
Sen, Suphi; Sadikoglu, Serhan; Ji, Changjing; van der Werf, Edwin

Working Paper

The Effectiveness of Carbon Pricing: A Global Evaluation

CESifo Working Paper, No. 11291

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Sen, Suphi; Sadikoglu, Serhan; Ji, Changjing; van der Werf, Edwin (2024) : The
Effectiveness of Carbon Pricing: A Global Evaluation, CESifo Working Paper, No. 11291, CESifo
GmbH, Munich

This Version is available at:
https://hdl.handle.net/10419/305533

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/305533
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


   

11291 
2024 

Original Version: August 2024 
This Version: October 2024 

The Effectiveness of Carbon 
Pricing: A Global Evaluation 
Suphi Sen, Serhan Sadikoglu, Changjing Ji, Edwin van der Werf 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 11291 
 
 
 

The Effectiveness of Carbon Pricing: 
A Global Evaluation 

 
 

Abstract 
 
We estimate the effect of the staggered adoption of carbon pricing policies across the globe 
between 1990 and 2017 on per capita CO2 emissions from fossil fuel combustion. Applying recent 
econometric techniques robust to treatment effect heterogeneity, we find reductions of 8 to 12 
percent on average. Our dynamic treatment effect estimations indicate gradual adjustments after 
implementation, resulting in a 19 to 23 percent decrease after 10 years. These effects were 
primarily driven by resource substitution rather than improvements in energy efficiency, largely 
independent of the potential effects of renewable energy policies, and were not driven by short-
term responses to carbon prices. These results highlight the role of carbon pricing policies in 
steering medium-term expectations and complementing the climate policy mix. 
JEL-Codes: Q410, Q480, Q540, Q580. 
Keywords: carbon pricing, cap and trade, emission trading, carbon tax, staggered design, dynamic 
treatment effects. 
 
 

 
Suphi Sen 

Wageningen University, Environmental 
Economics and Natural Resources Group 

Wageningen / The Netherlands 
suphi.sen@wur.nl 

Serhan Sadikoglu 
Tilburg University, Department of 

Econometrics and Operations Research 
Tilburg / The Netherlands 

s.sadikoglu@tilburguniversity.edu 
 

Changjing Ji 
Shanghaitech University, Institute of Carbon 

Neutrality, Shanghai / PR China 
jichj@shanghaitech.edu.cn 

 
Edwin van der Werf 

PBL Netherlands Environmental Assessment 
Agency, The Hague / The Netherlands 

edwin.vanderwerf@pbl.nl 
 

 
 
October 25, 2024 
We thank seminar participants at Kiel Institute for the World Economy, Utrecht School of 
Economics, the Free University of Amsterdam and the 2024 Annual Conference of the European 
Association of Environmental and Resource Economists for helpful comments and discussions. 
Ji acknowledges the support from the China Scholarship Council (Grant no: 202006030113). 



1 Introduction

Despite the consensus in the Paris Agreement of 2015 on ambitious climate targets, global

emissions are increasing rapidly (Liu et al., 2023), a trend sometimes described as “the

greatest market failure the world has ever seen” (Stern, 2007). Economists generally

consider carbon pricing policies key to achieving emission targets, as they are efficient

by creating incentives to choose the cheapest abatement options. Despite its theoretical

appeal, there are heated debates in scientific and policy circles on whether carbon pricing

can be effective in addressing the climate crisis in practice.1 Indeed, there is no consensus

on the required level of carbon prices to achieve a certain reduction target, and the mod-

eling predictions of the social cost of carbon, which is the basis for a first-best Pigouvian

carbon tax, vary widely depending on modeling assumptions (Adler et al., 2017; Hepburn,

2017). The World Bank’s High-level Commission on Carbon Prices called for a global

carbon price starting with at least $40-$80 per ton of CO2 (Stiglitz et al., 2017). The

commission suggests an ”adaptive policy” which is updated depending on its effectiveness

in the past.

The effectiveness of carbon pricing in practice can depart from theoretical predic-

tions. Simulation models for evaluating the potential effects of carbon taxes have been

calibrated using estimates of energy price elasticities. However, carbon pricing instru-

ments and energy prices differ fundamentally in their signals for the future costs of carbon

emissions. Energy prices embed temporary large variations, while the design of carbon

pricing policies, even with low current prices, can imply higher future costs for emitting

carbon. In fact, the coverage and price levels of existing carbon pricing schemes are

incompatible with the objectives of the Paris Agreement (World Bank, 2023a). Still,

a carbon pricing policy can induce emission reductions in the medium to long term by

signaling a regulatory commitment to achieving climate targets (Bayer and Aklin, 2020).

The strength of these signals and how they are perceived, in turn, can have an impact on

the effectiveness of carbon pricing. There is evidence that carbon pricing is perceived as

ineffective, and this perception reduces public support for these policies (Baranzini and

Carattini, 2017; Carattini et al., 2017; Kallbekken and Sælen, 2011). Hence, its large-

scale implementation faces political barriers (Douenne and Fabre, 2022; Meng and Rode,

2019). Understanding how and to what extent carbon pricing has reduced emissions can

shed light on these debates.

In this paper, we investigate the effectiveness of carbon pricing policies in reducing

CO2 emissions. The initial implementation of carbon pricing policies took place between

1990 and 2000. Since then, these policies have been adopted by around 40 countries.

We leverage this staggered adoption in our analysis. We compile a dataset on enactment

years of carbon pricing policies (World Bank, 2023a) and annual CO2 emissions (IEA,

1See, for example, Rosenbloom et al. (2020) and van den Bergh and Botzen (2020).
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2024a) covering 138 countries between 1981 and 2017. Using recent econometric ad-

vances in estimating average treatment effects in staggered designs, we assess the impact

of implementing a carbon pricing policy on per capita CO2 emissions from fossil fuel com-

bustion. We perform thorough tests to assess whether the estimated parameters reflect

causal impacts, and provide an in-depth analysis of the potential mechanisms through

which these effects might have materialized.

We find that adopting a carbon price, in the form of a carbon tax and/or a cap-and-

trade system, reduces per capita CO2 emissions from fossil fuel combustion by 8 to 12

percent on average in the posttreatment period. The estimated dynamic treatment effects

increase in absolute terms in the post-implementation period and stabilize after 10 years,

indicating that these effects were realized gradually over the first 10 years following the

implementation. The total estimated reduction in emissions per capita after 10 years is

around 19-23 percent. We also show that carbon pricing policies achieved this reduction

in emissions by triggering a substitution of CO2-intensive fuels with clean alternatives,

rather than improving the energy efficiency of productive activity. Furthermore, we find

that the effect of carbon pricing policies was largely orthogonal to the potential effects

of renewable energy policies. These results highlight the potential complementarities

between carbon pricing, energy efficiency, and renewable energy policies in achieving the

climate targets.

Our results imply that the carbon pricing policies enacted so far have achieved sub-

stantial emission reductions despite the fact that effective emission prices were generally

low during our sample period (1981-2017). Indeed, we find that the observed carbon

prices in our sample period do not have much explanatory power on the variation in

emission levels. Hence, our results are likely to be driven by anticipatory responses due

to a shift in expectations, induced by carbon pricing policies, toward higher carbon prices

in the future (Bayer and Aklin, 2020). The enactment of a carbon pricing policy may

signal a commitment of regulatory authorities to stricter climate policies in the future,

which, in turn, can drive incentives toward timely diversification away from dirty in-

vestments. Investments in long-lasting dirty capital can result in lock-in effects leading

to high compliance costs for decades. Given the limited carbon budget to keep global

warming below a threshold level, timely diversification away from carbon-intensive capi-

tal can also reduce the risk of asset stranding.2 This result has important implications for

the potential role of carbon pricing in low-emitting developing countries, such as those

proposed for Africa (UNFCCC, 2024).

The implications of our results for global emissions, and hence for the efficacy of carbon

pricing, crucially depend on the potential spillover effects of implemented carbon pricing

2For recent reviews on the asset stranding risk, see, for example, Monasterolo (2020), Semieniuk et al.
(2021), van der Ploeg (2020), and von Dulong et al. (2023). For evidence on how investors’ expectations,
climate policy uncertainty, and the risk of asset stranding interact, see Sen and von Schickfus (2020).
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policies in unregulated jurisdictions. First, there could be positive spillovers, for example,

due to cross-border technology spillovers following green innovations spurred by carbon

pricing policies. In this case, our results would reflect a conservative estimate of the

global efficacy of carbon pricing. Second, there could be negative spillovers due to carbon

leakages. That is, polluting activities in regulated countries can relocate to countries with

less stringent regulations, undermining the global efficacy of carbon pricing (Felder and

Rutherford, 1993; Hoel, 1991). We provide evidence for small positive spillover effects

that are not statistically significant at the conventional levels. These results indicate that,

on average, the spillover effects are negligible. If anything, positive spillovers appear to

be stronger than the leakage mechanism.

In our analysis we capitalize on two recent developments. First, a considerable num-

ber of countries have implemented carbon pricing policies in the last two decades. As

a result, we now have a sufficient number of observations on the targeted outcomes to

evaluate the effect of these policies. Our dataset includes 43 countries where a carbon tax

and/or a cap-and-trade system have been implemented in our sample period. Second, we

make use of recent econometric methods proposed in Callaway and Sant’Anna (2021),

Sun and Abraham (2021), and de Chaisemartin and D’Haultfœuille (2024) to properly

estimate causal parameters of interest in settings with staggered adoption of treatment.3

In our application, countries implemented carbon pricing policies at different points in

time. This design differs from the standard Difference-in-Differences (DiD) setup, where

treatment occurs at a single point in time. Until recently, the common practice in the

presence of staggered treatment has been to interpret standard two-way fixed effect es-

timates (TWFE) as causal treatment effects, which is based on the strong assumption

of constant treatment effects over time and across cohorts receiving treatment at differ-

ent points in time (Borusyak et al., 2022; de Chaisemartin and D’Haultfœuille, 2020;

Goodman-Bacon, 2021). In this paper, we use estimation strategies that address these

concerns by allowing for treatment effect heterogeneity and dynamic effects.

There is a large body of empirical literature analyzing the effects of environmental

regulations on economic and environmental outcomes at the firm or more aggregate lev-

els.4 Our work is related to the literature evaluating the effectiveness of carbon pricing

instruments. We contribute to this literature by providing a global assessment that is

not prone to external validity issues and, at the same time, by explicitly targeting the

causal parameters of interest by applying recent econometric methods for staggered de-

signs. Until recently, there have been a small number of studies on the effectiveness of

carbon pricing, and the literature relied on indirect conclusions from estimates of energy

3See Baker et al. (2022) and de Chaisemartin and D’Haultfœuille (2023) for detailed surveys of this
literature.

4See, for example, Aghion et al. (2016), Fowlie et al. (2012), He et al. (2020), Klier and Linn (2015),
Ryan (2012), Sen (2015), and Walker (2013).
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and fuel-price elasticities.5 Early literature also studied general fuel taxes on transport

fuel consumption, which revealed that the effect of taxes and prices can differ (Davis and

Kilian, 2011; Li et al., 2014).

As more countries have implemented carbon pricing policies, we now have more ev-

idence on the effectiveness of carbon pricing instruments. It is not surprising that the

previous literature provides ex post policy evaluations focusing on a single carbon pricing

policy, or a small number of jurisdictions, or a specific sector such as transport (Anders-

son, 2019; Lin and Li, 2011; Pretis, 2022; Rivers and Schaufele, 2015). There is a growing

body of literature evaluating the effects of the European Union Emissions Trading Sys-

tem (EU ETS). One strand of this literature evaluates the impacts of the EU ETS on

manufacturing firms in specific European countries.6 At a more aggregate level, by using

sectoral data across the EU member states, Bayer and Aklin (2020) analyze the effect of

the EU ETS based on a comparison of participant and non-participant sectors. The EU

ETS plays an important role in our estimations; however, we show that the weight of the

other carbon pricing policies around the globe is higher than that of the EU ETS.

Some recent studies provide global assessments of carbon pricing policies. Best et al.

(2020) analyze a dataset similar to ours and rely on standard cross-sectional or fixed-effect

estimators. A crucial difference in our paper is that, in order to control for pretreatment

differences across countries, we extend our dataset back to 1981, and follow recent ad-

vances in econometric theory on the estimation of causal parameters of interest in a

staggered design. In a recent study, Rafaty et al. (2021) investigate the effects of car-

bon pricing policies in five sectors for a panel of 39 countries covering 1990–2016 using

a synthetic control approach. Their outcome variable is the growth in emissions rather

than the emission levels. Our paper differs in terms of sample coverage and outcome

of interest, as well as methodology. Our approach explicitly accounts for complications

due to ”forbidden comparisons” (Borusyak et al., 2022), such as using previously treated

groups as controls. We employ recent estimators robust to treatment effect heterogene-

ity and provide the associated placebo and/or parallel trends tests for the pretreatment

differences. Finally, we provide an extensive analysis on the mechanisms that may drive

the estimated emission reductions.

The remainder of this paper is organized as follows. In Section 2, we provide back-

ground information on carbon pricing and its applications around the world. Section 3

explains our methodology, and Section 4 describes our dataset. In Section 5, we present

our main results. In Section 6, we provide detailed analyses on the potential mechanisms

5See, for example, Coglianese et al. (2017), Reiss and White (2005), and Sen and Vollebergh (2018).
For thorough reviews of the early literature, see Cuddington and Dagher (2011), Dahl (1993), and
Maddala et al. (1997).

6For example, see Jaraite and Di Maria (2016) on Lithuania, Marin et al. (2018) and Colmer et al.
(2024) on France, Löschel et al. (2019) on Germany, Klemetsen et al. (2020) on Norway, Calel (2020)
on the UK, Dechezleprêtre et al. (2023) on the UK, France, the Netherlands, and Norway. Also see Cui
et al. (2021) who analyze the effect of the Chinese pilot emission trading systems.
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through which carbon pricing can reduce emissions. We analyze the implications of our

results for global emissions in Section 7. Section 8 concludes.

2 Background information

In this section, we provide background information on the carbon pricing policies that

have been implemented in the past and discuss the mechanisms through which they may

have reduced emissions.

In the 2015 Paris Agreement, countries committed to limit global warming and, hence,

to ambitious global emission reductions. Economists often regard carbon pricing, such

as a carbon tax or a cap-and-trade system, as the central instrument of climate policy

(Stiglitz et al., 2017). Carbon pricing can help achieve a climate goal at the lowest costs

for society, follows the polluter pays principle, and can generate government revenues to

support auxiliary measures such as subsidies for the adoption of low-emission technologies

(Klenert et al., 2018; Nordhaus, 1991; Pearce, 1991; Sterner et al., 2019). In the scenarios

of the Intergovernmental Panel on Climate Change (IPCC), the mitigation pathways that

achieve the 2◦C target with at least 66 percent probability suggest carbon prices ranging

between US$15 and US$360 per ton of CO2 equivalent in 2030 (IPCC, 2014). The World

Bank High-Level Carbon Prices Commission concluded that a global carbon price of “at

least” $40 to $80 per tCO2-e by 2020, and $50-$100 by 2030 (Stiglitz et al., 2017) would

be consistent with the 2◦C target of the Paris Agreement. Rennert et al. (2022) estimate

the social cost of carbon, which is the basis for a Pigouvian carbon tax, to be as high as

$185 per ton of CO2. Hence, the required level of a global carbon price is unclear, and

estimates of the social cost of carbon vary widely depending on modeling choices.

The implementation of carbon pricing policies can face political friction due to their

distributional effects. Although the benefits of carbon pricing are global and realized over

long time horizons, countries bear the costs individually in the short term, and it is up to

individual countries whether to implement them. This local burden of climate mitigation

is heterogeneous across different segments of society and across industries. Hence, the

implementation of such policies at the scale to achieve the climate ambition of the Paris

Agreement faces fierce political resistance from, for example, low-income households as

in the yellow-vest movement in France (Douenne and Fabre, 2022), or emission-intensive

sectors (Meng and Rode, 2019). Furthermore, the perceived ineffectiveness of carbon

taxes is a major factor that explains the lack of public support.7

The political complexity of implementing carbon prices, let alone high ones, is reflected

in the global coverage of greenhouse gas (GHG) emissions, as shown in Figure 1. Although

the first carbon pricing instruments were introduced in the 1990s, for the first 15 years,

7See, for example, Kallbekken and Sælen (2011), Baranzini and Carattini (2017), Carattini et al.
(2017) and Douenne and Fabre (2022).
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Figure 1: Global effective carbon prices and coverage
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and the resulting global effective carbon prices as the weighted average of their coverage in global emis-
sions (2018 US$ per ton of CO2-equivalent). Data: World Bank (2023a).

Figure 2: Carbon price levels and their coverage
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they covered less than 0.5 percent of global GHG emissions. The coverage increased to 5

percent with the introduction of the EU ETS in 2005, and remained around 10 percent

until 2014. In 2017, which is the last year in our sample, the coverage was less than 15

percent. Figure 1 also shows that the global effective carbon price, which is an average

weighted by covered emissions, has never been higher than $1.90 per ton of CO2 in our

sample period. This situation may be the result of political frictions.

The design of policies may target these political frictions by, for example, gradually

increasing the cost of emitting carbon over time to allow enough adaptation time for

economic actors (van den Bergh et al., 2020). Indeed, existing carbon pricing schemes

often include elements to ensure dynamic incentives while taking into account political

complexity. Many carbon tax schemes start with relatively low rates and specify how

the tax rate will increase over time. In Canada, for example, the federal government

imposed a carbon price of CA$20 per ton of CO2-equivalent in 2019, which reaches

CA$65 in 2023, and CA$170 in 2030. Emission trading systems, such as the EU ETS, are

typically designed in multiple phases where coverage increases and the number of allocated

emission allowances decreases over time. The Market Stability Reserve of the EU ETS

was approved in October 2015 and began to operate in January 2019 to accommodate

supply-demand imbalances that can lead to low prices. The intention is to create “stable

expectations that encourage low carbon investments” (EC MEMO, 2014). In 2018, the

European Commission approved that the Reserve would be extended with a cancellation

procedure in 2023 that eventually led to the invalidation of 2.5 billion allowances (2.5Gt

CO2) in that year. Finally, the Linear Reduction Factor, embedded in the EU ETS,

defines the rate of reduction for the annual number of allocated emission allowances. In

2018, the EU increased this rate from 1.74 percent to 2.2 percent.8

These design characteristics of carbon pricing instruments can induce firms and house-

holds to expect future increases in both coverage and stringency. These expectations may,

in turn, shift investments in, for example, new machinery and vehicles to low-carbon al-

ternatives, and thereby reduce current emissions despite low coverage and carbon prices.

Figure 2 illustrates the covered share of emissions in global GHG emissions versus car-

bon prices for each initiative and also shows how this relationship has evolved over time.

The observed pattern shows that typically either the coverage of these policies or the

imposed price has been low, or both, and that this pattern did not change visibly over

time. Therefore, it is unlikely that these policies substantially reduced emissions through

short-term price responses. If past carbon pricing policies have been effective in reducing

emissions, it is likely that the underlying mechanism is an induced shift in expectations

about future carbon prices.

8For a detailed discussion of these reforms in the EU ETS, and related political interactions and
dynamic incentives, see, for example, Perino (2018), Perino et al. (2022) and Sato et al. (2022).
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3 Methodology

In this section, we describe our econometric model and estimation strategy. The empirical

context is a panel dataset consisting of 138 countries observed over 37 years with variation

in treatment timing.

Two-way fixed effects and staggered design. Our starting point to assess the

effectiveness of carbon pricing is the following static two-way fixed effects specification:

eit = αi + λt + βDit +X ′
itδ + εit, (1)

where eit denotes the logarithm of per capita CO2 emissions from fossil fuel combustion of

country i in year t. We denote country and year fixed effects with αi and λt, respectively.

Here, Dit is the country-specific indicator for the post-treatment period, Xit is the vector

of covariates, and εit is the error term. In this study, the treatment is the enforcement of

a carbon pricing policy in the form of a carbon tax and/or a cap-and-trade policy. Hence,

β is the main parameter of interest reflecting the efficacy of carbon pricing in reducing

carbon emissions.

In a standard 2 × 2 Difference-in-Differences (DiD) design with two periods (before

and after treatment) and two groups (treated and control), β would correspond to the

average treatment effect on the treated (ATET) under the parallel trends assumption

that the expectation of the outcome variable of both experimental groups would follow

the same path without treatment. Our setup deviates from the standard DiD design

as the treatment is not received at a single point in time. More specifically, we have a

so-called staggered design in which cross-sectional units receive the treatment at different

points in time and remain in the treatment group thereafter.

The causal interpretation of β in a staggered design, akin to the conventional DiD

approach, has faced recent challenges.9 Goodman-Bacon (2021) shows that, under the

parallel trends assumption, the static TWFE estimator for β is a weighted average of all

possible 2×2 DiD estimators in the data. We apply this decomposition to our dataset in

the next section. Goodman-Bacon (2021) further shows that the weights sum up to one,

but some of them are possibly negative. Negative weights originate from comparisons

using earlier treated groups, such as always treated units, as controls. Such comparisons,

termed ”forbidden comparisons” (Borusyak et al., 2022), can yield negative weights when

the treatment effect is heterogeneous over time.10 Thus, assigning a causal interpretation

to the estimand β requires the assumption that the treatment effect is constant over time,

9See Baker et al. (2022) and de Chaisemartin and D’Haultfœuille (2023) for detailed surveys of this
literature.

10In this case, one could obtain a negative (positive) estimand β even though the treatment effects on
all groups are positive (negative).
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which is unlikely to hold in most applications (de Chaisemartin and D’Haultfœuille, 2023).

Event-study specification. Empirical studies with staggered design often use the

event-study specification (i.e., a dynamic TWFE regression specification) to estimate

dynamic treatment effects and provide a basis to assess the parallel trends assumption.

The event study specification can be expressed as follows:

eit = αi + λt +
L∑

l=−K

βlD
l
it +X ′

itδ + εit, (2)

where l measures the distance to the treatment date. Denote the date at which unit

i starts receiving the treatment with Ti which defines a cohort of units that receive

treatment on the same date. Then Dl
it = 1{t − Ti = l} is an indicator for an individual

i in cohort Ti which is l periods away from the treatment date. We follow the standard

practice and exclude the period before treatment l = −1 as the base period, which we

suppress in specification (2) for brevity.11 It is common to bin or trim the periods outside

the event window given by the set [K,L].12 Whether trimmed or binned, in our setup, βl

compares the difference between emissions of treated and untreated countries at l periods

away from the enactment of a carbon pricing policy with the same difference in the base

period.

In the event-study specification, the coefficients βl capture dynamic treatment effects.

For l < 0, βl captures the DiD in the pretreatment period, which can be exploited

as in-time placebo tests and provides a basis for evaluating the assumption of parallel

trends. For l ≥ 0, βl captures the DiD in the post-treatment period and provides a basis

to estimate the ATET. However, this interpretation requires the strong assumption of

homogeneous treatment effects across cohorts (Borusyak et al., 2022; de Chaisemartin

and D’Haultfœuille, 2020; Sun and Abraham, 2021), such that treatment effects follow

the same path for every cohort in terms of the relative time index, which is a rather

strong assumption. We therefore also apply recently developed estimators that allow for

such heterogeneity in treatment effects.

Robust dynamic treatment effect estimators. We apply estimation strategies that

are robust to heterogeneous treatment effects across groups and over time, recently intro-

duced by Sun and Abraham (2021) (S&A), de Chaisemartin and D’Haultfœuille (2024)

(dC&D), and Callaway and Sant’Anna (2021) (C&S). The differences between these es-

11If there are no never-treated units, one needs to exclude two dynamic treatment indicators (Borusyak
et al., 2022). We do have never-treated units in our sample.

12Trimming excludes these distant periods from the estimation sample, leading to a balanced panel
in relative periods. The alternative is to keep these periods in the estimation sample by binning them
into two groups l < K and l > L, each represented with a single dummy variable in the event-study
specification.
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timators can be broadly classified by three main aspects, namely the construction of

control group, the imposed parallel trends assumptions, and the use of covariates. Here,

we discuss these differences and their implications for our estimations.

A staggered design generally includes alternative control groups. S&A propose a

regression-based estimator following the event-study design and use either the never-

treated group, or the last-treated group if there are no never-treated. In our case, we

have a large never-treated group. dC&D and C&S allow using not-yet-treated units,

which can be later-treated and/or never-treated units. In our baseline estimations, we

use not-yet-treated units whenever possible. We also provide a robustness check by only

using later-treated units as the control group.

Marcus and Sant’Anna (2021) investigate the differences in the parallel trends as-

sumptions imposed by these three estimators. They all restrict posttreatment trends in

the classical sense. That is, without treatment, the evolution of expected outcomes over

time is the same for each group across all time periods. Marcus and Sant’Anna (2021)

show that S&A and dC&D rely on a further assumption, namely the presence of parallel

pretreatment trends, which C&S do not necessarily require. However, there is a trade-off

between robustness to parallel pretrend violations and the efficiency of the estimators.

We favor efficiency, as our dataset includes cohorts with few treated units, and apply the

C&S estimator with a regression adjustment approach.13 For the same reason, we use

bootstrapped standard errors with the dC&D and C&S estimators. We use asymptotic

standard errors only with the regression-based estimators including the S&A estimator.14

The estimators introduced by dC&D and C&S allow the parallel trends assumption

to hold conditional on covariates. dC&D further allow for time-varying covariates by im-

posing parametric restrictions. Time-varying covariates are incorporated through sample

restrictions in the C&S approach. In our application, we use time-varying covariates.

Following the common practice, We do so too when applying the S&A estimator, even

though S&A derive their results under an unconditional parallel trends assumption.

4 Data

This section describes our dataset. We start by describing our outcome and treatment

variables. Next, we apply the Goodman-Bacon (2021) decomposition to provide some

initial insights into our dataset. Finally, we describe our control variables.

13Using other alternatives, such as doubly robust regression and inverse probability weighting, does
not change our conclusions. However, inverse probability weighting yields stronger effects compared to
our baseline estimates.

14Using asymptotic or bootstrapped standard errors do not change our conclusions. The only exception
is that the estimated asymptotic standard errors with the dC&D estimator are very large.
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Figure 3: Adoption of carbon pricing policies
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Notes: The bars show the number of countries that adopted a carbon pricing policy in a given year
(cohort size; left axis); the line shows the cumulative number (right axis).

Outcome and treatment variables. Our treatment variable is a binary variable

indicating whether a country had implemented a carbon pricing policy (a carbon tax

and/or a cap-and-trade system) at the national and/or sub-national level based on the

Carbon Pricing Dashboard provided by the World Bank (World Bank, 2023a).15 Figure

3 shows the historical development of the adoption of carbon pricing instruments. In

our dataset, 43 countries have either a carbon tax or a cap-and-trade system, or both,

in place by 2021. The number of countries adopting a carbon pricing policy in a given

year, called cohort size, is generally three or less. The exception is the 2005 cohort, which

consists of 18 EU Member States who newly adopted a carbon price with the introduction

of the EU ETS. This cohort is by far the largest in our sample. However, its weight in

our estimations is less than 0.5 as we will show later in this section. This observation

highlights the importance of a global analysis.

Most of our estimation strategies assume that once a unit receives the treatment,

it remains in the treatment group thereafter. However, in 2015, Australia abolished

its emission trading scheme, which was introduced in 2012. This pattern violates the

assumption of staggered design. Therefore, we simply drop Australia in our analyses.

Including Australia has a negligible effect on our results.

In this paper, we exploit this staggered adoption of carbon pricing policies to estimate

the causal effect of carbon pricing policies on per capita CO2 emissions from fossil fuel

15See https://carbonpricingdashboard.worldbank.org/map data. We provide the resulting list of coun-
tries in Appendix A.
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combustion, which we retrieve from the database of the International Energy Agency

(IEA, 2024a). Fossil fuel combustion is the main source of CO2 emissions and the main

target of existing carbon pricing policies. Our baseline sample covers 138 countries from

1981 to 2017. Our choice of baseline sample period is mainly driven by two factors. First,

as the first carbon pricing policies were introduced in the 1990s, we extend our dataset

back to 1981 to better understand pretreatment differences in the evolution of per capita

emissions across countries. The number of countries with available data on CO2 emissions

for 1980 and before is considerably lower. Second, as we described in Section 2, carbon

prices and/or their coverage remained low until 2018 when the EU ETS price started

to rise, coinciding with the implementation of the Market Stability Reserve within the

EU ETS and the approval of the cancellation mechanism for a fraction of the reserved

allowances. Furthermore, global energy markets experienced large shocks after 2018 such

as the COVID-19 outbreak and the Russia-Ukraine war. Hence, we cap our baseline

sample period at 2017 to avoid the potential influences of these large shocks on our

results. We provide robustness checks on these choices.

Goodman-Bacon decomposition. Next, we apply the Goodman-Bacon decomposi-

tion (Goodman-Bacon, 2021) to our dataset to obtain some initial insights. The out-

come variable is emissions per capita in logarithms, and the treatment variable describes

whether a country has a carbon pricing policy in place in a given year. We apply the

decomposition method without using any covariates, which eases interpretation and is

sufficient to have an overview of the various comparisons that our dataset offers. How-

ever, the estimated DiD parameters should be interpreted with caution, as discussed in

Section 3.

Figure 4 presents the results. It shows all possible 2×2 DiD estimates in our data and

their weights. Each comparison is a combination of a treatment cohort and a potential

control group. A treatment cohort is a group of countries that adopted a carbon pricing

policy in the same year. Potential control groups are already-treated, never-treated, and

later-treated groups. Throughout the paper, we refer to never- and later-treated groups

together as the not-yet-treated group. The figure also reports the overall DiD estimate,

which is simply the weighted average of all these DiD estimates. The estimated parameter

indicates that having a carbon pricing policy in place is associated with 37 percent less

per capita emissions on average, which is unrealistically high. This result is basically an

artifact of not using any control variables and hints that the unconditional parallel trends

assumption is not likely to hold. The main insights that can be derived from Figure 4

are more about the relative sizes of the group-specific DiD estimates and their weights,

rather than their levels.

There are several takeaways from Figure 4 that will be helpful in interpreting our

main results. First, using the already-treated units as a control group suggests a positive
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Figure 4: Goodman-Bacon decomposition
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Notes: This figure presents the results from the Goodman-Bacon decomposition (Goodman-Bacon, 2021)
based on the estimation without any control variables. It shows all possible 2× 2 DiD estimates in our
data on the vertical axis and their respective weights on the horizontal axis. Each comparison is a
combination of a treatment cohort and a potential control group. A treatment cohort is a group of
countries implementing a carbon pricing policy in the same year. Potential control groups include
already-treated, never-treated, and later-treated units. The legend of the figure also shows the average
effects per comparison group together with their weights in parentheses.

effect of carbon pricing on CO2 emissions, illustrating the problems related to forbidden

comparisons discussed in Section 3. However, the weight of these comparisons in the

overall estimated effect is only 4 percent. Therefore, the results are mainly driven by the

valid comparisons with the never-treated and later-treated groups.

The overall average effect seems to be driven by the comparisons using the never-

treated units as the control group, which leads to an estimate of -0.42 with a substantial

weight of 87 percent. The comparisons based on the later-treated units yield a much

smaller average effect, -0.27, with an 8 percent weight. We use estimation strategies that

make use of these different groups.

Another important lesson from Figure 4 is about the comparison with a weight of

0.45, which is the weight of the comparison of the cohort of EU countries that adopted

the EU ETS in 2005 but had not introduced a carbon price before, with never-treated

units. The weight of the comparison of this cohort with the later-treated group is rather

small. Overall, while EU ETS has considerable weight in our estimations, the rest of the

cohorts still have a weight of more than 0.5, which highlights the importance of a global

analysis.
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Control variables. Our main control set includes logarithms of GDP per capita, pop-

ulation, and the share of urban population in total population. Throughout the paper,

we refer to these variables as our core control set. GDP per capita series are from the

Penn World Table (Feenstra et al., 2015).16 We obtained urban and total population

data from the World Development Indicators (World Bank, 2023b).

We interpret our econometric model as a demand function for emissions in which

emission is proportional to energy consumption. This approach is consistent with the

fact that the IEA calculates emissions by multiplying the consumption levels of specific

energy resources by their emission coefficients. From this perspective, GDP per capita

controls for income effects. The strong correlation between GDP per capita and emissions

per capita has been extensively analyzed in the Environmental Kuznets Curve literature

where the main interest is a potential nonlinear relation between these two variables,

captured by nonlinear terms of GDP per capita in a regression analysis.17 Following this

literature, we also introduce its square in our core control set with an ad-hoc approach.

Second, we control for the size of labor force with population, which accounts for any

deviation from a constant returns-to-scale assumption. Our results are not sensitive to

using employment instead of population data; however, the former restricts our sample

size considerably. Third, we use urbanization rate to control for the feedback between

spatial agglomeration of economic activity and resource efficiency (Martin and Ottaviano,

2001). We show that this core control set is sufficient to control for the differences in

the pretreatment evolution of per capita emissions between the control and treatment

groups. We provide further details on our dataset together with descriptive statistics in

Appendix A.

In our baseline specification, we do not control for energy prices. We consider our

treatment, the implementation of carbon pricing policies, and associated carbon prices as

an exogenous source of variation in end-use energy prices, which is a common assumption

in the literature.18 Using energy price information substantially reduces our sample size.

However, we show that our results are robust in this subsample to controlling for end-use

prices of energy and individual resources.

In addition to our core control set, we collect data on other control variables commonly

used in the literature and provide extensive robustness checks. This extended control

set includes a wide range of country characteristics in several dimensions: (i) energy

sector characteristics such as energy intensity, (ii) other relevant policy measures such

the presence of feed-in tariffs for renewable energy, and (iii) institutional factors such as

a democracy index. However, these variables either restrict our sample size considerably

without adding much explanatory power (such as the democracy index), or they are

16We use the expenditure-side purchasing power parity adjusted real GDP series in 2017 US dollars.
17See Dinda (2004) for a review of the early literature.
18See, for example, (Davis and Kilian, 2011).
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Table 1: Effect of carbon pricing on per capita CO2 emissions

(1) (2) (3) (4) (5)

Estimators TWFE Event Study S&A dC&D C&S

Carbon pricing -0.138 -0.126 -0.114 -0.081 -0.118

(0.044) (0.030) (0.030) (0.035) (0.026)

Placebo test (p-val) – 0.629 0.864 0.654 0.552

Num. of obs. 4592 4592 4592 4592 4592

Control set Core Core Core Core Core

Notes: This table presents the estimated effects of carbon pricing on emissions per capita based
on standard TWFE and event-study estimations, and estimators introduced by Sun and Abraham
(2021) (S&A), de Chaisemartin and D’Haultfœuille (2024) (dC&D), and Callaway and Sant’Anna
(2021) (C&S). The dependent variable is per capita CO2 emissions from fossil fuel combustion in
logarithms. Carbon pricing is a dummy variable that indicates whether a country has implemented a
carbon pricing policy or not. The control set Core includes the logarithm of GDP per capita and its
square, the logarithm of population, and the logarithm of urban population share. Standard errors
clustered at the country level are in parentheses. dC&D and C&S standard errors are bootstrapped
with 800 replications. Placebo tests are on the joint significance of estimated placebo treatment effects
for the 10 years preceding the treatment.

likely to qualify as the so-called “bad controls” (such as energy intensity), which refers to

variables that are themselves likely to be affected by the treatment. The elements of our

core control set are not likely to be bad controls. First, we do not see a significant reason

why carbon pricing can affect demographic variables. Second, a common finding in the

literature is that carbon pricing does not affect the level of economic activity, measured

by GDP per capita in our application.19

5 Baseline results

In this section, we present our baseline results. We start by presenting the estimated

average effects of carbon pricing. Next, we present the results of dynamic treatment

effect estimations. Finally, we outline the extensive robustness checks on these baseline

results presented in the appendix. In the next section, we provide further analyses on

potential mechanisms underlying our baseline estimations.

Average effect of carbon pricing. Table 1 shows the estimated average effect of

carbon pricing on per capita CO2 emissions from fossil fuel combustion using the various

estimators described earlier, together with the results of corresponding pre-trend tests.

The first two columns present the results from the standard TWFE and event-study

estimations, serving as benchmarks for our preferred estimation strategies. The following

columns present our main results from using the estimators that are robust to treatment

effect heterogeneity, introduced by Sun and Abraham (2021) (S&A), de Chaisemartin and

19See, for example, Colmer et al. (2024).
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D’Haultfœuille (2024) (dC&D), and Callaway and Sant’Anna (2021) (C&A), respectively.

The estimated ATETs, presented in Table 1, suggest that implementing a carbon pric-

ing policy reduces emissions per capita by 8 to 14 percent on average in the posttreatment

period compared to a counterfactual in which these policies had not been implemented.20

Standard errors are small; therefore, the coefficients are all statistically significant with

respect to conventional benchmarks, such as the 1 percent significance level. The esti-

mated average treatment effect from TWFE is 14 percent. The following columns present

the results from allowing for dynamic treatment effects. The standard event-study regres-

sion yields results similar to those of the TWFE estimation. The estimated average effect

is 13 percent. The last three columns include the results from the estimators specifically

designed for the subtleties in the presence of staggered treatment. Using the S&A and

the C&S estimators does not change the conclusion from the TWFE and the standard

event-study results. The estimated effects are 11 and 12 percent, respectively. Compared

to these results, the estimated effect from using the dC&D estimator is lower, 8 percent.

To clarify the differences in these estimation results in Table 1, Figure 5 illustrates the

estimated coefficients in absolute terms together with the 90 and 95 percent confidence

intervals. The figure shows that the differences between the estimation results are not

large given their confidence intervals. The dC&D estimate is noticeably conservative

compared to the others, which is the general pattern in our robustness checks. However,

in Appendix D, we show that the difference between the dC&D and C&S estimates largely

disappears when we repeat our estimations with a balanced sub-sample from our dataset,

which is due to the way the two estimators deal with missing covariate values.21 When we

use a balanced subsample, the estimated effects from the dC&D and C&S estimators are

both 14 percent and 3 or 4 percentage points smaller than those from other estimators.

In the main text, we present the results from using our full panel, which is unbalanced.

These results are more conservative than those from using a balanced subsample. In

Appendix D, we show that all our conclusions are robust to using a balanced sub-sample.

Dynamic effects. Figure 6 shows the dynamic treatment effect estimates underlying

the estimated average effects and the corresponding pretrend tests presented in Table

1. The figure includes the results from the S&A, dC&D, and C&S estimators.22 The

estimated placebo treatment effects in the pretreatment period are insignificant in all

20Throughout the paper, we interpret the estimated coefficients for the treatment effect as percentage
changes in the outcome variable, which is an approximation. The exact percentage change in the out-
come variable is given by 100 × (exp (β̂) − 1). The difference is small as long as the coefficient is not

too large. For guidance, the exact percentage changes for β̂ = {−0.05,−0.10,−0.15,−0.20,−0.25} are
{−4.88%,−9.52%,−13.9%,−18.1%,−22.1%}. Given our point estimates and the associated confidence
intervals, we use the approximate interpretation throughout the paper.

21The dC&D estimations drop observations with missing covariate values in the estimation of each
cohort-time specific treatment effect, while the C&S estimations use pair-balanced data.

22The results of the standard event study estimation are similar and are provided in Appendix C.
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Figure 5: Decrease in per capita CO2 emissions due to carbon pricing
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Decrease in emissions due to carbon pricing

Notes: This figure presents the estimated effects of carbon pricing on per capita CO2 emissions from
fossil fuel combustion based on standard TWFE and event-study estimations, and estimators introduced
by Sun and Abraham (2021) (S&A), de Chaisemartin and D’Haultfœuille (2024) (dC&D), and Callaway
and Sant’Anna (2021) (C&S). Carbon pricing is a dummy variable that indicates whether a country has
implemented a carbon pricing policy or not. The estimations use the Core control set which includes the
logarithm of GDP per capita and its square, the logarithm of population, and the logarithm of urban
population share. Standard errors are clustered at the country level. dC&D and C&S standard errors
are bootstrapped with 800 replications. Capped bars show the 90 and 95 percent confidence intervals.
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Figure 6: Dynamic treatment effects
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(a) Sun and Abraham (2021)
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(b) de Chaisemartin and D’Haultfœuille (2024)
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(c) Callaway and Sant’Anna (2021)

Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita based
on the estimators introduced by Sun and Abraham (2021), de Chaisemartin and D’Haultfœuille (2024),
and Callaway and Sant’Anna (2021). Carbon pricing is a dummy variable that indicates whether a
country has implemented a carbon pricing policy or not. The estimations use the Core control set which
includes the logarithm of GDP per capita and its square, the logarithm of population and the logarithm
of urban population share. Standard errors are clustered at the country level. dC&D and C&S standard
errors are bootstrapped with 800 replications. The capped bars show the 90 and 95 percent confidence
intervals.
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estimations.23 The pretrend tests presented in Table 1 are about the joint significance of

these dynamic placebo treatment effects. More specifically, we test the null of all placebo

effects to be zero, which is rejected if at least one of them is significant. We cannot reject

this null in all tests. These results indicate that our control set is able to explain the

pretreatment differences in the evolution of emissions per capita between the treatment

and control groups, which supports the imposed conditional parallel trends assumptions.

In Figure 6, the parameter estimates represent the percentage reduction in emissions

relative to the year before the implementation of a carbon pricing policy, represented by

the relative year −1. Accordingly, the estimated ATETs presented in Table 1 are the

averages of these estimated dynamic treatment effects depicted in Figure 6. The results

suggest that the estimated effect of carbon pricing has been realized gradually and steadily

over the ten years following their enactment. Overall, 10 years after enacting a carbon

pricing policy, the estimated reduction in emissions per capita relative to the year before

implementation ranges between 19 and 23 percent.

Robustness checks. In the appendix, we present an extensive set of sensitivity checks

on our baseline results, some of which we have already mentioned. For convenience, we

summarize all these checks here. In these appendices and also in the rest of the paper, we

mainly use the dC&D estimator, as it yields the most conservative point estimates and

confidence intervals, as shown in the preceding analysis. This estimator fits our purposes

as it allows for time-varying covariates and the use of later-treated units in the control

group.

In Appendices B and C, we provide further details and complementary results for our

baseline analysis. Appendix B provides details of the TWFE estimation results, where we

also present the coefficient estimates for our core control set. We present the estimated

dynamic treatment effects obtained from the standard event-study method in Appendix

C.

In Appendix D, we show that our results are robust to using a balanced sub-sample of

our baseline sample, and using an unbalanced sample tends to yield slightly conservative

results with respect to the efficacy of carbon pricing. These results confirm that our

conclusions are not driven by the differences between estimation algorithms in their way

of handling missing values.

In Appendix E, we show that our results are robust to having only the later-treated

countries in our control group. This strategy may improve the comparability of the

treatment levels by restricting the control group to those countries that eventually im-

plemented a carbon pricing policy in our sample period.

23We follow the common approach for each estimator in estimating the placebo effects. The estimated
placebo effects with the C&S estimator are based on the so-called short comparisons between consecutive
relative years, and the others are based on long comparisons with respect to the relative year -1. This
choice does not affect any of our conclusions.
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In this section and also in the remainder of the paper, we use the core control set

described in Section 4. In Appendix F, we use additional control variables for robustness

checks. These variables represent factors often hypothesized to be the determinants of

CO2 emissions in the literature. They include characteristics related to the energy sector,

further policy measures targeting GHG emissions, and some institutional aspects of the

implementing jurisdictions. Some of these variables are likely to be bad controls and

some restrict our sample size considerably and do not have much explanatory power. For

completeness, we show that our results are robust to controlling for such factors.

We retrieve energy price information from the IEA and perform robustness checks for

our baseline results. The enactment of carbon pricing policies can be considered as an

exogenous variation in energy prices. Hence, including energy prices in our specification

could potentially improve the precision in our analysis. However, using individual resource

and energy prices reduces our sample size by more than 75 percent. That is why they

are not part of our preferred specification. Nevertheless, in Appendix G, we show that

our results are robust to including them as additional covariates in our specification.

6 Further analyses and robustness checks

In this section, we focus on a set of supplementary analyses and further robustness checks

to assist in interpreting our baseline results and shed light on the potential mechanisms

through which carbon pricing could have affected CO2 emissions. As explained earlier,

we mainly use the dC&D estimator. We start by estimating the elasticity of per capita

carbon emissions to effective carbon prices. Next, we proceed by presenting an analysis

on the long-term effects of carbon pricing instruments beyond the 10-year window that

we used in our baseline estimations. Third, we present a decomposition analysis. We

show that the estimated effects are mainly driven by resource substitution rather than

energy efficiency improvements. Fourth, we provide compelling evidence that our results

are not likely to be driven by renewable energy policies that may have been implemented

simultaneously with carbon pricing policies. Finally, we analyze the role of potential

spillover effects of carbon pricing policies across countries.

6.1 Responsiveness to carbon prices

Our baseline findings imply a substantial decrease in emissions in countries that had

implemented a carbon pricing policy compared to those where a carbon pricing policy

had not been implemented. On the other hand, in Section 2, we show that the carbon

prices and/or their coverage observed in our sample had been much lower than the levels

required to achieve climate goals. These findings imply that our results are not likely

to be driven by contemporaneous responses to changes in carbon prices. In this section,

21



we address this issue formally by estimating the elasticity of demand for emissions with

respect to effective carbon prices.

The effective carbon prices presented in Section 2 are based on global coverage ratios

provided by the World Bank (World Bank, 2023a). To calculate country-level cover-

age ratios and implied effective prices, we incorporate additional information from the

EDGAR Database on GHG Emissions (Crippa et al., 2024; EDGAR, 2024) and from the

European Environment Agency on verified emissions in the EU ETS (EEA, 2024). We

describe the data construction and the resulting effective carbon prices in Appendix H in

detail.

Table 2: Responsiveness to carbon prices

(1) (2) (3) (4)

Sample restrictions on carbon prices

>0 > 25th percentile > 50th percentile > 75th percentile

Effective carbon prices (in log.) 0.006 -0.044 -0.053 -0.064

(0.009) (0.015) (0.022) (0.048)

Adjusted R2 0.66 0.72 0.69 0.74

Observations 497 372 248 124

Notes: This table presents the estimated elasticities of emissions per-capita with respect to effective
carbon prices. The dependent variable is the logarithm of CO2 emissions per capita. Effective carbon
prices are in logarithms. All regressions control for country and year fixed effects, and the core control
set. Standard errors clustered at the country level are in parentheses.

To estimate elasticities, we regress the logarithm of emissions per capita on the loga-

rithm of effective carbon prices by controlling for country and year fixed effects together

with our core control set.24 The results are presented in Table 2. In column (1), the

estimated elasticity is positive but close to zero. In the following columns, we gradually

restrict the estimation sample to higher carbon prices, by trimming the sample at the

25th, 50th and 75th percentile values of carbon prices. We observe several important pat-

terns in these results. First, the estimated effects are negative and significant in columns

(3) and (4). Second, the estimated effects are stronger at higher effective prices. Third,

the estimated elasticities are still small, around 0.05.

These results confirm that the substantial emission savings implied by our baseline

results are not likely to be driven by short-run responses to the year-to-year variations

in carbon prices. We observe statistically significant responses only at higher effective

prices, which suggests that future increases in effective carbon prices have the potential

to be effective in inducing further emission reductions.

24In Appendix H, we repeat this analysis by using a log-linear specification, where we also provide
additional results by keeping zero-carbon prices in the estimation sample.
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Figure 7: Average treatment effects over relative years
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Notes: This figure presents the average effect of carbon pricing on emissions per capita based on the
de Chaisemartin and D’Haultfœuille (2024) estimator. Each estimate is the average of the estimated
dynamic treatment effects up to a relative year. Carbon pricing is a dummy variable that indicates
whether a country has implemented a carbon pricing policy or not. The estimations use the Core control
set which includes the logarithm of GDP per capita and its square, the logarithm of population and
the logarithm of the share of urban population. Standard errors are clustered at the country level and
bootstrapped with 800 replications. Capped bars show the 90 and 95 percent confidence intervals.

6.2 Beyond 10 years

In our baseline analysis, we chose a window width of 10 years before and after the treat-

ment. Estimation of dynamic treatment effects beyond 12 years relies on a smaller number

of treated units, which leads to imprecision. More specifically, the 2005 cohort, consist-

ing of the EU member states that participated in the first phase of the EU ETS, is not

included in the estimation of dynamic treatment effects after the relative year 12, as our

sample ends in 2017. Still, given that carbon pricing instruments are intended for long-

term impacts, the effects beyond 10 years are of interest. Therefore, we follow several

strategies to overcome these difficulties in estimating long-term impacts in our setup.

In Figure 7, we depict the results from one of these analyses, namely the estimated

average effects corresponding to the dynamic treatment effect estimations for a window

width of 20 years. In this figure, each estimated parameter corresponds to the average

treatment effect estimated from the dynamic treatment effects up to a relative year.

Hence, for example, the estimated parameter for relative year 10 corresponds to the result

presented in Table 1. Inspecting these averages in this extended estimation window can be

more informative than the relatively unstable and imprecise individual dynamic treatment

effects after the relative year 12, as the former strategy exploits more information.

Figure 7 shows that the ATETs stabilize after about 10 years. Hence, there is no

evidence for further emission reductions.25 It would be difficult to explain this pattern

25Suppose that the dynamic effects stabilize after relative year l. Then the average effects would
increase and converge to the level of the lth-year dynamic effect as l → ∞. That is, a stabilization of
dynamic treatment effects implies a decelerating increase in the average effects and a gradual stabilization.
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with increasing carbon prices. As detailed in Section 2, in our sample period, the global

coverage of carbon pricing instruments and their average price level were low. In the

previous subsection, we show that effective carbon prices do not explain the variation in

per capita CO2 emissions. Given these findings, the estimated effect of carbon pricing,

which is considerable, is likely to be driven by the formation of expectations after the

enactment of carbon pricing policies. In fact, the beliefs of the fossil fuel-consuming sec-

tors after the commitment of governments to climate targets may play a crucial role in

inducing emission-saving investments. Anticipating future stringency of climate policies,

firms and households take gradual steps toward less emission intensive technologies, pro-

cesses, and/or investments. It is reasonable that such adjustments take place gradually

over some years and ultimately their effects saturate in the absence of a strong increase

in carbon prices.

In Appendix I, we present the underlying estimated dynamic treatment effects and

gauge the long-term impacts of carbon pricing following several more strategies, including

extending our sample period up to 2021. As explained earlier, we capped our sample

period at 2017, mainly due to the unprecedented surge in the prices of emission allowances

in the EU ETS after 2018 and the global COVID outbreak in 2020 which constitute large

shocks to energy markets. All our results are robust to extending our sample period up

to 2021 which is the latest period with available data. In Appendix I, we also perform a

formal test on the stabilization of the dynamic treatment effects within rolling windows

over the relative years. The results from these tests support our conclusion in this section

that the effects stabilized after about 10 years from the enactments.

These results suggest that the emission savings due to the carbon pricing policies

enacted in our sample period will eventually saturate in the absence of new carbon pricing

initiatives or significant increases in the level and coverage of existing carbon prices.

6.3 Composition of the total effect

In this section, we present a decomposition analysis which we motivate with the IPAT

and Kaya identities (Commoner, 1972; Ehrlich and Holdren, 1971; Yamaji et al., 1991).

Scenario analyses and future projections for energy use and emissions by the IEA and

IPCC are largely based on these accounting identities. In our context, the IPAT identity

can be expressed as follows:

CO2︸︷︷︸
Impact

≡ Population× Income

Population︸ ︷︷ ︸
Affluence

× CO2

Income︸ ︷︷ ︸
Technology

.

Here, the environmental impact (I), measured by CO2 emissions in a given period, is de-

composed into three multiplicative components: Population (P ), GDP per capita termed
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Table 3: Decomposing the total effect of carbon pricing

(1) (2) (3) (4)

Outcome variable (in log.) CO2 pc. CO2 to GDP Energy to GDP CO2 to Energy

Carbon pricing -0.081 -0.065 -0.001 -0.066

(0.035) (0.042) (0.044) (0.020)

Placebo test (p-val) 0.654 0.373 0.397 0.699

Num. of obs. 4592 4592 4592 4592

Control set Core Core Core Core

This table presents the estimated effects of carbon pricing on on the individual components of the
IPAT and Kaya identities, namely the CO2 intensity of GDP, the energy intensity of GDP and the
CO2 intensity of energy use, based on the de Chaisemartin and D’Haultfœuille (2024) estimator.
Carbon pricing is a dummy variable that indicates whether a country has implemented a carbon
pricing policy or not. The control set Core includes the logarithm of GDP per capita and its square,
the logarithm of population, and the logarithm of urban population share. Standard errors clustered
at the country level and bootstrapped with 800 replications are in parentheses. Placebo tests are on
the joint significance of estimated placebo treatment effects for the 10 years prior to treatment.

affluence (A), and CO2 intensity of GDP termed technology (T ). The Kaya identity can

be seen as an extension of the IPAT identity, decomposing the technology term T into

two further elements as follows:

CO2 ≡ Population× Income

Population
× Energy

Income
× CO2

Energy
.

The first of these additional terms, energy intensity of GDP, reflects energy efficiency.

The second one, CO2 intensity of energy use, reflects resource mix. As a result, the Kaya

identity decomposes our outcome variable, per capita emissions, into three multiplicative

elements: GDP per capita, energy intensity, and emission intensity. We proceed by

analyzing the effect of carbon pricing on the latter two components. Note that we have

already conditioned our estimations on the first element, GDP per capita, which is in

our core control set. We use the total final energy consumption (TFC), retrieved from

the IEA database (IEA, 2024b), to calculate the intensity variables. Our results are not

sensitive to using total energy supply (TES) instead of TFC.

The results of our decomposition analysis are presented in Table 3. We present the

underlying estimated dynamic treatment effects in Appendix J. In the first column, we

present our baseline result to ease comparison, namely the effect on per capita CO2

emissions, which represents the total impact of carbon pricing. For completeness, we

start our decomposition analysis with the technology term in the IPAT identity measured

by the CO2 intensity of GDP. In column (2), the estimated effect on this technology term

is close to the total effect. This is not a surprising outcome. In the IPAT identity,

affluence times technology (A × T ), or their sum in logarithms, represents the total per

capita impact measured by our outcome variable per capita CO2 emissions. In all of our

regressions, we control for the affluence term on the right-hand side. Hence, moving the

25



affluence term to the right-hand side of our empirical specification simply recalibrates

the coefficient of GDP per capita. Note that we have already imposed the assumption

that carbon pricing does not have an effect on income (see the discussion in Section 4).

Therefore, the result that the total effect and the effect on the technology term are similar

is in line with this design.

Having the IPAT identity confirmed, we now turn to the two crucial terms in the Kaya

identity: the energy intensity of GDP and the emission intensity of energy use. Together,

these two terms make up the technology term in the IPAT identity. The estimated

effects on energy and emission intensities are presented in the third and fourth columns,

respectively. The estimated effect on the energy intensity of income is close to zero, while

the estimated effect on the emission intensity of energy use is very close to the effect on

the technology term. These results suggest that the estimated effects are mainly driven by

a reduction in the emission intensity of energy use. A decrease in the emissions-to-energy

ratio indicates a change in the resource mix. In fact, the starting point for the emission

calculations by the IEA is to multiply the amount of a specific resource by its emission

coefficient. This coefficient is a constant indicating the emission per unit of resource use,

available at a very disaggregated level for different resource types. Therefore, country-

level emissions per energy use can be interpreted as an average emission factor weighted

by the amount of resources used to produce that amount of energy.

These results suggest that carbon pricing instruments have reduced emissions by caus-

ing a substantial change in the resource mix, rather than reducing the efficiency of produc-

tive resources in energy use. By changing the relative prices of energy resources, carbon

pricing can create incentives to substitute emission-intensive primary energy resources,

such as coal and oil, with cleaner alternatives.

6.4 The role of renewable energy policies

One major concern in identifying causal effects of policies by using aggregate information

is the presence of other accompanying policies targeting the same outcomes. While carbon

pricing is considered an important instrument in the fight against climate change, it is

not the only one in the toolkit of governments. Most prominently, throughout our sample

period, many countries have applied both supply- and demand-side policies to achieve

electric vehicle (EV) transition, implemented energy efficiency measures, and promoted

renewable energy technologies. In this section, we focus on renewable energy policies, as it

is less likely that our results are driven by EV policies and/or energy efficiency measures.

EV shares in the overall vehicle fleet are still very low. For example, although the

Netherlands is one of the most ambitious countries in promoting EVs and consequently

has achieved one of the highest EV shares in total vehicle sales worldwide, the market

shares for battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs)
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Table 4: Controlling for renewable energy policies

(1) (2) (3) (4)

Controlling for Wind and solar share in Renewable policies

TES Electricity TFC

Carbon pricing -0.077 -0.057 -0.081 -0.082

(0.034) (0.034) (0.035) (0.034)

Placebo test (p-val) 0.68 0.656 0.614 0.656

Num. of obs. 4583 4586 4592 4583

Control set Core Core Core Core

Notes: This table presents the estimated effects of carbon pricing on emissions per capita based on
the de Chaisemartin and D’Haultfœuille (2024) estimator by controlling for the potential effects of
renewable energy policies. The dependent variable is CO2 emissions per capita in logarithms. Carbon
pricing is a dummy variable that indicates whether a country has implemented a carbon pricing policy
or not. The control set Core includes logarithm of GDP per capita and its square, the logarithm of
population, and the logarithm of the share of urban population. Standard errors clustered at the
country level and bootstrapped with 800 replications are in parentheses. Placebo tests are on the
joint significance of estimated placebo treatment effects for the 10 years preceding the treatment.

were only at 3.1 and 1.7 percent in 2022, respectively.26 Energy efficiency policies aim

at reducing energy consumption per unit of output rather than changing the carbon

intensity of resource mix. Our results in Table 3 suggest that emission reductions have

been largely driven by changes in the resource mix rather than improvements in energy

efficiency.

In order to control for the effect of renewable energy policies, we follow two strategies.

Our first strategy is an indirect one where we partial out the variation in per capita CO2

emissions that might have been caused by the surge in renewable energy production.

More specifically, we repeat our estimations by controlling for the shares of solar and

wind energy in total primary energy supply (TES), electricity generation, and total final

energy consumption (TFC).27 For brevity, we will refer to wind and solar as renewable

energy sources. The increase in the share of renewables in the last two decades is, of

course, not only due to renewable energy policies and may partially have been driven by

carbon pricing policies. Hence, this approach is conservative by blocking this potential

effect of carbon pricing, and the estimated treatment effects should be interpreted as

lower bounds in absolute terms for the effect of carbon pricing.

The difference between TES and TFC is important for the interpretation of these

results. TFC includes electricity without distinguishing the various energy sources in its

generation, including renewables. Hence, the renewable share reflects nonelectricity use

by final energy consumers. However, TES includes all primary energy resources, whether

they are used in electricity generation or for some other purposes. The results from

controlling for the share of renewable in TES, electricity, and TFC are presented in the

26See the figures provided by the European Commission’s Alternative Fuels Observatory at https:
//alternative-fuels-observatory.ec.europa.eu/transport-mode/road/netherlands.

27We retrieved all data from the World Energy Balances database of the IEA (IEA, 2024b).
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first three columns of Table 4. The estimated effects are close to our baseline estimate,

especially when we control for the renewable shares in TES and TFC, suggesting that the

effect of carbon pricing on CO2 emissions was largely independent of developments in the

renewable energy sector. It is not surprising that the only notable departure from our

baseline result seems to occur when we control the share of renewable energy in electricity

generation, which is the main outcome targeted by renewable energy policies. In this case,

the estimated effect of carbon pricing is a 6 percent reduction in per capita CO2 emissions,

which falls 2 percentage points short of our baseline estimate. This estimate should be

considered a lower bound for the effect of carbon pricing, as the remaining reductions

following the enactment of carbon pricing policies could also be partially due to carbon

pricing.

Our second approach is to construct measures reflecting the most prominent renewable

energy policies, namely feed-in tariffs and renewable portfolio standards. Each variable is

an indicator variable describing whether a country has such a policy in place in a certain

year based on the information we retrieved from the IEA Policies and Measures Database

(IEA, 2021). We repeat our estimations by controlling for these policy indicators. The

results presented in the last column of Table 4, are virtually the same as our baseline

results.

We provide further details of the analysis in this section, including the dynamic effects,

in Appendix K.

6.5 Spillover effects

In our context, there are potential mechanisms that may have caused positive and/or

negative spillover effects. Positive spillovers can be, for example, due to technology

spillovers following green innovations spurred by implemented policies. The presence of

such spillover effects would attenuate the estimated effect of carbon pricing; therefore,

our estimates could be seen as a lower bound in such a scenario. There are also potential

mechanisms that can cause spillover effects in the opposite direction. That is, never-

treated and not-yet-treated countries may increase their emissions in response to carbon

pricing policies in treated countries, which is called carbon leakage. Ex post assessments

of GHG mitigation policies in the literature suggest that carbon leakage has been a minor

issue in our sample period.28

In this section, we analyze whether the observed carbon pricing initiatives have caused

28Dechezleprêtre et al. (2022) use data from multinational companies to assess the effect of the EU
ETS on the geographic distribution of carbon emissions by multinational companies. They do not find
any evidence of carbon leakage. Using firm-level data, Dechezleprêtre et al. (2023) find no effect of the
EU ETS on the number of employees and profits in the period 2005-2012. Verde (2020) reaches the same
conclusion by reviewing the literature. Martin et al. (2014) use firm-level data and find no effect of the
UK Climate Change Levy on employment, revenue, and plant exit for 2001-2004. Naegele and Zaklan
(2019) analyze trade flow data and do not find evidence for carbon leakage due to the EU ETS.
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Table 5: Testing for spillover effects

(1) (2) (3) (4)

Proximity group Above median based on Contiguity

FDI Trade 1 / Distance

Spillover effect -0.025 -0.036 -0.007 -0.007

(0.053) (0.056) (0.049) (0.058)

Num. of obs. 1945 1923 1923 1923

Control set Core Core Core Core

This table presents the estimated spillover effects of the EU ETS based on standard TWFE estima-
tions. The dependent variable is CO2 emissions per capita in logarithms. The estimation sample
is the never-treated group. The spillover effects are represented by a dummy variable that indicates
whether a country is in the high-proximity group where potential spillover effects are more likely to be
observed based on various measures. The control set Core includes the logarithm of GDP per capita
and its square, the logarithm of population, and the logarithm of the share of urban population.
Standard errors clustered at the country level are in parentheses.

spillover effects on the emissions of countries that have not implemented such policies.

Such potential spillover effects have important implications for the interpretation of our

results. First, an interesting question that follows from our analysis is whether future

carbon pricing initiatives can yield similar results to those we observe in our sample. At

least, the presence of spillover effects would not allow a straightforward extrapolation of

our results to future initiatives, as spillover effects are destined to vanish gradually as

more countries apply carbon pricing. Second, the implications of our results for global

emissions and therefore for the efficacy of climate action depend crucially on the potential

spillover effects of implemented carbon pricing policies in unregulated jurisdictions. In the

extreme scenario in which the estimated reductions are completely driven by spillovers in

the form of carbon leakages, the reduction in global emissions due to implemented carbon

pricing policies so far would be zero.

To investigate whether there have been spillover effects of carbon pricing policies,

we perform a simple analysis, but conservative with respect to the presence of carbon

leakage. Specifically, we examine whether the EU ETS had heterogeneous effects in the

never-treated group with respect to several dimensions that can potentially capture the

intensity of possible spillover effects. This focus avoids the complications arising from

the staggered design. We measure the potential to observe spillover effects with several

proximity measures, namely the stock of foreign direct investment (FDI), trade volume,

inverse distance, and contiguity between the never-treated countries and the EU.29 For

each measure, except for contiguity, we divide the never-treated countries into above

and below median groups and investigate whether there are differential patterns in per

capita emissions between these groups following the implementation of the EU ETS. In

constructing the FDI stock and trade volume indicators, we restrict our sample to flows

29The data on the stock of foreign direct investment is from OECD Database (OECD, 2024). All other
data are from the CEPII database (Conte et al., 2022).
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from the EU to the countries in the never-treated group. The distance measure is simply

the average of the distances to the EU countries of a never-treated country. We use a

simple geometric distance measure; however, our results are robust to using other available

more sophisticated distance measures in the CEPII dataset, such as population-weighted

distance measures. The contiguity variable simply indicates whether a country has a

shared border with an EU country. We restrict our sample to the period 1996-2017 and

use the presample observations (1995) to obtain an exogenous measure of proximity. Our

choice of estimation sample is based on a trade-off between the number of observations to

construct the proximity measures and having sufficient pretreatment periods. Our results

are not sensitive to reasonable alterations in these choices.

The results are presented in Table 5, where each column uses a different proximity

measure. In all regressions, the base category is the group with the lowest proximity.

The estimated effects of EU ETS on the proximity groups are small and statistically

insignificant at conventional levels of significance. If anything, the estimates are con-

sistently negative across the proximity measures, meaning that emissions per capita of

the high-proximity group tend to decrease slightly relative to those of the low-proximity

group following the implementation of the EU ETS. This result suggests that, if there

were spillovers, their direction was driven by positive spillovers. In this case, our baseline

estimate of the effectiveness of carbon pricing should be considered conservative.

7 Implications for global emissions

In this section, we illustrate the implications of our results for global CO2 emissions. We

perform this analysis based on our dynamic treatment effect estimates from the dC&D

estimator, which are more conservative compared to those from other estimators. Given

our results in the previous section, we ignore potential spillover effects. Our results are

presented in Figure 8. The figure shows the global per capita CO2 emissions on the

left panel and the level of global CO2 emissions on the right panel, both from fossil-fuel

combustion. We retrieved these series directly from the IEA database (IEA, 2024a). Each

panel also depicts the counterfactual series representing a scenario in which the observed

carbon pricing initiatives were not implemented. We obtain these counterfactuals by

calculating the emission savings for each treated country based on the estimated dynamic

average treatment effects. In line with our results in the previous section, we assume that

the dynamic effects stabilize after 10 years from enactment. Next, we aggregate these

savings to obtain global savings, both in levels and in per capita terms. The counterfactual

series are the sum of these estimated savings and observed emissions.

In the left panel, we observe that the difference between the counterfactual and ob-

served per capita emissions, which we refer to as emission savings, rapidly increases after

2010. This pattern can also be discerned from the depicted emission savings ratio, which
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Figure 8: Implications for global emissions
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Notes: This figure presents the implications of our baseline dynamic treatment effect estimations for
global CO2 emissions from fossil fuel combustion. The counterfactuals are calculated based on the
estimator introduced by de Chaisemartin and D’Haultfœuille (2024). The emissions savings ratio is the
difference between the observed and counterfactual emissions expressed as a percent share in observed
emissions.

we define as the ratio of emission savings to observed emissions. Note that this ratio is

the same in per capita terms or in levels. The emission savings ratio is 8 percent at the

end of our sample period 2017. This result suggests that global CO2 emissions in 2017

would have been 8 percent higher in the absence of implemented carbon pricing policies

around the world.

The right panel shows the levels of global observed and counterfactual emissions and

cumulative emission savings due to carbon pricing policies since 1990, the year in which

the first carbon pricing initiatives were enacted. The counterfactual global emissions are

steadily increasing following the historical trend, while the observed emissions increase

at a considerably lower rate. In absolute terms, the savings from implemented carbon

pricing policies in 2017 are 2.5 gigatons of CO2. The estimated cumulative emissions

savings by 2017 are 13 gigatons of CO2, most of which are realized after 2010.

In the Sixth Assessment Report of IPCC, the average emission trajectories under the

policies that were implemented by the end of 2020 are characterized by a stabilization of

annual global emissions and a warming of 2.2◦C to 3.5◦C.30 Our results show that carbon

pricing policies have made a significant contribution to this predicted trajectory.

In the previous section, we have also shown that the estimated effects of carbon pricing

policies are likely to have been realized within the first ten years after their enactments,

after which these effects level off. Therefore, an out-of-sample prediction would be that,

30See, for example, Figure SPM.5 in the Synthesis Report (IPCC, 2023).
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in the absence of new carbon pricing initiatives or significant increases in the existing

effective carbon prices, the steep increase in the emission savings ratio after 2010 shown in

Figure 8 will eventually decelerate and stabilize. Therefore, existing policies are unlikely

to be sufficient to achieve a net-zero emission pathway.

8 Conclusion

The world has over three decades of experience with carbon pricing instruments. In this

paper, we assess the extent to which these instruments induced reductions in emissions

from fossil fuel combustion, using a country-level panel dataset for the period 1981-2017

covering 138 countries. In the 1990s, a first set of countries implemented carbon pricing

policies. In 2017, more than 40 countries had a carbon pricing policy in place. We

estimate the effect of carbon pricing on emissions using robust dynamic treatment effect

estimators that explicitly address subtleties in this staggered adoption of carbon pricing

instruments.

Our results suggest that carbon pricing can be an effective policy instrument in ad-

dressing the threat of climate change. We show that the carbon pricing policies, enacted

between 1990 and 2017, reduced per capita CO2 emissions from fossil fuel combustion by

8 to 12 percent on average. By applying dynamic estimation methods, we find gradual

adjustments after implementation, resulting in a 19 to 23 percent decrease in per capita

emissions after 10 years. These estimates imply that, in 2017, global CO2 emissions from

fossil fuel combustion would have been at least 8 percent higher in the absence of these

policies, which corresponds to 2.5 gigatons of CO2 savings. The implied cumulative CO2

savings between 1990 and 2017 are 13 gigatons. However, we also show that the esti-

mated effects of carbon pricing policies stabilize after a decade following their enactment.

This result suggests that, in the absence of new carbon pricing initiatives or significant

increases in existing effective carbon prices, the estimated global emission savings will

eventually stabilize.

We also provide evidence that these effects are unlikely to be driven by the variation

in carbon prices. Our results are more in line with a mechanism of shifting expecta-

tions: as a country commits to a carbon price to reduce its future emissions, firms and

households adjust accordingly by anticipating the future costs of inaction. This result

challenges the idea that carbon pricing may not be necessary in low-emitting countries,

such as those in Africa. According to our results, carbon pricing has the potential to

set expectations in line with climate targets. Therefore, a timely implementation can

prevent the accumulation of an emission-intensive capital stock and the building up of a

dirty infrastructure.

We also find that carbon pricing policies achieved this reduction by triggering a substi-

tution of CO2 intensive fuels with cleaner alternatives, rather than increasing the energy
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efficiency of economic activity. Furthermore, we show that the effects of carbon pricing

policies do not overlap with the potential effects of renewable energy policies to a large

extent. These results highlight the importance of complementarities between renewable

energy policies, energy efficiency measures, and carbon pricing policies.
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Appendix

A More on the dataset

In this section, we provide further details on our dataset and some descriptive statistics.

Figure A.1 lists the countries in our treatment group and shows the historical development

of the adoption of carbon pricing schemes in our dataset. These countries are the later-

treated units before receiving the treatment, or part of the not-yet-treated group together

with the never-treated units. In our dataset, we have 95 never-treated countries that are

not listed in the figure. In this figure, the white spaces indicate missing data in at least

one of the variables in our baseline regressions.

Figure A.1: Countries with a carbon pricing policy

Finland

Poland

Norway

Sweden

Denmark

Slovenia

Estonia

Latvia

Austria

Belgium

Cyprus

Czech Republic

France

Germany

Greece

Hungary

Ireland

Italy

Lithuania

Luxembourg

Malta

Netherlands

Portugal

Slovak Republic

Spain

United Kingdom

Bulgaria

Canada

Romania

Iceland

New Zealand

Switzerland

United States

Japan

Ukraine

China

Croatia

Kazakhstan

Mexico

Korea

Chile

Colombia

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

Not yet treated Treated

Year

Notes: This figure presents the staggered adoption of carbon pricing policies in our baseline sample
period. White spaces indicate missing data in at least one of the variables in our baseline regressions.
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Table A.1: Descriptive statistics

Units Observations Mean Median St. Dev. Min. Max.

Emission pc (log) kg CO2 pc 4826 7.70 8.05 1.55 2.66 10.63

GDP-PPP pc (log) 2017 U.S. dollar pc 4629 9.12 9.19 1.19 5.94 12.32

Population (log) Millions 4789 16.23 16.14 1.59 11.77 21.06

Urban pop. sh. (log) Percent 4789 4.00 4.11 0.46 1.85 4.61

Note: This table presents descriptive statistics for the outcome and core control variables, and their
units before any functional transformation. All variables are in logartihm. Here, pc stands for per
capita.

In Figure A.1, a country switches into the treatment group after adopting a carbon

pricing policy at the regional, national, or subnational levels. EU ETS is a regional policy

that covers EU member states. The first phase of the EU ETS started in 2005. Its regional

coverage changed over time with the enlargement of the EU. For example, Bulgaria and

Romania joined the EU ETS in 2007. Also note that some of the EU ETS participants

had already implemented a carbon pricing policy in the 1990s, such as Denmark.

Our treated group includes a few countries where initial carbon pricing policies were

implemented at a subnational level. For example, China launched the pilot phase of

their national emission trading system in 2013 in seven pilot regions, namely Beijing,

Chongqing, Guangdong, Hubei, Shanghai, Shenzhen and Tianjin. Together, they ac-

count for about a quarter of China’s total GDP. In the United States, the Regional

Greenhouse Gas Initiative (RGGI) is an emissions trading scheme covering power plants.

It became operational in 2009 in 11 states, namely Connecticut, Delaware, Maine, Mary-

land, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont,

and Virginia. Subsequently, the California Cap-and-Trade Program came into force in

2012 aiming to reduce GHG emissions by 80 percent by 2050 compared to 1990 levels.

In Table A.1, we present some descriptive statistics for our outcome and core control

variables in logarithms, together with their original units of measurement. Our dataset

is unbalanced with a small number of missing values, which can also be inspected in

Figure A.1 where the missing values are indicated with white regions. It can be seen that

balancing our dataset by dropping countries with missing observations retains most of

our observations. We provide robustness checks with this subset.

B TWFE estimation results in detail

In this section, we present the detailed results of the TWFE estimation, including the

coefficient estimates for our core control set. Table B.1 presents the results. In Panel A,

we use all the available data per variable. We introduce our control variables gradually

column-by-column. In the first column, where we do not use any control variables,

the estimated parameter indicates that implementing a carbon pricing policy reduces
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emissions per capita by 35 percent on average. However, as soon as we introduce GDP

per capita and its square as controls in the second column, the estimated effect reduces

drastically to 27 percent. Introducing further covariate sets in the following columns

further reduces the estimated effect. The last column presents the results from using our

full control set, which suggest a 14 percent reduction in per capita emissions from fossil

fuel combustion due to carbon pricing policies.

Table B.1: TWFE Estimations

(1) (2) (3) (4)

Panel A: Full sample

Carbon pricing -0.348 -0.266 -0.179 -0.138

(0.044) (0.041) (0.047) (0.044)

GDP pc (log) 1.560 1.591 1.067

(0.432) (0.469) (0.453)

GDP pc (log) squared -0.066 -0.067 -0.038

(0.023) (0.025) (0.024)

Population (log) 0.325 0.223

(0.160) (0.136)

Urban pop. sh. (log) 0.988

(0.233)

Fixed effects Country and year fixed effects.

Adjusted R2 0.19 0.38 0.39 0.44

Observations 4826 4629 4592 4592

Panel B: Restricted sample

Carbon pricing -0.356 -0.259 -0.179 -0.138

(0.043) (0.041) (0.047) (0.044)

Adjusted R2 0.21 0.37 0.39 0.44

Observations 4592 4592 4592 4592

Notes: This table presents the estimated effects of carbon pricing on emission per-capita based on
TWFE regressions. Carbon pricing is a dummy variable indicating whether a country has implemented
a carbon pricing policy or not. In the first panel, the regressions use all available data points. Panel
B uses the restricted sample which refers to the sample when we use the full control set in the last
column in Panel A. Standard errors clustered at the country level are in parentheses.

In Table B.1, the column-by-column changes in the estimated effects as we introduce

additional covariates are considerable, which highlights the role of our covariate set in

explaining the variation in per capita emissions. The number of observations across these

regressions changes slightly. In panel B, we verify that this pattern is not driven by

sample restrictions due to using further covariates. Here, we repeat our estimations by

using the sample of Column (4) of Panel A. The estimated effects per column do not

change much with this sample restriction, which verifies the importance of our control

variables.
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C Standard event-study estimations

Figure C.1 presents the results based on the standard event-study specifictaion (see equa-

tion (2)). The placebo treatment effects in the pretreatment period are insignificant.

Hence, our model appears to be able to capture the pretreatment differences between the

treatment and control groups. However, the estimated placebo treatment effects have a

pattern of being positive throughout the pretreatment period, along with a downward

trend. The estimated reduction in per capita emissions after 10 years from the enactment

is almost 30 percent, which is above the range implied by our baseline estimations.

The right panel presents the average effects up to a relative year after implementa-

tion. The estimated parameter for relative year 10 in the right panel corresponds to the

estimated parameter based on the standard event-study specification presented in Table

1 in the main body of the text.

Figure C.1: Standard event-study estimations
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Notes: This figure presents the results from using the event-study specification in Equation (2). The
regressions are based on the core control set. The left panel depicts the dynamic effects on emissions
relative to the year before implementation. The right panel presents the average effects up to a year after
implementation. The capped vertical bars indicate the 90 and 95 percent confidence intervals based on
standard errors clustered at the country level.

D Results from balanced panel

In this section, we show that the dC&D and C&S estimators yield similar results with a

balanced subsample. We construct a balanced panel from countries for which we observe

all our variables from 1981 to 2017. The results of using this balanced panel are presented

in Table D.1. We observe two important patterns. First, our general conclusions from

our baseline results do not change. However, the estimated average effects are generally
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larger. Second, the dC&D and C&S estimators yield similar results. These results,

when interpreted together with our baseline results, imply that the S&A estimations are

generally more aligned with the TWFE and standard event-study estimations, and dC&D

tend to estimate relatively smaller effects. For visual inspection, we also illustrate the 90

and 95 percent confidence intervals for each estimate in Figure D.1.

Table D.1: Effect of carbon pricing on per capita CO2 emissions with a balanced panel

(1) (2) (3) (4) (5)

Estimators TWFE Event Study S&A dC&D C&S

Carbon pricing -0.193 -0.177 -0.173 -0.139 -0.144

(0.051) (0.034) (0.035) (0.041) (0.028)

Placebo test (p-val) 0.167 0.589 0.239 0.387

Num. of obs. 3848 3848 3848 3848 3848

Control set Core Core Core Core Core

Notes: This table presents the estimated effects of carbon pricing on emissions per capita based
on standard TWFE and event-study estimations, and estimators introduced by Sun and Abraham
(2021) (S&A), de Chaisemartin and D’Haultfœuille (2024) (dC&D), and Callaway and Sant’Anna
(2021) (C&S), using a balanced panel. Carbon pricing is a dummy variable that indicates whether a
country has implemented a carbon pricing policy or not. The control set Core includes the logarithm
of GDP per capita and its square, the logarithm of population, and the logarithm of the share of
urban population. Standard errors clustered at the country level are in parentheses. dC&D and C&S
standard errors are bootstrapped with 800 replications. Placebo tests are on the joint significance of
estimated placebo treatment effects for the 10 years preceding the treatment.

The results of the pretrend tests in Table D.1 are in line with our baseline results. In

Figure D.2, we present detailed results on the dynamic treatment effect estimations using

the dC&D estimator. The results are similar, except that the estimated reduction in emis-

sions per capita after 10 years from the enactment is 30 percent. The dynamic estimates

from the other estimators, which we ignore for brevity, reflect the patterns presented in

Table D.1. C&S yields very similar results to those from dC&D. The estimated dynamic

treatment effects by S&A are slightly higher, implying almost a 40 percent reduction

after 10 years. In all estimations, the placebo treatment effects are insignificant.

In the preceding analysis, we balanced our dataset at 1981. That is, we drop all

countries with at least one missing value from 1981 onward for any variables in our

baseline specification. In general, we have more country observations when we restrict

the time span to a more recent period. We also performed robustness checks by balancing

our sample at 1990 and obtained similar results.
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Figure D.1: Decrease in per capita CO2 emissions due to carbon pricing with a balanced
sample

TWFE

Event study

S&A

dC&D

C&S

0.00 0.05 0.10 0.15 0.20 0.25

Decrease in emissions due to carbon pricing

Notes: This figure presents the estimated effects of carbon pricing on emissions per capita based on
standard TWFE and event-study estimations, and estimators introduced by Sun and Abraham (2021)
(S&A), de Chaisemartin and D’Haultfœuille (2024) (dC&D), and Callaway and Sant’Anna (2021) (C&S),
using a balanced sample. Carbon pricing is a dummy variable that indicates whether a country has
implemented a carbon pricing policy or not. The estimations use the Core control set which includes the
logarithm of GDP per capita and its square, the logarithm of population, and the logarithm of urban
population share. Standard errors are clustered at the country level. dC&D and C&S standard errors
are bootstrapped with 800 replications. Capped bars show the 90 and 95 percent confidence intervals.

Figure D.2: Dynamic treatment effects with a balanced sample
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Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita based
on the de Chaisemartin and D’Haultfœuille (2024) estimator by using a balanced sample. Carbon pricing
is a dummy variable that indicates whether a country has implemented a carbon pricing policy or not.
The estimations use the Core control set which includes the logarithm of GDP per capita and its square,
the logarithm of population and the logarithm of the share of urban population. Standard errors are
clustered at the country level and bootstrapped with 800 replications. Capped bars show the 90 and 95
percent confidence intervals.
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E Only later-treated units in the control group

In this section, we provide a robustness check by restricting our control group to the later-

treated units. This control group includes countries that have eventually implemented

a carbon pricing policy at a point in time in our sample period. Therefore, the treated

cohorts and the associated control group, which receives the treatment at a later date, are

arguably more comparable in terms of the probability of being treated. Figure E.1 shows

the results based on the dC&D estimator. The estimated dynamic treatment effects and

the placebo treatment effects are close to those in our baseline estimations.31

Figure E.1: Dynamic treatment effects with only later-treated units in the control group
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Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita
based on the estimator introduced by de Chaisemartin and D’Haultfœuille (2024) by using only the
later-treated units as the control group. Carbon pricing is a dummy variable that indicates whether a
country has implemented a carbon pricing policy or not. The estimations use the Core control set which
includes the logarithm of GDP per capita and its square, the logarithm of population and the logarithm
of the share of urban population. Standard errors are clustered at the country level and bootstrapped
with 800 replications. The capped bars show the 90 and 95 percent confidence intervals.

31The S&A estimator only allows for never-treated units in the control group. The C&S estimator
yields similar results, except that the estimated effects are larger, reflecting the pattern in our baseline
estimations.
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F Extended control set

We gather data on factors commonly utilized in the literature on the determinants of CO2

emissions and perform robustness checks. This expanded control set includes country

characteristics in various dimensions: (i) characteristics related to the energy sector, (ii)

relevant policy measures, other than carbon pricing, that can reduce emissions, and (iii)

institutional factors.

The first subset of additional control variables includes the share of energy in GDP

and the shares of coal, oil, and gas in total energy consumption. These are common

control variables in the literature. Carbon pricing can also affect emissions through its

effect on resource shares and energy intensity. Therefore, these variables are likely to be

bad controls. However, the resulting bias in the estimated treatment effects due to their

inclusion is likely to be towards zero, yielding a conservative estimate for the effect of

carbon pricing. Following the common practice to alleviate this problem, we lag these

variables by ten years. This strategy may alleviate potential bias.

One major concern in identifying causal effects of policies by using aggregate infor-

mation is the presence of other accompanying policies targeting the same outcomes. As

the most prominent other policy tools, we also include renewable energy policy variables

for the electricity sector, such as feed-in-tariffs and renewable portfolio standards. Each

variable is an indicator variable that describes whether a country has such a policy in

place in a certain year.

We also control for political factors such as the level of democracy (Marshall et al.,

2020) and corruption (Standaert, 2015). Democratic countries tend to have more strin-

gent climate regulations, and corruption can lead to weaker climate regulations. Hence,

these variables could have the power to predict the treatment probability.

Table F.1 presents the TWFE estimation results from using our extended control set.

For convenience, the first column includes our baseline results based on our core control

set. The results show that our baseline results are robust to using these additional

covariates that are frequently employed in the relevant literature.

These additional variables are likely to qualify as bad controls, or they do not improve

the explanatory power of our model while restricting the sample size considerably. We

use other strategies to address the related concerns that these variables may alleviate by

using our preferred estimation strategies. The results of these analyses are presented in

Section 6 in the main body of the text.
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Table F.1: TWFE estimations with the extended control set

(1) (2) (3) (4) (5)

Carbon pricing -0.138 -0.189 -0.151 -0.149 -0.170

(0.044) (0.045) (0.041) (0.039) (0.037)

GDP pc (log) 1.067 1.163 1.015 1.014 0.814

(0.453) (0.457) (0.434) (0.434) (0.416)

GDP pc (log) squared -0.038 -0.046 -0.038 -0.038 -0.029

(0.024) (0.024) (0.023) (0.023) (0.022)

Population (log) 0.223 0.049 0.062 0.061 -0.006

(0.136) (0.133) (0.126) (0.127) (0.119)

Urban pop. sh. (log) 0.988 0.876 0.665 0.661 0.847

(0.233) (0.231) (0.230) (0.232) (0.217)

Energy intensity (lagged 10 y.) 0.000 0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000)

Coal share (lagged 10 y.) 1.175 1.175 1.097

(0.408) (0.405) (0.381)

Oil share (lagged 10 y.) 0.752 0.756 0.715

(0.237) (0.237) (0.216)

Gas share (lagged 10 y.) 0.907 0.909 0.951

(0.273) (0.275) (0.269)

Feed-in-tariffs 0.008 0.005

(0.034) (0.031)

Renewable portfolio st. -0.017 -0.029

(0.043) (0.043)

Democracy -0.006

(0.007)

Corruption -0.008

(0.007)

Adjusted R2 0.44 0.46 0.49 0.48 0.49

Observations 4592 4350 4346 4346 3820

Notes: This table presents the estimated effects of carbon pricing on emissions per-capita based on
the standard TWFE regressions. Carbon pricing is a dummy variable indicating whether a country
has implemented a carbon pricing policy or not. In the first panel, the regressions use all available
data points. Panel 2 uses the restricted sample which refers to the sample when we use the full control
set in the last column in Panel 1. Standard errors clustered at the country level are in parentheses.
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G Controlling for energy prices

In our baseline analysis, we do not control for the potential effects of general energy prices

and relative prices of different energy resources on CO2 emissions, as including energy

prices substantially reduces our sample size. Hence, we rely on the assumption that the

variation in energy prices induced by carbon pricing policies is an exogenous source of

variation, which is a plausible assumption often used in the literature (see, for example,

Davis and Kilian, 2011).

Table G.1: Controlling for energy prices

(1) (2) (3) (4) (5)

Controlling for the price(s) of

Energy Major Resources Major Resources + Coal All res. All. res. + Coal

Carbon pricing -0.079 -0.123 -0.107 -0.091 -0.092

(0.032) (0.037) (0.062) (0.046) (0.061)

Placebo test (p-val) 0.041 0.136 0.011 0.211 0.434

Num. of obs. 1147 956 548 923 546

This table presents the estimated effects of carbon pricing on emissions per-capita based on the
de Chaisemartin and D’Haultfœuille (2024) estimator by controlling for a general price index and
price indices for various energy resources. The estimations use the Core control set which includes
the logarithm of GDP per capita and its square, the logarithm of population, and the logarithm
of urban population share. Standard errors clustered at the country level and bootstrapped with
800 replications are in parenthesis. Placebo tests are on the joint significance of estimated placebo
treatment effects for the 10 years preceding the treatment.

In this section, we present a robustness analysis in which we augment our baseline

specification by controlling for a general energy price index and price indices for different

energy resources. All additional data on energy prices come from the IEA database (IEA,

2022). The results are presented in Table G.1. In the first column, we control for the

energy consumer price index normalized by the general consumer price index. In the

second column, we additionally control for the prices of major energy resources. These

resources are oil products, natural gas, and electricity. We introduce coal prices in the

next column, as it reduces our sample size even further. In Columns (4) and (5), we

augment the specifications underlying the results in Columns (2) and (3) with the price

indices of diesel, gasoline (excluding premium grade) and high-sulfur fuel oil for industry.

All individual price indices for these energy resources are normalized with the general

energy price index.

The results show that, despite the reduction in our sample size by more than 75

percent, our baseline results are robust to including the energy and resource prices as

additional covariates in our specification.
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H More on the effective carbon prices

In this section, we start by describing the construction of our data on effective carbon

prices and provide some descriptive statistics. Next, we present the results from a ro-

bustness check on the estimation of short-run responsiveness to carbon prices.

Effective carbon prices. Effective carbon price is the weighted average of carbon

prices across all initiatives in a country. The weights are the coverage ratios which are

the share of emissions covered by an initiative in total emissions of a country. To calcu-

late effective prices, we compile a dataset from three sources: Carbon Pricing Dashboard

(CPD) by the World Bank (World Bank, 2023a), the EDGAR Database on GHG emis-

sions (Crippa et al., 2024; EDGAR, 2024), and emission trading data on EU ETS from

the European Environment Agency (EEA, 2024). CPD provides data on the share of

emissions covered by each initiative in global GHG emissions (see Section 2). The CPD

data are based on the EDGAR database on GHG emissions, which we use to convert

the global coverage ratios to country-level coverage ratios. As the CPD dataset is at

the initiative level, it does not provide a detailed account of the coverage of EU ETS

across the participating countries. Therefore, we use verified emissions of each member

state provided by the EEA to calculate the country-level coverage ratios. The EEA offers

a dataset compiled from emissions trading data from the European Union Transaction

Log (EUTL) managed by the European Commission. EUTL monitors and records all

transactions within the trading scheme. Verified emissions are based on the number of

emission allowances surrendered by all participating firms.

Figure H.1: Effective carbon prices
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Notes: This figure illustrates the distribution of effective carbon prices over years excluding zero values.
The boxes indicate the median, and upper and lower 25th percentiles. The capped bars show the adjacent
values detecting outliers depicted with dots.
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Figure H.1 shows the distribution of nominal effective carbon prices over the years.

The median values are rarely above 10 US dollars per ton of CO2-equivalent and observed

prices are rarely above 20 dollars.

Robustness checks on the responsiveness to carbon pricing In Section 6.1, we

show that the estimated elasticities of emissions per capita with respect to effective carbon

prices are close to zero. We proceed by presenting a robustness check on this result. In all

these estimations, we deflate the nominal prices depicted in Figure H.1 with a consumer

price index retrieved from the PENN World Table (Feenstra et al., 2015).

Table H.1: Responsiveness to carbon prices: semi-elasticities

(1) (2) (3) (4) (5)

Sample restrictions on carbon prices

Full sample Positives > 25th percentile > 50th percentile > 75th percentile

Effective carbon prices -0.004 -0.001 -0.002 -0.002 -0.003

(0.002) (0.001) (0.001) (0.001) (0.002)

Implied elasticity -0.050 -0.016 -0.024 -0.029 -0.036

(0.019) (0.013) (0.011) (0.013) (0.019)

Adjusted R2 0.44 0.66 0.72 0.66 0.61

Observations 4592 497 372 248 125

This table presents the estimated semi-elasticities of emissions per-capita with respect to carbon
prices. All regressions control for country and year fixed effects, and the core control set. Standard
errors clustered at the country level are in parentheses. The implied elasticity is calculated at the
average of all positive effective carbon prices.

In our sample period, carbon prices are effectively zero in the pretreatment periods.

Therefore, we start by estimating semi-elasticities by using a log-linear specification which

retains the zeros. Then, we recover elasticities at the mean of effective prices excluding

zeros. The results are presented in Table H.1. In the first column, we use our full sample.

The coefficient estimate is significant at 5 percent significance level and suggests that a

one Euro increase in effective carbon prices is associated with a 0.4 percent decrease in per

capita emissions. In line with our results presented in the main text, the implied elasticity,

calculated at the mean value of all positive effective carbon prices, is small. Given that

the average effective carbon price in the treatment period is 10 US dollars per tonne of

CO2, the estimated coefficient imply that a 4 percent decrease in emissions would require

doubling the effective prices. In this estimation, we exploit annual changes in carbon

prices, including jumps from zero to a positive value. Therefore, the results might also be

partially driven by the expectations mechanism. As a result, we consider this estimate

as an upper bound for the carbon price elasticity. In Column (2), we exclude the zeros

and exploit only the changes in positive carbon price levels. The estimated association is

smaller and insignificant. In columns (3) to (5), we drop the observations with a carbon

price lower than the 25th, 50th and 75th percentile values of carbon prices, respectively.
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The estimated effects are stronger at higher effective prices, and they are statistically

significant at conventional levels. However, the implied elasticities are even smaller than

our baseline estimates.
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I Beyond 10 years: details and further analyses

Figure I.1 shows the estimated dynamic treatment effects that lead to the average treat-

ment effects in the main body of the text. The results reveal two patterns that support

our conclusion that emission reductions were realized in the first 10 years after the enact-

ment of carbon pricing policies. First, the estimated effects between the relative years 9

and 12 are very stable. Second, on average, the estimation results after the relative year

12 do not show any indication of further emission reductions. In the following, we discuss

these two patterns in more detail. Next, we will provide further evidence to support our

conclusions through some diagnostic tests and by extending our dataset up to 2021.

Figure I.1: Dynamic treatment effects beyond 10 years
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Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita
based on the estimator introduced by de Chaisemartin and D’Haultfœuille (2024), by extending the event
window to 20. Carbon pricing is a dummy variable that indicates whether a country has implemented
a carbon pricing policy or not. The estimations use the Core control set which includes the logarithm
of GDP per capita and its square, the logarithm of population and the logarithm of the share of urban
population. Standard errors are clustered at the country level and bootstrapped with 800 replications.
Capped bars show the 90 and 95 percent confidence intervals.

We start by discussing the second pattern described above. The stabilization in the

average treatment effects, presented in Figure 7 in the main text, is mainly driven by

the estimated dynamic treatment effects after the relative year 12. Hence, we put some

caution in interpreting these results. Figure I.1 clarifies the reason for this caution. In all

estimations, there is a sharp break in the pattern of estimated effects after the relative year

12. These estimates lack robustness and exhibit a higher degree of imprecision compared

to those for earlier relative years. This pattern is not a coincidence. As depicted in

Figure 3, until the introduction of the EU ETS in 2005, we have eight treated units. As

our baseline sample ends at 2017, the estimation of dynamic treatment effects after the

relative year 12 are based on these eight countries, which introduced a carbon pricing

scheme before 2005. Therefore, rather than inspecting the estimated dynamic treatment

effects, inspecting their averages can be more informative, which is our strategy in the
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main text. As a result, on average, we did not find any evidence for further emission

reduction after the relative year 12.

Figure I.2: Dynamic treatment effects beyond 10 years with extended sample (1981-2021)
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Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita
based on the estimator introduced by de Chaisemartin and D’Haultfœuille (2024), by extending the
event window to 20 and using the extended sample (1981-2021). Carbon pricing is a dummy variable
that indicates whether a country has implemented a carbon pricing policy or not. The estimations use
the Core control set which includes the logarithm of GDP per capita and its square, the logarithm
of population and the logarithm of the share of urban population. Standard errors are clustered at
the country level and bootstrapped with 800 replications. Capped bars show the 90 and 95 percent
confidence intervals.

The first pattern observed in Figure I.1 is a more convincing piece of evidence to-

wards our conclusion. The estimated treatment effects between relative years 9 and 12

are very stable compared to the preceding periods. Note that the estimation of these

parameters does not suffer from the subtleties in the following periods. In order to verify

this interpretation, we repeat our analysis by extending our sample period up to 2021.

In this analysis, we use the GDP series from the World Development Indicators (World

Bank, 2023b), as our preferred GDP series from the Penn World Table is only available

up to 2019. As illustrated in Section 2, there was an unprecedented surge in the global

effective carbon prices starting in 2018. Therefore, one may expect a momentum in emis-

sion reductions in this period, which would work against our conclusion that the effect of

policies stabilized after 10 years.

The results from our extended sample are presented in Figure I.2, which verifies our

previous conclusions. First, the break in the estimated dynamic treatment effects is now

at relative year 17 instead of 13 as a result of using four more years of observations. This

finding clarifies the factor driving the break. Second, the estimated effects are still stable

for eight years starting from period 9 up to the period where the break takes place.

To formally confirm this observation, we test the equality of the dynamic treatment

effects shown in Figure I.2 over a rolling period of ten years starting from period zero.

Table I.1 shows the test results. The first row tests whether all the dynamic treatment
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Table I.1: Testing the equality of dynamic treatment effects

Starting period End period Chi-square p-values

0 9 95.113 0.000

1 10 35.581 0.000

2 11 10.499 0.001

3 12 5.341 0.021

4 13 4.221 0.040

5 14 3.624 0.057

6 15 1.752 0.186

7 16 1.632 0.201

8 17 0.625 0.429

9 18 0.021 0.885

10 19 0.932 0.334

11 20 0.692 0.406

This table presents the results of the tests of the equality of the dynamic treatment effects over a
rolling period of ten years. The Chi-square test statistics and the corresponding p-values are reported.

effects between relative years 0 and 9 are equal, which is rejected with a high Chi-square

statistic. The test statistic gradually becomes smaller in the subsequent rows as the

tests cover more periods after relative year 9. We cannot reject the null of equality at

conventional significance levels starting from the seventh row. These results support our

earlier conclusions based on visual inspection of the estimated dynamic treatment effects.

Despite the sharp increase in carbon prices after 2018, we do not find any evidence for

further emission reductions after 10 years of the enactment of carbon pricing policies.

All our results results presented in this appendix and in Section 6.2 are robust to

using the S&A and C&S estimators which we do not present for brevity.

J More on the decomposition analysis

We present the results of our dynamic treatment effect estimations for the components

of IPAT and KAYA identities in Figure J.1. In all estimations, the pre-event placebo

treatment effects are insignificant. In Panels (a) and (c), the estimated dynamic treatment

effects have similar patterns to our baseline results. The estimated reductions in the

emission intensity of GDP and energy use are around 15 percent. The dynamic treatment

effects for the energy intensity of GDP are all very close to zero.
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Figure J.1: Composition of treatment effects: dynamic estimations
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(a) CO2 intensity of GDP
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(b) Energy intensity of GDP
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(c) CO2 intensity of energy use

Notes: This figure presents the estimated dynamic effects of carbon pricing on the components of the
IPAT and KAYA identities based on the de Chaisemartin and D’Haultfœuille (2024) estimator. Carbon
pricing is a dummy variable that indicates whether a country has implemented a carbon pricing policy
or not. The estimations use the Core control set which includes the logarithm of GDP per capita and
its square, the logarithm of population, the logarithm of the share of urban population, and the other
components of the IPAT or KAYA identities other than the dependent variable. Standard errors are
clustered at the country level and bootstrapped with 800 replications. Capped bars show the 90 and 95
percent confidence intervals.
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K More on the role of renewable energy policies

In this section, we present some further details on the estimation results presented in

Section 6.4, where we presented the results of following several strategies to account for

the potential role of renewable energy policies.

Figure K.1 visualizes the results presented in the first three columns of Table 4, where

we repeat our estimations by additionally including the solar and wind energy shares

in TES, electricity generation, and TFC, respectively. It is clear that, although the

estimated effect is slightly smaller when we control for the share in electricity generation,

all the estimated effects in these three regressions are not statistically different. Figure

K.2 shows the estimated dynamic treatment effects. The estimated patterns are similar

and close to our baseline regressions. However, the estimated effect after 10 years when

we control for the share in electricity generation is considerably smaller compared to our

baseline estimate. Here, the estimated effect implies an 11 percent reduction after 10

years, while our baseline results suggest a 19 percent reduction. Finally, the estimated

dynamic treatment effects by controlling for renewable energy policies are depicted in

K.3. The estimated patterns and the size of the dynamic treatment effects are again very

close to our baseline estimates.

Figure K.1: Average treatment effects by controlling for renewable energy shares

Solar and Wind in TES

Solar and Wind in Electricity

Solar and Wind in TFC

0.00 0.05 0.10 0.15

Decrease due to carbon pricing

Notes: This figure presents the estimated effects of carbon pricing on emissions per capita based on the
de Chaisemartin and D’Haultfœuille (2024) estimator by controlling for the share of renewable energy
in TES, electricity generation, and TFC. Carbon pricing is a dummy variable that indicates whether a
country has implemented a carbon pricing policy or not. The estimations use the Core control set which
includes the logarithm of GDP per capita and its square, the logarithm of population, and the logarithm
of urban population share. Standard errors are clustered at the country level and bootstrapped with 800
replications. Capped bars show the 90 and 95 percent confidence intervals.
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Figure K.2: Dynamic treatment effects by controlling for renewable energy shares
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Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita based
on the de Chaisemartin and D’Haultfœuille (2024) estimator by controlling for the share of renewable
energy in TES, electricity generation, and TFC. Carbon pricing is a dummy variable that indicates
whether a country has implemented a carbon pricing policy or not. The estimations use the Core control
set which includes the logarithm of GDP per capita and its square, the logarithm of population, and the
logarithm of urban population share. Standard errors are clustered at the country level and bootstrapped
with 800 replications. Capped bars show the 90 and 95 percent confidence intervals.
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Figure K.3: Dynamic treatment effects by controlling for renewable energy policies
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Notes: This figure presents the estimated dynamic effects of carbon pricing on emissions per capita
based on the de Chaisemartin and D’Haultfœuille (2024) estimator by controlling for the presence of
renewble energy policies, namely feed-in-tariffs and renewable portfolio standards. Carbon pricing is a
dummy variable that indicates whether a country has implemented a carbon pricing policy or not. The
estimations use the Core control set which includes the logarithm of GDP per capita and its square, the
logarithm of population, and the logarithm of urban population share. Standard errors are clustered
at the country level and bootstrapped with 800 replications. Capped bars show the 90 and 95 percent
confidence intervals.
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