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Abstract 
 
We study the effectiveness of climate change mitigation policies in reducing carbon emissions, 
focusing on the channel of economy-wide energy efficiency. Using U.S. data, we estimate impulse 
response functions (IRFs) that characterize how energy efficiency responds to energy price 
shocks. Standard climate-economy models cannot replicate the slow transition dynamics observed 
in the data. We build a tractable model that nests the existing literature and can closely replicate 
the empirical IRFs. The slow dynamics in our model imply that carbon taxes reduce cumulative 
emissions less than predicted by standard models and that clean energy subsidies reduce 
cumulative emissions more than predicted by standard models. 
JEL-Codes: E240, O330, O440. 
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1 Introduction

Many national governments are instituting policies meant to reduce carbon emissions. How

effective will these climate change mitigation policies be at reducing carbon emissions? We

address this question in a quantitative, dynamic climate-economy model with realistic tran-

sition dynamics. Transition dynamics are crucial to climate policy analysis for two reasons.

First, climate change is a function of the stock of carbon in the atmosphere, rather than the

flow of emissions. So, the environmental impact of a mitigation policy depends on how it

affects emissions in the short-, medium- and long-run. Second, many climate policy goals

are framed in terms of medium-run emissions. For example, the United States’ Nationally

Determined Contribution to the Paris Agreement focuses on targets for flow emissions in

2030.1 Despite the importance of transition dynamics for climate policy analysis, exist-

ing climate-economy models are calibrated to static or steady state moments (e.g., Golosov

et al., 2014; Hassler et al., 2016; Hassler and Krusell, 2018; Barrage and Nordhaus, 2023).2

In other words, they are designed to correctly capture long-run outcomes and not designed to

have realistic transition dynamics. A recent memo from the Biden Administration highlights

the need for climate-economy models with better transition dynamics, because such models

would allow for more evidenced-based policymaking.3

We focus on the dynamics of energy efficiency, an important determinant of carbon

emissions (Raupach et al., 2007; Peters et al., 2017; Le Quéré et al., 2019). Put differently, we

study substitution between energy and non-energy factors of production. Existing work finds

that the short-run elasticity of substitution is near zero, but the long-run elasticity is around

one (Atkeson and Kehoe, 1999; Hassler et al., 2021a). Climate economy models generally

1Indeed, the document is subtitled “Reducing Greenhouse Gases in the United States: A 2030 Emissions
Target”. See the entry for the United States at: http://tinyurl.com/57xn9fez.

2An exception is a literature that integrates climate change into business cycle analysis to look at the
impacts of environmental policy over very short time horizons (e.g., Heutel, 2012; Annicchiarico and Di Dio,
2015; Känzig, 2023). As in the standard models, we examine impacts over longer time horizons in order to
determine the full impacts of climate policy. Bilal and Rossi-Hansberg (2023) generate realistic transitions
following climate impacts, like hurricanes and heat waves, rather than climate policy, in a long-run model.
Relatedly, Klenow et al. (2023) study the long-run, dynamic impacts of temperature shocks. Metcalf and
Stock (2023) study the effect of carbon taxes on macroeconomic outcomes and emissions, but do not match
a model to data.

3The memo lists six areas for improvement in climate-economy models. Number 2, ‘Account for
transitional dynamics and frictions,’ is the most relevant. Relative to existing work, the model de-
veloped in this paper also improves on Number 6, ‘Include short- and intermediate-term timescales
and greater spatial granularity’, by considering a model with an annual time step and improves
on Number 1, ‘Include nonprice policies’, by studying the impacts of clean energy subsidies in ad-
dition to a carbon price. See https://www.whitehouse.gov/wp-content/uploads/2023/12/Memo_

Tools-for-Near-Term-Climate-Risk-Management.pdf.

1
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assume that the elasticity is one in both the short and long run (e.g., Golosov et al., 2014;

Hassler et al., 2016; Barrage, 2020; Cruz and Rossi-Hansberg, 2024). This causes standard

models to overestimate the degree to which energy efficiency reacts to policy-induced changes

in energy prices in the short and medium run (Casey, 2024).

To generate realistic dynamics in our model, we incorporate the insights of Hassler et al.

(2021a) and the modeling framework of Leon-Ledesma and Satchi (2019) into a neoclassical

production setting where final goods are produced with capital, labor, and energy. The result

is a tractable setting in which the elasticity of substitution between energy and non-energy

inputs can vary over time due to endogenous technology choice. We consider a model with

two types of technology, both of which increase output. One technology augments energy and

improves energy efficiency, and the other technology augments a capital-labor composite and

decreases energy efficiency. Firms pay an adjustment cost when they alter their technology

mix. The size of the adjustment costs determines how slowly energy efficiency responds to

a change in energy prices.

We calibrate the model to the energy efficiency transition dynamics observed in the data.

We use aggregate US data on energy use and energy prices from the Energy Information

Administration (EIA) to estimate empirical impulse response functions (IRFs) that show how

economy-wide energy efficiency responds to changes in the real price of energy. The IRFs

suggest that energy efficiency responds slowly to changes in energy prices. We calibrate the

adjustment costs and short-run substitution elasticity in the model so that it generates IRFs

that are similar to those estimated in the data. The calibrated model fits the data closely.

We also show that the approach used in leading climate-economy models cannot replicate

the patterns observed in the data, because it assumes that energy efficiency responds quickly

to changes in energy prices.

To analyze the importance of slow transition dynamics, we use the model to study the

effectiveness of climate change mitigation policies. We focus on comparing our results to

the standard approach used in the existing literature. We examine carbon taxes, the most

commonly discussed mitigation policy, and clean energy subsidies, a central climate tool in

the Inflation Reduction Act (IRA).

Slow transition dynamics significantly hinder the ability of carbon taxes to reduce cumu-

lative carbon emissions. Carbon taxes increase the price of energy and induce substitution

away from energy and toward non-energy inputs. In other words, they increase energy

efficiency. In our model and the data, this process happens slowly, as firms adjust their tech-

nology choices in response to changes in tax-inclusive energy prices. In standard models,

2



however, the adjustment process happens immediately. Our model predicts that a 50 percent

value-added carbon tax reduces cumulative carbon emissions by 19 percent over the next

decade, relative to a no-policy scenario. In the standard model, by contrast, the same tax

reduces emissions by 35 percent. By this metric, accounting for the slow transition dynamics

in the data reduces the estimated effectiveness of carbon taxes by almost half.

Conversely, slow transition dynamics significantly bolster the ability of clean energy sub-

sidies to reduce cumulative carbon emissions. Unlike carbon taxes, clean energy subsidies

decrease the price of energy, inducing substitution towards energy inputs and decreasing

energy efficiency (Holland et al., 2009; Newell et al., 2019). As a result, these policies are

more effective when energy efficiency dynamics are slow. Our model predicts that a 20 per-

cent subsidy for clean energy reduces cumulative carbon emissions by 4 percent over the

next decade, relative to laissez-faire. In the standard model, by contrast, the same path of

subsidies increases emissions by 1 percent.

Related Literature. Starting with the DICE model (Nordhaus, 1993), many studies

have investigated climate policy using growth models (e.g., Golosov et al., 2014; Hassler

et al., 2021b; Barrage and Nordhaus, 2023; Cruz and Rossi-Hansberg, 2024). When energy

efficiency is included in these models, it is generally done with a Cobb-Douglas aggregate

production function, implying that the short- and long-run elasticities of substitution are

both equal to one. This implies that energy efficiency reacts quickly to changes in energy

prices. We build on this literature by constructing a model that matches the empirical

dynamics of energy efficiency and showing that these dynamics have significant consequences

for the effectiveness of mitigation policies.

There is also long literature documenting empirical facts about energy use (e.g., Van der

Werf, 2008; Koetse et al., 2008), including the fact that the elasticity of substitution differs

in the short and long run (e.g., Pindyck, 1979; Hassler et al., 2021a). There is also a long

literature presenting models that explain the difference between the short- and long-run

elasticities. Older models relied on putty-putty or putty-clay models with adjustment costs

and many types of capital (e.g., Pindyck and Rotemberg, 1983; Atkeson and Kehoe, 1999),

while newer models stress directed technical change in more aggregated settings (e.g., André

and Smulders, 2014; Hassler et al., 2021a). We contribute to this literature by estimating

the full transition dynamics that occur as an economy moves from the short run to the long

run and by demonstrating the importance of these slow dynamics for the effectiveness of

climate change mitigation policies.

3



Our work also contributes to a small but growing literature on transition dynamics and

climate policy. The most closely related paper is Casey (2024), which uses a model of directed

technical change to study the role of energy efficiency transition dynamics in determining

the effectiveness of carbon taxes. The model is calibrated to steady state moments only. It

utilizes a short-run elasticity of zero and does not report a long-run elasticity, which cannot

be found analytically.4 Building on this work, Hinkelmann (2023) considers a richer model

with several margins of adjustment and similarly shows that transition dynamics matter

for the design of carbon taxes that can implement medium-run climate policy goals in the

United States. Like us, he utilizes the production structure of Leon-Ledesma and Satchi

(2019), but he does not match the transition dynamics to data.5,6 Airaudo et al. (2023) take

a somewhat different approach and embed the framework of Hassler et al. (2021a) in a open-

economy business cycle model to study the impact of climate policy on both economic and

environmental outcomes. Campiglio et al. (2022) study optimal climate policy in a model

with capital adjustment costs. They calibrate their model to the outcomes of granular energy

models, rather than directly to the transition dynamics observed in aggregate data. Like

us, they find that transition dynamics play an important role in climate policy. Our work

complements these earlier studies in two ways. First, and most importantly, we match our

model to the transition dynamics observed in data. Second, we stress the differential effect

of energy efficiency dynamics on carbon taxes and clean energy subsidies, the latter of which

is central to recent climate legislation in the United States.

2 Model

2.1 Model Specification

Time is discrete and indexed by t. Each period corresponds to one year. All production is

perfectly competitive. Our model is focused on aggregate energy efficiency, i.e., substitution

between energy and non-energy inputs to production. The representative final good producer

4As noted above, our work builds on insights from Hassler et al. (2021a). In their empirical application,
they estimate an endogenous growth model with annual data, but do not match transition dynamics. They
do not study climate policy.

5See also Hinkelmann and Farajpour (2021), who confirm the importance of distinguishing between short-
and long-run elasticities, but do not include transition dynamics.

6Hinkelmann (2024) uses related tools to study substitution between electricity and fossil fuels.
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has access to a CES production technology:

Ỹt =
(
(AN,tNt)

ϵ−1
ϵ + (AE,tEt)

ϵ−1
ϵ

) ϵ
ϵ−1

, (1)

where Ỹt is gross output, Nt is non-energy inputs in productions (capital and labor), Et is

energy, and ϵ ∈ (0,∞). The variable AN,t is non-energy-augmenting technology, and AE,t

is energy-augmenting technology, which is closely related to energy efficiency. The final

good producer chooses a sequence of inputs, {Kt, L, Et}∞t=0, and a sequence of technologies,

{AN,t, AE,t}∞t=0, to maximize the expected present discounted value of future profits. The

price of the final good is normalized to one. We use pN,t to denote the price of the non-energy

composite, and pE,t to denote the price of energy.

The representative producer can choose the two technology terms from a menu

xt = (1− η) lnAN,t + η lnAE,t, (2)

where xt captures the overall level of technology. We also define Xt := ext . As shown below,

this will be a natural measure of the overall level of technology in the economy. The growth

rate of Xt, gX,t, follows a stochastic AR(1) process

gX,t = (1− ρX)µX + ρXgX,t−1 + ωX,t, (3)

where ωX,t ∼ N (0,Σ2
X) is an i.i.d. shock and µX is a long-run drift parameter. The producer

chooses current-period technologies prior to the realization of ωX,t.

Let θt ≡ AE,t/AN,t be the technology ratio. When firms adjust θt, they lose a fraction of

total output due to a quadratic adjustment costs

Φ

(
θt
θt−1

)
=

ϕ

2

(
θt
θt−1

− 1

)2

. (4)

Given the convex adjustment costs, firms adjust θt slowly over time in response to a change

in relative input prices. Parameter ϕ determines how quickly this adjustment occurs.

Combining production function (1) and the technology menu (2), output can be written

as

Ỹt = Xt

((
θ−η
t Nt

) ϵ−1
ϵ +

(
θ1−η
t Et

) ϵ−1
ϵ

) ϵ
ϵ−1

. (5)

The overall level of technology, Xt, is exogenous and the direction of technology, θt, is
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endogenous.

An intermediate producer combines capital and labor into the non-energy input bundle

using a Cobb-Douglas technology:

Nt = Kα
t L

1−α. (6)

We assume that the size of the labor force is constant. For prices, wt denotes the wage rate,

ρt denotes the rental rate on capital, and α ∈ (0, 1).

Energy is extracted from the environment using the final good and a linear production

technology, implying that pE,t is equal to the real extraction cost. The energy price growth

rate follows a stochastic AR(1) process

gpE,t
= (1− ρpE)µpE + ρpEgpE,t−1

+ ωpE,t
, (7)

where ωpE,t
∼ N (0,Σ2

pE
) is an i.i.d. shock to the growth rate of energy prices in each period

and µpE is the long-run drift parameter. Again, firms choose current-period technology levels

prior to the realization of the shock.

Final output (Yt) is gross output minus energy expenditures and adjustment costs:

Yt =

(
1− ϕ

2

(
θt
θt−1

− 1

)2
)

× Ỹt − pE,tEt. (8)

This is the measure of gross domestic product (GDP) in our model.

A representative household chooses sequences of consumption (Ct) and investment (It)

to maximize expected lifetime utility

U := E0

(
∞∑
t=0

βt ln(Ct)

)
, (9)

taking all prices and technology levels as given. Here, β ∈ (0, 1) is the discount factor. The

budget constraint for the representative household is

Ct + It = wtL+ ρtKt = Yt. (10)

Capital evolves according to

Kt+1 = It + (1− δ)Kt, (11)

6



where δ ∈ (0, 1) is the depreciation rate.

We now have all of the components necessary to define a competitive equilibrium.7

Definition 1. A competitive equilibrium is a sequence of prices, quantities, and technolo-

gies such that (1) firms maximize profits, (2) all market clearing conditions hold, and (3)

individuals maximize lifetime utility.

We have not specified the costs of climate change in either the production or utility func-

tions. Our focus is on the determinants, rather than the consequences, of carbon emissions.

Since relatively little is known about the magnitude of climate impacts (Auffhammer, 2018),

we prefer to quantify our results in terms of the quantity of dirty energy use, rather than

attempting to translate energy use into changes in temperature, utility, or productivity. The

fact that climate change doesn’t affect economic dynamics is equivalent to a setting where

the costs of climate change enter the utility function in an additive form (see, e.g., Barrage,

2020). Recent work on the social cost of climate change suggests that much of the damages

come from the non-market impacts of climate (e.g., Rennert et al., 2022).

2.2 The Elasticity of Substitution (EoS)

2.2.1 Short- versus Long-Run EoS

The key idea behind this production structure is that, following a change in energy prices,

the economy behaves differently in the short and long run. In the very short run, technology

is fixed and the producer can only respond to energy prices by substituting non-energy

inputs for energy inputs using the CES function (1). At longer time horizons, the producer

can also change technology terms, which makes production more flexible and leads to more

substitution in response to change in relative prices.

To further explore this intuition in terms of the elasticity of substitution between energy

and non-energy inputs, we will now briefly discuss the theoretical results from Leon-Ledesma

and Satchi (2019), which is the basis for our model.

They define the short-run elasticity of substitution as

σSR := −
d ln(Et

Nt
)

d ln(
pE,t

pN,t
)

∣∣∣∣∣
θt fixed

. (12)

When climate policy or supply shocks increase the relative price of energy, σSR describes the

immediate reaction of firms. The long-run elasticity of substitution (σLR) is the elasticity of

7Appendix Section A presents the full set of equilibrium equations for the model.
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substitution when θt has fully adjusted to its profit-maximizing level:

σLR := −
d ln(Et

Nt
)

d ln(
pE,t

pN,t
)

∣∣∣∣∣
∂Πt
∂θt

=0

, (13)

where Πt is profits earned by the final good producer in period t. When climate policy or

supply shocks increase the relative price of energy, σLR describes the long-run reaction of

firms.8

Proposition 1. Consider a production setting given by the production function (1) and the

technology menu (2). In this case, σSR = ϵ and σLR = 1.

Proof. This is a special case of Proposition 3 in Leon-Ledesma and Satchi (2019). We provide

a simple proof in Appendix Section A.2.

2.2.2 EoS and the Energy Expenditure Share

In our empirical application, we estimate the impact of energy price shocks on the energy

expenditure share of output. To see how these objects are related, let σ be the EoS for some

time horizon. Taking the definition of the EoS and integrating,

ln
Et

Nt

= constant + σ ln
pN,t

pE,t

. (14)

Subtracting ln
pN,t

pE,t
from both sides gives the following common expression:

ln
pE,tEt

pN,tNt

= constant + (σ − 1) ln
pN,t

pE,t

. (15)

Now, we restrict attention to outcomes when there are no adjustment costs. This captures

the long-run elasticity (after all adjustment costs are paid) and the short-run elasticity

(before any adjustment costs are paid). With perfect competition, total revenue is equal to

payments to energy producers plus payment to non-energy factors of production. So, we can

re-write our expression as

ln
sE,t

1− sE,t

= constant + (σ − 1) ln
pN,t

pE,t

, (16)

8The definition of σLR from Leon-Ledesma and Satchi (2019) refers to a firm that only maximizes single-
period profits. In our empirical applications, we study a firm that maximizes the present discounted value
of profits in an environment where the energy price is constantly changing.
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where

sE,t :=
pE,tEt

Yt + pE,tEt

, (17)

is the energy expenditure share of output. We use this measure of the energy expenditure

share for two reasons. The first is to be consistent with the data. It would be natural to

measure to energy expenditure share in terms of gross output, but we would need a measure

of adjustment cost expenditure to calculate gross output in a way that is consistent with our

model. Unfortunately, there is not straightforward way to do this. The second reason that

we choose this measure is to facilitate comparisons with the existing literature. As discussed

below, the existing literature makes stark predictions about how this measure of the energy

expenditure share responds to a price shock, making it easy to compare the predictions of

the existing literature to our model and the data.

In our empirical application, we study how exogenous shocks to pE,t affect the dynamics

of sE,t, and then match the dynamics to our model. Equation (16) shows how these objects

are related, though we will not be able to estimate it directly. For this reason, our estimation

procedure is in the spirit of indirect inference (Smith, 2008).9

2.3 Comparison to Existing Literature

In the macro climate-economy literature, it is standard to use a Cobb-Douglas (CD) pro-

duction function for final output,

Yt = Kα
t E

ν
t (AtL)

1−α−ν .

This production function assumes σSR = σLR = 1. Thus, it has the same long-run predic-

tions as our model, but different short- and medium-run predictions. Indeed, this production

function is a special case of our model with ϵ = 1 and ϕ = 0. The CD production function

implies that the energy expenditure share is sCD
E,t = ν ∀t. Thus, we can easily test the pre-

dictions of this model against the data by examining how the expenditure share responds to

changes in the real energy price. The data presented in Figure 1 suggest that this production

function will not be a good match for the data at short time horizons.

9Since the price of output is normalized to one, the endogenous object pN,t is a function of only the
price of energy and the production function parameters. Since we are estimating the production function
parameters, we do not have a closed form equation that we can take directly to the data. But, we are still in
a scenario where we are examining how one endogenous variable, sE,t, responds to shocks in one exogenous
variable, pE,t.

9



3 Matching the Model to Data

In this section, we discuss the empirical IRFs and how we use them to calibrate the model.

Existing climate-economy models are often calibrated to long-run averages, like the average

energy share of expenditure. We instead want to calibrate our model to data patterns that

capture transition dynamics as well as long-run averages.

3.1 Energy Data

Our energy data come from the State Energy Data System (SEDS) produced by the U.S.

Energy Information Administration (EIA). Given that we are interested in macro elasticities,

we focus on aggregate data for the United States. Appendix Section B provides further

description of the data. The data include quantities for different types of primary energy

(e.g., coal, oil, renewables) and final energy (e.g., electricity, gasoline). The data also include

prices for most types of primary and final energy, but do not include prices for renewable

sources of primary energy.

Our analysis uses two empirical objects, the energy expenditure share and the real price of

final energy. As in the model, the energy expenditure share is measured as energy expenditure

divided by the sum of final output (GDP) and energy expenditure. Our measure of the energy

price is the BTU-weighted average across energy sources. Hassler et al. (2021a) propose a

method of calculating aggregate prices that weights the quantities of different energy types

by their average prices. In Appendix Section B.3, we show that this has virtually no effect

on our price series. To convert nominal to real prices, we use the GDP deflator.

Figure 1 plots the two empirical objects. Panel (a) focuses on long-run trends. The real

price of final energy has been increasing over this period, while the expenditure share has

been been declining. Together, these two observations suggest an EoS between energy and

non-energy inputs that is greater than one. Given the relatively short time period, it is

hard to rule out the hypothesis that there is no trend in the share, which would suggest a

long-run EoS of one. This is consistent with the econometric literature that distinguishes

between short- and long-run elasticities and finds long-run elasticities at or above one (Griffin

and Gregory, 1976; Pindyck, 1979; Koetse et al., 2008). The macro climate literature has

interpreted the evidence as suggesting that a unitary elasticty, i.e Cobb-Douglas production,

is a good fit for data (e.g., Golosov et al., 2014; Barrage, 2020; Hassler et al., 2021b). Since our

goal is to demonstrate the importance of transition dynamics in climate-economy models, we

follow the existing literature and focus on the case of a unitary long-run elasticity throughout

10



(a) Trends (b) Deviations

Figure 1: Final Energy Price and Expenditure Share

Note: Panel (a) shows the average real price of final energy and the energy expenditure share. Panel (b)

shows the deviation of the real price from its deterministic exponential trend and the deviation of the energy

expenditure share from its average value.

the paper. In other words, we assume that any trend in the expenditure share is unrelated

to changes in the relative price of energy and non-energy inputs.

To highlight short- and medium-run fluctuations, panel (b) plots the deviations of real

energy price and the expenditure share from their deterministic exponential trends. The

two series move together closely, indicating that the short-run EoS is well below one. Again,

this is consistent with the econometric literature, which finds short-run elasticities that are

close to zero when looking at very short time horizons (e.g., Berndt and Wood, 1975; Hassler

et al., 2021a).

3.2 Empirical Methodology

We use the annual data described in the previous section to estimate the impulse response

function (IRF) of the energy expenditure share to a permanent change in the level of energy

prices. To do so, we use a structural vector autoregression (SVAR). Our SVAR consists of

the following two equations:

∆ ln (pE,t) = cons1 + a ·∆ ln (pE,t−1) + u1 (18)

sE,t = cons2 + b ·∆ ln (pE,t−1) + c · sE,t−1 + u2. (19)

11



To identify shocks, we make the assumption that u1 = ϵ1 and u2 = dϵ1 + ϵ2, where ϵ1 and

ϵ2 are orthogonal structural shocks. Following the model, this specification assumes that

energy prices evolve exogenously. In other words, it assumes that annual variation in energy

prices is driven by supply shocks, which are captured by ϵ1. Our IRFs focus on the dynamics

following a one standard deviation shock to ϵ1, which we refer to as an ‘energy price shock’.

We use the de-trended energy expenditure share in our main specification, following

Blanchard and Quah (1989). Thus, our analysis assumes that any trend in sE,t is unrelated

to changes in the price of energy, as assumption that is consistent with the unitary elasticity

of substitution used in the existing literature (Golosov et al., 2014). Appendix Section C.1

shows that the results are quantitatively and qualitatively similar if we do not de-trend the

data.10

Our baseline VAR specification uses only one lag of the dependent variables. Appendix

Section C.2 demonstrates that the empirical IRFs are quantitatively and qualitatively similar

with three and five lags in equation (19). We also examined a number of lag selection criteria,

all of which suggest that the optimal numbers of lags is one.11

3.3 External Model Parameters

We set a number of parameters exogenously. We set β = 0.985 and δ = 0.10, which are

standard values for annual models. We choose η = 0.075 to match the average energy

expenditure share of output, which is approximately 7.5% in the EIA data.12 We take the

remaining parameter values to match the standard facts as reported in Jones (2016). The

labor share of expenditure is (1− η)(1− α), which we set to 65%. This yields α = 0.30. We

normalize the labor force to one in all periods. Table 1 reports the values of all calibrated

parameters.

10Appendix B.2 shows the time paths of ∆ ln (pE,t) and de-trended sE,t.
11In particular, we used FPE, AIC, BIC, and HQIC. We ran the tests examining changes in lags for both

VAR equations and when imposing the energy price growth follows an AR(1) process. Results of these tests
are reported in Appendix Section C.2.

12In the model, η is not exactly equal to the energy share of output and the difference between the two
is due to adjustment costs. In our calibrated model, the adjustment costs are a small fraction of output.
So, we choose to pursue this external calibration of η, because it maintains transparency and computational
simplicity. Alternatively, we could calibrate η jointly with θ and ϵ.
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3.4 Calibration

3.4.1 Stochastic Processes for Xt and pE,t

The parameters driving the law of motion of TFP (Xt) and energy prices (pE,t) are calibrated

from data. Equation (3) is estimated with total factor productivity (TFP) data covering

1970–2019,13 which yields µX = 0.6%, ρX = 0.07 and ΣX = 0.01. Similarly, we estimate

equation (7) using energy price data from EIA. This yields a drift coefficient µpE = 1.6%, a

persistence parameter ρpE = 0.16, and a standard deviation of the shocks, ΣpE = 0.09.

3.4.2 IRF Matching Methodology

We choose the remaining two parameters, ϕ and ϵ, so that the IRF generated by the model

matches the IRF from the structural VAR. In the model, we study the IRF following a one

standard deviation shock to ωpE,t
, the exogenous component of the energy price. This allows

us to consider the exact same path of energy prices in the data and model. Then, we focus

on choosing the remaining parameters to make the paths of the energy expenditure share as

similar as possible.

To calibrate these parameters, we simulate IRFs from the model for a two-dimensional

grid of potential values and compute the quadratic distance between empirical and model

generated IRFs over a 40-year period. The weight assigned to each period in the quadratic

distance corresponds to the inverse of the empirical estimate of IRF variances. We choose

the pair (ϵ, ϕ) that minimizes this loss function. In practice, ϵ is primarily identified by the

initial jump in sE,t, and ϕ is primarily identified by the speed of the transition path.

3.4.3 Results

We study a positive and temporary shock to the growth rate of energy prices, which corre-

sponds to a permanent change in the level of energy prices. We are interested in this type

of shock, because we will use the model to study climate policies that permanently change

the price of energy.

Our empirical results are presented in Figure 2.14 In all panels, the horizontal axis shows

years since the initial shock, and the vertical axis shows deviations from the initial steady

state. Panels (a) and (b) show the shock to energy prices that will be used for the analysis.

13The data were originally obtained from the Federal Reserve Economic Database (FRED). Further details
are provided in Appendix Section B.1.

14The estimated coefficients are: a = 0.1591(0.1432), b = 0.0088(0.0100), and c = 0.9644(0.0165) (stan-
dard errors in parentheses).
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Figure 2: Empirical Results and IRF Matching

Note: Panels (a) and (b) show the path of energy prices following a one standard deviation shock to the

growth rate of energy prices. This path of energy prices is used in all subsequent analyses. Panel (c) shows

the path of the energy expenditure share of output in the data (solid blue line), our calibrated model (dashed

red line), and the special case of Golosov et al. (2014) (dotted green line). Panel (d) shows the implications

for the energy intensity of output. Panels (e) and (f) illustrate how the impulse response functions (IRFs)

identify the model parameters.
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Panel (a) shows the dynamics of the energy price growth rate, which is estimated from the

data. The blue line is the point estimate, and the bands are 95% confidence intervals. Panel

(b) translates the changes in growth rates to changes in the level of energy prices. Energy

prices reach their new level after 7 years.

We study the impact of this shock to energy prices in the data, our model, and older

models from the literature. To represent the older literature, we focus on the influential model

of Golosov et al. (2014) (henceforth, GHKT). They consider the case where σSR = σLR = 1.

This specification is common in the literature (e.g., Nordhaus and Boyer, 2000; Hassler et al.,

2016; Hassler and Krusell, 2018; Barrage, 2020; Cruz and Rossi-Hansberg, 2024) and is a

special case of our model with ϕ = 0 and ϵ = 1.

Our main findings are shown in panel (c), which plots the response of the energy ex-

penditure share to the energy price shock. The solid blue line is the IRF estimated from

data, the dashed red line is our model with the parameters that best match the data, and

the dotted green line is the GHKT special case. The empirical results line up closely with

the findings and interpretations in the existing literature. In the period of the shock, a

9% increase in energy prices leads to a 0.64 percentage point (approximately 9%) jump in

the expenditure share. As shown in equation (16), this result implies that the short-run

EoS between energy and non-energy inputs is very close to zero, which is consistent with

earlier work (e.g., Hassler et al., 2021a). The methodology imposes that the expenditure

share eventually returns to the original level. In other words, it imposes that the long-run

elasticity is equal to one. Relative to earlier work, a key benefit of our methodology is that

we can estimate the full transition path following an energy price shock. The transition is

quite slow, and the energy expenditure share has only returned halfway back to its original

level 24 years after the shock.

Our calibrated model matches the data closely. This is unsurprising given that the model

was constructed to be able to match both the short- and long-run EoS and to include a free

parameter, ϕ, that governs the speed of the transition. Our calibration yields ϵ = 0.14 (=

σSR) and ϕ = 32. In contrast, the GHKT specification is clearly at odds with the data. It

imposes a short-run EoS of one, which implies that the energy expenditure share is unchanged

following the energy price shock. The climate literature, including GHKT, is aware that the

short-run EoS is a poor match for the data, but argues that it accurately captures medium-

and long-run dynamics (see also, Hassler et al., 2016, 2021b; Hassler and Krusell, 2018;

Barrage, 2020). Our empirical results cast doubt on this assertion. The data and the GHKT

approach predict very different energy expenditure shares over several decades.
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Panel (d) demonstrates the implications of our findings. Panel (d) shows the path of

the energy intensity – defined as sE,t/pE,t – following the energy price shock. The curves

are derived by dividing the path of sE,t from panel (c) by the path of pE,t from panel (b).

This object is important for climate policy, because carbon taxes increase the price of energy

and induce substitution towards non-energy inputs, reducing the energy intensity of output

(i.e., increasing economy-wide energy efficiency). Both the data and our model suggest that

this process happens slowly. There is essentially no increase in energy efficiency immediately

following the shock, and the economy is still far from the new steady state after 30 years.

In contrast, the GHKT model predicts that the adjustment is instantaneous. While the two

models predict similar long-run outcomes, they have very different implications for short-

and medium-run outcomes.15

Finally, panels (e) and (f) illustrate how the IRFs identify the model parameters. Panel

(e) shows the effect of changing ϵ, holding ϕ fixed. In the period of the shock, the technology

terms (AN,t and AE,t) are fixed, and the EoS is given by σSR = ϵ. Thus, ϵ plays a primary

role in determining the size of the initial jump. Panel (f) shows the impact of changing ϕ,

holding ϵ fixed. As discussed above, ϕ does not affect the short- or long-run EoS. But, higher

values of ϕ imply that it is more costly to change the technology ratio, which in turn leads

to slower transition dynamics. So, ϕ is largely determined by the speed of the transition.

4 Policy Analyses

We now turn to investigating the role that energy efficiency dynamics play in determining

the effectiveness of climate change mitigation policies. In order to study the full non-linear

impacts of policy, we abstract from uncertainty and use a deterministic version of the model.

Our primary goal is to compare our calibrated model to the GHKT special case. We focus

on outcomes over the next eighty years.

4.1 Set-up for Policy Analysis

To study the impact of climate policy on energy efficiency, we need to model how policies

that affect clean and dirty energy impact the price of final energy. To accomplish this goal,

Section 4.1.1 extends the model to include substitution between clean and dirty energy.

Section 4.1.2 describes how the new parameters are calibrated.

15We calibrate the two models with the same parameter η. Since there are no adjustment costs in the
GHKT special case, the energy share of expenditure differs slightly.
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Table 1: Model Parameters

Parameter Value Description Source

δ 0.10 Depreciation Standard
β 0.985 Discount factor Standard
η 0.075 Energy share of income EIA
α 0.30 Capital share of income Jones (2016)
µpE 1.6% Energy price drift Calibrated
ρpE 0.16 Energy price persistence Calibrated
ΣpE 0.09 Energy price stan. dev. Calibrated
µX 0.6% TFP drift Calibrated
ρX 0.07 TFP persistence Calibrated
ΣX 0.01 TFP stan. dev. Calibrated
ϵ 0.14 Short-run EoS IRF Matching
ϕ 32 Adjustment costs IRF Matching
γ 0.74 Dirty energy share EIA
gpd 1.9% Dirty price growth Calibrated
gpc 0.7% Clean price growth Calibrated

pd,0/pc,0 0.40 Relative energy price Calibrated

4.1.1 Substitution between Clean and Dirty Primary Energy

We assume that the production function for final energy is given by

Et = Eγ
d,tE

1−γ
c,t , (20)

where Ed is the quantity of dirty energy and Ec is the quantity of clean energy. GHKT set

the EoS between energy sources equal to 0.95, and we set it equal to one for computational

convenience. We consider this simplified model, rather than allowing the elasticity to vary

over time, because our focus is on the role of energy efficiency dynamics.

There is perfect competition in final energy production, and therefore the price of energy

is

pE,t = γ̃(1− τc,t)
1−γp1−γ

c,t (1 + τd,t)
γpγd,t, (21)

where pc,t is the cost of extracting clean energy from the environment, pd,t is the cost of

extracting dirty energy from the environment, τc,t ≥ 0 is a subsidy for clean energy, τd,t ≥ 0

is a tax on dirty energy, and γ̃ = γ−γ(1 − γ)γ−1 is a constant. Extraction costs grow at
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constant exogenous rates, gpc and gpd .
16 Equation (21) shows the key difference between

carbon taxes and clean energy subsidies. Carbon taxes raise the price of final energy and

promote energy efficiency, while clean energy subsidies decrease the price of final energy

and discourage energy efficiency. Unlike the existing literature, our model accounts for the

slow transition dynamics of energy efficiency. Adding slow energy efficiency dynamics to the

model decreases the ability of carbon taxes to reduce emissions in the short- and medium-

run, but increases the ability of clean energy subsidies to reduce emissions in the short- and

medium-run.17

4.1.2 Calibration of Additional Parameters

With perfect competition, γ is equal to the ratio of expenditure on dirty sources of primary

energy and all expenditure on final energy. In the data, the ratio is approximately 74%

on average and does not appear to trend over time (see Casey and Gao, 2023, for further

examination of this empirical observation). The EIA does not report the price of clean

primary energy over this period. Production function (20) implies that

pd,t
pc,t

=
γ

1− γ

Ec,t

Ed,t

. (23)

In 2019, the first year of our analysis, the ratio of clean and dirty primary energy, measured

in BTUs, is equal to 0.14. Together with our estimate of γ, this implies that
pd,0
pc,0

= 0.40. To

set units, we normalize the initial price of clean energy to one, pc,0 = 1.

We use a similar approach to pin down the growth rates of the energy prices. The ratio

of clean to dirty energy grows at an average of 1.2%/year in our data. From (23), this

implies that the relative price of clean energy decreases by 1.2%/year. Also, (21) implies

that, in the absence of climate policy, the growth rate of the price of final energy is gpE =

(1+gpc)
1−γ(1+gpd)

γ−1. This is equal to 1.6% in the data. Together, these two relationships

give gpd = 1.9% and gpc = 0.7%.

16With this specification for clean and dirty energy, final output becomes

Yt =

(
1− ϕ

2

(
θt

θt−1
− 1

)2
)

× Ỹt − pc,tEc,t − pd,tEd,t. (22)

17Appendix Section A.5 provides the equilibrium equations for the extended model with clean and dirty
energy sources.
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4.2 Results

4.2.1 Carbon Taxes

We simulate the impact of a permanent and unexpected 50% value-added tax on dirty energy

(τd = 0.50). Casey et al. (2023) find that this is roughly the value of the best constant carbon

tax in the GHKT special case with a climate externality calibrated to the social cost of carbon

(SCC) calculations of Rennert et al. (2022). We compare the predictions of our calibrated

model to the GHKT special case (ϕ = 0 and ϵ = 1). Other than the differences in ϵ and ϕ,

the two models are identical. For each model, we compare outcomes with the dirty energy

tax to the laissez-faire equilibrium.

Figure 3 shows the results. Panel (a) shows dynamics of the energy expenditure share.

As expected, they are qualitatively similar to those in Figure 2. In the period that policy is

introduced, the energy expenditure share jumps almost one-for-one with the change in the

tax-inclusive price of energy. In the GHKT special case, by contrast, the expenditure share

is unchanged. Panel (b) shows the implications for the energy intensity of output, sE,t/pE,t,

which is the inverse of economy-wide energy efficiency. The two models have identical long-

run predictions, but different predictions for many decades after the introduction of the

policy.

Next we turn to discussing the environmental implications of these results. In the period

that policy is introduced, there is a 5 percent reduction in final energy use in our model

(panel c). By contrast, energy use immediately drops by almost 28 percent in the GHKT

special case. Over time, the two models converge to the lower GHKT level. Panel (d)

translates these effects to dirty energy, rather than final use energy. The dynamics are

similar, but muted because we assume the substitution between clean and dirty energy can

happen instantaneously.

Panel (e) translates these effects to differences in cumulative dirty energy use, the variable

most relevant for environmental outcomes. In the GHKT model, the tax reduces dirty energy

use by roughly 35 percent, and this effect is constant over time. In our model, cumulative

dirty energy use is only 19 percent below the laissez-fire level in 2030. This highlights a

key implication of our findings. When examining the impact of climate-policy on medium-

run outcomes, it is important to account for transition dynamics. Models that are only

calibrated to long-run data will overstate the impact of policy on emissions. By 2100, our

model predicts a 28 percent drop, which is more similar to the GHKT results. This similarity

implies that the 80 year horizon is long enough for the medium-run dynamics to be mostly

overwhelmed the long-run outcomes in determining cumulative emissions.
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Figure 3: Impacts of a 50% Carbon Tax
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For completeness, panel (f) presents the dynamics of clean energy use. The pattern of

clean energy use is quite different in the two models. In our model, the demand for final

energy is essentially unchanged in the period that policy is introduced, but the price of clean

energy decreases relative to dirty energy. As a result, clean energy use spikes. In the GHKT

model, by contrast, there is a significant reduction in the demand for energy use. Indeed,

even though there is substitution away from dirty and towards clean, overall clean energy use

decreases. Casey et al. (2023) provide a simple explanation for this result. They show that,

in the GHKT framework, clean and dirty energy are gross complements. When a carbon tax

decreases dirty energy use, it also decreases the return to extracting clean energy, leading

to lower clean energy use. Our model shows that, while this may be true in the long run,

the short- and medium-run dynamics are very different. We discuss the implications of this

difference further when simulating the impacts of clean energy subsidies.

Finally, we turn to the macro aggregates. The two models yield similar predictions for the

dynamics of output and consumption as shown in panel (h). The representative household

responds by lowering the savings rate, leading to an initial spike in consumption and then a

swift decline. While we have not conducted a welfare analysis, the results suggest that the

welfare benefits of policy are smaller in our model. The paths of consumption are similar

in the two models, but the environmental benefits are much lower when accounting for the

slow energy efficiency dynamics. The long-run prediction for output are similar, as shown in

panel (g), but the initial decline is much greater in our model. Our model captures the fact

that the economy is less flexible in the short-run and firms cannot avoid paying high energy

costs, which do not contribute to GDP.

4.2.2 Clean Energy Subsidies

In this section, we investigate the results of a clean energy subsidy, rather than a dirty energy

tax. We focus on the case of a 20% subsidy (τc = 0.20), which is roughly in line with the

subsidies in the Inflation Reduction Act (Bistline et al., forthcoming). Unlike carbon taxes,

clean energy subsidies decrease the price of energy and discourage energy efficiency (e.g.,

Newell et al., 2019). Thus, these policies are more effective when accounting for the slow

dynamics of energy efficiency.

Figure 4 shows the results. As expected, panel (a) shows that subsidies cause the energy

expenditure share to fall in the short run, because the elasticity of substitution is below one.

As in the case of carbon taxes, the transition back to the original expenditure share happens

very slowly. Panels (b) and (c) show the slow dynamics of energy intensity and final energy
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Figure 4: Impacts of a 20% Clean Energy Subsidy
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use.

Panels (d) and (e) show the dynamics of flow and cumulative dirty energy use, respec-

tively. Casey et al. (2023) show that clean energy subsidies actually increase emissions in

the GHKT special case. While we find identical long-run results, our results suggest that

clean energy subsidies are much more effective when taking into account the slow dynamics

of energy use. The subsidies decrease flow dirty energy use by 5 percent in the short run

and 1 percent in 2050. While the results still suggest limited effectiveness of these policies in

reducing dirty energy use, the results also suggest that subsidies are unlikely to exacerbate

environmental outcomes in the short run. More generally, the results again demonstrate the

importance of accounting for slow energy transition dynamics when simulating the impacts

of climate policy.

Panels (g) and (h) show the paths of GDP and consumption. The subsidy increases energy

production, boosting GDP. But, it does so at the cost of decreasing consumption, at least

partially offsetting the benefit of reduced emissions. This negative impact on consumption

is expected, because laissez-faire equilibrium maximizes the utility from consumption.

5 Conclusion

Macro climate-economy models are powerful tools for studying climate policy. Indeed, Has-

sler et al. (2018) argue that macro climate-economy models are “the only game in town” (p.

391). Do current iterations of these models generate reasonable predictions that are useful

inputs to policy decisions? Given the importance of these models, surprisingly little work

has been done to compare their predictions to data.

In this paper, we compare the models to data with a focus on one important determinant

of carbon emissions: economy-wide energy efficiency. To do so, we borrow an approach

frequently used in the business cycle literature. We estimate impulse response functions in

data and compare them to the model predictions. We then build a new model that nests

the existing literature and can replicate these empirical observations.

We use the new model to study the impacts of climate policy. Our model suggests that the

impact of a given carbon tax on cumulative carbon emissions will be smaller than commonly

believed. Carbon taxes increase the price of energy and promote energy efficiency. The data

and our model suggest that this process happens slowly over time, while older models assume

that it happens instantaneously. We find the opposite results for clean energy subsidies. Since

clean energy subsidies decrease energy prices, they are more effective when energy efficiency
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dynamics are slow.

We have focused on a simple and transparent model to highlight our key findings regard-

ing the dynamics of energy efficiency. We hope that our results will contribute to the broader

research program of using macro climate-economy models to study climate change. Given

the tractability of our model, future work can integrate our insights into full quantitative

integrated assessment model (IAMs) that can be used to study optimal climate policy.
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per, and C. B. Field (2007): “Global and regional drivers of accelerating CO2 emis-

sions,” Proceedings of the National Academy of Sciences, 104, 10288–10293.

Rennert, K., B. C. Prest, W. A. Pizer et al. (2022): “The social cost of carbon: ad-

vances in long-term probabilistic projections of population, GDP, emissions, and discount

rates,” Brookings Papers on Economic Activity, 2021, 223–305.

Smith, A. (2008): “Indirect inference,” The New Palgrave Dictionary of Economics, 2nd

Edition (forthcoming).

27



University of Groningen and University of California, Davis (2024):

“Total Factor Productivity at Constant National Prices for United States [RTF-

PNAUSA632NRUG],” https://fred.stlouisfed.org/series/RTFPNAUSA632NRUG (re-

trieved from FRED, Federal Reserve Bank of St. Louis; accessed 8/13/24).

Van der Werf, E. (2008): “Production functions for climate policy modeling: An empir-

ical analysis,” Energy Economics, 30, 2964–2979.

28

https://fred.stlouisfed.org/series/RTFPNAUSA632NRUG


Online Appendix

Energy Efficiency Dynamics and Climate Policy
By: Gregory Casey and Yang Gao

A Model Analysis

A.1 Characterization of Competitive Equilibrium

A.1.1 Final Good Producer Problem

The firm’s problem is

max
{Nt,Et,θt+1}∞t=0
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where θ0 and θ−1 are given and it discounts future profits using household’s stochastic dis-

count factor, Λt+1 ≡ β u′(Ct+1)
u′(Ct)

= β Ct
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. The first order conditions are
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Combining all of the first-order conditions, we can re-write the last (A.4) as
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where sJ,t =
pJ,tJt(

1−Φ
(

θt
θt−1

))
Ỹt

is share of output paid to factor J = N,E and sN,t + sE,t = 1.

Plugging this identity into the previous equation and rearranging yields
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(A.6)

A.1.2 Intermediate Producer Problem

The intermediate producer solves

max
Kt,L

pN,tK
α
t L

1−α − ρtKt − wtL, (A.7)

which gives

ρt = αpN,tK
α−1
t L1−α (A.8)

wt = (1− α)pN,tK
α
t L

−α. (A.9)

Combining these results gives the usual price index:

pN,t = α−α(1− α)α−1w1−α
t ραt . (A.10)
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A.1.3 Household Problem

The household maximizes (9) subject to the budget constraint given by (10) and (11), which

yields the Euler equation,

1 = Et

(
β

Ct

Ct+1

(1 + ρt+1 − δ)

)
, (A.11)

and the transversality condition,

lim
T→∞

ET

(
βTC−1

T KT+1

)
= 0. (A.12)

A.2 Proof of Proposition 1

To derive the results, we consider the first order conditions from our fully-specified model,

but consider the case where there are no adjustment costs (ϕ = 0), which implies that firms

maximize single-period profits.

To find the σSR, we combine (A.2) and (A.3) to get

Et/Nt = (pE,t/pN,t)
−ϵ θϵ−1

t (A.13)

and then compute

σSR := −
d ln(Et

Nt
)

d ln(
pE,t

pN,t
)

∣∣∣∣∣
θt fixed

= ϵ. (A.14)

To find σLR, we evaluate the combined first-order condition (A.5) with ϕ = 0:

Et/Nt =
η

1− η

(
pE,t

pN,t

)−1

. (A.15)

and compute

σLR := −
d ln(Et

Nt
)

d ln(
pE,t

pN,t
)
= 1. (A.16)

A.3 Intensive Form

In this section, we present the intensive form of the model. We use Ẑt ≡ Zt/Zt to denote

the de-trended value for any variables Zt and κZ,t ≡ Zt/Zt−1 to denote the ratio of current
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to last period level of any variable Zt.

The trend for Ct, It, Ỹt, wt is defined by Ỹt = X
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t p
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t p
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E,t . Equations (A.17) to

(A.30) describe the full competitive equilibrium in intensive form:
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κθ,t
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(A.28)

(1− ρX)µX + ρXgX,t−1 + ωX,t = gX,t, (A.29)

(1− ρpE)µpE + ρpEgpE,t−1
+ ωpE,t

= gpE,t
(A.30)

A.4 Balanced Growth Path

We use Zss to denote the steady state value of any variable Z, which is frequently a de-

trended variable. The steady state of the full model is as follows:

κỸ ,ss = exp

(
µX

1

(1− α)(1− η)

)
exp

(
µpE

−η
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)
(A.31)
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exp
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(A.32)

Φss(κθ,ss) =
ϕ

2
(κθ,ss − 1)2 (A.33)

Φ′
ss(κθ,ss) = ϕ(κθ,ss − 1) (A.34)

Λss = β/κỸ ,ss (A.35)

ρss =
1

Λss

− 1 + δ (A.36)

sN,ss = 1− η −
Φ′

ss(κθ,ss)κθ,ss(1− ΛssκỸ ,ss)

1− Φss(κθ,ss)
(A.37)

sE,ss = 1− sN,ss (A.38)
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(A.39)
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p̂N,ss = (1− Φss(κθ,ss))s
−1
ϵ−1

N,ss

(
θ̂ss
κθ,ss

)−η

(A.40)
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(
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) 1
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κỸ ,ss (A.41)
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(
1− 1− δ

κỸ ,ss

)
K̂ss (A.42)

N̂ss =

(
K̂ss

κỸ ,ss

)α

(A.43)

ŵss = (1− α)N̂ssp̂N,ss (A.44)

̂̃Y ss =
p̂N,ssN̂ss

(1− Φss(κθ,ss))sN,ss

(A.45)

Êss =
̂̃Y sssE,ss(1− Φss(κθ,ss)) (A.46)

Ĉss = (1− Φss(κθ,ss))
̂̃Y ss − Îss − Êss. (A.47)

A.5 Clean and Dirty Energy in Model with Deterministic Growth

To induce stationarity in the extended deterministic model with clean and dirty energy, the

trends for the price of final energy as well as clean and dirty energy use are defined by pE,t =

p1−γ
c,t pγd,t, Ec,t = X

1
(1−α)(1−η)

t p
−η(1−γ)−(1−α)(1−η)

(1−α)(1−η)

c,t p
−ηγ
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d,t and Ed,t = X
1
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t p
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c,t p
−ηγ−(1−α)(1−η)

(1−α)(1−η)

d,t ,

respectively. Then the intensive form of both equation (21) and the first-order conditions

associated with the final energy production (20) can be written as:

p̂E,t = γ̃(1− τc,t)
1−γ(1 + τd,t)

γ (A.48)

(1− τc,t)Êc,t = (1− γ)p̂E,tÊt (A.49)

(1 + τd,t)Êd,t = γp̂E,tÊt. (A.50)

The steady state value of the related variables are:

p̂E,ss = γ̃(1− τc,ss)
1−γ(1 + τd,ss)

γ (A.51)

Êc,ss =
(1− γ)p̂E,ssÊss

1− τc,ss
(A.52)

Êd,ss =
γp̂E,ssÊss

1 + τd,ss
. (A.53)
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In addition, when moving to a deterministic model with multiple types of energy, all growth

terms (κZ,t) remain unchanged over time and the following dynamic equations need to be

updated relative to their stochastic versions in Appendix Section A.3:

[
1− Φ

(
θ̂t

θ̂t−1

κθ,t

)]( θ̂t
κθ,t+1

)1−η
 ϵ−1

ϵ ( ̂̃Y t

Êt

) 1
ϵ

= p̂E,t (A.54)

Ĉt + K̂t+1 + Êc,t + Êd,t =

[
1− Φ

(
θ̂t

θ̂t−1

κθ,t

)] ̂̃Y t + (1− δ)K̂t
1

κỸ ,t

.

(A.55)

and the following steady state equations need to be updated relative to their values from

Appendix Section A.4:

θ̂ss = p̂
1

1−η

E,ssκθ,ss

(
(1− Φss(κθ,ss))

ϵ−1
ϵ s

−1
ϵ

E,ss

) −ϵ
(ϵ−1)(1−η)

(A.56)

Êss =
̂̃Y sssE,ss(1− Φss(κθ,ss))

p̂E,ss

(A.57)

Ĉss = (1− Φss(κθ,ss))
̂̃Y ss − Îss − Êc,ss − Êd,ss. (A.58)

A.6 Numerical Solution Method

We implement the model solution in Dynare (Adjemian et al., 2011). The stochastic model

is solved with a first-order approximation of the model around its steady state. The deter-

ministic model is solved with a perfect foresight solver given an initial and a terminal steady

state.

B Data Sources

Unless otherwise noted, all of our data come from the State Energy Data System (SEDS) pro-

duced by the EIA (https://www.eia.gov/state/seds/seds-data-complete.php?sid=US).

The data cover the period 1970-2021. All variable codes refer to these data. The codebook is

available at https://www.eia.gov/state/seds/seds-technical-notes-complete.php?

sid=US (see ‘Codes and descriptions’).
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Figure B.1: Data Inputs into VAR

B.1 Data for Estimating IRFs

The SEDS data directly report total expenditure on final energy (‘total end-use energy ex-

penditures’, TETXV) and the BTU-weighted nominal price of final energy (‘total end-use

energy average price’, TETXD). Both are nominal values. The EIA also reports nominal

GDP, real GDP, and the GDP deflator in its Monthly Economic Review (MER) data series

(see Table C1 at https://www.eia.gov/totalenergy/data/monthly/). These data origi-

nally come from the Bureau of Economic Analysis (BEA). The energy expenditure share is

total expenditure on final energy divided by the sum of nominal GDP and energy expen-

diture, and the real price of final energy is the nominal price divided by the GDP deflator.

Real values are measured in 2012 dollars.

Prior to estimating the IRFs in the model, we separately estimate the dynamics of TFP.

To do so, we use data on total factor productivity at constant national prices for United

States from Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/

RTFPNAUSA632NRUG). The TFP data series covers the period 1970-2019.

B.2 Transformed Data Used in VARs

Panel (a) of Figure B.1 shows the raw time series of energy expenditure share as well as a

fitted linear time trend. Panel (b) shows the two data series used in our baseline analysis:

the growth rate of energy prices and the de-trended energy expenditure share.
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Figure B.2: Comparison to Hassler et al. (2021a) Measurement

Note: Panel (a) shows the average real price of final energy from the SEDS data ($2012/million BTUs) and

the average real price of final energy using the HKO methodology ($2012/million BTUs of electricity). Panel

(b) shows quantity of final energy from the SEDS data (billion BTUs) and using the HKO methodology

(billion BTUs of electricity).

B.3 Comparison to Hassler et al. (2021a)

Hassler et al. (2021a) suggest an alternate method of estimating aggregate energy prices that

weights different types of energy by their average price. They apply their method to fossil

fuel primary energy. We recalculate our measure of the average real price of final energy and

show that it is very similar to the series we use in our empirical analysis.

To do so, we consider final energy from four sources: electricity, coal, natural gas, and

petroleum products. Coal and natural gas are considered final energy when they are not used

to produce electricity (e.g., when they are used in industrial production or for residential

heating). This analysis excludes final energy from biomass, because price data is unavailable.

SEDS reports the nominal price of each energy type when it is used as a source of final energy

(ESTXD, CLTXD, NGTXD, and PATXD). As above, we convert these to real values using

the GDP deflator. On average, coal is 11% as expensive as electricity per BTU, while natural

gas is 25% as expensive and petroleum products are 51% as expensive. The Hassler et al.

(2021a) method assumes that these relative prices reflect differences in the relative efficiency

of different energy sources. Then, we can calculate the total quantity of energy measured in

BTUs of electricity as

EHKO = Ee + 0.11Ec + 0.25Eg + 0.51Ep, (B.1)
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where Ee is BTUs of electricity used as a final energy source (ESTXB in the SEDS data),

Ec is BTUs of coal (CLTXB), Eg is BTUs of natural gas (NGTXB), and Ep is BTUs of

petroleum products (PATXB).

Note that the calculation of total expenditure on final energy is not affected by how we

weight energy sources. The weighted-average real price of final energy can then be calculated

as EHKO divided by real expenditure on final energy:

pHKO
E =

pEE

EHKO
, (B.2)

where pEE is real energy expenditure. Panel (a) of B.2 plots the price series used in our

analysis and the HKO version. While they have different units (BTUs versus BTUs of

electricity), they move together very closely, indicating that our results are not driven by

our method of calculating the average real price of final energy. For completeness, panel

(b) plots total BTUs of final energy against EHKO and shows that they also follow a similar

path.

B.4 Additional Data for Policy Analyses

To conduct the policy analyses, we add substitution between clean and dirty sources of

energy to the model. Calibrating the new parameters requires additional data on primary

energy use and expenditure. To calculate total expenditure on fossil fuels, we sum total

expenditure on coal (CLTCV), natural gas (NGTCV), and petroleum products (PATCV).

Note that this includes coal and and natural gas used as final energy. When coal and natural

gas are not altered prior to their use in production, they are both primary and final energy.

We divide total expenditure on fossil fuels by total expenditure on final energy to estimate

γ. Casey and Gao (2023) provide a more detailed analysis of substitution between clean and

dirty sources of energy.

To measure the total quantity of dirty use, we add total consumption of coal (CLTCB),

natural gas (NGTCB), and petroleum products (PATCB). As in our main calculation for

final energy, we measure quantities in BTUs for all energy sources. To measure the average

price of dirty energy, we divide expenditure on fossil fuels by total usage. We convert nominal

prices to real prices using the GDP deflator. To measure the total quantity of clean energy,

we take the total quantity of renewable energy directly from the data (RETCB).
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Figure C.3: Results with Trending Data

C Robustness

C.1 Results without De-trending sE,t

Our baseline results use the de-trended energy expenditure share. Our results are quantita-

tively and qualitatively similar when using the trending data. Panel (a) of Figure C.3 shows

the empirical IRFs when using the trending data. Panel (b) of Figure C.3 plots the results

of IRF matching using the trending data, which yields an ϵ = 0.17 and ϕ = 54 in the model

(compared to ϵ = 0.14 and ϕ = 32 in the baseline specification). To recreate the slower

transition dynamics, the model requires a higher ϕ to match the IRFs. To summarize, our

decision to de-trend the energy expenditure share in the baseline results is conservative and

has little effect on the results.

C.2 Empirical IRFs with Alternative Lag Order Selection

Table C.1 summarizes the results of lag order selection criteria for our SVAR specification.

We show results varying the lag length for equation (19) while imposing that energy prices

follow an exogenous AR(1) process. A lower FPE, AIC, BIC or HQIC value indicates a

better fit. All statistics are consistent with an optimal lag order of 1. We obtain similar

results when letting the lag length vary in both VAR equations.

Figure C.4 shows the IRFs with lag order of 3 and 5 in equation (19), while assum-

ing energy prices follow an exogenous AR(1) process. The energy share response in both

specifications is similar to our baseline results, indicating that our baseline results are robust.
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Table C.1: Lag Order Selection Statistics

lag FPE AIC BIC HQIC
1 2.40e-08* -11.83* -11.60* -11.74*
2 2.49e-08 -11.71 -11.33 -11.57
3 2.77e-08 -11.52 -10.97 -11.31
4 2.55e-08 -11.51 -10.81 -11.25
5 2.84e-08 -11.31 -10.44 -10.99
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(a) Energy Share: Lag Order = 3

0

.5

1

D
iff

er
en

ce
 fr

om
 s

s 
(p

.p
.)

0 10 20 30 40
Years after shock

Lag order=5
95% CI
Lag order=1 (baseline)

(b) Energy Share: Lag Order = 5

Figure C.4: Empirical IRFs with Different Number of Lags

C-12


	Casey energy efficiency dynamics.pdf
	Introduction
	Model
	Model Specification
	The Elasticity of Substitution (EoS)
	Short- versus Long-Run EoS
	EoS and the Energy Expenditure Share

	Comparison to Existing Literature

	Matching the Model to Data
	Energy Data
	Empirical Methodology
	External Model Parameters
	Calibration
	Stochastic Processes for Xt and pE,t
	IRF Matching Methodology
	Results


	Policy Analyses
	Set-up for Policy Analysis
	Substitution between Clean and Dirty Primary Energy
	Calibration of Additional Parameters

	Results
	Carbon Taxes
	Clean Energy Subsidies


	Conclusion
	Model Analysis
	Characterization of Competitive Equilibrium
	Final Good Producer Problem
	Intermediate Producer Problem
	Household Problem

	Proof of Proposition 1
	Intensive Form
	Balanced Growth Path
	Clean and Dirty Energy in Model with Deterministic Growth
	Numerical Solution Method

	Data Sources
	Data for Estimating IRFs
	Transformed Data Used in VARs
	Comparison to hassler2016directed
	Additional Data for Policy Analyses

	Robustness
	Results without De-trending sE,t
	Empirical IRFs with Alternative Lag Order Selection


	11303abstract.pdf
	Abstract




