contribution is therefore to propose a specific approach to measuring inherited 

inequality that captures the degree to which circumstances predict full conditional distributions – 

rather than just averages – for different population subgroups.  Given the central role of prediction 

in the general framework, we consider tools from modern data-driven (or supervised machine 

learning) techniques which, conditional on the availability of sufficiently rich data, have been shown 

to be more accurate predictors than many standard econometric approaches used historically (see, 

e.g., Mullainathan and Spiess, 2017). Specifically, we propose to use transformation trees: a variant 

of regression trees proposed by Hothorn and Zeileis (2021) which generates a data-driven partition 

 
3 The interest in understanding inherited inequalities and intergenerational immobility in developing 
countries also arises because it has been suggested that equal opportunities are an important ingredient to 
foster growth and development, while high levels of heritability perpetuate poverty traps and limit 
economic dynamism and shared growth (Marrero and Rodriguez, 2013; Ferreira et al., 2017). 
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of the population into groups with identical inherited characteristics while also predicting their 

distribution functions. 

This tool is ideally suited to estimating inequality of opportunity –  more precisely what is known as 

ex-post inequality of opportunity – a concept that draws on a rich theoretical tradition in normative 

economics which defines equal opportunities as a situation in which all individuals who exert the 

same degree of effort or responsibility can achieve the same outcomes, regardless of inherited 

circumstances (see, e.g., Roemer, 1993, 1998; Fleurbaey, 1994, 2008). Under some assumptions, 

the theory suggests, the appropriate degree of effort, once cleansed of the effects of circumstances, 

can be proxied by the relative position – that is, the quantile – of the individual in the income 

distribution of those that have the same inherited circumstances as she does – her “type”. (Roemer, 

1998). 

Although this perspective – same efforts, same rewards – has considerable theoretical appeal (see, 

e.g., Fleurbaey and Peragine, 2013), it has hitherto faced serious empirical challenges which have 

severely limited its use in practice.4 As shown below, our proposed approach can significantly 

alleviate these challenges. That said, the attractiveness of the approach does not require adherence 

to the specific normative views embodied in the theoretical literature on inequality of opportunity. 

Our choice of method arises primarily from the objective of capturing departures from the strong 

statistical independence condition described above, rather than from the weaker condition on 

means. Our results can also be interpreted in the spirit of alternative inequality decompositions, in 

which the between-groups term is not independent of within-group inequality.5 We apply our 

approach to South Africa, arguably the world’s most unequal country. We present the full 

decomposition, including the type-specific conditional distributions. We find that 74% of the 

country’s Gini coefficient of 0.6 is accounted for by inherited circumstances. 

 
4 Empirical estimates of ex-post inequality of opportunity were first computed by Checchi and Peragine 
(2010). Group specific conditional distributions were used to detect inequality of opportunity by Lefranc et 
al. (2009). These pioneering approaches used ad-hoc population partitions, whereas our approach selects an 
optimal partition in a well-defined statistical sense. See below. 

5 See Foster and Shneyerov (2000) and Ebert (2010) for discussions of why it might make sense to account for 
differences in the full distributions within groups – rather than just the means – when defining the between-
group term of the decomposition. 
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The paper proceeds as follows.  The next section describes a general framework for the estimation 

of the importance of inherited inequality, of which the most common approaches in the 

measurement of mobility and inequality of opportunity are shown to be special cases. Section 3 

discusses the key empirical challenges faced by these approaches, focusing on model selection. 

Section 4 then introduces our own approach to estimating inherited inequality using transformation 

trees as another special case within the same general framework, and describes its operation.  

Section 5 describes our data and Section 6 presents results. These results include not only (absolute 

and relative) estimates of inherited inequality in South Africa, but also several complementary 

statistical and visualization tools to help the reader understand the complexity of the phenomenon: 

(i) a schematic description of the population partition that generates the most salient cleavages in 

South African society (again, in a well-defined statistical sense); (ii) estimates of the conditional 

cumulative distribution functions by ‘type’ (or population sub-group); (iii) the implied 

decomposition of the density function into a mixture of these sub-group distributions; (iv) a 

Shapley-Shorrocks decomposition of the relative predictive importance of individual circumstances 

in the overall decomposition; and (v) an estimate of the lower-envelope of the decomposition, 

which corresponds to the maximand in Roemer’s (1998) original policy objective.  

This rich set of byproducts of the headline estimate of inherited inequality is another advantage of 

our proposed approach: taken together, this set of analytical and visualization methods represent 

mutually complementary tools that enable a deeper understanding of inequality of opportunity in 

South Africa, and which could be applied to other countries. Section 7 concludes. 

2. Inherited inequality: a general framework 

 

Consider a population of N individuals, indexed by 𝑖 ∈ 𝒩 = {1, … , 𝑁}, each of whom is 

characterized by a current-generation outcome 𝑦; and a set of inherited characteristics, which we 

call circumstances (following Roemer, 1998). For individual i, these are represented by a k-

dimensional vector 𝒄𝒊. In general, many people may share the same vector of circumstances, and 

each of those groups is called a “type”. The population can then be exhaustively divided into a set 

of types, 𝐶 = {𝜏ଵ, … , 𝜏, … , 𝜏ெ}, where 𝜏: = {∀𝑖|𝒄𝒊 = 𝒄𝒎}, such that  ⋃ 𝜏
ெ
ଵ =  𝒩 and ⋂ 𝜏

ெ
ଵ =

∅. 𝐶 ∈ ℂ, the set of all possible partitions. 
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A situation in which there is no inherited inequality is one in which the joint distribution {y, c} is 

characterized by 𝑦 ⊥ 𝒄. In that case, there is obviously no difference between the conditional 

income distributions obtained from that joint distribution: 

𝐹(𝑦|𝒄𝒍) = 𝐹(𝑦|𝒄𝒎), ∀𝒄𝒍, 𝒄𝒎  ∈  𝐶 (1) 

 

If (1) does not hold, then the associations between the vector c and y across the population imply 

that the circumstances c have (some) predictive power over y. I.e., there exist non-constant 

prediction functions, 

𝑦 = 𝑓(𝒄, 𝜀), 𝑓 ∈ ℱ (2) 

 

that outperform constant functions in predicting y out of sample.  

It is straightforward to see that most methods for estimating the intergenerational transmission of 

advantage currently in use revolve around estimating models of the general form (2), using different 

functions in the set of possible functions ℱ.  In addition, in many cases the final estimates are 

summarized by a comparison of inequality in current-generation income, 𝐼(𝑦) and inequality in the 

distribution of the incomes predicted by the inherited circumstances: 𝑦ො = 𝑓መ(𝑐), 𝐼(𝑦ො). In other 

words, measures of mobility or inequality of opportunity are often of the form  𝑂 = 𝑔൫𝐼(𝑦ො), 𝐼(𝑦)൯ 

or, more specifically, 𝑂 = ℎ ቀூ(௬ො)
ூ(௬)ቁ. 

Intergenerational mobility 

What generally distinguishes estimates of intergenerational mobility is the assumption that there 

is a single circumstance, namely the previous generation value of y, yp.6  Then 𝑓(𝒄, 𝜀) may for 

example take the form: 

y = 𝑓ெ(𝑐, 𝜀) = 𝑒ఈାఉ ୪୭ ௬ାఌ 

 

(3) 

 

 
6 We say ‘generally’ because there are studies that include the incomes of more than one generation as 
circumstances (e.g., Olivetti, Paserman, and Salisbury, 2018). There are also studies that consider interactions 
with race. (e.g., Mazumder, 2014). 
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Taking logarithms, Equation (3) becomes the standard Galtonian regression that has been the 

workhorse of intergenerational mobility estimates from Solon (1992) to Chetty et al. (2014).  

Predicted income is then: 

𝑦ොெ = 𝑓መெ(𝑐) = 𝑒ఈෝାఉ ୪୭ ௬ାఙమ ଶ⁄  

 

(4) 

 

Where, 𝜎 denotes the standard deviation of the residuals 𝜀. Now, although the regression 

coefficient 𝛽መ  – the intergenerational elasticity – is often used as a summary index of persistence or 

“inheritability” (the opposite of mobility), another commonly used measure (which has the 

advantage of being equally sensitive to both margins), is the correlation coefficient between log 𝑦 

and log 𝑦. Since this coefficient is the square root of the R2 of the Galtonian regression, it can be 

written as a specific case of 𝑂 = ℎ ቀூ(௬ො)
ூ(௬)ቁ, namely: 

𝜌ො = ටூ(௬ොಾ)
ூ(௬)        when     𝐼(𝑥) = 𝑉𝑎𝑟 log 𝑥  

(5) 

 

 

Noting that the rank of an observation 𝑥 in a distribution 𝐹(𝑥) is simply the quantile 𝑞 = 𝐹(𝑥), 

and that this cumulative distribution function is inversible, it is clear that there will also be a specific 

predictor  𝑓ோ(𝑐, 𝜀) for rank-rank regression or correlation coefficients.  

Ex-ante inequality of opportunity 

The literature on inequality of opportunity has usually considered a vector (with k>1) of 

circumstance variables, rather than a scalar.  When information on parental income or wealth is 

available, those variables can be elements in c. But they are complemented by others, such as 

ethnicity, sex, parental education or occupation, etc.7  Frequently, however, this approach has been 

used for societies or periods for which reliable information on parental income is not readily 

available.  

In that case too, scalar indices summarizing the extent of inheritability (here: inequality of 

opportunity) are often of the form 𝑂 = ℎ ቀூ(௬ො)
ூ(௬)ቁ. In the ex-ante parametric approach of Ferreira and 

 
7 See Bjorklund, Jäntti, and Roemer (2012) for an example of IOp estimation that includes parental income as 
a circumstance among others. 
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Gignoux (2011) or Niehues and Peichl (2014), the logarithm of parental income in (3) is simply 

replaced by the vector of circumstances, and the prediction function is given by: 

𝑓ா(𝑐, 𝜀) = 𝑒ఈାఊାఌ 

 

(6) 

 

This generates a vector of predicted incomes analogous to that in (4) and the relative measure of 

inequality of opportunity is precisely:  

𝐼𝑂𝑅ா =
𝐼(𝑦ොா)

𝐼(𝑦)  
(7) 

 

A version of Equation (7) can also describe the ex-ante non-parametric estimator of inequality of 

opportunity (Checchi and Peragine, 2010; Ferreira and Gignoux, 2011) when the prediction function 

is changed from (6) to (8):  

𝑓(𝑐, 𝜀) = න 𝑦𝑑𝐹(𝑦|𝒄)
ଵ


 

(8) 

 

Equation (8) simply yields the conditional means for all those who share the same vector of 

circumstances c. So 𝐼൫𝑦ොா()൯ is simply computed over the smoothed distribution where individual 

incomes are replaced by the average incomes of all individuals who share the same vector of 

circumstances – that is, individuals in the same type. 8 

In fact, both the parametric and non-parametric prediction functions - (6) and (8) – are predicting 

type means, with the caveat that (6) imposes a log-linear functional form on the relationship 

between c and y.  The reference situation of equality of opportunity is therefore:  

𝐸(𝑦|𝒄𝒍) = 𝐸(𝑦|𝒄𝒎), ∀𝒄𝒍, 𝒄𝒎  ∈  𝐶 

 

So, ex-ante inequality of opportunity quantifies deviations from (9). 

(9) 

Ex-post inequality of opportunity 

But, as noted in the introduction, Equation (9) is clearly weaker than (1): it is implied by but does 

not imply (1). It is possible that two types have cumulative distribution functions (CDF) that are 

different but have the same mean. Since it is Equation (1) – full equality of the type-conditional 

 
8 See Foster and Shneyerov (2000).  
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distribution functions – that really implies and is implied by the orthogonality of income and 

circumstances, many authors have preferred empirical approaches that use estimates of the CDF, 

rather than just the mean, to either detect or measure inequality of opportunity. Lefranc, Pistolesi, 

and Trannoy (2009), for example, use stochastic dominance techniques to test for differences 

across type distribution functions, and thus to test the null hypothesis of equal opportunities.  

For measuring IOp, Checchi and Peragine (2010) propose to aggregate income differences across 

the quantiles of the conditional distributions, while abstracting from level differences across types. 

Their prediction function is given by: 

𝑓ா(𝑐, 𝜀) =
𝜇

𝜇
𝐹ିଵ(𝑞|𝒄) (10) 

Since 𝑦 = 𝐹ିଵ(𝑞|𝒄),  

𝐼(𝑦ොா) = න 𝐼 ቆ
𝜇

𝜇
𝑦ቇ dq 

ଵ

ୀ

 
(11) 

And  

𝐼𝑂𝑅ா =
𝐼(𝑦ොா)

𝐼(𝑦)  
(12) 

Equation (12) is analogous to (7), but uses (11) to predict incomes, rather than (6) or (8). In words, 

Checchi and Peragine (2010) compute inequality in predicted incomes by computing some 

inequality measure across types for each quantile; then multiplying that inequality by the ratio of 

the overall mean to the quantile mean (again, computed across types), and finally aggregating 

across quantiles. IOp is, once again, the ratio of inequality in predicted incomes to observed 

inequality.  

The case for computing inequality of opportunity as horizontal gaps between cumulative 

distribution functions – as departures from the definition of equality of opportunity in (1) – can 

therefore be made with no reference to the notion of effort. There is no effort variable in Equations 

(10) – (12). Historically, this logic has appealed to theorists of equal opportunities because, under 

some assumptions, the relative degree of effort expended – or responsibility taken – by a person 

can be proxied by her relative position (quantile) in the income distribution of her type (see Roemer, 

1998). Under those assumptions, Equation (1) does not simply denote the orthogonality of 

outcomes and predetermined circumstances. It also corresponds to a situation in which people who 
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exert the same degree of effort achieve the same outcomes.9 But the use of (12) as a meaningful 

measure of deviations from the ideal of incomes orthogonal to circumstances does not require 

adherence to the theory of equality of opportunity or its assumptions.  

3  The central empirical challenge: model selection  

Empirical applications of all three variants of the prediction problem described above – 

intergenerational mobility, ex-ante IOp, and ex-post IOp – may suffer from a variety of challenges, 

including data availability, measurement error (particularly in variables such as parental income or 

occupation), small sample sizes, etc. More fundamentally, though, they all suffer from a model 

selection problem, and this is the issue this section focuses on.  

The intergenerational mobility literature makes most sense when interpreted as attempts to 

estimate, as accurately as possible, a descriptive measure of association between two variables. 

This may be a regression coefficient, a correlation coefficient, or some summary statistic from a 

transition matrix or copula. It is presumably understood that these parameter estimates do not 

represent – in any way, shape, or form – estimates of the causal effect of parental income on child 

income, since they are hopelessly biased by omitted variables with which parental incomes are 

bound to be correlated. So, they must clearly be interpreted as simple estimates of bivariate 

association.10 

In the IOp literature, where the explicit intent is to quantify the extent to which today’s inequality 

is inherited – that is, the extent to which inherited circumstances predict incomes today – authors 

naturally make use of additional background variables that might be available in the data. And as 

soon as one considers the use of additional background variables – which may be many and may 

consist of multiple categories – one faces the standard issue of model selection in the presence of 

two competing biases.  

 
9 These assumptions are: the degree of effort exerted is by definition orthogonal to circumstances; all 
circumstances are observable; the effect of luck cannot re-rank individuals in terms of income; and income is 
a monotonic function of effort (for a discussion see Roemer and Trannoy (2015)).  

10 Yet, as shown earlier, measures of association such as the correlation coefficient are very closely related to 
measures of the share of inequality predicted by the background variable – and are sometimes interpreted 
as such in the literature. 
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The first bias arises from the partial observability of circumstances. It is rather common for data 

sources that contain information about individual outcomes to also contain various variables 

describing inherited circumstances such as sex, race, and socioeconomic background. But the set of 

available information is inevitably a strict subset of all background circumstances which society does 

not wish to hold individuals responsible for. Omission of the unobserved circumstances tends to 

bias estimates of IOp downwards (Ferreira and Gignoux, 2011; Roemer and Trannoy, 2016).  

On the other hand, a second source of bias arises from the classic overfitting problem, whereby 

saturating the model with a large number of independent variables and their multiple interactions 

leads to an upward bias in the estimates of goodness of fit. This is a problem for both parametric 

and non-parametric methods. In a non-parametric setting, the same problem manifests as 

exploding sampling variation around cell means as cell sizes decline below a certain level. This 

problem introduces noise in the predictions. This noise has the effect of inflating the estimation of 

explained variance, introducing an upward bias in the measurement of the variability predicted by 

circumstances (Chakravarty and Eichhorn, 1994), that is IOp, and an attenuation bias in the case in 

which predictions are used as regressors, that is when circumstances are used to predict parental 

income to estimate intergenerational mobility adopting a two-sample-two-stage approach (Bloise 

et al., 2021).11  

Although this problem was recognized from the outset, most of the early literature failed to address 

the trade-off between the two kinds of bias in a systematic way.12 The early studies that proposed 

either parametric or non-parametric methods to estimate IOp relied on ad-hoc specifications, either 

 
11 Note that these biases are connected to the bias-variance trade-off central to supervised machine learning. 
Assuming that our objective is to estimate to what extent observable circumstances are predictive of 
outcomes later in life: choosing a model that underfits the data, that is minimizing the variance of the model 
but introducing a large bias, would result in an underestimate of inherited inequality. Conversely, minimizing 
the bias by fitting a very complex model would result in a large variance that, in expectation, will exaggerate 
the share of inequality that can be correctly predicted by observing innate circumstances. Supervised machine 
learning methods can therefore be used to trade-off the two sources of errors and to obtain the most accurate 
estimate of inherited inequality (Brunori, Peragine, Serlenga, 2019).  

12 Ferreira and Gignoux (2011), for example, note that “As sampling variance is high for cells containing few 
observations, estimated between-type inequality may become inflated, thereby inducing an overestimation 
of inequality of opportunity.” (p.640).  However, their proposed solution is to exercise “considerable 
parsimony in the partitioning of the population…” (p.642). They selected categories arbitrarily and restricted 
the number of types to a maximum of 108, but there was no sense in which that particular number 
represented an optimal choice between the downward bias from omitting certain interactions between the 
variables and categories, and the upward bias from including too many.  
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of the regression model or of the type partition. Yet, changing the number of regressors in such a 

model can substantially affect the final estimates of IOp. Similarly, studies proposing estimates of 

intergenerational mobility based on predicted parental incomes generally present a range of 

parameters derived from model specifications of varying richness.13 

To illustrate the point, we show here the values for 𝐼𝑂ா (from Equations 6 and 7) that we obtain 

by specifying hundreds of regression models of increasing complexity. The illustration is based on 

the same data that we will subsequently use for estimating inherited inequality in South Africa (see 

Section 5). Figure 1, which plots IOp estimates (using the Gini coefficient as 𝐼(𝑥)) against the 

number of regressors included in a linear regression using our own data, illustrates this variation. It 

reports results from a standard ex-ante parametric approach, as models rise in complexity by 

adding regressors. In constructing this figure, we employed the same set of circumstance variables 

used in the remainder of the paper. Furthermore, we restricted interactions to pairwise 

interactions, thereby dampening the potential growth in the IOp estimates. Moreover, given that 

all regressors are categorical and the inclusion of all interactions leads to a large number of sparsely 

populated categories, we consider “only” the 493 regressors that describe at least 10 observations 

in the sample (e.g. we exclude the interaction “Father education == 1 and Mother education==10” 

which contains no observation in the sample). Still, the number of possible model specifications is 

very large: there are 2 possible models containing subsets of the p predictors and the number of 

regressors including pairwise interactions (e.g. three categorical values with five categories each 

would result in 2 possible model specifications).  

 

Therefore, for each possible number of regressors we select the most appropriate specification by 

backward stepwise selection (Lumley, 2022). Even with these restrictions, ex-ante IOp Gini 

estimates from our dataset with models of increasing complexity range from 0.016 to 0.52 (from 

2.5% to 86% of total inequality).  

 

 
13 Piraino (2015) estimates both IOP and intergenerational earning elasticity in South Africa, leveraging on 
previous waves of the same data used here. He proposes four different model specifications to estimate 
intergenerational elasticity (ranging between 0.621 and 0.678) and five model specifications for ex-ante IOp 
(ranging between 0.171 and 0.241). 
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Figure 1: Ex-ante parametric IOp by backward stepwise selection 

Source: Author’s calculation on NIDS 5 

 

It should be clear from Figure 1 that, in the presence of these two biases working in opposite 

directions, obtaining a meaningful estimate of 𝐼(𝑦ො) 𝐼(𝑦)⁄  depends crucially on selecting the ‘right’ 

model for the prediction function 𝑦 = 𝑓(𝒄, 𝜀). But what the ‘right’ model is depends on the nature 

and purpose of the exercise. If one is estimating a structural model, guidance from the theory being 

tested is indispensable, and econometric methods suitable for the estimation of structural 

parameters should be used. However, when the model is being used for prediction, as is the case 

here, it may very well be that machine-learning methods from data science perform better. See 

Mullainathan and Spiess (2017) for an excellent discussion of the role of machine learning in 

economics and its advantages in prediction problems. 

Indeed, some machine learning methods have recently been applied to the measurement of 

inequality of opportunity, in attempts to let the data determine the best prediction model. Li Donni, 

Rodriguez, and Dias (2015) for example, suggest the use of finite mixture models to define types. 

But these models are extremely costly in terms of parameters and tend to produce rather 

parsimonious partitions, leading to very conservative IOp estimates.14  

 
14 These models have been extensively used in the health economics literature. The typical partition obtained 
is made of an unrealistically low number of types. Li Donni, Rodriguez, and Dias (2015) use a five-type partition 
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In a similar spirit, Brunori, Hufe, and Mahler (2023) use conditional inference trees and random 

forests (CITF), which were introduced by Hothorn, Hornik, and Zeileis (2006). CITF partition a 

regressor space with the aim of predicting a dependent variable via the estimation of subgroup 

means. This feature makes them ideally suited to choosing a type-partition in an ex-ante 

framework, because each binary split is chosen by identifying the most significant difference 

between means in the two resulting cells.  Since the ex-ante approach to IOp involves computing 

inequality among type means, such an algorithm is the conceptually right approach to selecting the 

partition and estimating Equation (7), albeit with a different functional form 𝑓 ∈ ℱ than those in 

(6) or (8).  

But precisely because conditional inference trees focus on differences between means, not full 

distribution functions, they are not well suited to assessing deviations from the stricter criterion of 

equal CDFs for equality of opportunity (Equation 1). Nor are they ideal for those who follow Roemer 

(1998) in interpreting the quantiles of those CDF’s as relative measures of individual effort. An 

alternative data-driven approach is needed and, in what follows, we propose the use of one such 

approach, namely transformation trees. Transformation trees are supervised machine learning 

algorithms recently introduced by Hothorn and Zeileis (2021). In the next section we explain how 

the algorithm works and how it represents an exact empirical implementation of Roemer’s 

approach to inequality of opportunity. 

4  Estimating IOp using Transformation Trees  

 

As noted in Section 2, an ex-post approach to inequality of opportunity essentially consists of 

measuring inequality across the types’ conditional distributions functions at each quantile, and then 

appropriately aggregating across quantiles, as in Eq (11) above. The key ingredient for the approach, 

therefore, is to estimate the income level at quantile q in type c, that is: the conditional quantile 

function 𝑦 = 𝐹ିଵ(𝑞|𝐶 = 𝑐).  When data on the joint distribution {y, C} is not observed for the full 

 
to model IOp in health a sample of 17,000 individuals, re presentative of the cohort of individuals born in UK 
in the third week of March 1958. The partition used by Carrieri, Davillas, and Jones (2020) is even more 
parsimonious. Using a subsample of the Understanding Society: The UK Household Longitudinal Study 
consisting of 5,800 respondents, they define a partition into three types.  Brunori, Trannoy, and Guidi (2021) 
suggested the use of cross-validation to obtain a more realistic number of nodes, which nevertheless remains 
constrained by the large number of parameters necessary to estimate latent classes.  
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population, estimating these conditional quantile – or their inverse, distribution – functions from a 

sample notionally involves two steps. 

First, an optimal type partition 𝐶 ∈ ℂ needs to be defined, trading off the downward bias that arises 

from combining sub-types into types against the upward bias from overfitting that arises from an 

excessively fine partition, (i.e., by subdividing types into sub-types. See Brunori, Peragine, and 

Serlenga, 2019b), Second, given a partition 𝐶 ∈ ℂ, the conditional quantile functions must be 

estimated, either parametrically or non-parametrically.  Once that has been done, the resulting 

estimates {𝑦} can be used to compute quantile-specific inequality levels (across types), which are 

then suitably aggregated across quantiles.  

Previous attempts to compute ex-post IOp (e.g., Checchi and Peragine, 2010) have typically suffered 

from two shortcomings.  First, the partition 𝐶 ∈ ℂ was chosen rather arbitrarily. Second, quantiles 

were computed at a highly aggregated level, e.g., quartiles or deciles, so as to ensure that there 

were sufficient observations in each quantile (or “tranche”) for a meaningful computation of 

inequality across types to take place. Indeed, the fact that the ex-post approach to IOp requires 

information on the entire conditional distribution 𝐹൫𝑦|𝐶 = 𝑐൯, rather than merely the mean 𝜇 

of that distribution for each type, makes it more data-intensive and has been one of the reasons 

why the ex-ante approach has dominated empirical applications.   

These combined requirements – to choose an optimal type-partition given the available dataset 

and to estimate conditional distribution functions for each of those types in a data scarce 

environment – make this problem well-suited to a new variety of tree-based estimator, recently 

developed by Hothorn and Zeileis (2021). This estimator, known as a transformation tree (TrT), was 

specifically designed to estimate conditional distributions for terminal nodes of trees.  

TrT relies on the assumption that there exist “good enough” parametric approximations to 

𝐹൫𝑦|𝐶 = 𝑐൯. In the limit, they assume that there exist parameters 𝜃 ∈ Θ such that:  

𝐹൫𝑦|𝐶 = 𝑐൯ ≅ 𝐹 ቀ𝑦, 𝜃(𝑐)ቁ , 𝜃: ℂ → Θ (13) 

𝜃(𝑐) is known as the conditional parameter function, which maps from the set of all possible type 

partitions on to the set of possible distributional parameters. Under this assumption, the problem 

of estimating conditional distribution functions for types in the optimal partition, and hence {𝑦}, 

reduces to the problem of selecting the optimal parameter estimates, 𝜃, given the data {y, C}. TrT 
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uses an adaptive local likelihood maximization approach for that purpose. Specifically, it selects 𝜃 

as: 

𝜃ே(𝑐) = arg maxఏఢ  𝑤(𝑐)ℓ(𝜃)
ே

ୀଵ

 
(14) 

where 𝑖 ∈ {1, … , 𝑁} denotes each observation in the data set and ℓ(𝜃) denotes the log-likelihood 

contribution of i, when the parameters are given by 𝜃. The recursive binary splitting process that 

creates a transformation tree is implemented by choosing weights: 

𝑤(𝑐) =  𝐼(𝑐 ∈ ℬ ∧ 𝑐 ∈ ℬ)


ୀଵ

 
(15) 

 

The indicator function takes the value 1 when observation i is sufficiently “close” to c, so the weights 

in (14) simply count the number of observations in each bin ℬ. At the terminal nodes, ℬ 

corresponds to a type, so the maximization process in (14-15) allocates each observation to a type 

and sums the local likelihood functions across types. The type partition and the parameter vector 𝜃 

are chosen so as to maximize that sum of likelihoods. That is, given the available data {y, C} and the 

recursive splitting approach to weights, the likeliest set of types and income distributions 

conditional on type is that given by 𝐹 ቀ𝑦, 𝜃ே(𝑐)ቁ. So, our prediction function under this method 

is given by: 

𝑦ො் = 𝑓መ் (𝑐) =
𝜇

𝜇
𝑦     where       𝑦 = 𝐹ିଵ ቀ𝑞, 𝜃ே(𝑐)ቁ 

 

(16) 

 

The Transformation Tree estimate of ex-post inequality of opportunity is simply: 

𝐼𝑂𝑅் =
𝐼(𝑦ො்)
𝐼(𝑦)  

(17) 

 

 

Details of how the likelihood maximization is implemented (using Bernstein polynomials to fit the 

conditional distribution functions at each node) are given in Appendix 1. In practice, the process 

can be summarized by the following seven-step algorithm: 

1. set a confidence level (1 − 𝛼); 

2. choose a polynomial order (𝑀); 

3. estimate the unconditional distribution function with a Bernstein polynomial of order 𝑀; 
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4. test the null hypothesis of polynomial parameter stability for all possible partitions based 

on each 𝑥 and store 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠. 

5. If, ∀𝑥 and each possible partition, the Bonferroni-adjusted 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 𝛼, exit the 

algorithm; 

6. otherwise, choose the variable and the splitting value producing the smallest 𝑝 − 𝑣𝑎𝑙𝑢𝑒 to 

obtain two subgroups, 

7. repeat step 4:6 for the resulting subgroups, until exiting everywhere. 

In our application, we follow statistical convention and set 𝛼 to 0.01. Then, we choose 𝑀, the order 

of the Bernstein Polynomial. The selection of 𝑀 is not as simple as that of 𝛼, because how well a 

polynomial of a certain order interpolates the distribution is intrinsically data-dependent. An order 

too small might result in a poor approximation of the distribution, while too high an order would 

translate into a loss of degrees of freedom and high computational costs.15  

To find an appropriate order, we tune the algorithm by estimating the out-of-sample log-likelihood, 

after a 5-fold cross validation, for several order values of the Bernstein Polynomial (ranging 

between 2 and 10). We select the lowest order for which the relative improvement of the log-

likelihood that would be obtained by estimating an additional parameter is smaller than 0.1%. In 

our application, this procedure – summarized in Figure 2 below – yields a Bernstein polynomial of 

order 8.  

In step 3, an unconditional CDF for our sample is estimated with a Bernstein polynomial of order 8. 

The key step is then step 4, where the M-fluctuation test is performed to detect instability of the 

parameters in the conditional distribution functions across potential types (see Appendix 1). To 

intuitively illustrate this key test, Appendix 2 provides a simple example of the procedure, using 

made-up data. Further details can be found in Hothorn and Zeileis (2021) and Kopf, Augustin, and 

Strobl (2013).  

 

 
15 The confidence level (1 − 𝛼) and the order of the polynomial (M) interact in determining the depth of the 
tree, and thus the complexity of the final partition. For a given sample size, fixing a higher polynomial order 
implies using more degrees of freedom in each test, leading to a lower probability of rejecting the null 
hypothesis of equal distributions. Consequently, the resulting partition is more parsimonious. Similarly, for a 
given polynomial order and confidence level, a larger sample size results in a more detailed partition of types 
and likely a higher level of between-group inequality. In the empirical application, we recommend verifying 
the sensitivity to sample size, as we do below, when drawing conclusions about estimates.  
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Figure 2: Out of Sample Log-Likelihood by orders of Bernstein Polynomial 

 
Source: Authors’ elaboration from NIDS 5. 

 

After following steps 4-7 we obtain an estimated Transformation Tree for South Africa and, from 

that tree, a number of outputs that are described in Section 6. But before presenting those results, 

we briefly describe our dataset in Section 5.  

5. Data 

We apply this method to the latest wave of the National Income Dynamics Study (NIDS 5) survey, 

carried out by the Southern Africa Labour and Development Research Unit (SALDRU) for the year 

2017 (Brophy et al., 2018). NIDS is a longitudinal survey, with previous waves collected in 2008, 

2010/11, 2012, and 2014/5. It is an interesting dataset for studying the inheritance of inequality 

because it is a reliable and extensive source of information about incomes and circumstances for 

arguably the world’s most unequal country. Moreover, IOp has already been analyzed in South 

Africa (see Piraino, 2015, and Brunori, Ferreira, and Peragine, 2021), so our results can be readily 

benchmarked against alternative methods. 

Before any filters, the NIDS 2017 contains 20,461 individuals. The reason we use only the 2017 wave 

of the survey is that, in that year, SALDRU oversamples rich households, allowing for more precise 

inequality estimates due to the inclusion of more detailed information from the top of the income 
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distribution (Branson, 2019). This was not done in earlier waves.  Our main results are obtained 

from this complete sample. However, SALDRU also provides appropriate weights to exclude 

wealthy households oversampled in 2017 and we report statistics on both samples in this section 

for comparability. We refer to the sample without oversampling of the rich as 2017b. 

As our outcome variable we use monthly age-adjusted equivalized disposable household income in 

2015 rands. It includes all regular incomes received by households, including imputed rental income 

from owner-occupied housing, net of taxes. To account for scale economies in consumption, the 

square-root equivalence scale is used (Buhmann et al., 1988; OECD, 2013). The age adjustment – 

applied to account, at least in part, for life-cycle dynamics – consists of regressing our income 

variable (as defined so far) on age and age squared, and using the sum of constant and residual as 

the adjusted variable (see, e.g., Palomino et al., 2022).  

The circumstance variables available in the NIDS 2017 dataset are: sex (male and female), ethnicity 

(African, Asian/Indian, coloured, and white), fathers’ and mothers’ education (13 levels, ranging 

from "not educated" to "Grade 12 or more") and fathers’ and mothers’ occupation (11 categories, 

10 associated to the 1-Digit ISCO and one extra including other categories, such as out of the labour 

force, deceased or other unclassified occupations)16.  

Item non-response is a serious issue in these data, particularly for information on respondent’s 

parents. We are able to alleviate the problem somewhat by matching individuals across waves of 

the NIDS, which is a longitudinal dataset with previous waves collected in 2008, 2010/11, 2012, and 

2014/5. Table A1 in the Appendix 4 reports, for our main 2017 sample, the shares of observations 

with missing information by circumstance variable, before and after this cross-wave matching. 

Although substantial progress is made in the parental occupation variables, this is less so with 

father’s – and particularly mother’s – education.  

We apply two filters to the sample: we restrict the analysis sample to adults aged between 18 and 

80; and exclude all observations with missing information on either income or any of the 

circumstance variables. This leaves us with 7,297 observations for the analysis. There is clearly a 

 
16 Note that the question refers to current (or last recorded) occupation of the parents. We exploit the panel 
structure of NIDS and look at information about circumstances reported by the same individuals in previous 
waves. Whenever a circumstance variable that is missing in the 2017 survey is available for the same 
individual in previous waves, we use the oldest available value of the circumstance, on the ground that it was 
reported closest to when the respondent was young. 
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risk of sample selection if observations are not missing at random. We cannot completely address 

that problem, which plagues most studies of intergenerational mobility or inequality of opportunity 

in developing countries. However, we do at least use cross sectional weights calibrated to province, 

sex, race, and age group totals. As proposed by Brunori, Salas-Rojo, and Verme (2022), we correct 

these weights for item non-response by applying the reweighting method developed by Korinek, 

Mistiaen, and Ravallion (2006) and implemented by Munoz and Morelli (2021). The reader is 

referred to those papers for details.  

Table 1 shows some basic descriptive income statistics for both the 2017 and 2017b analysis 

samples, including Gini coefficients which, in both cases, are approximately 0.6 – despite the 

equivalence scale and age adjustments. 17 Table A2 in the Appendix 4 contains summary descriptive 

statistics for the circumstance variables, as proportions of the weighted analysis sample.  

Table 1: Descriptive Income Statistics 

Sample N Mean Sd Gini MLD 

2017 7,297 6,474.20 11,173.20 0.605 0.678 

2017b  6,730 6,418.23 11,470.35 0.599 0.664 

 

Source: Own elaboration from NIDS 5. N stands for the analysis sample size. Sd stands for 

Standard Deviation, MLD stands for Mean Logarithmic Deviation. Incomes in rands (2015). 

 

6.  Results: Inequality of Opportunity in South Africa. 

Applying the algorithm outlined in Section 4 to solve Eqs. (14-15), yields the transformation tree 

shown in Figure 3. The splitting process generated by the algorithm should be read from left to 

right. The first split divides the population between the White population (ethnicity = 4; above) and 

all others (ethnicity = 1, 2, 3). As we move to the right, other circumstances subsequently partition 

the population following the algorithm, until the final nodes – types – are reached. There are 

fourteen types in this optimal partition, and the Figure shows the parametrically estimated density 

 
17 These two adjustments are likely to reduce inequality, relative to per capita income unadjusted for age. 
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function for each of them, as well as indicating the population share accounted for by each type, 

and its mean income as a multiple or share of the overall mean.18   

Figure 3: Transformation Tree for South Africa, NIDS 2017. 

 
Source: Authors’ elaboration from NIDS 5. 

 

In terms of the model selection challenge illustrated in Figure 1, the algorithm partitioned the 

population into these fourteen groups (and fit CDFs to them) so as to maximize the likelihood of 

fitting the data, under the restrictions 𝑓 ∈ ℱఛ, with ℱఛ being the class of recursive binary TrT 

estimators. The partition corresponds to the products (or interactions) of various dummy variables 

defined over the circumstances. Type 27, for example, which is the richest type at the top of the 

Figure, corresponds to the product of dummy variables 𝑥ଵ = 𝟏ୀ௪௧ ×

 
18 Although we use income in levels to compute all our measures, we plot the density of log incomes for ease 
of visualization. 
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𝟏௧ ௗ௨௧ୀଵଵ  ଵଶ.  Type 8, which is the poorest type and second from the bottom of the 

Figure, corresponds to 𝑥ଵଷ = 𝟏ୀ × 𝟏௧ ௗ௨௧∈{ି} × 𝟏௧ ௨.  ∈{,,ଵ} ×

𝟏௦௫ୀ × 𝟏௧ ௗ௨௧ ∈{ିସ,,,ଽ,ଵଵ}.  And so on.  

This ability to identify specific patterns in the data does have some costs in terms of model variance. 

This type of tree is not immune to the problem of sensitivity to the estimated model, which is 

common to regression and classification trees in general. We thus caution against overinterpreting 

the obtained partition and recommend complementing the analysis with resampling-based tools 

that we introduce below.  

Moreover, it is important to keep in mind that splits are less precise when types are very small. 

When the algorithm uses a certain circumstance to divide the sample, it must place all individuals 

from the node that originates the split in either one subgroup or the other. If there are very few 

respondents who have a specific value for the characteristic in question, the assignment to the 

group can be almost random. To address this issue, it is possible to complement the analysis of the 

tree structure with tabulations that show the share of observations in each type and category by 

circumstance, like those reported in Appendix 4. Take, for example, the composition of type 8 by 

mother's occupation (in the first row of Table A6 in Appendix 4): Type 8 includes both respondents 

with non-working mothers and mothers in skilled manual occupations. However, the relative 

composition is extremely different, with the first group consisting of over two thousand 

respondents (almost 29% of the sample), while only six respondents (less than 0.1% of the sample) 

report a mother in a skilled manual job. Complementing the analysis of the structure of a 

transformation tree with type composition tables (Table A3 to Table A8 in Appendix 4) can protect 

against over-interpreting results for very sparse types. 

Returning to the fourteen types in the ‘leaves’ of the tree in Figure 1, Figure 4 shows the estimated 

cumulative distribution functions (ECDF) for each of them. The different colors denote types 

characterized by a certain ethnic group or mix of groups. The polarization of South African society 

by race is clearly visible, with the two richest types, 26 and 27, (a) being exclusively white and (b) 

comprising all of white people in the sample. There are no white people in the other twelve types 

in our sample. Together, they represent 8.3% of the sample. At the same time, although the whites 

are isolated at one end of the distribution of opportunities in this country, they are not 

homogeneous. The tree has split those with the most highly educated fathers (completed 
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secondary or tertiary) from the rest. The difference between their average incomes is 135% of 

overall the sample mean and, perhaps more notably, the distribution for whites with the more 

educated fathers exhibits first-order stochastic dominance over the other type.  

At the other extreme, the poorest type consists exclusively of black females with generally less 

educated parents and mothers in certain low-skilled occupations19. This is a large group, accounting 

for over 28% of the population and earning less than 40% of the overall mean. In between, the 

socially intermediate position of South Africans of Indian and Asian origin (alongside some of the 

so-called ‘coloured’) is evident in Types 10 and 24, pictured in yellow.  

Figure 4 also illustrates the gains from using transformation trees over the mean-based prediction 

tools. Consider for examples types 10 and 17 from Figure 3. While their average incomes are quite 

similar (64% and 65% of the sample average, respectively), type 10, which represents a set of Asian, 

coloured and Indian people with low father education (0 to 7) and some specific mother 

occupations (0, 6, 10), displays much lower inequality than  African, coloured, Asian and Indian with 

mother occupation (2, 5, 7, 8) observations. Their CDFs are visibly different and cross at around the 

75th quantile.  

The same information can be represented in yet another potentially useful way, by showing the 

country’s overall population density function (of log incomes) as a mixture of the distributions of 

the fourteen types, as shown in Figure 5 below. Vertical slices of this kernel density estimate would 

then yield the type composition of each income range corresponding to the logarithmic scale on 

the horizontal axis. 

  

 
19 To allow for maximum flexibility in the estimation, both parental occupation and parental education are 
treated as categorical, rather than ordinal, variables. Nevertheless, with few exceptions, the sample is split 
consistently with the order of the variables.  
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Figure 4: Conditional Income Distributions by Type. 

  
Source: Authors’ elaboration from NIDS 5. 

 

Figure 5: Density function as a mixture of type distributions  

Source: Authors’ elaboration from NIDS 5. 
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From the tree to scalar measures of inherited inequality 

The dashed line accompanying each ECDF in Figure 4 is the outcome predicted by the Bernstein 

polynomial: 𝐹 ቀ𝑦, 𝜃ே(𝑐)ቁ for each type. The estimated incomes at each quantile, 𝑦, are used to 

compute IOp through Equations (16-17). We use two different inequality measures 𝐼(𝑥) for that 

computation, namely the Gini coefficient and the mean log deviation (MLD). The mean log deviation 

was used extensively in the early IOp literature, given its ideal decomposability properties (see 

Foster and Shneyerov, 2000 and Ferreira and Gignoux, 2011). As it became increasingly clear that 

standard decomposability was not, in fact, required for the measurement of IOp – unless one wishes 

to interpret within-group inequality as being entirely driven by effort – the Gini has been used more 

frequently. It has the advantage, as noted by Brunori, Palmisano, and Peragine (2019), that it is 

more sensitive to the central parts of the distribution, where group means tend to cluster, rather 

than to the lower tail. In that sense, the Gini is better suited to studying IOp and, although we report 

both measures in Table 2 below, we focus the discussion on the Gini estimates.  

Table 2: Inequality of Opportunity Results 

Sample 2017 Gini Abs. Gini 
IOp 

Rel. Gini 
IOp MLD Abs. 

MLD IOp 
Rel. 

MLD IOp Types 

TRT 0.605 0.445 73.58 0.678 0.330 48.75 14 

CIT 0.605 0.399 65.97 0.678 0.259 38.23 - 

CIRF 0.605 0.417 68.91 0.678 0.280 41.35 - 

Sample 2017b Gini Abs. Gini 
IOp 

Rel. Gini 
IOp MLD Abs. 

MLD IOp 
Rel. 

MLD IOp Types 

TRT 0.599 0.418 69.77 0.664 0.288 43.44 14 

CIT 0.599 0.339 56.63 0.664 0.185 27.91 - 

CIRF 0.599 0.396 66.09 0.664 0.241 36.29 - 

Source: Own elaboration from NIDS 5. TrT stands for Transformation Tree, CIT for Conditional 
Inference Tree, CIRF for Conditional Inference Random Forest, Abs. for Absolute, Rel for Relative. 

The Gini and MLD columns report values of those measures of inequality for the entire sample, I(y). 
  

Besides the ex-post IOp measures, both in absolute terms and as a share of overall inequality, and 

both for the Gini and the MLD, Table 2 also reports overall inequality and the number of types. For 

comparison, it also reports ex-ante estimates for the same samples, using a conditional inference 
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tree (CIT) and a conditional inference random forest (CIRF).20 The upper panel contains all of these 

estimates for the main sample for 2017 (which oversamples the rich) and the bottom part reports 

results for the alternative sample, 2017b, as discussed in Section 3. 

The headline results are in the first row of Table 2. The Gini coefficient calculated on the vector  𝒚ෝ𝑻 

(see Eq.16) obtained from the ECDFs of the fourteen types in our ex-post partition is 0.45, or 74% 

of the overall Gini coefficient of 0.61 for South Africa. This is a remarkable number: the “opportunity 

Gini” for South Africa is higher than the overall income Gini coefficient of the United States (which 

is 0.41, as reported by the World Bank for the same year).21 Not only that, but inherited inequalities 

account for almost three-quarters of the (extremely high) inequality in current incomes in the 

country.  

While this is perhaps not entirely surprising, given the history of Apartheid, it is certainly the case 

that previous methods had not found similarly high opportunity ratios. Piraino (2015), for example, 

employs the ex-ante approach and two possible econometric methods to estimate inequality of 

opportunity on gross employment earnings (using up to 54 Roemerian types). Depending on the set 

of circumstances considered he finds a level of IOp ranging between 17% and 24% of total inequality 

measured with mean logarithmic deviation (MLD) – which compares to our MLD estimate of 49%. 

This difference is in part due to the oversampling of richer households, but it persists when using 

comparable samples where the relative IOp in MLD is 43%.  

Comparisons and Robustness 

The second and third rows in each panel of Table 2 contain benchmark estimates from applying ex-

ante approaches to our data. To this end, we follow the approach of Brunori, Hufe and Mahler (BHF, 

2023) to construct conditional inference trees and random forests. As noted in Section 3, these two 

(closely related) machine learners have recently been applied to the computation of ex-ante IOp in 

Europe, so we include their estimates here for comparison and benchmarking.22 Our estimation 

differs from the approach described by BHF in just one respect: Because machine learning 

algorithms trade-off between the variance and bias when estimating prediction functions, the 

 
20 These estimates are explained in more detail below. 
21 See https://data.worldbank.org/indicator/SI.POV.GINI?locations=US 

22 They are not our focus in this paper and readers are referred to Brunori, Hufe, and Mahler (2023) for 
definitions and methodological descriptions.   

https://data.worldbank.org/indicator/SI.POV.GINI?locations=US
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reduction of the former introduces some bias in the prediction. Following Escanciano and Terschuur 

(2022) we employ a double-debiased methodology to estimate ex-ante IOp. This involves cross-

fitting the estimation, and subsequently applying the corresponding Neyman-orthogonal inequality 

estimator. To the best of our knowledge, no debiased estimator has been proposed for the ex-post 

IOp measure. 

The cross-fitting procedure prevent us from obtaining one single tree, but for illustrative purposes 

Figure 6 shows the ex-ante tree obtained with the same data as Figure 3. Note that although the 

structure of the ex-ante tree is similar to the ex-post tree, with a preponderant role of race in the 

definition of the tree structure, some differences emerge (e.g., white respondents are no longer 

split in two types).  

Figure 6: Conditional Inference Tree for South Africa, 2017 

Source: Own elaboration from NIDS 5. 

 

In terms of the IOp summary statistics in Table 2, the ex-ante (CITF) tree estimates are a little lower 

than for the ex-post (TrT): an opportunity Gini of 0.40 in the ex-ante case, versus 0.45 in the ex-post 

case. The random forest ex-ante estimate in the third row (0.42), which is known to be more robust 

than that of a single tree, is even closer to the ex-post tree result. We interpret the broad similarity 

in the estimates across the three different methods – for both the Gini coefficient and the MLD – 

as an indication of the robustness of the data-driven approach to the assessment of inherited 

inequality.  
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An additional robustness test concerns variations in sample size. We conducted a sensitivity analysis 

by initially drawing 100 subsamples comprising 5% of the entire dataset and estimating IOp using 

the three methods in each sample: the ex-post and the two debiased ex-ante. The average and 

bounds of the estimates are then calculated. We then increase the sample size 19 times, by five 

percentage points each time, and repeat the exercise. The resulting estimates are presented in 

Figure 7, which shows how IOp increases with sample size. The fact that the ex-post curve begins 

to flatten between 25% and 50% of the sample and change very little thereafter is reassuring. It 

suggests that, in this range, our results are robust to sample size.  

 

Figure 7: IOp sesitivity to sample size 

 
Source: Authors’ elaboration from NIDS 5. Standard errors obtained after 100 bagged repetitions. 

We also interpret the fact that the tree- and forest-based methods tend to find higher shares of 

inherited inequality in overall dispersion than earlier approaches as a reflection of the ability of the 

algorithms to identify the most salient inequalities across subgroups. With fourteen “variables” or 

sets of interactions between dummy variables, our transformation tree finds an inequality in 

predicted incomes roughly similar to that of 200 regressors in the backward stepwise selection 
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procedure depicted in Figure 1. Furthermore, adding another 300 regressors in that exercise yielded 

another six Gini points, likely by overfitting the data. This reflects the ability of the trees and forests 

to identify the “right” subgroups to focus on, by the very design of the algorithms. 

Yet, although the ex-ante and ex-post methods presented here yield similar headline measures of 

IOp, they do identify different partitions – as one would expect from the fact that CITFs (and forests) 

are designed to find the most statistically significant differences between averages, and the TrT are 

looking for more general differences across CDFs, including in higher moments. Since both 

partitions (into 14 ex-post types and 12 ex-ante types) are of the same sample, we can map which 

ex-ante and ex-post type each individual in the sample belongs to. The mapping is shown in the 

Sankey plot in Appendix 3. Although space limitations preclude a detailed analysis of the plot, we 

note that movements between ex-ante and ex-post types are commonest when the ECDFs in Figure 

4 are not far apart and cross one another. Examples include ex-post types 7 and 13, as well as 10 

and 16. Indeed, most members of ex-post type 13 are merged with either ex-post types 8 or 10, 

into ex-ante types 9 and 10, respectively. These different allocations are the result of allowing 

differences in higher moments of the type distributions to affect splitting decisions in the tree. 

While it may not always be possible to provide an intuitive explanation for the differences between 

the two partitions, there are cases in which it is possible to understand which characteristics 

distinguish respondents who are in two different types in the two partitions. Ex-ante type 17, for 

example, consists of non-white respondents whose mothers were employed in elementary 

occupations. Within this group, there are several subtypes in the ex-post partition, but the majority 

of observations, over 80%, are concentrated in two ex-post types: 50% of the observations belong 

to ex-post type 15, constituting 95% of this type, while 31% are categorized as ex-post type 16, 

making up 97% of this type. The distinguishing circumstance between the two groups is the 

occupation of their fathers. Individuals in ex-post type 15 tend to have fathers in craft occupations 

or unspecified occupational statuses which include also fathers outside the labor force, while the 

majority of individuals in type 16 have fathers whose occupation falls under the category of 

operators and elementary workers. The latter group, represented by respondents in ex-post type 

16, has a higher average income, although the difference is not significant enough to allow a split 

in the ex-ante tree. But it also displays a different cumulative distribution function with a 

substantially higher income variance. 
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Ex-ante and ex-post trees are therefore complementary tools to understand inequality of 

opportunity. It should be noted, however, that both CIT and TrT – as well as trees in general – are 

well known for their ability to detect complex interaction effects (low bias), but also to be highly 

sensitive to the exact sample observed (high variance). For this reason, the structure of a single tree 

should never be interpreted beyond its statistical meaning: the most likely partition in types in the 

specific sample we happen to observe.  

In the remainder of this section, we briefly present two additional sets of results that can also 

improve our understanding of the phenomenon and can be easily obtained from this approach to 

inherited inequality: (i) a descriptive decomposition of the role of each individual circumstance 

variable, and (ii) an estimate of the objective function for a Rawlsian opportunity-egalitarian. 

The role of individual circumstances  

Because the prediction function in Equation (16) is highly non-linear in circumstances, any 

assessment of the relative contribution of individual circumstances to inequality in predicted 

incomes, 𝐼(𝑦ො்), cannot rely on marginal effects. As in other similar cases in inequality analysis, the 

decomposition method most suitable to our application is the Shapley-Shorrocks decomposition 

(Shapley, 1953; Shorrocks, 2013). Intuitively, this decomposition computes the total contribution of 

a particular circumstance variable 𝑐 to predicted inequality as the reduction in the latter when 𝑐 

is omitted from the prediction, averaged across all possible combinations of circumstances that 

originally include 𝑐. (See Shorrocks, 2013). A description of the algorithm used to compute the 

decomposition also helps clarify its logic:  

A) Draw a subsample of the full sample;23 

B) Estimate IOp in this subsample, as described in Section 4, but setting 𝛼 = 1; 

C) Further, estimate IOp in the subsample for all possible permutation sequences that 

eliminate circumstance 𝑐. This elimination is performed by replacing 𝑐 with a constant 

vector 1; 

D) Estimate a tree and IOp after each elimination sequence and store results; 

E) Average IOp across all permutation sequences. The difference between overall IOp and this 

average is the specific contribution of 𝑐; 

 
23 Following the convention often used in tree bagging procedures, we draw subsamples of 63.2% of the 
original sample size (see Hothorn, Hornik, and Zeileis, 2006).  
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F) Repeat steps A-E z times, to account for different potential data-generating processes. In 

our case, we set z = 100; 

G) Estimate the contribution of 𝑐 to IOp as the average contribution across these z 

repetitions; 

H) Repeat the algorithm for each 𝑐, 𝑘 ∈ {1, … , 𝐾}. 

Analogously to the common approach used in estimating random forests, we construct trees on 

subsamples of the initial population, permitting each tree to attain significant depth. These two 

adjustments enable all circumstances with predictive power to contribute to defining the partition 

of types, at least in certain iterations, making the assessment of the relative contribution of each 

circumstance robust to the typical problem of variance of estimates based on a single tree.  

Table 3 presents the results of the Shapley-Shorrocks decomposition across the six circumstance 

variables available in our data set. Results are presented as percentage shares of the ex-post 

opportunity Gini coefficients reported in Table 2, for both the main 2017 sample and the secondary 

sample, 2017b. 

Table 3: Ex-post tree Shapley value Decomposition (as % of Gini IOp) 

Circumstance 2017 2017p 

Ethnicity 30.59 44.64 

Father Occupation 14.16 10.18 

Mother Occupation 16.07 12.29 

Father Education 17.63 14.57 

Mother Education 17.23 13.01 

Sex 4.33 5.3 

Source: Own elaboration from NIDS 5. 
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The importance of the race or ethnicity variable, which was already evident from the tree in Figure 

3, is confirmed here: it contributes 31% of IOp in the sample that oversamples the rich, and as much 

as 45% in the other sample. The difference reflects the fact that much of the “added” inequality 

among the rich is inequality among whites. Fathers’ and mothers’ educational levels come next in 

importance, with about 17% each, followed closely by their occupational categories, where the 

mother’s occupation appears to contribute just a little more than the father’s.  Naturally, it should 

go without saying that, in keeping with the measurement-using-prediction spirit of our analysis, 

these decompositions are purely descriptive.  

The lower envelope of quantile functions 

Although the analysis of inherited inequality, in any of the forms described in Section 2, is inherently 

descriptive, it often raises normative questions about what the policy objectives should be with 

regard to intergenerational persistence, or inequality of opportunity. As with inequality in general, 

one must contend, in particular, with the leveling-down objection: if the objective were simply to 

eliminate inequality in predicted incomes, 𝐼(𝑦ො), and thus immobility or inequality of opportunity, 

this might be achieved by setting all incomes to zero – or some other very low value. Policies might 

be arranged in such a way that there was no inherited inequality, but everyone lived in poverty.  

The standard normative response to this philosophical objection is Rawls’s argument that 

inequalities should be tolerated only insofar as they are to the benefit of the worst-off (Rawls, 

1971). This gives rise to the familiar Rawlsian maximin objective functions and, indeed, various 

versions of maximin objectives have been proposed in the context of inequality of opportunity.24  

One version, due to Roemer (1998), is to arrange society and choose policies so as to maximize the 

(average of the) lowest incomes at each quantile, across the conditional distribution functions of all 

types. Recalling from the general framework in Section 2, that there are M types, 𝜏: =

{∀𝑖|𝒄𝒊 = 𝒄𝒎}, whose conditional cumulative distribution functions are of the form 𝐹(𝑦|𝒄𝒎), define 

the lower envelope of the joint distribution {y, c} as: 

𝐿(𝑞) = min
ఛ

𝐹ିଵ(𝑞, 𝒄𝒎) (18) 

 

And choose policies so as to: 

 
24 See, e.g., Van de Gaer (1993) and Bourguignon, Ferreira, and Walton (2007).  
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𝑀𝑎𝑥 න 𝐿(𝑞)𝑑𝑞
ଵ


 

(19) 

 

As Roemer and Trannoy (2016) put it: “We do not simply want to render the functions identical at a 

low level, so we need to adopt some conception of ‘maxi-minning’ these functions. [...] A natural 

approach is therefore to maximize the area under the lower envelope of the [quantile] functions.” 

(p. 231).  

Equation (18) defines the lower envelope of the set of quantile functions (inverse functions of the 

distribution function). Graphically, the type quantile functions, shown in Figure 8 below, are 

obtained by inverting the conditional CDFs in Figure 4. 𝐿(𝑞) defines the lowest points in the graph 

at each quantile. If the poorest type were first-order stochastically dominated by all other types, 

then this would simply be its quantile function, and Equation (19) would mandate maximizing its 

average income, equal to the area under the quantile function.  When quantile functions cross at 

the bottom of the graph, Equation (19) mandates maximizing the average income of the lower 

envelope of the quantile functions. If there were no inequality of opportunity, all of society would 

be one type and ∫ 𝐿(𝑞)𝑑𝑞1
0  would be its average income. Therefore, the value of the maximand in 

(19) is informative per se, as a measure of shared income in a society, and is interestingly read in 

relative terms, as a measure of how close the shared income is to the average income,  
∫ ()ௗభ

బ

∫ ிషభ()ௗభ
బ

. 

In practice, a literal computation of ∫ 𝐿(𝑞)𝑑𝑞1
0  might be over-sensitive to small types detected in a 

particular sample. We therefore propose a robust version of the lower envelope which consists, in 

each quantile, of the average of the worst-off types adding up to at least 10% of the population. In 

the present application, however, the robust version is almost identical to the strict definition in 

(18), because South Africa’s worst-off type (Type 8 in Figure 3) is dominated to a large extent by all 

other types and is also very large in terms of population. The area below South Africa’s lower 

envelope in 2017 is 2,203 Rand, or 34% of the overall mean of 6,474.20 rand.  
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Figure 8: Type quantile functions and the lower envelope 

 
Source: Authors’ elaboration from NIDS 5 

 

7. Conclusions 

The  extent to which current inequality is inherited from previous generations and shaped by pre-

determined circumstances is a matter of both positive and normative interest. Many, if not most, 

approaches to quantifying this phenomenon rely  on  prediction exercises, essentially  assessing 

how well incomes can be predicted by pre-determined circumstances such as biological sex, race, 

parental income, or other indicators of family background.  We have shown  that many commonly 

used measures of intergenerational mobility and inequality of opportunity can be written as 

functions of the ratio of inequality in these predicted incomes  to inequality in current-generation 

incomes.  What varies between these measures is the number and nature of the variables used for 

prediction, and the prediction function itself. But they can all be expressed as a two-step procedure, 
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in which incomes are first predicted by parental incomes or other inherited characteristics, and then 

inequality in those predictions is compared to observed inequality. 

Such prediction problems inherently involve a statistical trade-off between a downward bias arising 

from omitting certain variables and interaction terms, and an upward bias from including too many 

such variables and overfitting the model. Data-driven, machine learning techniques, which are 

designed to perform well out of sample and avoid overfitting by regularization were developed to 

solve this class of prediction problems. In particular, we have proposed the use of transformation 

trees (Hothorn and Zeileis, 2021) to estimate ex-post inequality of opportunity, which involves 

computing horizontal distances across the conditional distribution functions of suitably defined 

population subgroups (types) and aggregating them across quantiles.  

Transformation trees are particularly well-suited to the ex-post IOp approach because they predict 

incomes by simultaneously partitioning the sample and fitting flexible parametric estimates of these 

conditional distribution functions, so as to solve a well-defined local adaptive maximum likelihood 

problem. They should be of interest to those whose normative view of equal opportunities follow 

Roemer (1993, 1998), in which conditional quantiles are associated with relative degrees of 

responsibility or effort. But we argue that the method is of more general appeal: if one thinks of 

equal opportunity – or the absence of inherited inequality – as a situation in which predetermined 

and parental characteristics are orthogonal to – have no predictive power over – present-

generation outcomes, then Equation (1) is the critical condition for it to hold.  Equality of group 

means, which is tested by other algorithms such as linear regressions,  traditional non-parametric 

inequality decompositions, or conditional inference trees, is necessary but not sufficient. 

Transformation trees, instead, detect and quantify differences along the full conditional distribution 

functions.  

We applied this method to South Africa, arguably the world’s most unequal country, and found an 

opportunity Gini coefficient – our preferred measure of inequality in predicted incomes – of 0.45, 

corresponding to almost three-quarters of overall South African income inequality. When using an 

alternative measure like the mean log deviation, the predicted share of inequality was at least twice 

as high in our estimate than in the previous literature.  

Another advantage of this approach is that it generates a number of byproducts which are 

descriptively informative of the structure of inequality in South Africa. These include the 
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transfomation tree itself, graphical depictions of the conditonal distributions, a Shapley 

decomposition of the relative contributions of individual circumstance, and an estimate of the 

lower envelope of the set of quantile functions, an average of which is a meaningful measure of 

opportunity deprivation and an estimate of the policy maximand proposed by Roemer (1998).   

That said, all estimation methods have advantages and disadvantages, and data-driven learning 

algorithms are no exception. Among the limitations of regression trees is the relatively high variance 

in the identified structure. As a result, researchers should not only report trees, but also present 

Shapley decompositions, type composition tables and, potentially, integrate other prediction-based 

or standard econometric models, as supplementary tools. Employing these approaches collectively 

is most likely to lead to a thorough and robust understanding of inherited inequalities. 
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(Online) Appendix 1: The likelihood maximization using Bernstein polynomials 

In practice, implementation of the likelihood maximization is facilitated by using a monotonic 

transformation function of y, 𝑧 = ℎ(𝑦), with ℎᇱ(𝑦) > 0, ∀𝑦.  Monotonicity ensures that 𝐹(𝑦) =

𝐹௭൫ℎ(𝑦)൯. We follow Hothorn and Zeileis (2021) in using Bernstein polynomials of order M to 

construct the transformation function: ℎ(𝑦) = 𝑎(𝑦)்𝜃. Note that a(y) is a polynomial of order M in 

y. The choice of M implies the choice of the dimension of the parameter vector, P=M+1. The higher 

that order, the greater the flexibility with which 𝐹 ቀ𝑦, 𝜃(𝑐)ቁ can be modelled, and the greater the 

degree to which differences in their higher moments affect the partition and the estimation. 

Bernstein polynomials are a particular application of this transformation function, in which: 

𝑎ெ(𝑦) =
ቀ𝜙ଵ,ெାଵ(𝑦), … , 𝜙ெାଵ,ଵ(𝑦)ቁ

𝑀 + 1
                                           (A. 1) 

where 𝜙,ெ denote the density of the Beta distribution with parameters m and M. Using this 

particular vector for the polynomial in ℎ(𝑦) implies a simple log likelihood function that can be used 

for the maximization implicit in (5): 

ℓ(𝜃) = log[𝑓௭(𝑎(𝑦)்𝜃)] + log(𝑎(𝑦)்𝜃)                                    (A. 2) 

With this specific functional form for ℓ(𝜃), all that is needed to solve (5) and thus have the 

parameter estimates to model the conditional income distributions for all types in the tree terminal 

nodes is the algorithm to split the sample into types.  This proceeds sequentially.  Start from the 

case when 𝑤(𝑐) = 1, ∀𝑖. This corresponds to no splits: all observations are in a single bin, and have 

the same weight in the log likelihood maximization. The parameter estimates obtained under that 

assumption are the simple maximum likelihood estimates: 

𝜃ெ
ே (𝑐) = arg maxఏఢ  ℓ(𝜃)                                                  (A. 3)

ே

ୀଵ

 

To decide whether or not a split can improve prediction, test the null hypothesis: 

𝐻: 𝑠൫𝜃ெ
ே |𝑦൯ ⊥ 𝐶                                                           (A. 4)               
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where 𝑠൫𝜃|𝑦൯ denotes the gradient contribution of observation i. For continuous distributions, the 

score contribution is simply the derivative of the log density with respect to 𝜃. Differentiating (A.2) 

we obtain: 

𝑠൫𝜃|𝑦൯ = a(𝑦)
𝑓′௭(𝑎(𝑦)்𝜃)
𝑓௭(𝑎(𝑦)்𝜃) +

𝑎′(𝑦)
𝑎′(𝑦)்𝜃

                                    (A. 5)  

There are a number of methods to test (A.4), and we follow Hothorn and Zeileis (2021) in using M-

fluctuation tests. When these tests reject 𝐻, the algorithm implements a binary split in the 

circumstance x (an element of the vector c) that has the most significant association with the P x P 

score matrix, measured by the marginal multiplicity adjusted p-value (see Hothorn, Hornik, and 

Zeileis. 2006).  

The algorithm is then repeated by testing hypotheses analogous to (A.4) in each of the resulting 

cells, and so on recursively, until 𝐻 can no longer be rejected.  At this point, the algorithm has 

identified the optimal partition of the population into types: ℑ = ⋃ ℬୀଵ,… . Over this final 

partition, the likelihood function given by (A.2) and the weights given by (15) are used to solve (14), 

yielding the final parameter vector 𝜃ே(𝑐), which fully characterizes the conditional distribution 

𝐹 ቀ𝑦, 𝜃(𝑐)ቁ in each type (terminal node) ℬ.   

These parametric conditional distributions can then be inverted to yield the estimated type quantile 

functions  𝑦ො = 𝐹ିଵ ቀ𝑞, 𝜃(𝑐)ቁ, from which a measure of ex-post inequality of opportunity can be 

computed as 𝐼𝑂𝑝 = ∫ 𝑤𝐼൫𝑦ො൯ ଵ
ୀ . 
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(Online) Appendix 2: An illustration of the M-fluctuation test using made-up data 

The algorithm employs an M-fluctuation test of parameter stability to determine node splits. Purely 

as an example, we show how the algorithm performs the type partition in a simplified hypothetical 

case in which father’s occupation is the only circumstance and the logarithm of income is the 

outcome of interest.25 The objective is testing whether the parameters defining the income 

distribution are significantly different when the population is split in two subgroups.  

Following the steps described in the main text, we set a confidence level (𝛼 = 0.01) and, in order to 

obtain a graphical intuition of the instability of the parameters, a lower order of the polynomial (𝜔 

= 3), hence using four parameters to estimate the log-income distribution. We generate a mock 

dataset to split incomes according to father occupation, which takes 6 categories ordered from 

smaller associated expected income to higher associated expected income.  

In Figure A.1 below, we show the values of the parameters in the Bernstein polynomial associated 

with each split. Beginning from the left-hand side in both plots, the first four points represent the 

parameters associated with the nodes created when we split the population in two groups: those 

whose father occupation is 1 (right-hand plot) and the rest, that is, those whose father’s occupation 

is 2 to 6 (left-hand plot). As we move to the right through the X-axis, we generate other splits, 

moving observations associated to categories in fathers’ occupation from one node to the other, 

changing the resulting conditioned distributions. It is evident from Figure A.1 that, when 

transitioning observations from one terminal node to another, parameters undergo a change in 

magnitude. However, it is not immediately apparent which partition exhibits the most statistically 

significant parameter instability. That is, which occupational category should be selected as splitting 

point.  

 

  

 
25 Ours is a different version of a similar example proposed by Kopf, Augustin, and Strobl (2013). 
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Figure A1.  Values for the Parameters of the Bernstein Polynomial in each node 

 
Source: Own Elaboration on NIDS 5 

 

That selection is guided by the M-fluctuation test. Figure A.2 shows the value of the statistics for 

the tests described in step 4. The higher value (associated with a smaller p-value) is achieved when 

the bottom node has categories 1 and 2. That is the splitting point, as confirmed in Figure A.2. The 

population is thereby divided in two groups: those with father’s occupation equal to 2 or less, and 

the rest, generating the simple tree in Figure A.3.  

 

Figure A2. M-fluctuation quadratic test Statistics 

 
Source: Own Elaboration on NIDS 5 
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Figure A3. Transformation Tree (example)  

 
Source: Own Elaboration on NIDS 5 

 

This partition into two types allows us, for instance, to graphically explore Roemer’s theory by 

plotting the cumulative density functions (CDF) of the outcome of interest by types (Figure A4). 

Here, the colored lines represent the empirical cumulative density functions (ECDF), while the 

dashed lines represent the interpolation of the distribution predicted with the polynomial 

approximation. 

  

Figure A4. ECDFs (example) 

 
Source: Own Elaboration 
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(Online) Appendix 3: The Sankey Plot  

The Sankey plot below, also known as an alluvial diagram, connects the ex-ante and ex-post types 

to which each individual in the sample belongs. Ex-ante types are on the left-hand column, and ex-

post types are the right. In both columns, types are ordered from higher income (top) to lower 

income (bottom). While for the white population the only difference between the two approaches 

is that the single ex-ante type is split into two by the ex-post TrT algorithm, much more movement 

is observed among poorer types.    

 
Source: Own elaboration from NIDS 5.  
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(Online) Appendix 4: Tables 

Table A1. Share of missing observations before and after cross-wave matching (percent) 

Circumstance Before matching After matching 

Ethnicity 5.07 0.01 

Father Occupation 37.67 5.03 

Mother Occupation 35.95 5.04 

Father Education 44.21 30.83 

Mother Education 44.72 43.42 

Sex 5.03 0.00 

 

Source: Own elaboration from NIDS 5. All values are shares (%) of missing observations.  
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Table A2: Weighted sample proportions by circumstance category (percent)  

Ethnicity Label 2017 2017b 

African 1 78.27 83.58 

Asian/Indian 2 1.9 1.1 

Coloured 3 11.55 12.12 

White 4 8.28 3.19 

Sex Label 2017 2017b 

Female 1 37.14 36.12 

Male 0 62.86 63.88 

Education Label Mother (2017) Father (2017) Mother (2017b) Father (2017b) 

Non-Educated 0 54.73 57.38 58.59 61.71 

Grade 1 1 0.59 0.67 0.64 0.73 

Grade 2 2 1.47 1.52 1.56 1.63 

Grade 2 3 2.38 2.32 2.54 2.39 

Grade 4 4 3.38 2.54 3.54 2.66 

Grade 5 5 2.71 2.37 2.82 2.44 

Grade 6 6 3.03 2.63 3.12 2.64 

Grade 7 7 4.32 3.29 4.37 3.19 

Grade 8 8 7.83 7.35 7.37 6.91 

Grade 9 9 1.9 1.82 1.87 1.72 

Grade 10 10 4.77 4.4 3.92 3.49 

Grade 11 11 2.03 1.6 2.05 1.53 

Higher 12 10.85 12.11 7.61 8.95 

Occupation Label Mother (2017) Father (2017) Mother (2017b) Father (2017b) 

Army 0 0.01 0.58 0.01 0.55 

Managers 1 0.58 2.64 0.42 1.78 

Professionals 2 5.8 4.15 4.1 3.05 

Technicians 3 1.4 2.1 0.91 1.6 

Clerks 4 1.69 0.9 0.85 0.7 

Service 5 3.1 6.43 2.75 6.37 

Skilled 6 0.22 0.88 0.24 0.85 

Craft 7 1.34 10.65 1.26 9.81 

Operators 8 0.26 12.16 0.21 12.38 

Elementary 9 24.06 20.58 25.13 21.25 

Other 10 61.55 38.93 64.13 41.66 
Source: Own elaboration from NIDS 5. All values are shares (%) of the analysis sample. Column 

“Label” shows the specific labels shown in all Figures. 
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Table A3: Ethnicity by ex-post types 

 Circum 1 2 3 4 Type Sh. 
Types Mean 0.67 1.82 1.07 3.61  

8 0.39 28.52 0 0 0 28.52 
13 0.49 11.28 0.07 3.08 0 14.43 
7 0.55 14.44 0 0 0 14.44 

10 0.64 0 0.9 3.19 0 4.09 
17 0.65 2.29 0.1 0.47 0 2.86 
15 0.75 1.36 0.03 0.4 0 1.79 
22 0.77 5.25 0 0 0 5.25 
9 0.8 3.3 0 0 0 3.3 

16 0.93 2.01 0 0.79 0 2.81 
23 1.24 3.08 0 0 0 3.08 
20 1.31 6.73 0 0 0 6.73 
24 1.9 0 0.81 3.62 0 4.43 
26 2.76 0 0 0 3.26 3.26 
27 4.11 0 0 0 5.02 5.02 
 Circ Share 78.27 1.90 11.55 8.28 100 

Source: Own elaboration from NIDS 5. Circumstance categories are 1: African; 2:  Asian/Indian; 3:  
Coloured; 4:  White. Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, 

Circ. Sh. stands for Circumstance Shares. 

 

Table A4: Sex by ex-post types 

 Circum 0 1 Type Sh. 
Types Mean 1.15 0.88  

8 0.39 0 28.52 28.52 
13 0.49 4.71 9.72 14.43 
7 0.55 14.44 0 14.44 

10 0.64 1.55 2.55 4.09 
17 0.65 1.1 1.75 2.86 
15 0.75 0.63 1.15 1.79 
22 0.77 0 5.25 5.25 
9 0.8 1.25 2.06 3.3 

16 0.93 0.99 1.82 2.81 
23 1.24 0 3.08 3.08 
20 1.31 6.73 0 6.73 
24 1.9 1.88 2.55 4.43 
26 2.76 1.49 1.77 3.26 
27 4.11 2.37 2.64 5.02 
 Circ Share 37.14 62.86 100 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Female; 1: Male. Circum. 
Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for 

Circumstance Shares.



 

 

Table A5: Father Education by ex-post types 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Non-Educated, Then the remaining values correspond to Grades from 1 to 
12 (or more). Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for Circumstance Shares. 

 Circum. 0 1 2 3 4 5 6 7 8 9 10 11 12 Type Sh. 
Types Mean 0.49 0.43 0.66 0.63 0.72 0.68 0.68 0.8 1.32 0.89 1.85 1.33 2.55  

8 0.39 25.35 0.23 0.37 0.55 0.64 0.47 0.44 0.47 0 0 0 0 0 28.52 
13 0.49 11.46 0.15 0.37 0.45 0.59 0.4 0.38 0.63 0 0 0 0 0 14.43 
7 0.55 12.29 0.12 0.19 0.33 0.44 0.34 0.45 0.27 0 0 0 0 0 14.44 

10 0.64 2.7 0 0.08 0.29 0.19 0.18 0.22 0.44 0 0 0 0 0 4.09 
17 0.65 1.58 0.04 0.12 0.29 0.14 0.23 0.16 0.29 0 0 0 0 0 2.86 
15 0.75 0.96 0.01 0.03 0.12 0.1 0.14 0.16 0.26 0 0 0 0 0 1.79 
22 0.77 0 0 0 0 0 0 0 0 2.78 0.74 1.01 0.71 0 5.25 
9 0.8 1.75 0.04 0.19 0.1 0.15 0.36 0.38 0.33 0 0 0 0 0 3.3 

16 0.93 1.16 0.07 0.15 0.19 0.27 0.18 0.33 0.45 0 0 0 0 0 2.81 
23 1.24 0 0 0 0 0 0 0 0 0 0 0 0 3.08 3.08 
20 1.31 0 0 0 0 0 0 0 0 1.93 0.53 0.89 0.48 2.89 6.73 
24 1.9 0 0 0 0 0 0 0 0 1.47 0.41 1.01 0.25 1.29 4.43 
26 2.76 0.12 0 0.01 0 0.01 0.08 0.1 0.15 1.16 0.14 1.48 0 0 3.26 
27 4.11 0 0 0 0 0 0 0 0 0 0 0 0.16 4.85 5.02 
 Circ Share 57.38 0.67 1.52 2.32 2.53 2.37 2.63 3.29 7.35 1.82 4.4 1.6 12.11 100 



 

Table A6: Mother Education by ex-post types 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Non-Educated, Then the remaining values correspond to Grades from 1 to 
12 (or more) . Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for Circumstance Shares. 

 Circum 0 1 2 3 4 5 6 7 8 9 10 11 12 Type Sh. 
Types Mean 0.48 0.53 0.58 0.56 0.74 1.02 0.69 1.01 1.34 1.19 1.85 1.05 2.51  

8 0.39 24.49 0.19 0.44 0.66 1.11 0 0.58 0.6 0 0.25 0 0.21 0 28.52 
13 0.49 11.55 0.25 0.53 0.63 1.04 0 0 0 0 0.21 0 0 0.22 14.43 
7 0.55 12.37 0.08 0.11 0.36 0.42 0 0.33 0.47 0 0.16 0 0.14 0 14.44 

10 0.64 2.82 0.03 0.04 0.1 0.1 0.25 0.12 0.29 0.21 0 0.1 0 0.05 4.09 
17 0.65 0.77 0.01 0.07 0.19 0.08 0.05 0.22 0.21 0.44 0.11 0.19 0.14 0.37 2.86 
15 0.75 0 0 0 0 0 0.33 0.29 0.47 0.47 0 0.12 0.11 0 1.79 
22 0.77 1.01 0.03 0.08 0.18 0.23 0.19 0.42 0.38 1.26 0.27 0.45 0.3 0.42 5.25 
9 0.8 0 0 0 0 0 0.89 0 0 1.44 0 0.51 0 0.47 3.3 

16 0.93 0 0 0 0 0 0.55 0.44 0.73 0.78 0 0.26 0.05 0 2.81 
23 1.24 0.23 0 0.03 0.04 0.05 0.04 0.05 0.14 0.18 0.08 0.27 0.33 1.63 3.08 
20 1.31 0.95 0 0.07 0.07 0.12 0.22 0.27 0.42 0.99 0.37 0.67 0.48 2.1 6.73 
24 1.9 0.37 0 0.1 0.16 0.21 0.18 0.22 0.44 1.03 0.26 0.49 0.12 0.85 4.43 
26 2.76 0.11 0 0 0 0 0.01 0.08 0.15 0.85 0.12 1.06 0.05 0.82 3.26 
27 4.11 0.05 0 0 0 0.01 0 0 0.03 0.19 0.07 0.64 0.1 3.92 5.02 
 Circ Share 54.73 0.59 1.47 2.38 3.38 2.71 3.03 4.32 7.83 1.9 4.77 2.03 10.85 100 



 

Table A7: Father Occupation by ex-post types 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Army; 1: Managers; 2: Professionals; 3: Technicians; 4: Clerks; 5: Service; 6: 
Skilled; 7: Craft; 8: Operators; 9: Elementary; 10 Others. Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. 

stands for Circumstance Shares.

 Circum 0 1 2 3 4 5 6 7 8 9 10 Type Sh. 
Types Mean 1.05 2.59 2.37 2.09 2.37 1.17 0.82 1.33 0.7 0.86 0.59  

8 0.39 0.12 0.14 0.14 0.22 0.03 1.04 0.12 1.27 2.55 4.48 18.4 28.52 
13 0.49 0.04 0.11 0.08 0.11 0.08 0.74 0.16 1.74 2.01 5.99 3.36 14.43 
7 0.55 0.12 0.14 0.07 0.15 0.04 0.77 0.11 0.69 1.66 2.56 8.14 14.44 

10 0.64 0 0.03 0.04 0.01 0 0.18 0.05 0.78 0.34 1.36 1.3 4.09 
17 0.65 0.01 0.03 0.08 0.1 0.01 0.33 0.04 0.48 0.51 0.71 0.55 2.86 
15 0.75 0.03 0 0.01 0.08 0 0 0 0.69 0 0 0.97 1.79 
22 0.77 0.03 0.1 0.19 0.11 0.08 0.63 0 0.7 1.18 0.77 1.47 5.25 
9 0.8 0.01 0.05 0.01 0.03 0.01 0.16 0.05 0.32 0.53 0.42 1.69 3.3 

16 0.93 0 0.05 0 0 0.03 0.32 0.03 0 0.9 1.48 0 2.81 
23 1.24 0.04 0.23 0.74 0.1 0.1 0.48 0.01 0.19 0.42 0.19 0.58 3.08 
20 1.31 0.07 0.45 0.88 0.32 0.08 0.89 0.01 0.92 0.96 0.74 1.41 6.73 
24 1.9 0.04 0.19 0.42 0.16 0.14 0.37 0.08 1.15 0.48 0.71 0.67 4.43 
26 2.76 0.03 0.26 0.08 0.18 0.07 0.27 0.1 0.97 0.4 0.77 0.14 3.26 
27 4.11 0.03 0.86 1.4 0.53 0.23 0.25 0.1 0.75 0.21 0.4 0.26 5.02 
 Circ Share 0.58 2.64 4.15 2.10 0.9 6.43 0.88 10.65 12.16 20.58 38.93 100 



 

Table A8: Mother Occupation by ex-post types 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Army; 1: Managers; 2: Professionals; 3: Technicians; 4: Clerks; 5: Service; 6: 
Skilled; 7: Craft; 8: Operators; 9: Elementary; 10 Do not work. Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. 

Sh. stands for Circumstance Share 

 

 Circum 0 1 2 3 4 5 6 7 8 9 10 Type Sh. 
Types Mean 0.24 2.07 2.69 2.9 2.98 1.4 0.68 1.06 1.81 0.72 0.72  

8 0.39 0 0 0 0 0 0 0.08 0 0 0 28.44 28.52 
13 0.49 0 0.04 0 0.18 0.07 0 0 0 0 14.14 0 14.43 
7 0.55 0 0 0 0 0 0 0.05 0 0 0 14.39 14.44 

10 0.64 0 0 0 0 0 0 0.05 0 0 0 4.04 4.09 
17 0.65 0 0 0.82 0 0 1.34 0 0.6 0.08 0 0 2.86 
15 0.75 0 0.01 0 0.04 0.04 0 0 0 0 1.69 0 1.79 
22 0.77 0 0 0.37 0.07 0.07 0.22 0 0.11 0.04 1.51 2.86 5.25 
9 0.8 0.01 0 0 0 0 0 0.01 0 0 0 3.28 3.3 

16 0.93 0 0 0 0.05 0.03 0 0 0 0 2.73 0 2.81 
23 1.24 0 0.07 0.86 0.1 0.11 0.18 0 0.1 0.01 0.42 1.23 3.08 
20 1.31 0 0.07 0.97 0.11 0.12 0.38 0.01 0.15 0.05 1.73 3.12 6.73 
24 1.9 0 0.08 0.52 0.14 0.11 0.37 0 0.18 0.07 1.25 1.71 4.43 
26 2.76 0 0.1 0.52 0.18 0.48 0.3 0 0.12 0 0.32 1.25 3.26 
27 4.11 0 0.21 1.73 0.53 0.66 0.3 0 0.08 0 0.29 1.22 5.02 
 Circ Share 0.01 0.58 5.8 1.4 1.69 3.10 0.22 1.34 0.26 24.06 61.55 100 

25 



 


