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Abstract 

This study provides a test for measurement of spatial competition in residential real estate markets. 
Several alternative spatial competition measures are tested. We employ a Bertrand oligopoly 
model with differentiated products and adopt a Spatial Autoregressive model using a two stage 
least squares estimator. Our results show that commonly used count-based measures using the 
number of competitors in specific geographic radii are outperformed by price-based measures 
using prices of nearest competing neighbors. The main reason is that the latter measure accounts 
for heterogeneous neighborhood density of competitors. The measure captures the decaying 
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1 Introduction

Competition is a powerful concept that is useful for determining prices and evaluating

market outcomes. An established view on competition is that alternative goods offered

on the market provide substitution possibilities for consumers, and this imposes down-

ward pressure on prices (see Lancaster (1966), Baumol (1967), Gorman (1980), and Boone

(2008b)).1 A good understanding of competition is crucial for evaluating price effects of

economic decisions.

This study concentrates on the measurement of competition in spatial markets where

sellers compete with other sellers in the same local markets. Local markets are a widespread

phenomenon that include accommodations, gasoline stations, hospitals, restaurants, and

real estates (see Pinkse et al. (2002) and Chen et al. (2011)). We focus on residential real

estate markets that are characterized by home sellers competing with other home sellers

in the same local market (see Glaeser et al. (2005) and Turnbull and Dombrow (2006)).

In residential real estate markets, there exists some uncertainty on the spatial dimension,

the strength, and the decay of spatial competition. The aim of our study is to provide

further insights into the measurement of spatial competition in the real estate market. We

consider several alternative spatial competition measures such as count-based and price-

based measures of sellers within specific geographic distances (radii) or specified as nearest

competing neighbors. We find that commonly used count-based measures using the number

of competitors in specific geographic radii are outperformed by price-based measures using

prices of nearest competing neighbors.

Several theoretical studies focused on competition in spatial markets. One major finding

is that firms only compete with their close neighbors (see Hotelling (1929), Gabszewicz

and Thisse (1979), and Salop (1979)). The reason is that substitution opportunities for

1Standard theoretical competition models, such as Cournot and Bertrand competition models, support
this view.
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consumers are limited in geographic space since geographic location of a good is an inherent

feature. Since sellers compete for buyers that focus their search on substitute products

within a local area, competition in spatial markets is limited by competing peers operating

in the same geographic market (in close geographic proximity).

One challenging aspect of empirically evaluating spatial competition effects on prices

is that competition itself is unobserved and needs to be proxied. One common approach

for estimating spatial competition effects is to evaluate the influence that nearby competi-

tors (usually formulated as counters) within specified geographic distances have on prices.

Empirical studies measure spatial competition by the number of competitors within geo-

graphic distance to a seller such as a circle with an x-miles radius. This relates to the

idea that competition generally intensifies with increase in the number of sellers (see Arrow

(1962)). In spatial markets, close-by competitors have stronger impacts on nearby buyers

than further distant competitors. Therefore, the spatial competition usually decays with

geographic distance to a competitor. We refer to this as a count-based competition measure

based on geographic proximity. While it seems intuitive that homes engage in price competi-

tion with their nearby competitors, using the geographic distance measure (based on radii)

entails some caveats for real estate markets and might not be an appropriate concept to

apply in this context. First, it only uses the number of competing sellers within regions but

ignores any price information of competitors. Second, the number of competitors within a

specific radius can vary drastically across neighborhoods/geographic locations. While some

neighborhoods are denser and entail more competitors within a specific radius, other neigh-

borhoods are more sparsely distributed. Hence, the use of geographic distances (such as

radii of x miles) incorporates differential number of competitors and differential competitive

strength across regions.

One distinguished feature of the real estate market is that spatial dependence is orig-

inated from adjacency effects. This adjacency effects are manifested by the “comparable-
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sales approach”, that is, sellers and buyers assess own property valuations and list prices

using neighborhood homes as references see also Can (1990)). A certain number of nearest

comparable homes (often 3-5) serve as a reference basis for pricing. This approach is widely

used by realtors, assessors, appraisers, sellers, and buyers when assessing house values. The

nearest neighbor concept is also supported by the fact that most homes’ geographic in-

formation is made public on the internet. Therefore, agents are well informed about local

home listings, which enforces competition. The nearest neighbor concept has the advantage

(compared with geographic proximity or distance measures) that it adjusts to starkly vary-

ing property lot sizes across neighborhoods and market segments. For example, low-value

homes usually have smaller lots than high-value homes. Therefore, neighborhoods char-

acterized by low-value homes usually face more homes within a pre-specified geographic

distance (i.e., one mile) than high-value homes. The geographic distance measure does

not capture this lot size variation. Consequently, estimating an average competition effect

based on geographic proximities would overestimate (underestimate) competitive price ef-

fects in neighborhoods with low-value (high-value) homes. Therefore, geographic distance

measures might be prone to biases when neighborhoods or market segments strongly vary

in lot sizes or neighborhood densities of competing peers.

In general, the reference pricing or nearest neighbor method supports the view that home

sellers compete in prices and strategically interact depending on geographic proximity (see

Brueckner (2003) and Iwata et al. (2019)). This suggests that prices of closest competing

neighbors could be an appropriate competition measure. Hence, the theoretical foundation

for strategic price interactions between home sellers is grounded by localized demand. A

price reduction of a nearby competing home seller increases the likelihood that a potential

buyer will purchase this house. In order to regain this customer a competing seller needs

to respond to the price reduction and reduce its own price accordingly. Sellers compete for

local buyers while considering prices of nearby competitors.
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Using strategic price reactions as measurement for competition is not new and goes back

to measurements of conduct and conjectural variations in which the slopes of price reaction

functions are measured (see Bowley (1924), Bresnahan (1981), Genesove and Mullin (1998),

and Boone (2008b), among others).2 If products are substitutes, price reaction functions

have a positive slope, that is, a price reduction by a competitor will be responded by an

own price reduction. Hence, sellers’ price responsiveness (as measured by the slopes of

firms’ best-reply functions) is used as competition measure, where a more responsive price

reaction (a steeper slope of these reaction functions) represents more intense competition.3

These price reaction functions form the basis of the price-based competition measure, which

is considered as an alternative to the count-based measures described earlier.4

Our study focuses on the housing market, which is a natural setting for assessing com-

petition and price effects in spatial markets. A house represents a differentiated good with

well-defined product attributes (house size, value, etc.), and geographic location is an in-

trinsic characteristic. These well-defined housing attributes enable us to identify competing

peers and to establish proximity measures to evaluate spatial competition and prices.5 We

empirically test for spatial competition and employ a Bertrand oligopoly model with dif-

ferentiated products that forms the theoretical basis, see also Pinkse et al. (2002). We

experiment with alternative spatial measures for evaluating the strength of spatial com-

petition, including count-based and price-based methods as well as geographic radii and

nearest neighbor concepts. Based on home transaction information in Orange County

2The strategic price reactions as a measurement for spatial competition has been used in spatial markets
(see Pinkse et al. (2002) and Pinkse and Slade (2010)).

3Note that this measure is also related to own and cross-price elasticities of demand, the established
measures of substitutability sellers.

4An alternative way to measure competition is the use of price cost margins. However, as Boone (2008a)
remarks, theoretical studies show inconsistencies where more intense competition can lead to higher price cost
margins rather than lower price cost margins, see Rosenthal (1980), Stiglitz (1989), Bulow and Klemperer
(2002), and Amir (2002).

5We define “competing peers” as a current set of housing units that are listed on the market at the same
time. Note that we do not evaluate price dynamics caused by changing sets and prices of competitors over
time. While this type of price dynamics is an interesting research focus, it is beyond the scope of this paper.
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(California), we estimate a spatial autoregressive model using a two stage least squares

estimation method.

We find that price-based competition measures (based on price reaction functions) us-

ing the closest neighbor approach performs best for competition measurement in spatial

markets. The main reason is that it uses price information and accounts for heterogeneous

neighborhood and competition density of local markets. This finding properly reflects in-

herent institutional characteristics of the real estate market, such as the comparable sales

approach being limited to a few nearest neighbors. Second, the measure shows intensive

competitive effects that are strongly declining in the number of closet competitors. For

example, we find that price competition effects of the nearest five neighbors is about 10

times larger than the ones that relate to further distant neighbors. The strong spatial decay

accurately reflects the nature and understanding of spatial price competition among houses,

since substitution opportunities diminish with geographic distance. Finally, the measure

captures differential price competition intensities across home values. That is, the measure

shows more (less) intense spatial price competition among high (low) value homes. This es-

pecially applies to nearby competing homes. Furthermore, the decay of price competition is

slower among high-value homes. For example, while for high-value houses competitive price

effects reach out toward the 20 nearest competitors, for low-value houses these competition

effects affect only the 5 nearest neighboring homes.

2 Related Literature

A common approach in real estate economics is the estimation of price functions, also re-

ferred to as hedonic price functions (see Rosen (1974)). A hedonic price function establishes

a functional relationship between the house price and various associated house attributes.

The estimated coefficients reflect consumers’ willingness to pay for housing attributes (also
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called hedonic prices, or implicit (marginal) prices of house attributes).6 Can (1992) and

Can and Megbolugbe (1997) remark that not accounting for spatial dependence can result

in omitted variable bias, as errors are spatially dependent.

Studies address this concern by adding spatial dependence in house prices to their mod-

els (usually in the form of locational spillovers) to account for the influence of past transac-

tion prices of neighboring homes on current home prices within the same neighborhood (see

Can (1990), Can (1992), Can and Megbolugbe (1997), and Glaeser et al. (2005)). Scholars

often adopt a spatial econometric approach that measures locational spillovers based on

weighted average prices of prior sales located within certain distances (see Can (1992) and

Can and Megbolugbe (1997)). For example, Can (1992) finds that a $1,000 increase in the

weighted average of adjacent properties’ sale prices increases the sale price of a home by

around $400. In contrast to these studies, we are rather interested in the measurement of

spatial competition effects—that is, the influence of other contemporaneously listed prices

of “competing peers” on the price of a home.

Several empirical studies focus on the evaluation of spatial competition effects while

incorporating information on contemporaneous prices of competing peers into these spatial

econometric models (see Pinkse and Slade (2010) and Pinkse et al. (2006)). The rationale

of including this type of measures stems from standard theoretical models of imperfect price

competition, such as Bertrand competition, that describe price-setting behavior as strategic

responses to competing peers’ contemporaneous prices, i.e., the price reaction functions (see

Dixit (1979) as well as Hotelling (1929) and Salop (1979) for specialized locational models).

This measurement type gained popularity in spatial econometrics and is applied in modified

forms serving different purposes.7 We adjust the measures such that they suit the principle

of spatial competition while defining competing peers based on geographic proximity and

6The hedonic price function exhibits a market-clearing function that results from the interaction between
buyers’ bid functions and sellers’ supply functions (see Rosen (1974), pp. 50-51).

7These studies usually focus on the measurement of price spillovers and evaluate whether contempora-
neous home sale prices are influenced by the prices of nearby sold houses.
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nearest neighbors; we refer to them as price-based competition measures.

The implementation of price-based competition measures into an econometric frame-

work exposes a challenge since house prices are jointly determined and thus endogenous,

also referred to as “spatial endogeneity” (see e.g., Anselin (1988)). The use of standard

econometric approaches, such as OLS, results in potentially biased estimates. One alterna-

tive estimation method is the traditional instrumental variable approach where researchers

instrument for the potentially endogenous regressors (contemporaneous prices of competing

peers). Appropriate instruments, however, are difficult to find—especially in spatial mod-

els where geographic markets and neighborhoods differ strongly. In this case, the popular

Hausman-type of instruments (that use prices in neighboring markets as instruments) are

less appropriate since home prices can be correlated with home prices in adjacent neigh-

borhoods.

To resolve this “spatial endogeneity” problem, we adopt a spatial econometric framework

that controls for the spatial correlation among house prices (see Anselin (1988)). More

specifically, we use a high-order spatial autoregressive model that explicitly addresses spatial

dependence of prices by applying a transformation process (see also Can (1992) and Can

and Megbolugbe (1997)).8 Moreover, the SAR model allows us to construct alternative

valid instrumental variables that are based on spatial weight matrices that characterize

the strength of connectedness between pairs, and based on exogenous regressors (see e.g.,

Kelejian and Prucha (1998) and Kelejian and Prucha (2001)). It is important to note that

this choice of instrumental variables is feasible only in spatial econometric models and does

not apply to non-spatial approaches. The instrumental variable approach of estimating

a SAR model is introduced in Anselin (1988). In addition, Kelejian and Prucha (1998)

and Kelejian and Prucha (2010) illustrate the generalized spatial two-stage least squares

approach to estimating a spatial autoregressive model with autoregressive disturbance,

8Further details are provided later.
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which is further extended by Badinger and Egger (2011) to accommodate multiple weight

matrices in the setting of a high-order spatial model.

3 Data Description and Competition Measures

We established a comprehensive database on the residential real estate market sourced from

the multiple listing service database and the Freddie Mac SBL database. The database

holds information on 16,074 residential houses in Orange County, California, that were sold

in 2019. It contains house-specific information on prices, list and sale dates, geographic

locations, and further house attributes, including the size, age, number of bedrooms, number

of bathrooms, lot size, and so on.9

Table 1 shows summary statistics of our count-based competition measures. Real house

prices amount to $908,517 on average, with a large standard deviation of $448,847.10

Figure 1 presents a map of average home prices across census tracts. The figure shows

large regional differences in average prices. For example, neighborhoods located close to

the seashore or in the mountainous area tend to be more expensive on average. One would

suspect that housing units are significantly larger and more sparsely distributed in more

expensive neighborhoods compared to those located in cheaper neighborhoods.

Figure 2 shows the average number of competing houses listed at the same time for

each census tract. The figure illustrates large listing variations across neighborhoods. The

average number of competitors seems to be relatively larger in the census tracts close to

the sea, which overlap with higher-priced neighborhoods (as shown in Figure 1).

We now turn to the definitions of the count-based competition measures, which use the

9Note that since we intend to measure the degree of competition among houses, we use last listed prices
of other houses (listed at the same time). The last list prices represent the most appropriate measure since
final transaction prices of other contemporaneously listed houses would be unknown at the time of listing.
Throughout the remainder of the study, we denote final list prices simply as prices.

10We adjust the nominal house prices using the monthly consumer price index data from the Bureau of
Labor Statistics, and we measure all the house prices used for estimation in January 2021 dollars.
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number of competitors (competing peers) for the measurement of competitive price effects.

We consider the following three count-based competition measures:

(1) Count-based competition measure using geographic proximity: This measure counts

the number of nearby competitors (competing peers) that operate within specified geo-

graphic distances from the point of interest (see Heggestad and Rhoades (1978), Dranove

et al. (1992), Pinkse et al. (2002), Slade (2005), Davis (2006), Gaynor et al. (2015), and

Cooper et al. (2019)). In alignment with previous studies, we consider the number of houses

listed at the same time (“competing peers”) in specific distance rings (< 3 miles and 3-5

miles) to evaluate their effects on the price of a house (see e.g., Turnbull and Dombrow

(2006)). The justification of using this concept for describing the nature of spatial price

competition usually originates from two arguments: (1) A higher count of competing peers

within a specific radius provides more substitution possibilities to consumers and downward

pressure on prices; and (2) Competing peers located further away have lower competitive

effects on prices due to regional preferences and buyers’ diminished substitution opportu-

nities. Diminished substitution possibilities over distance reduce competitive price effects.

Table 1 shows that, on average, 150 (211) houses compete in a 0-3 (3-5) miles radius. The

large standard deviation of 97 (135) and maximum of 898 (1,315) indicate that there is a

large degree of heterogeneity of competitors within 0-3 (3-5) miles—that is, the density of

competitors varies strongly across regions. Overall, the data exhibit a large variation in

the number of competitors existing within 3 miles and between 3 and 5 miles away from

housing units.

(2) Count-based competition measure using characteristics proximity: This measure con-

siders the similarity in other product attributes (beyond geographic distance). We consider

the number of similarly sized competing peers (i.e., we consider those with size differences

less than 500 square feet and 500 to 1,000 square feet). The reasoning is that a house facing

a large number of similarly sized competitors provides more substitution opportunities for
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buyers, which imposes downward price pressure. Table 1 shows that, on average, 1,173

homes compete within a 500-square foot difference, and 845 homes compete with a 500 to

1,000 square foot difference.

(3) Count-based competition measure using a combination of geographic and character-

istics proximity: This measure is a combination of the previous two measures and combines

the number of houses of similar size within specified geographic distances. It considers the

number of similarly sized listed houses within specific geographic distances. For example,

it counts the number of houses within 3 miles, and 3 to 5 miles away from the house of

interest that do not exceed a size difference of 1,000 square feet compared to the house of

interest. Table 1 shows that 100 (131) houses are listed within 3 miles (within 3 to 5 miles)

and within 1,000 square feet.

As mentioned earlier, our study also considers two price-based competition measures

that build on the standard price competition concept (such as Bertrand competition) and

describe a provider’s best price response based on contemporaneous price information of

competing peers.

4) Price-based competition measure using geographic proximity: This measure includes

prices of contemporaneously listed homes within specified geographic distances (within 1

mile, 1 to 3 miles, and 3 to 5 miles) from the house of interest. The underlying rationale for

competition is similar to before—that is, smaller geographic distance increases substitution

possibilities for buyers, which reduces prices.

5) Price-based competition measure using nearest neighbor proximity: This measure

includes prices of contemporaneously listed neighboring homes (considering the nearest 5,

20, 50, etc. neighbors). The benefit of using the “nearest neighbor” concept is that it avoids

the necessity of pre-specifying geographic proximities or distance rings and provides more

consideration for starkly varying geographic markets and neighborhood densities. This is

advantageous since neighborhoods differ strongly in their density of competing listings. For
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example, while denser urban neighborhoods have many houses within a specific distance,

say 1 mile, more rural types of dispersed neighborhoods have fewer houses within 1 mile.

Consequently, denser (disperse) neighborhoods contain higher (fewer) counts of competing

peers. As can be seen in Table 1, the densities of “competing” houses vary greatly across

regions. Neighborhoods with small lot sizes and large neighborhood densities accumulate

a higher number of competing peers in the geographic distance measure, of which most

competitors do not have a competitive influence on the price of a house. Consequently,

geographic proximity measures (distance rings of 1 mile, 1 to 3 miles, etc.) that are fixed

across neighborhoods can result in large variations in the number of competing peers, many

of which may not have a competitive impact on the house under consideration. Hence, there

is a concern that measures based on fixed distance rings are inappropriate since they ignore

that the density of houses for sale could vary drastically across neighborhoods. The “nearest

neighbors” concept allows for more flexible distance rings.

4 Baseline Model Specification Using Count-Based Compe-

tition Measures

We begin our analysis by establishing a base case that builds on a hedonic price function

(see Rosen (1974)) while concentrating on three commonly used count-based competition

measures. We regress house prices on housing attributes and various fixed effects. The

regression equation is specified as follows:

log(P ) = αιN +Xhβh +Xdβd +Xcβc + ϵ, (1)

where P = (P1, · · · , PN )′ denotes the vector of prices for all houses sold in 2019, where

houses are denoted by 1, · · · , N . ιN denotes an (N×1) vector of ones, Xh includes observed

values of important house attributes (we use logged house size, age, number of bedrooms,
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number of bathrooms, and the logged lot area size), andXd consists of the census tract fixed

effects to absorb neighborhood effects and monthly dummies to accommodate seasonality

in the local housing market. Xc is a matrix containing the three count-based competition

measures based on: (1) geographic proximity, which includes the number of listed houses

in 0-3 miles and 3-5 miles radii; (2) characteristics proximity, which involves the number

of competing houses with a house size difference of less than 500 square feet and 500 to

1,000 square feet; and (3) a combination of geographic and characteristics proximity, which

includes the number of competing houses with size differences of less than 1,000 square feet

that are located within geographic distances of (0, 3), and [3, 5) miles.

The coefficients βh, βd, and βc denote the vectors of coefficients associated withXh, Xd,

and Xc, respectively. The key interest lies in βc, measuring the price effects of competition.

Table 2 presents the estimation results of three specifications that contain the count-

based competition measures. In all three specifications, the count-based competition mea-

sures based on geographic proximity are insignificant, with only two exceptions. In spec-

ifications (2) and (3), the number of competing peers located 3 to 5 miles away has a

significantly positive impact on house prices. This result is unexpected, we would rather

expect a negative coefficient estimate since nearby houses are substitutes. In general, the

three count-based competition measures appear less appropriate for measuring spatial com-

petition in housing markets.

The main reason why the above measures may not perform well is that the neigh-

borhood density varies drastically across areas such that the number of competing peers

in specified geographic distances fails to properly adjust to varying neighborhood density.

We, therefore, adopt the nearest neighbor concept.

Another reason why this specification may not perform well is that the count-based

competition measures do not include information on competing peers’ prices. This could be

relevant information to use since theoretical contributions (such as Bertrand competition
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models) relate to competitors’ prices as a strategic variable when determining prices.

In the following, we focus on price-based competition measures, which include informa-

tion on competitors’ prices as a regressor. The measure builds on standard models of price

competition, such as differentiated oligopoly models (proposed by Dixit (1979)), and more

specialized locational models, including Hotelling (1929) and Salop (1979). These models

establish price reaction functions that describe price-setting behavior as a best response

to competing peers’ prices. If goods are substitutes, price reaction functions are upward

sloping—that is, a provider’s best response to price reductions by competing peers is to

reduce its own price. The price response (captured by the estimated coefficients, as will be

explained later) is larger if products are closer substitutes such that providers operate in a

more competitive market.

One empirical challenge with including price-based competition measures as an addi-

tional regressor is that they are endogenous since competitors’ prices enter the measure and

prices are jointly determined. This would result in potentially bias when using standard

OLS estimation procedures (see e.g., Can (1992) and Can and Megbolugbe (1997)). We

adopt an estimation strategy that accounts for this endogeneity concern as will be explained

later.11

5 Conceptual Framework

In this section, we follow Mobley (2003) and Iwata et al. (2019) and build on a Betrand

oligopoly model to illustrate the theoretical framework for applying the spatial econometric

approach to modeling spatial price competition. To start with, we define the spatial market

of house i as a certain neighborhood surrounding that house where price competition takes

place (see e.g., Iwata et al. (2019)). To be more specific, houses located outside the spatially

defined market are not considered substitutes for house i. Therefore, houses outside of the

11Further details follow in Section 6.
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spatial market have no competition effects on house i’s price. Following Iwata et al. (2019),

we assume a linear demand function. We normalize the demand for house i to be between 0

and 1 so that it can be interpreted as the probability that house i is purchased. Furthermore,

we assume that the demand of house i depends on its own price, the weighted average price

of competing houses in its spatial market, and house and neighborhood characteristics X,

which include Xh, Xd, and Xc as introduced in the baseline model. To be more specific,

we denote the demand function of house i as di(Pi,wiP ,Xi), where wi denotes the i-th

row of the specified weight matrix W in the spatial autoregressive model, which we will

further illustrate in Section 6. Hence, the demand function is given as below:

di(Pi,wiP ,Xi) = αPi + λwiP +Xiη.

In this setting, the owner of house i chooses its price to maximize the expected profit,

which can be put as

Πi(Pi,wiP ,Xi) = (Pi − ci)di(Pi,wiP ,Xi) + (−ci)(1− di(Pi,wiP ,Xi))

= Pi(αPi + λwiP +Xiη).

Here, ci could be the construction cost of house i or the former acquisition cost. In

either case, ci is considered a sunk cost when the homeowner decides on the listed price of

house i. Based on the law of demand, we assume that α < 0 and λ > 0, given that the

competing houses in the spatial market are substitutes for house i. Using the first-order

condition with regards to Pi, we can derive a linear best response function for house i’s

price, which is given by

Pi(wiP ,Xi) = − λ

2α
wiP − 1

2α
Xiη.
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To simplify the notations, we further let θ = − λ
2α and β = − 1

2αη, to establish the linear

best response function:

Pi(wiP ,Xi) = θwiP +Xiβ, (2)

which results in the spatial autoregressive model specification with the spatial dependence

parameter θ > 0. By connecting this model framework with the competition measures

illustrated in Section 3, we can see that the count-based competition measures appear as

part of the neighborhood attributes inXi. In contrast, the price-based competition measures

are represented by wiP , and the magnitude of θ represents the strength of price responses

serving as a measurement for competition. That is, the steeper the best response function

of Pi with regards to the weighted average price of competing houses, the stronger is

the price competition in the spatial market. Under this theoretical framework, the price-

based competition measures characterize an opportunity to measure spatial competition as

the interaction among neighboring houses’ in a particular spatial market (see e.g., Boone

(2008a)).12

Note, price-based competition measures using geographic proximity and nearest-neighbor

proximity respectively reflect different ways of specifying the spatial market of a particular

house. When we consider geographic proximity, we assume that the spatial market is defined

by a specific distance ring surrounding the house under consideration, and that the houses

outside of the distance ring do not exert any competitive price effects. In contrast, when

we adopt nearest-neighbor proximity, we are assuming that the spatial market is composed

of the nearest 5, 20 , 50, etc. neighbors of the house under consideration. Therefore,

when we estimate the θ parameter from data, we are in fact estimating the strength of

price competition within the spatial market defined by the corresponding spatial weights.

The following section illustrates multiple types of spatial weight matrices that we use to

12Note that the hedonic housing price function (Rosen (1974)) that we adopted as the baseline model in
Section 4 is a special case of this framework when θ = λ = 0, i.e. the prices of neighboring houses do not
affect the demand for the house under consideration.
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characterize different spatial markets.

6 Main Empirical Model: Price-based Competition Mea-

sures

To resolve the endogeneity issue that arises from the inclusion of competitors’ prices, we

follow the literature on spatial econometrics and adopt a high-order spatial autoregressive

(SAR) model. This approach no longer treats the average prices of neighboring houses

as independent explanatory variables but accommodates the dependence of neighboring

houses through spatial weight matrices.

6.1 Spatial Autoregressive Model Specification

The high-order spatial autoregressive model is specified as follows:

log(P ) =
3∑

q=1

θqW
(1)
q log(P ) +Xβ1 + ε1, (3a)

log(P ) =

3∑
q=1

ψqW
(2)
q log(P ) +Xβ2 + ε2, (3b)

In this model specification, W1, W2, and W3 refer to three (N × N) spatial weight

matrices that incorporate the two alternative price-based competition measures and measure

the competitive price effects of nearby homes. This empirical model specification stems from

the best response function (equation (2)), derived in a Bertrand oligopoly model. However,

instead of specifying only one weight matrix as in Section 5, here we include multiple weight

matrices with the aim of capturing the potential decaying pattern in the price competition

effects as we consider the competing houses located farther away.

The first specification is shown in equation (3a). It includes price-based competition

17



measures using geographic proximity, which are considered by the weight matrices W
(1)
1 ,

W
(1)
2 , and W

(1)
3 . The three weight matrices carry price information on the competing peers

located within 1 mile, 1 to 3 miles, and 3 to 5 miles distances, respectively.13 P is again the

vector of prices for all housing units. Therefore, W
(1)
1 log(P ) gives the vector of weighted

average logged prices for neighboring competing houses located within 1 mile. The coeffi-

cients (θ1, θ2, and θ3) represent the competitive price effects associated with W
(1)
1 , W

(1)
2 ,

and W
(1)
3 and measure the price competition effects that contemporaneously listed homes

within specified geographic distances exert on other houses. For example, θ1 measures the

effect on prices originated by the weighted average of neighboring home prices within 1

mile as associated with W
(1)
1 . Consequently, the above specification reflects the principle

of best response functions, where prices are explained as best responses to competitors’

prices. A higher estimated θ coefficient stands for higher competition and a more extensive

price undercutting as a response to competing peers’ prices. Note, we also control for all

the count-based competition measures entering the matrix X (see equation (1)). Again,

apart from the competition measures, we also control for house attributes, census-tract

fixed effects, and monthly fixed effects. To be more specific, X = (ιN ,Xh,Xd,Xc). The

associated coefficients β1 measure the corresponding effects of X on price. Note that we

have included census-tract fixed effects to control for some unobserved neighborhood factors

that may impact the prices of multiple nearby houses in similar ways so that the estimates

of θ1, θ2, and θ3 only capture the price competition effects.

A second specification is shown in equation (3b) and contains price-based competition

measures using nearest neighbor proximity, which are considered by the weight matrices

W
(2)
1 , W

(2)
2 , and W

(2)
3 . The three weight matrices include price information on the 1-5,

6-20, and 21-50 nearest neighbors, respectively. The associated coefficients (ψ1, ψ2, and

ψ3) measure the competitive effects exerted by prices of nearest neighboring homes (1-5, 6-

13The row sums of all weight matrices are normalized to 1.
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20, and 21-50 nearest neighbors, respectively). For instance, ψ1 represents the competitive

effects on prices originated by the weighted average of the five nearest neighboring home

prices. The matrix X in equation (3b) is the same as in equation (3a), and β2 measures

the corresponding effects of X on price.

Regarding identification and potential endogeneity, first note that prices of all housing

units are treated as potentially endogenous, and the spatial dependence among them are

accommodated by the weight matrices, {W (1)
q }3q=1 and {W (2)

q }3q=1, multiplied by the price

vector. To resolve “spatial endogeneity” concerns, we can control for the spatial correlation

among house prices (Anselin (1988)) using the SAR model specification. Furthermore,

we adopt the 2SLS approach to estimating the high-order SAR model, which is robust to

spatial endogeneity and potential heteroskedasticity (see e.g., Kelejian and Prucha (2010)

and Badinger and Egger (2011)). For the instrumental variables, following Badinger and

Egger (2011), we consider the linearly independent terms of

(X,W
(1)
1 X,W

(1)
2 X,W

(1)
3 X, (W

(1)
1 )2X, (W

(1)
2 )2X, (W

(1)
3 )2X,W

(1)
1 W

(1)
2 X,W

(1)
2 W

(1)
3 X)

and

(X,W
(2)
1 X,W

(2)
2 X,W

(2)
3 X, (W

(2)
1 )2X, (W

(2)
2 )2X, (W

(2)
3 )2X,W

(2)
1 W

(2)
2 X,W

(2)
2 W

(2)
3 X)

for equations (3a) and (3b), respectively. To see the validity of the proposed instrumental

variables, let W1 and W2 denote two arbitrary candidate weight matrices in the high-

order SAR model. First note that (W1)
jX, (W2)

jX, and W1W2X are correlated with

W1 log(P ) and W2 log(P ), for j = 0, 1, 2. Also, as long as X is exogenous, (W1)
jX,

(W2)
jX, and W1W2X are also exogenous, namely uncorrelated with the error term (ϵ1

and ϵ2 respectively in equations (3a) and (3b)), conditional on X.14

14This selection of instruments is reasonable in our residential house market setting. The intuition is
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7 The Main Estimation Results

Specification (1), as shown in equation (3a), relates to the price-based competition measure

using geographic proximity, with geographic distances falling into the three distance rings,

(0, 1), [1, 3), and [3, 5) miles. We add all three count-based competition measures from be-

fore and also allow for heterogeneous or differential competitive price effects across various

groups of houses, including small and large houses, houses with no more than and more

than two bedrooms, and low-value and high-value houses.15 One reason to accommodate

heterogeneity is that consumers look for specific types of houses such that substitution

opportunities and price competition effects are limited to specific house types. Those sub-

stitution patterns could differ across home market segments due to differential willingness

to pay and substitution opportunities. This specification also incorporates the price-based

competition measure using geographic proximity.

The estimation results for specification (1), equation (3a), are shown in Table 3. For

instance, the results from column 1 (column 2) show that for small (large) houses, a 1

percent price increase for houses within one mile results in an, on average, 0.002 (0.002)

percent price increase for the housing unit under consideration. All coefficient estimates

for the price-based competition measure using geographic proximity are positive across all

geographic distances and for all market segments (that is, for smaller and larger houses as

well as for low-value and high-value homes). Most coefficients are not significantly different

from zero, or rather small in magnitude, such that they do not support meaningful evidence

for spatial competition. The estimation results do not show diminishing coefficient estimates

over distance and, therefore, do not provide supportive evidence for a geographic decay of

price competition effects. This is somewhat surprising since homes in closer proximity are

that a home’s own characteristics and weighted neighboring prices serve as appropriate instruments for own
price, while neighboring characteristics do not have a direct effect on own price.

15The two groups of small and large houses are divided by the median square footage of the full sample.
Similarly, the groups of low-value and high-value houses are divided by the median price.
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supposed to exert larger competitive impacts due to larger substitution opportunities, and

these measures would not capture this. Moreover, it is noteworthy that for all market

segments except for the low-value houses, at least half of the coefficient estimates on the

count-based competition measures are insignificant. In particular, coefficient estimates on

all the count-based competition measures are insignificant for the small houses. Among

those with significant estimates, a number of them show a counterintuitive positive impact

on house prices. This result provides further evidence that the count-based competition

measures are less appropriate in explaining price competition effects.

Specification (2), equation (3b), includes the price-based competition measures using

nearest neighbor proximity. The corresponding estimation results are shown in Table 4.

For example, the results from column 1 (column 2) show that for small (large) houses,

a 1 percent price increase for the five nearest competing peers is expected to lead to a

0.145 (0.159) percent price increase for the housing unit under consideration. Turning to

the nearest neighbors ranked 6-20, the coefficient estimate is significantly positive. The

magnitude of competition effects has become smaller, which is estimated to be 0.090 and

0.044 for small and large houses, respectively. For the nearest neighbors ranked 21-50, the

estimated price effect has an even smaller effect that is statistically insignificant. Turning

to the count-based competition measures at the lower panel of the table, it should be rec-

ognized that many associated coefficients remain insignificant and that they still carry a

number of significantly positive coefficient estimates that are counterintuitive. This result

further confirms the fact that count-based competition measures include limited additional

important information that is helpful in explaining price effects in spatial competition.

It should be noted that the coefficient estimates on the average prices of competitors

are more reasonable when the price-based competition measure using nearest neighbor prox-

imity (specification (2)) is adopted relative to using the price-based competition measure

using geographic proximity (specification (1)) since they are more significant and econom-

21



ically more meaningful. Importantly, they show a decaying pattern in magnitude as we

consider neighbors located farther away. That is, for small (large) houses, the price effects

decline from 0.145 (0.159) for the five nearest neighbors to 0.090 (0.044) for the nearest

neighbors ranked 6-20, and further decrease to 0.029 (0.013) for those ranked 21-50. The

decaying price effect is a result that confirms our understanding of spatial competition

since willingness and possibilities to substitute diminish with distance from a house under

consideration.

Furthermore, the results under specification (2) (as shown in columns 3 and 4 of Table 4)

indicate that for houses with no more than (more than) two bedrooms, the magnitude of

price effects from the five nearest competing houses is 0.166 (0.195), and it again declines

as we consider the neighbors that are located farther away. The pattern of results for these

two subgroups is similar to that of small and large houses. Hence, spatial price competition

effects are relatively homogeneous across houses with different sizes and across houses with

different numbers of bedrooms.

In comparing the coefficient estimates for low-value and high-value homes (see columns

5 and 6 in Table 4, respectively), we find that price competition effects differ starkly across

houses with different values. The estimated competition effect from the five nearest com-

peting houses is much larger in magnitude for the high-value houses (0.210) compared to

the low-value houses (0.146). This result indicates that price competition among the five

nearest listed housing units is more intense among more expensive houses. At first glance,

this result seems surprising and contradictory to the fact that listed houses tend to be

more sparsely distributed in high market segments. However, although there are more

listed houses within a certain geographic distance for low-value houses, the more distant

competing peers may not exert a competitive effect anymore. If we adopt count-based and

price-based competition measures using geographic proximity, they are still included regard-

less of their limited price competition effects. This may result in a distorted competitive

22



price effect, while the price-based competition measure using nearest neighbor proximity pre-

vents this distortion effect. Therefore, the prices of the five nearest competing houses exert

higher price competitive effects among high-value houses compared to low-value homes.

Furthermore, the price competition effects decay relatively slower among high-value

houses compared to low-value houses. To be more specific, the 20 nearest neighboring

houses have significant competition effects for high-value houses. In contrast, for low-

value houses, only the 5 nearest competitors have significant price effects on the house

under consideration. This finding is intuitive because high-value home buyers may have

relatively more cars for daily transportation, and therefore they have less restrictions on the

geographic location of future home, and tend to consider a larger set of competing choices.

In addition, Table 5 presents the p-values for some relevant statistical tests. First,

before conducting estimation of the high-order SAR model, we test for the presence of

spatial correlation in log(P ) associated with each weight matrix based on the Lagrangian

multiplier (LM) test statistic of spatial correlation in the dependent variable of a linear

regression (see Anselin (1988)).16 A small p-value shows the existence of spatial correlation

in log(P ) associated with the corresponding weight matrix. The table shows that for each of

theW
(1)
1 , W

(1)
2 , andW

(1)
3 under specification (1), equation (3a), nonzero spatial correlation

in house prices exists for only two of the six market segments, using the significance level

α = 0.05. In comparison, under specification (2), equation (3b), we find rather strong

evidence of nonzero spatial correlation based on W
(2)
1 for all the six market segments,

which again shows that average prices from the five nearest competitors make significant

contributions to the spatial price competition, regardless of the market segments. Also,

for each of W
(2)
2 and W

(2)
3 , we can reject the null hypothesis of zero spatial correlation at

α = 0.05 for four of the six market segments. In general, these results again show that

16We adopt the publicly available MATLAB code for the LM test written by James P. LeSage and Shifeng
Wang.
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the price-based competition measure using nearest neighbor proximity (specification (2)) are

more appropriate in measuring the spatial price competition among houses, compared to

using the price-based competition measure using geographic proximity (specification (1)).

In Table 5, we also report the p-values of testing the decaying pattern in price competi-

tion effects. Under specification (2), we can reject the null hypothesis that ψ1 ≤ ψ2 in favor

of ψ1 > ψ2 for all the six market segments under α = 0.05. This serves as formal evidence

that the price effect from the five nearest competing houses is stronger than the one related

to the competitors ranked in 6-20. Moreover, we also conducted the post-estimation tests of

presence of spatial correlation in the errors based on the estimated residual ε̂1 and ε̂2, where

ε̂1 = log(P )−
∑3

q=1 θ̂qW
(1)
q log(P )−Xβ̂1 and ε̂2 = log(P )−

∑3
q=1 ψ̂qW

(2)
q log(P )−Xβ̂2.

These tests are based on the testing procedure suggested by Kelejian and Prucha (2001),

and the corresponding p-values are all large and close to 1. This indicates that there is

no leftover spatial correlation in the errors and that the contemporaneous prices of nearest

competitors can explain the competition effects and variations in prices reasonably well.

Heterogeneous Price Effects Across Homes in Different Neighborhoods

Building on the previous finding (Table 4, columns 5 and 6) that price competition effects

are heterogeneous across low-value and high-value houses and the fact that neighborhoods

differ starkly in value (see Figure 1), we visualize how price competition effects vary across

different neighborhoods. We intend to further investigate heterogeneous competitive price

effects across disaggregated geographic neighborhoods.

Based on the price-based competition measure using nearest neighbor proximity, we sep-

arately estimate our model for different neighborhoods classified by census tracts. We use

the census tract division code as the group classifier, and we end up with 17 different groups

or neighborhoods. We present the estimated coefficients on W
(2)
1 log(P ), W

(2)
2 log(P ), and

W
(2)
3 log(P ) by census tract in Figure 3. In this figure, the maps from left to right present
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the estimated competition effects from the nearest competing houses ranked 1-5, 6-20, and

21-50, respectively. The areas that are colored blue have significantly positive coefficient

estimates. Darker blue areas have relatively larger magnitudes of competition effect esti-

mates. For areas in light gray, the corresponding estimates are not significant.

As shown in Figure 3, the estimated competition effects from the five nearest competing

houses tend to be stronger in neighborhoods near the seashore, where the average house

prices are relatively higher, as can be seen in Figure 1. This is in line with the results from

Table 4, column 6, which shows that high-value homes face more competitive price effects.

Furthermore, when we consider the nearest competitors ranked 6-20, the price competition

effects are significant only for a small number of census tracts that are relatively close to the

sea. It shows that the price competition effects decay relatively slower in more expensive

neighborhoods, which is again consistent with the results from Table 4, column 6. Also,

when we move on to the nearest competitors ranked 21-50, the price competition effects

become insignificant for all census tracts.

In addition, as a robustness check, we conduct estimations by census tract under another

specification where the three weight matrices characterize the nearest competing houses

ranked in positions 1-10, 11-20, and 21-30 so that we have equal numbers of competitors

that fall into these three distance rings. We find that the distribution of estimated price

effects from the 10 nearest competing houses under this specification is relatively similar to

that from the five nearest competitors in Figure 3. Consistent with our earlier results, the

estimated price effects from the 10 nearest competitors also tend to be larger in magnitude

for more expensive neighborhoods.
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8 Conclusion

This study tests the performance of alternative measures for price competition effects in

spatial markets. Our estimation results show that the price-based competition measure us-

ing nearest neighbor proximity outperforms other price-based and count-based competition

measures. The price-based competition measure using nearest neighbor proximity returns

reasonable estimation results that are consistent with our understanding of spatial com-

petition. The results clearly illustrate a decaying pattern of spatial price competition.

This result—that the spatial price competition pattern in residential housing markets is

more closely related to the relative distance (nearest neighbors ranked in particular posi-

tions) compared to the absolute distance (neighbors located in fixed distance rings)—is well

aligned with institutional features such as the “comparable sales” approach. Furthermore,

compared to using fixed geographic distance rings, adopting the nearest neighbor approach

may better accommodate the substantial heterogeneity in the density of houses on sales

across neighborhoods. We also find that spatial price competition effects are relatively

homogeneous across houses of different sizes and across houses with different numbers of

bedrooms but heterogeneous across houses with different prices. That is, price competition

is stronger among high-value homes, especially within the five nearest competitors.

For future research, it would be interesting to see whether price-based competition mea-

sures perform similarly well in other spatial markets.
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Table 1: Descriptive statistics for main variables

Mean Std Max Min

House price (in 2021 January dollars) 908,517 448,847 3,124,147 81,772
House size 1,997 841 5,945 500
Number of bathrooms 2.68 0.90 9.00 1.00
Number of bedrooms 3.47 0.92 9.00 0.00
Lot area size 6,540 4,878 49,179 0
Age 44 18 141 0

Count-based competition measure using geographic proximity
< 3 mile 150 97 898 0
[3, 5) miles 211 135 1,315 0

Count-based competition measure using characteristics proximity
< 500 sq ft 1,173 825 8,133 1
[500, 1, 000) sq ft 845 564 5,822 1

Count-based competition measure using a combination of geographic
and characteristics proximity
< 3 mile; < 1, 000 sq ft 100 72 713 0
[3, 5) miles; < 1, 000 sq ft 138 100 1,030 0

Number of observations: 16,074
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Table 2: OLS estimates of the effects of competitions on house prices

log(P ) (1) (2) (3)

Count-based competition measure using geographic proximity
< 3 miles -0.039 0.056 0.001

(0.038) (0.041) (0.068)
[3, 5) miles 0.010 0.089** 0.116*

(0.028) (0.029) (0.048)

Count-based competition measure using characteristics proximity
< 500 sq ft -0.001 -0.003

(0.004) (0.005)
[500, 1000) sq ft -0.040** -0.041**

(0.005) (0.005)

Count-based competition measure using a combination of
geographic and characteristics proximity
< 3 miles; < 1, 000 sq ft 0.104

(0.085)
[3, 5) miles; < 1, 000 sq ft -0.032

(0.067)

N 16,074 16,074 16,074
Adjusted R squared 0.883 0.884 0.884

* p < 0.05, ** p < 0.01. Robust standard errors in parentheses. Control variables include the
size, age, number of bedrooms, number of bathrooms, lot area size, census tract fixed effects,
and monthly fixed effects.
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Table 3: Estimated correlation in prices among housing units, Specification (1)

Small Large ≤ 2 bedrooms > 2 bedrooms Low-value High-value
(1) (2) (3) (4) (5) (6)

Price-based competition measure using geographic proximity

W
(1)
1 log(P ) 0.002 0.002 0.001 0.006** 0.003** 0.002*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

W
(1)
2 log(P ) 0.016 0.012 0.002 0.023 0.003 0.015*

(0.011) (0.013) (0.002) (0.015) (0.008) (0.006)

W
(1)
3 log(P ) 0.178** 0.007 0.002 0.013** 0.079 0.004

(0.049) (0.004) (0.004) (0.005) (0.051) (0.006)

Count-based competition measure using geographic proximity
< 3 miles -0.254 -0.020 -0.485* 0.094 -0.262* 0.015

(0.140) (0.073) (0.242) (0.066) (0.107) (0.076)
[3, 5) miles -0.106 -0.010 -0.263 0.119* -0.205* 0.115*

(0.111) (0.050) (0.180) (0.047) (0.086) (0.053)

Count-based competition measure using characteristics proximity
< 500 sq ft 0.009 0.072** -0.020 -0.011 0.028** 0.034**

(0.008) (0.011) (0.011) (0.006) (0.005) (0.009)
[500, 1000) sq ft -0.006 -0.077** 0.107** -0.046** -0.045** -0.053**

(0.012) (0.009) (0.019) (0.005) (0.006) (0.009)

Count-based competition measure using a combination of geographic and characteristics proximity
< 3 miles; < 1, 000 sq ft 0.281 -0.017 0.621* 0.033 0.279* -0.043

(0.158) (0.106) (0.292) (0.083) (0.119) (0.113)
[3, 5) miles; < 1, 000 sq ft 0.115 0.056 -0.055 0.016 0.276** -0.145

(0.140) (0.072) (0.234) (0.065) (0.100) (0.089)

N 8,038 8,036 2,109 13,965 8,037 8,037

* p < 0.05, ** p < 0.01. Standard errors are presented in parentheses. Control variables include
the size, age, number of bedrooms, number of bathrooms, lot area size, census-tract fixed effects,
and monthly fixed effects.
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Table 4: Estimated correlation in prices among housing units, Specification (2)

Small Large ≤ 2 bedrooms > 2 bedrooms Low-value High-value
(1) (2) (3) (4) (5) (6)

Price-based competition measure using nearest neighbor proximity

W
(2)
1 log(P ) 0.145** 0.159** 0.166** 0.195** 0.146** 0.210**

(0.021) (0.015) (0.045) (0.011) (0.021) (0.016)

W
(2)
2 log(P ) 0.090** 0.044* 0.030 0.047** 0.027 0.053**

(0.023) (0.019) (0.038) (0.013) (0.022) (0.020)

W
(2)
3 log(P ) 0.029 0.013 0.015 0.018 -0.006 0.015

(0.025) (0.009) (0.009) (0.011) (0.028) (0.008)

Count-based competition measure using geographic proximity
< 3 miles -0.297* -0.030 -0.479* 0.076 -0.245* 0.016

(0.139) (0.074) (0.243) (0.066) (0.106) (0.077)
[3, 5) miles -0.034 -0.022 -0.207 0.107* -0.196* 0.095

(0.110) (0.049) (0.175) (0.046) (0.083) (0.053)

Count-based competition measure using characteristics proximity
< 500 sq ft 0.003 0.072** -0.026* -0.008 0.025** 0.036**

(0.008) (0.011) (0.011) (0.006) (0.004) (0.008)
[500, 1000) sq ft -0.009 -0.077** 0.094** -0.049** -0.046** -0.056**

(0.012) (0.009) (0.019) (0.005) (0.006) (0.008)

Count-based competition measure using a combination of geographic and characteristics proximity
< 3 miles; < 1, 000 sq ft 0.361* 0.001 0.653* 0.081 0.294* -0.027

(0.156) (0.105) (0.295) (0.082) (0.118) (0.113)
[3, 5) miles; < 1, 000 sq ft 0.067 0.094 -0.025 0.034 0.267** -0.080

(0.140) (0.072) (0.229) (0.063) (0.096) (0.087)

N 8,038 8,036 2,109 13,965 8,037 8,037

* p < 0.05, ** p < 0.01. Standard errors are presented in parentheses. Control variables include
the size, age, number of bedrooms, number of bathrooms, lot area size, census-tract fixed effects,
and monthly fixed effects.
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Table 5: P values of relevant statistical tests

Specification (1) Small Large ≤ 2 bedrooms > 2 bedrooms Low-value High-value
(1) (2) (3) (4) (5) (6)

Tests of presence of spatial correlation in log(P ) associated with

W
(1)
1 0.059 0.126 0.105 0.000 0.004 0.075

W
(1)
2 0.004 0.187 0.289 0.002 0.395 0.076

W
(1)
3 0.000 0.223 0.608 0.046 0.233 0.185

Tests of decaying pattern in price competition effects
H0:θ1 ≤ θ2; Ha:θ1 > θ2 0.888 0.797 0.671 0.877 0.523 0.975
H0:θ2 ≤ θ3; Ha:θ2 > θ3 0.999 0.344 0.475 0.259 0.933 0.132

Specification (2) Small Large ≤ 2 bedrooms > 2 bedrooms Low-value High-value
(1) (2) (3) (4) (5) (6)

Tests of presence of spatial correlation in log(P ) associated with

W
(2)
1 0.000 0.000 0.000 0.000 0.000 0.000

W
(2)
2 0.000 0.002 0.235 0.000 0.710 0.003

W
(2)
3 0.086 0.012 0.036 0.000 0.261 0.009

Tests of decaying pattern in price competition effects
H0:ψ1 ≤ ψ2; Ha:ψ1 > ψ2 0.034 0.000 0.007 0.000 0.000 0.000
H0:ψ2 ≤ ψ3; Ha:ψ2 > ψ3 0.036 0.075 0.359 0.054 0.182 0.046

H0 and Ha respectively denote the null hypothesis and alternative hypothesis of the correspond-
ing test. For the tests of presence of spatial correlation in log(P ), H0 is zero spatial correlation
associated with the corresponding weight matrix, and Ha is nonzero spatial correlation associ-
ated with the corresponding weight matrix.
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Figure 1: Average house prices by census tract
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Figure 2: Average number of competing listed houses by census tract
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Figure 3: Estimated competition effects from nearest competitors by census tract
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