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1 Introduction

Over the last fifteen years, cryptocurrencies have experienced remarkable growth, with

their combined market capitalization reaching a peak of $3 trillion in 2021. The tech-

nology at the heart of cryptocurrencies—blockchain—has emerged as a potent tool for

facilitating efficient peer-to-peer transactions. However, the volatile nature of the mar-

ket has led to significant fluctuations in transaction demand and in marginal costs for

blockchain technology services. In response to this uncertainty, blockchain designers are

increasingly employing fee policies or transaction fee mechanisms (TFMs) to allocate

the finite block space effectively.

The Bitcoin and Ethereum blockchains are two leading examples that reflect op-

posite extremes in the choice of fee policies. For Bitcoin fees, a maximum quantity is

set by the protocol (maximum block size), and fees are independently chosen by users

and transaction service providers. I call this the quantity-setting or quantity controls

regime. Ethereum, on the other hand, sets a minimum price, while the block size ad-

justs in response to demand. I call this the price-setting or price controls regime. Most

blockchains follow a variation of either the Bitcoin or the Ethereum fee policies, and

some set constant fees by default or subsidize user fees until their network matures

and faces congestion issues. In addition, there is an active debate on the future of the

Bitcoin blockchain: as the payoff for transaction service providers programmatically

decreases every four years, the role of fees becomes increasingly important for Bitcoin.

In this paper, I model a blockchain—similar to that underlying Bitcoin or Ethereum—

as a distributed computing network where users submit transactions for inclusion by

validators—the transaction service providers. Transactions, representing data that

modify the network’s state (such as account balance transfers), are submitted by users

with a bid to a publicly observable pool—known as the mempool—that indicates their

willingness to pay for their transactions to be processed. Validators, using their limited

resources, select a subset of transactions from the mempool to form a block. Each block,

comprising an ordered sequence of transactions and a reference to the previous block,
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can be appended to the blockchain in every period. However, technological limitations

impose a maximum block size, thereby constraining the supply of block space.

On the supply side, validators face fluctuations in their marginal costs. In a proof-of-

work protocol such as Bitcoin, validators (called miners) use computational resources to

solve a mathematical puzzle, and their marginal cost varies with the level of competition

that they face before being selected to validate transactions. In a proof-of-stake protocol

such as the updated Ethereum, marginal costs are essentially constant.

On the demand side, atomistic users arrive at random and submit their transactions

along with their willingness to pay for these transactions to be included in the next

block. Given the paper’s focus on the aggregate properties of the block space market, I

operate under the assumption that users bid their true valuations.1 This process forms

the microfoundations of an aggregate user demand curve, with a demand shifter that

captures situations of low and high demand.

In the face of these uncertainties, the protocol needs to commit to either a base

fee—an ex ante price control—or a block size limit—an ex ante quantity control. This

choice highlights a disagreement between the blockchain designers’ objective and the

profit-maximization objective of validators with significant monopoly power after they

are chosen to validate a block. Indeed, a protocol designer who prefers full capacity

utilization or has an exogenous technological block size target (that internalizes social

benefits and costs) will prefer the quantity-setting regime as it guarantees the preferred

block size irrespective of sources of uncertainty. A monopolist validator, on the other

hand, would prefer either the price-setting or the quantity-setting regimes, depending

on the relative degree of uncertainty in demand and marginal costs.

I model the resolution of the conflict between the blockchain designer’s and mo-

nopolistic validator’s preferences through Nash bargaining over the protocol profits. I

show that, in this context, the choice of instruments is more nuanced than Weitzman’s

(1974) “prices vs. quantities” insight: namely, that price controls prove more effective

1Dominant-strategy incentive compatibility for all the TFMs considered in this paper is substantiated by
the game-theoretic proofs provided by Roughgarden (2020, 2021).
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when demand uncertainty is high and quantity controls more effective when uncertainty

in marginal costs is high. In general, the key determinants of the advantage of price-

setting in blockchains are the validators’ bargaining power, the elasticity of demand,

the validators’ uncertainty about demand, and the covariance of demand and marginal

costs.

First, when validators have high bargaining power, demand uncertainty favors price

controls, as block size adjustments provide the flexibility necessary to accommodate

demand fluctuations. Second, a positive correlation between marginal costs and de-

mand disfavors price controls. In this case, quantity adjustments would lead to the

production of larger blocks when marginal costs are high, thereby decreasing efficiency.

Third, a higher price elasticity of demand—the proportional change in block space de-

mand in response to a proportional change in price for the marginal user seeking to

include her transaction in the next block—further amplifies the relative advantage of

price controls over quantity controls and makes the choice over fee policies even more

important. However, if the monopolist validator has low bargaining power, quantity

controls become more effective. Last, in the absence of uncertainty, the blockchain

designer and validator remain indifferent between price and quantity controls.

This result helps us understand the differences in the policies that determine fees

and block space in Bitcoin and Ethereum. For both blockchains, price elasticity of

demand is high, and demand uncertainty is significant.

Ethereum can be viewed through the lens of our model as an instance where the

validators have high bargaining power (or are considered influential by the protocol

designers). In addition, since its proof-of-stake upgrade, the marginal cost of a marginal

block increase for Ethereum validators is virtually constant. In this case, my result

points to price-setting as the most favorable policy for Ethereum. This helps explain

the recent adoption of the Ethereum Improvement Proposal 1559’s (EIP-1559’s) price-

setting policy for the Ethereum blockchain. Furthermore, Ethereum’s fee policies are

found to perform better after Ethereum’s proof-of-stake upgrade, consistent with the

correlation between validators’ marginal costs and demand relative to miners’ being
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lower in a proof-of-work protocol.

Bitcoin, for its part, is distinguished as the first blockchain with an anonymous

founder, and its core developers strongly emphasize decentralization and censorship

resistance. Most proposals to change Bitcoin’s fees and block size policies have failed.

Bitcoin can therefore be viewed through the lens of my model as an instance where

validators (here miners) have low bargaining power (or are not attributed enough im-

portance by protocol designers). In addition, under the proof-of-work protocol, the

marginal cost of miners is largely positively correlated with demand. Our result then

states that, in this case, price-setting is less effective than in the case of Ethereum.

Last, it is important to consider that users (and validators) might value block space

(and marginal costs) in dollars or in real terms rather than in the native currency of

the blockchain. To accommodate this, I expand the model to introduce uncertainty in

the price of the cryptocurrency in US dollars or in real terms. Notably, price controls

are restricted to be expressed in units of the native currency. I show that volatility in

the cryptocurrency price reduces the advantage of price controls over quantity controls.

Building on these insights, I briefly discuss the implications of my results for fee

policies on Ethereum, the most widely utilized public blockchain, whose fee policy is

a blueprint for many blockchains that follow the price-setting regime. I show that the

rate at which Ethereum’s fee policies readjust prices should be tightly linked to the

price elasticity of demand for inclusion of a transaction in the next block. I apply my

framework to evaluate recent changes to Ethereum’s fee policies using a random sample

of Ethereum transaction data. I find that the rate at which Ethereum’s fees are changed

is faster than optimal.

In addition, I investigate the optimal block size target (a quantity control) for a

monopolistic validator and offer tight bounds on its size relative to the block size limit.

There are widespread concerns regarding the potential for validators and other users to

exploit their power to capture what is colloquially referred to as “maximal extractable

value" (MEV) through the censoring, swapping, and front-running of mempool trans-

actions (Daian et al., 2020). I find that Ethereum’s current ratio of block size target to
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maximum block size leaves too much room for monopolist validators to include their

own value-extracting transactions.

Blockchain designers need simple and robust economic insights for designing their

fee policies. With this need in mind, I conclude by suggesting open questions that are

connected to this research.

1.1 Literature Review

The literature has generally explained blockchain fees as arising because of competition

for block space among heterogeneous, impatient users (Huberman et al., 2021). Easley

et al. (2019) study the evolution of Bitcoin transaction fees, while Hinzen et al. (2022)

highlight Bitcoin’s limited adoption problem. Some studies highlight the strategic use

of capacity on the Bitcoin blockchain (Lehar and Parlour, 2020; Malik et al., 2022).

Catalini and Gans (2020) provide a simple primer on the economics of blockchains.

This paper contributes to the literature on price versus quantity controls, a domain

pioneered by Weitzman (1974). The issue of choosing a supply function under uncer-

tainty has been explored in Klemperer and Meyer (1989). My approach aligns closely

with that of Reis (2006) and Flynn et al. (2023), who scrutinize the choice of a supply

function from a firm’s perspective and its macroeconomic implications. While my work

draws inspiration from Weitzman (1974), it diverges in that it contemplates the plan-

ner’s (blockchain designer’s) problem with a variety of goals, including purely technical

objectives like those seen in practice, such as block size targets. The conclusions of this

analysis are then applied to the design of TFMs. Specifically, Ndiaye (2024) provides a

summary of how the economic factors that affecting the design of TFMs, as studied in

this paper, correlate with the technical features of blockchains.

The literature taking a microeconomic mechanism design perspective to examine

fee policies (TFMs) is growing. Notably, Akbarpour and Li (2020) examine mecha-

nisms immune to designer manipulations—referred to as “credible mechanisms”—and

demonstrate that the well-known second-price auction does not meet this credibility

criterion. In the blockchain context, Roughgarden (2021) applies this credibility condi-
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tion to TFMs and establishes that EIP-1559, Ethereum’s TFM, which essentially acts

as a first-price auction with a dynamic reserve price, and its variations are incentive-

compatible for users and adhere to a form of myopic credibility for validators. These

findings are further consolidated by Chung and Shi (2023). These papers provide game-

theoretic foundations that guarantee that the ADT-TFMs (transaction fee mechanisms

that are adaptive to a deterministic target) that I study are incentive compatible. Fer-

reira et al. (2021) explore an alternative aspect of TFMs by investigating posted price

mechanisms. The approach that I take in is paper is complementary to this strand of

literature. Moreover, I delve into the dynamics of TFMs, offering insights into their

updating rules.

This paper also advances the literature examining the block space market from a

macroeconomic perspective. The concepts formalized in Section 3 of this paper build

upon and extend Buterin’s (2018) reading of Weitzman (1974), with important differ-

ences characterizing the blockchain context due to the fact that the protocol designer

is limited in her capacity to enforce quantity or price controls. In other related work,

Lavi et al. (2022) and Nisan (2023) investigate the monopolistic market for unlimited

block space, in contrast to this paper, which takes the block size limit as an exogenous

technological constraint.

Last, this paper contributes to studies of the dynamics of the Ethereum fee policies

recently adopted in EIP-1559. Leonardos et al. (2021) delve into the behavior of the

dynamic system resulting from the TFM, and Leonardos et al. (2022) uncover numerous

empirical properties for which this paper provides a theoretical explanation.

Outline: The paper is organized as follows: Section 2 gives an overview of the func-

tioning of the Bitcoin and Ethereum protocols, makes the case that validators have had

more bargaining power in the history of Ethereum than in that of Bitcoin, and explains

how Ethereum fees are determined. Section 3 introduces the model and provides the

main results of my analysis and an extension to cryptocurrency price fluctuations. Sec-

tion 4 examines implications for Ethereum’s fee policies. Last, Section 5 concludes the
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paper.

2 Fees and Block Space Utilization in Bitcoin and

Ethereum Protocols

2.1 Bitcoin and Ethereum Protocols

A blockchain is a decentralized digital ledger that records transactions across a net-

work of computers, called validators, in an immutable chained list of blocks. Bitcoin,

introduced by Nakamoto (2008), was conceived as a peer-to-peer digital currency. In

contrast, Ethereum, proposed by Buterin et al. (2013), extends the basic blockchain con-

cept to include more versatile functionalities such as self-executing agreements, known

as “smart contracts”.

In both Bitcoin and Ethereum, each block has a fixed capacity because of technologi-

cal constraints such as bandwidth and storage and the negative externalities associated

with large blocks’ propagation times. These limitations are designed to ensure that

running a node remains accessible to a broad range of participants, thereby fostering

decentralization. This limited capacity necessitates the use of transaction fees, which

serve as a market mechanism to allocate this scarce resource. Fees incentivize validators

to prioritize and include transactions in a block.

Over the years, both Bitcoin and Ethereum have experienced changes in their block

capacity and fee structures to adapt to changing network demands. On the price side,

Bitcoin shifted from offering no-fee transactions to imposing transaction fees, as studied

by Easley et al. (2019). On the block capacity side, since its inception, Bitcoin has given

control of this capacity to the protocol developers. The original 1MB block size limit

in the Bitcoin blockchain ignited intense debates within the community over scalability

versus decentralization. On one side, proponents of a larger block size argued that

increasing capacity would enable more transactions per block, alleviating congestion

and lowering fees. On the other side, critics warned that larger blocks would raise the
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computational and storage requirements for running a validator, thereby compromising

the network’s decentralization. This ideological divide reached its peak in 2017, leading

to a “hard fork” that birthed Bitcoin Cash, a separate chain with an 8MB block size.

Concurrently, Bitcoin adopted Segregated Witness (SegWit), effectively changing the

block size limit to a more complex “block weight” limit of approximately 4 million units.

Ethereum, for its part, imposed transaction fees from the beginning. In Ethereum,

“gas” serves as the unit of resources, and the “gas limit” dictates the maximum network

capacity in a single block. Initially, Ethereum attempted a different paradigm and

gave control over capacity to validators. Each validator was allowed to change capacity

up or down by 0.1% for each new block. The underlying rationale was to transform

the philosophical debate on block size into an economic decision, with the assumption

that validators, heavily invested in the network, would act individually in the long-

term interest of the network. However, in practice, the history of Ethereum block

size changes in Table A1 in Appendix A illustrates that validators have often abused

their bargaining power and colluded to manipulate network capacity. This behavior

is exemplified by an April 21, 2021, announcement from Sparkpool, a major Chinese

validator with 23.5% of the network’s computational power at that time:

@sparkpool_eth: "We are raising gas limit to 15 million"

@btcdentist: "did you get permission from the core devs?"

@sparkpool_eth: "What we need is advice from dev, not permission."

To curb such practices, Ethereum introduced EIP-1559, a fee mechanism designed to

both limit validators’ discretionary power over network capacity and enhance fee pre-

dictability for users.

Figure 1 illustrates the time series of the capacity utilization rates of the Bitcoin and

Ethereum blockchains. Taking into account the upgrades within blockchains over time

and variations across blockchains, I define the block size target as the size below which

the reserve price for pending transactions does not increase. The capacity utilization

rate is, consequently, the daily average of the fraction of the realized block size to the

block size target.
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Figure 1: Time series of Bitcoin and Ethereum capacity utilization rates
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For Bitcoin, the block size target was 1MB pre-SegWit and is 4 million weights post-

upgrade. The top panel indicates an initial surge in Bitcoin’s utilization rate during its

nascent phase. However, as its use has become more widespread, the network has not

always operated at full capacity. This is corroborated by Lehar and Parlour (2020),

who attribute the prevalence of less-than-full blocks to strategic capacity management

by monopolistic validators.

Prior to the London hard fork, Ethereum’s block size target varied based on val-

idator votes, ranging from 3.1 million to 15 million gas, as detailed in Appendix A.

Post–London fork and EIP-1559 implementation, the target is a fixed 15 million gas,

with an upper limit of 30 million and a dynamic reserve price adjustment for pending

transactions to align closely with the target. The bottom panel reveals that, just as for

Bitcoin, Ethereum’s early-phase utilization rate rose steadily. However, following the

introduction of EIP-1559 via the London hard fork, the blockchain has operated at full

capacity. My analysis attributes this to EIP-1559’s design, arguing that transaction

fees now effectively shape and regulate the supply curve for monopolistic validators.

Such economic interactions between fee mechanisms and capacity have been over-

looked in earlier studies. For instance, Lehar and Parlour (2020) focus on strategic

capacity utilization in Bitcoin, while Huberman et al. (2021) theoretically ascribe full

capacity utilization to the free entry of validators even though Bitcoin does not always

operate at full capacity despite such entry. In my analysis in Appendix B.1, I examine

factors affecting block space demand, including the number of active addresses, token

prices, transaction fees, and residual demand through mempool size for Bitcoin. The

data reveal strong correlations between traditional demand-side factors such as active

addresses and transaction fees with the utilization rate for both Bitcoin and Ethereum

pre-EIP-1559. Post-EIP-1559, these factors became decoupled from block utilization.

In my study on block space supply in Appendix B.2, I evaluate factors such as com-

puting power and mining pool concentration for both Bitcoin and Ethereum, adding

the total Ethereum staked and validator pool concentration for Ethereum post–proof of

stake. The results indicate that neither computing power nor Ethereum staked signif-
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icantly impact block utilization rates for either Bitcoin or Ethereum. However, higher

concentration rates among mining pools in Bitcoin, measured through the Herfindahl–

Hirschman index (HHI), correlate with sub-100% block utilization, suggesting that

miners may exercise market power to leave blocks less full. This pattern does not hold

for Ethereum, where both before and after the transition to proof of stake, mining pool

concentration shows no discernible effect on block utilization rates. The stabilization of

Ethereum’s block utilization post–London fork further corroborates this observation.

2.2 Fees on Ethereum

Ethereum fees initially operated on a bidding system constrained by a fixed block size.

The fixed per-block gas limit and fluctuations in demand resulted in delays for users,

as the system lacked a “slack” mechanism to adjust block size to meet varying demand.

In addition, since validators collected the fees, this system led to a first-price auction

when demand was high. As first-price auctions are not incentive-compatible when user

valuations are unobserved, this required complex fee estimation efforts from users.

With EIP-1559, Ethereum’s fee structure underwent significant changes to address

the issues with the first-price auction with a fixed block size limit. The system now

operates with a target block size set at qtarget = 15M gas, a legacy from the pre–London

hard fork settings, and a maximum block size of of qmax = 2qtarget. On the user end,

each transaction comes with a “base fee”, algorithmically adjusted based on network

demand. The minimum gas price, pt, is adjusted based on the formula

pt = pt−1 · (1 + d
qt−1 − qtarget

qtarget
) (1)

where d is an adjustment parameter set to 1
8 , allowing the minimum price to double

in 8 blocks when blocks are full. In addition to the base fee, users can include a

“tip” to incentivize faster processing by validators. The dual-fee structure allows more

predictability in transaction costs, as the base fee aligns closely with network congestion.

Figure 2 shows fee settings and an estimator of the base fee for Ethereum users.
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(a) User price choice from Meta-
mask wallet

(b) Base fee and priority fee estimator from Blocknative

Figure 2: Ethereum fee settings and estimator

From a validator’s standpoint, selection is stochastic, contingent on either the proof-

of-work or proof-of-stake mechanism. Though validators enjoy a monopolistic position

during their turn to validate a block, the protocol’s fee structure regulates their be-

havior. Each transaction j carries a computational cost qj , measured in gas units.

Ethereum transaction senders pay an amount computed as qj ·min{pt + δj , c}, where

δj is the tip and c the fee cap, with c ≥ pt. Incentive compatibility requires that, under

normal demand conditions, the base fee adjusts upward to match the willingness to

pay of the marginal user, and the tip is small in proportion. The aggregate base fee

revenue,
∑N

j=1 qjpt, is “burned”, primarily to address validators’ off-chain incentives, as

argued by Roughgarden (2021). Meanwhile, tips and a block reward go directly to the

validator. By diverting a portion of the revenue away from the validator, the protocol

has instruments to ensure that supply is not artificially restricted and that transactions

of higher value are included.

EIP-1559 raises several questions regarding its rationale, potential for improvement,

and the design of other fee policies that share its simplicity. Specifically, in the face of
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demand fluctuations, why might a protocol designer opt for a blockchain with an im-

posed quantity limit as in Bitcoin and Ethereum pre–London hard fork and dynamically

adjust when demand fluctuates vs. one where price controls such as the EIP-1559 base

fee are imposed and dynamically adjust when demand fluctuates? What determines

the shape and parameters of such transaction fees? These questions will be the focus

of subsequent sections in this paper.

3 Model

3.1 Environment

A blockchain, such as Bitcoin or Ethereum, is modeled as a distributed computer net-

work where users submit transactions to be included in a chain of blocks by validators.

The blockchain maintains a record of the network’s state, such as account balances.

A transaction t represents arbitrary data sent over the network to alter its state—for

instance, to transfer a balance. Users submit transactions to a publicly observed pool

of outstanding transactions (mempool), with a bid bt, signifying their willingness to

pay for transaction processing. Monopolistic validators, using quantities xi of a finite

number of resources i ∈ [[1, N ]] (e.g., computation, bandwidth), select a subset of trans-

actions from the mempool to form a block. A block of size q is an ordered sequence

of transactions and a reference to the previous block. Validators add a block to the

blockchain by a consensus mechanism (such as proof of work or proof of stake), a pro-

cess irrelevant to this analysis. Technological constraints impose a maximum block size

qmax, thus limiting the supply of block space.2

Validators: Validators use a bundle of computational resources x ∈ RN
+ priced at

per-unit resource rates px ∈ RN
++ to produce a block of size q ≤ qmax, as given by

q =

N∑
i=1

pxixi (2)

2See the related discussion in Buterin (2018) for the case of the Ethereum blockchain.
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Validators incur a technological cost of C(q) = c(x1, . . . , xN ) when producing a block.

These costs encompass validation operation costs and other costs associated with ac-

cessing and modifying the blockchain’s state. From the blockchain designer’s viewpoint,

costs might also include delays in block propagation due to the presence of large blocks

and other societal costs. These costs, denoted by C(q; η), are subject to uncertainty,

represented by the distribution η.

Users: User transactions populate the mempool according to a stochastic process.

I posit that users, denoted by j ∈ [0, 1], are atomistic, with arrivals between two

consecutive blocks, Bt, Bt+1, being independently and identically distributed according

to a Poisson process X with a parameter of λqmax, where λ ∈ R++. For simplicity, I

assume that users leave the pool if their transaction is not included in the next block,

only to return according to the arrival process.3

Each user j has a valuation vj drawn from a common distribution f with a cumu-

lative distribution function F , which is continuous and increasing.

Establishing a Demand Curve: Given that the TFMs under consideration are

dominant-strategy incentive-compatible, as demonstrated by Roughgarden (2021), it is

reasonable to assume that users bid their true valuations, i.e., bt = vj . Consequently,

for a given minimum bid for transaction inclusion, denoted by p, the number of users

willing to pay the bid is λqmaxF̄ (p), where F̄ (p) = 1 − F (p). The following lemma

shows that this model serves as the microfoundation of an intuitive demand curve for

block space, thereby linking demand parameters to model primitives.

Lemma 1. The aggregate demand for block space can be represented as p =
(
F̄
)−1

( q

Ψ

)
,

where the price elasticity of demand for the marginal user equals the tail ratio
pf(p)

1− F (p)
.

Specifically, when F is a Pareto distribution with scale pm and shape α, the aggregate

3Leonardos et al. (2021) confirm that this assumption does not significantly impact the dynamics of
transaction fees, which are the focus of our analysis. In his research, Nisan (2023) accounts for residual
demand in the mempool and finds transaction fee dynamics similar to those in Leonardos et al. (2022).
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demand for block space is given by

p

pm
=
( q

Ψ

)− 1
ε (3)

Here, p ∈ R+ is the market price, Ψ ≡ λqmax is a demand shifter, and ε = α is the

price elasticity of demand for block space.

Proof. Refer to Appendix C.1 for the proof.

In Section 3.3, I will assume that the user valuation distribution is Pareto unless

otherwise stated. The assumption of a Pareto distribution is not restrictive. For a

general user valuation distribution, one can calculate the price elasticity of demand

at all points from the tail ratio of the distribution. Using data from the Ethereum

blockchain, I fit a Pareto distribution to the transaction in Section ??. This demand

curve will prove useful when I consider uncertainty in the user arrival rate λ leading to

uncertainty in the demand shifter Ψ. When λ > 1, we encounter a high-demand scenario

where not all transactions can be included in the next block, whereas λ < 1 reflects

a low-demand scenario where the block is not filled to capacity. Given this context

and considering the uncertainties in both the cost C(q; η) and demand Ψ, I explore

the conditions under which a blockchain protocol designer would find it beneficial to

introduce price or quantity controls.

3.2 Tension Between Protocol Objectives and Validators’

Incentives

3.2.1 Protocol Designer’s Preference for Maximum Capacity Utiliza-

tion

If the protocol designer has a preference over the block size, then she will prefer quantity

controls over price controls as the former insulates this variable from demand fluctu-

ations. To illuminate the potential conflict between the protocol designer’s objectives
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and the miners’ incentives, consider the following examples of objective S(q) for the

protocol designer.

Example 2. (Social Welfare) Let u be an increasing function representing the utility of

a representative user on the blockchain. The social welfare function S(q) can be defined

as

S(q) =


u(q) if q ≤ qlimit

−∞ if q > qlimit
(4)

This reflects the protocol designer’s concern for maximizing user utility, an objective

that can diverge from the profit-maximizing motives of validators.

Claim 3. If 0 is in the support of Ψ, then the protocol designer would prefer to have

blocks at full capacity. The only price that aligns with the designer’s objective is zero.

Proof. If the protocol designer can choose the block size, then she can guarantee a max-

imal utility at qlimit. With a price choice, however, we have q = max{Ψ
(
pm
p

)ε
, qlimit}.

This means that for any price p, there is a loss when demand intensity is low, Ψ ≤(
p
pm

)ε
qlimit, which makes the expectation lower when 0 is in the support of Ψ. Thus,

the only price that would make the designer indifferent is zero.

This claim implies that the protocol designer aims for maximum block utilization,

highlighting a point of conflict with miners, who may have different objectives, such as

profit maximization.

Example 4. (Technological Block Size Targets) Suppose that the designer has a target

block size, denoted by qtarget, that she aims to achieve. She might also allow some degree

of deviation from the target block size, which we can represent as S(q) = ℓ{q− qtarget},

where ℓ stands for some loss function. For instance, a square loss function could be

used to penalize deviations from the target:

S(q) = −
(
q − qtarget

)2 (5)
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Claim 5. Under a technological block size target, the protocol designer prefers quantity

controls over price controls. In particular, for the square loss function, the expected

block size under optimal price controls E[q] is less than the target qtarget, and the loss

is given by

E[
(
q(Ψ)− qtarget

)2
] =

Var(Ψ)

E[Ψ2]
(qtarget)2 (6)

Proof. Refer to Appendix C.2.

This loss quantifies the variance in the block size, relative to the target, that arises

because of the fluctuations in demand Ψ when the price is optimally chosen ex ante.

This highlights that the loss for the protocol designer is larger when the demand shifter

has high variance.

3.2.2 Validators’ Monopoly Power

Given a price p per unit of block space and a fixed block reward R, the protocol profits

are4

Π = R+ E [pq − C(q; η)] . (7)

Assuming that users and application developers optimize resource usage, the cost to

the validator becomes

C(q; px, η) = min
x∈RN

+

c(x1, . . . , xN ; η) (8)

subject to (2). The bundle x can be interpreted as the various resources that constitute

a user transaction, such as bandwidth and computational operations. Let us consider

4Here, I abstract from the fact that not all fees collected go to the validators and so the profits of a
monopolist validator could differ from the protocol profits.
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that c is homogeneous of degree 1 in x.5 We then have

C(q; px, η) = Γ(η, px)q (10)

The expression for the marginal cost Γ is derived in Appendix C.3.

A monopolist validator would then maximize profits in equation (7). In contrast

to the protocol designer, who systematically prefers to set quantities ex ante, the mo-

nopolist validator might prefer either the price-setting or the quantity-setting regime,

depending on the degree of demand uncertainty.

3.3 Bargaining Problem

I model the resolution of the potential conflict between the protocol designer and the

validator by assuming that the price- or quantity-setting regime is determined by Nash

bargaining over the protocol profits. The protocol designer and validators commit ex

ante to a fixed base fee (price-setting) or fixed block space (quantity-setting) before

uncertainty is realized. In practice, such a process is implemented by a set of rules in

the TFM of the blockchain to which validators and blockchain designers agree. Even

though the validator has ultimate control over which transactions, of what size and at

what price can be included in a block, sophisticated mechanisms can be encoded to

enforce prices and quantities. Protocol revenue can be diverted in part to the protocol

treasury, burned, or rebated to users for the purposes of implementing the TFM; this

design feature is beyond the scope of this paper.6 The objective therefore balances social

welfare and technological considerations while ensuring that validators have enough

profit to be willing to provide their validator services.

5A typical example is the Cobb–Douglas cost function

c(x1, . . . , xN ; η) = η

N∏
i=1

xεi
i such that

N∑
i=1

εi = 1 (9)

6See Roughgarden (2021).
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The following objective captures this Nash bargaining game:

V = E [S(q)]1−β E [pq − C(q; η)]β (11)

In this objective, the parameter β ∈ [0; 1] captures validators’ bargaining power. β = 1

means that the outcome maximizes validator profits, while β = 0 means that the

outcome optimizes for the protocol designer’s objective captured by the function S(q).

Price Controls: Assuming that the block space demand follows the isoelastic de-

mand curve derived in (3), with a price elasticity of demand ε > 1, and that the block

size limit is not binding, the equilibrium block size lies on the demand curve, i.e.,

q = Ψ
(

p
pm

)−ε
. The problem of setting optimal prices then becomes

Vp = max
p∈R+

E

[
S

(
Ψ

(
p

pm

)−ε
)]1−β [

(p− Γ)×Ψ

(
p

pm

)−ε
]β

(12)

Quantity Controls: If the block size is set at q, the transaction is included in the

block at the price that clears markets ex post: p = pm
( q
Ψ

)− 1
ε . Then, the value of

setting the optimal block space is

Vq = max
q∈R+

E [S (q)]1−β

[(
pm

( q

Ψ

)− 1
ε − Γ

)
× q

]β
(13)

The log-difference between the values of price controls and block space controls can

be defined as follows:

∆log = logVp − logVq (14)

To derive some insight into the choice between price and quantity controls, consider

a blockchain designer’s objective that accounts for social welfare with utility S(q) =

u(q) = qν for ν > 0. The following proposition establishes the relationship between the

relative value of price controls, the price elasticity of demand, and other moments of
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the shock to demand and marginal costs given and an arbitrary bargaining power β for

validators.

Proposition 6. Assume that (Ψ, η) follows a joint log-normal distribution. Then, for

any β > 0, the relative value of price controls over quantity controls is given by:

∆log =
1

2

((
ν̂ − ν̄

ε

)
σ2
Ψ − 2(εν − β)σΨ,Γ

)
(15)

where ν̄ = (1− β)ν + β and ν̂ = (1− β)ν2 + β.

Proof. Refer to Appendix C.3.

We can interpret this equation first by looking at the limit for β → 1, ν → 1, which

gives

∆log =
1

2
(ε− 1)

(
1

ε
σ2
Ψ − 2σΨ,Γ

)
In this case, price-setting is preferable to quantity-setting when (i) demand volatility

is high and (ii) the covariance between demand and real marginal costs is low. Uncer-

tainty in demand favors price controls, as block size adjustments can flexibly respond

to demand fluctuations. Additionally, a positive correlation between marginal costs

and demand disfavors price controls, as this would lead to the production of larger

blocks when marginal costs are high. The price elasticity of demand, which dictates

how quickly prices react to changes, mediates the degree to which the firm values (i)

and (ii). A larger price elasticity of demand favors price controls. In general, these

comparative statistics indicate that price-setting has an advantage as long as demand

is relatively elastic, i.e., ε > ν̄/ν̂, and validators have enough bargaining power, β > εν.

Taking Stock: The above result helps us understand the differences in the policies

that determine fees and block space in Bitcoin and Ethereum. We can see that both

blockchains are instances where price elasticity of demand is high ε > 1 and demand

uncertainty is significant σ2
Ψ ≫ 0.

The background provided in Section 2.1 suggests that Ethereum can be viewed
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through the lens of this model as an instance where the bargaining power of validators

is high β → 1 (or is considered high by the protocol designers). In addition, since the

proof-of-stake upgrade, the marginal cost for Ethereum validators has been virtually

constant, so that σΨ,Γ ≈ 0. Proposition 6 states that, in this case, price-setting is

the most favorable policy. This explains the adoption of the EIP-1559 price-setting

policy for the Ethereum blockchain. Furthermore, Figure 1 shows that EIP-1559 has

performed better since Ethereum’s proof-of-stake upgrade, consistent with the correla-

tion between validators’ marginal costs and demand relative to miners’ being lower in

a proof-of-work protocol.

Bitcoin is distinguished as the first blockchain with an anonymous founder, and

its core developers strongly emphasize decentralization and censorship resistance. As

discussed in Section 2.1, most proposals to change Bitcoin’s fees and block size policies

have failed. Bitcoin can therefore be viewed through the lens of our model as an

instance where the bargaining power of validators (here miners) is low β → 0 (or is

not attributed enough importance by protocol designers, given the low block space

utilization rate still observed). In addition, it is safe to assume that under the proof-

of-work protocol, miners’ marginal cost is largely positively correlated with demand

σΨ,Γ ≫ 0. Proposition 6 states that, in this case, price-setting is less effective.

In general, the key determinants of the advantage of price-setting in blockchains are

the validators’ bargaining power, the elasticity of demand, the validators’ uncertainty

about demand, and marginal costs. This insight will guide us in Section 4 in studying

the implications of my results for Ethereum transaction fees.

3.4 Effect of Cryptocurrency Price Fluctuations

Cryptocurrency prices can be volatile, while users value transaction processing services

in dollar or real terms. This section examines the impact of cryptocurrency price volatil-

ity on the choice between price and quantity controls. Let P denote the exchange rate

between 1 USD and the cryptocurrency (equivalently, the inverse of the cryptocurrency

price expressed in dollars). Another way to interpret P is as the exchange rate between
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1 unit of consumption goods and the cryptocurrency. This real model accommodates

variations in both the cryptocurrency price and the value of fiat currency. Users pay

transaction fees in the cryptocurrency at a nominal price p, implying that the dollar

(equiv. real) value of these payments is
p

P
. Meanwhile, Γ represents the dollar (equiv.

real) marginal cost.

The following proposition, formulated for simplicity with β = 1 (though similar

insights apply for other parameters), provides an equivalent to Proposition 6 in this

context:

Proposition 7. Suppose (Ψ, η, P ) is jointly log-normal distributed. Then, the relative

value of price adjustments over quantity adjustments is

∆log =
1

2
(ε− 1)

(
1

ε
σ2
Ψ − 2σΨ,Γ − εσ2

P − 2εσP,Γ

)
(16)

In addition to the findings of Proposition 6, the variance of the cryptocurrency

price and the covariance between the cryptocurrency price and the dollar (equiv. real)

marginal cost both decrease the relative advantage of price controls over quantity con-

trols.

4 Implications for Ethereum Transaction Fees

In this section, I explore how my results can inform the design of Ethereum fee policies.

Proposition 6 implies that, under the conditions of (15), any fixed block size target

qtarget can be improved upon by setting prices ex ante and letting quantities adjust.

As discussed in Section 2, Ethereum’s fee policies follow such an approach to guarantee

blocks of average size qtarget. How can prices be set iteratively and heuristically? Below,

I define a family of simple TFMs that include EIP-1559, Ethereum’s TFM. I study their

dynamics, determine the shape and adjustment rate of the optimal mechanism within

this family, and provide bounds on the target block size that align with the incentives

of a monopolistic validator.

23



Definition 8. (ADT-TFM) A TFM is called adaptive to a deterministic target (ADT)

if there exists a deterministic block size, qtarget (the target), and a deterministic func-

tion, f (the adjustment function), such that the base fee satisfies

pt+1

pt
= g

(
qt − qtarget

qtarget

)
(17)

Example 9. (EIP-1559) The base fee in EIP-1559 is ADT with linear adjustment

function g(x) = 1 + d× x where the adjustment parameter is d = 1
8 .

Let q∗ denote the optimal quantity control or the block size that a blockchain

designer aims to achieve for a specific technological target, S(q) = δ{q − qtarget}. In

this case, q∗ = qtarget. We consider a general demand curve, with price elasticity of

demand ε(qtarget) that is assumed to be fixed and uncertainty in demand represented by

λ. In this context, a TFM is considered robustly optimal if, following a sudden change

or shock in demand, it manages to bring the realized quantity as close as possible to

the targeted level in the worst-case scenario. The following proposition determines the

shape and slope of the optimal ADT-TFM.

Proposition 10. Suppose that the demand curve is log-convex; the robustly optimal

ADT-TFM is an exponential function with an adjustment parameter equal to the inverse

price elasticity of demand, d = 1
ε(qtarget) . In other words, g(x) = exp (d · x) and

pt+1 = pt exp

(
1

ε(qtarget)

qt − qtarget

qtarget

)
(18)

The intuition of the proof in Appendix C.4 goes as follows. Let f denote the

adjustment function of the optimal TFM and p(qt) the price that matches demand at

block size qt. The base fees then satisfy

ln pt+1 − ln pt = ln g

qt − qtarget

qtarget
p(qtarget)

p(qt)− p(qtarget)︸ ︷︷ ︸
g(qt)

p(qt)− p(qtarget)

p(qtarget)

 (19)
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Near qtarget, we have:

g(qt) −−−−→
qtarget

q′(p(qtarget))p(qtarget)

qtarget
= ε(qtarget) (20)

And if pt+1 maintains the block size near qtarget, then

ln pt+1 − ln pt ∼
p(qt)− p(qtarget)

p(qtarget)
(21)

Let x denote this price growth. From (19), we obtain x = ln
(
g
(
ε(qtarget) · x

))
+ o(x)

for all x in the neighborhood of zero.

Solving this functional equality yields g(x) = exp
(

x
ε(qtarget)

)
in the neighborhood

of zero. The proof extends this argument with uncertainty in demand and shows that

this function is optimal for the worst-case demand scenario in demand fluctuations.

In particular, when the elasticity of demand is constant, expression (20) becomes an

equality everywhere. The adjustment parameter is a constant and equals the inverse

of the price elasticity of demand. Moreover, the adjustment function takes the form of

an exponential function everywhere. Similarly, if we restrict the adjustment function

to be linear or of the form (1 + d)
qt−qtarget

qtarget as studied by Leonardos et al. (2022), the

adjustment rate remains the inverse of the price elasticity of demand. This elasticity,

however, captures the price elasticity of inclusion of a transaction in the next block.

Given the user interface shown in Figure 2, users are less likely to change their price

in a short period of time, so this elasticity will be larger than the price elasticity of

inclusion of a transaction within 5–10 minutes, for which users can substitute waiting

in the mempool.

Adjustment Parameter for Ethereum: I now approximate Ethereum’s ad-

justment rate through the lens of my analysis. I use Ethereum data because of its

widespread availability, the simplicity of its ADT-TFM, and the global usage of its

blockchain.

A random sample of 100,000 blocks, encompassing 16,881,386 transactions, was
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extracted from the complete set of Ethereum blocks. This sample spans from the

introduction of EIP-1559 at the London hard fork (block number 12965000, August 5,

2021) to block number 17731768 (July 20, 2023). Additional random block subsamples

from before and after the Ethereum merge (block number 15537393, September 15,

2022) are also analyzed.7

The median block in the sample contains 143 transactions. Each block is associated

with a number and a timestamp, the total gas used by all transactions in the block

(equivalent to q in the model), and an array of transactions. Each transaction includes

information on its gas unit, gas price, and other metadata. I do not have random

variation in supply to trace the demand curve here. Instead, informed by Lemma

1, I calculate the Pareto tail of transaction gas prices, as the nearest proxy for user

valuations, for blocks of size around qtarget to obtain the price ε(qtarget). This approach

has limitations that I discuss in Appendix D.

My favorite number is a Pareto coefficient of 12.62 for blocks of size within ±5%

of the block size target (over 7252 blocks and 12965717 transactions), which yields

an optimal adjustment rate of 7.92%. This is significantly below Ethereum’s current

adjustment rate of 12.5%. This result aligns with the finding of Leonardos et al. (2022),

who simulate the dynamic system of EIP-1559 and find stability around the target block

size only for adjustment parameters below 8%. Several alternative choices in Appendix

D yield a range between 6.14% and 11% for the Ethereum optimal adjustment rate.

My contribution clarifies that the adjustment rate encapsulates the economic concept of

inverse price elasticity of demand, which must be measured or approximated on-chain.

Target Block Size and MEV: Now, let us determine the block size target that

aligns with the optimal target of a monopolistic validator. The goal of such a block size

target is to make the blockchain immune to a simple form of MEV—that is, to prevent

the validator from including her own value-extracting transactions while simultaneously

reducing the effective supply available to users. The following definition makes this

7The results are consistent when I sample 100,000 blocks from before and after the merge separately.
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notion explicit.

Definition 11. (Myopic-Miner Incentive Compatibility) A quantity target is myopic-

miner incentive-compatible (MMIC) if a myopic miner, by creating no fake transactions

and adhering to the suggested block size target qtarget, maximizes her profit.

The MMIC definition implies that a miner who aims to maximize her revenue should

be motivated to comply with the proposed quantity target when choosing her block size

ex ante.

Proposition 12. Given any isoelastic demand curve, the target block size aligning with

the monopolist validator’s optimal target block size is expressed as

qtarget

qmax
=

(
ε

ε− 1

)−ε

E
[
λ

1
ε

]ε
(22)

Proof. Refer to Appendix C.5.

This proposition states that the maximum block size should have an adequate buffer

above the block size; otherwise, if the block size target is too high relative to the

maximum block size, the monopolist validator will have incentives to fill the block

up to the target size with her own value-extracting transactions. In particular, if

qmax is adjusted to coincide with user demand under average demand conditions, then

qmax

qtarget > e. For the price elasticity found above, I obtain that the ratio of the maximum

block size to the block size target should be greater than 2.83 for Ethereum, while it is

currently set at 2.

5 Conclusion

In this paper, I have studied different blockchain fee policies to allocate block space

efficiently when there are various sources of uncertainty. Namely, I have compared the

quantity-setting regime used by Bitcoin and the price-setting regime used by Ethereum

under different sources of uncertainty. Price controls are optimal in an environment
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with low validator bargaining power, high price elasticity of demand, high demand

uncertainty, and high marginal costs during the validation process. In addition, a high

variance of the cryptocurrency price mitigates the advantages of price controls. These

insights help explain the difference between Bitcoin’s and Ethereum’s fee policies. Next,

I have applied these insights to a family of fee policies to which the method used by

Ethereum belongs. Under mild assumptions on the shape of the demand for block space,

I find that a crucial parameter of the mechanism, the rate of adjustment of prices, equals

the inverse price elasticity of demand for inclusion in the next block. Some calculations

using Ethereum transaction data suggest that the rate at which Ethereum’s fees are

changed is faster than optimal.

Henceforth, understanding the economics of multidimensional fees is crucial, as

transactions use various types of resources. The question of designing fee policies for

durable resources is growing in importance as blockchain states expand significantly over

time, particularly due to resources such as storage. Additionally, as some blockchain

states may experience less congestion than others, it is imperative to explore fee policies

that differentiate pricing based on varying demand levels rather than solely pricing block

space. These are topics of ongoing and future research.
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FOR ONLINE PUBLICATION

Appendix

A History of Block Size Changes in Ethereum

Dates Changes in Gas

Limit

Reasons and Context

March 4th, 2016 3,141,592 to 4,712,388 Max gas increased by 1.5x, and minimum gas price

reduced from 50 to 20 gwei (a denomination of the

Ethereum cryptocurrency) to improve affordability

and throughput.

September 22nd,

2016

4,712,388 to 1,000,000 Network experienced a DDoS attack, leading to a dras-

tic reduction in block size for security measures.

September 22nd,

2016

1,000,000 to 1,500,000 DDoS attack was partially mitigated, allowing a lim-

ited increase in block size.

October 15th,

2016

1,500,000 to 500,000 Block size was decreased as a precautionary step be-

fore implementation of a hard fork to address security

vulnerabilities.

October 19th,

2016

500,000 to 3,000,000 Hard fork successfully implemented, security issues re-

solved, leading to a substantial increase in block size.

October 20th,

2016

3,000,000 to 1,500,000 Another DDoS attack occurred, prompting a reduction

in block size to safeguard the network.

October 23rd,

2016

1,500,000 to 2,000,000 Successful mitigation of attacks led to increased block

size, signaling return to stability.

November 24th,

2016

2,000,000 to 3,300,000 Continued stability and growing user base justified an-

other increase in block size.
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December 5th,

2016

3,300,000 to 4,000,000 Network achieved consistent stability, allowing a fur-

ther increase in block size.

June 3rd, 2017 4,000,000 to 4,712,388 Increase in network activity and user engagement ne-

cessitated a rise in block size.

June 29th, 2017 4,712,388 to 6,283,184 New target gas limit set at 4,700,000 to better match

growing ecosystem demands.

December 10th,

2017

6,283,184 to 8,000,000 Rise in transaction volume driven by Cryptokitties

NFT required an increase in block size.

September 19th,

2019

8,000,000 to 10,000,000 Tether’s migration to the Ethereum blockchain led to

increased transaction demands, prompting a block size

increase.

June 19th, 2020 10,000,000 to 12,000,000 Miner consensus to increase block size was reached,

supporting the growing Ethereum ecosystem.

July 25th, 2020 12,000,000 to 12,500,000 Minor increase following another round of miner agree-

ments, aimed at fine-tuning network performance.

April 21st, 2021 12,500,000 to 15,000,000 Berlin hard fork led to efficiency improvements, en-

abling a substantial increase in block size.

August 5th, 2021 15,000,000 to 30,000,000 London hard fork brought about major improvements

in transaction fee predictability and network efficiency,

justifying a block size doubling.

Table A1: Table of history

B Capacity Utilization

B.1 Demand Factors

For my analysis, I identified the number of active addresses, token prices, and transac-

tion fees as potential determinants of block space demand. For Bitcoin (BTC) only, I
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also added the size of the mempool, i.e., the pool of transactions yet to be confirmed

and included in a block.

For BTC, the top graph of Figure A1 shows that the number of active addresses has a

strong correlation with the block utilization rate, as it acts as a good proxy for demand.

Similarly, transaction fees show a tight link with the utilization rate, capturing the fact

that users must offer a higher fee to be picked by miners in periods of block congestion.

As explained in Lehar and Parlour (2020), mempool size is not a perfect predictor of

block utilization, as miners can leave blocks empty, even when there are transactions

waiting, to extract more profits. Finally, the BTC price has a loose relationship with

the utilization rate, possibly because of its high volatility due to speculation.

For Ethereum (ETH), the bottom graph of Figure A1 shows that, before the London

fork, the number of active addresses once again had the highest correlation with block

utilization rates, best representing users’ demand for transactions. Both transaction

fees and the ETH price have stronger correlations with block fullness than their BTC

counterparts. After the implementation of EIP-1559, gas levels stabilized consistently at

the target level, suggesting that the implementation of the new fee system successfully

achieved its objective. As a consequence, the block utilization rate became uncorrelated

with its previously valid demand-side determinants.

B.2 Supply Factors

For my analysis, I identified the computing power of miners and the concentration

rate of mining pools as potential determinants of block space supply. For ETH only,

I considered the total amount of ETH staked and the concentration of validator pools

after the proof-of-stake update.

For BTC, the top graph of Figure A1 shows that the amount of computing power

invested into mining does not affect the block utilization rate. I measure it using

the hash rate, which measures how many guesses are made per second to solve the

code to mine the next block. Regarding mining pool concentration, computed as the

Herfindahl–Hirschman index (the sum of the squares of individual market shares) from
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the shares of blocks mined in a one-month period, the graph seems to support the

hypothesis that miners exercise their market power by leaving blocks less than full, as

periods of higher HHI are usually accompanied by utilization rates below 100%.

For ETH, the bottom graph of Figure A1 shows that, under both proof of work

and proof of stake, the computing power (or the amount of ETH staked, of which 32

ETH are required to activate a validator software), does not affect the utilization rate,

similarly to what we observe for BTC. In contrast to the BTC case, however, the pool

concentration does not affect the block utilization rate either. The HHI measures (from

the share of blocks mined in a one-month period under proof of work and from the

share of ETH staked over a one-month period under proof of stake) are not correlated

with the utilization rate, which is particularly noticeable after the stabilization of the

utilization rate post–London fork.

C Analytic Proofs

C.1 Proof of Lemma 1

At a price p, demand for block space is the measure of users’ willing to pay p for trans-

action inclusion, i.e., λqmaxF̄ (p). This yields the demand curve p =
(
F̄
)−1

(
q

λqmax

)
.

The price elasticity of demand is defined by (negative) the percentage change in quan-

tity demanded over the percentage change in price, i.e., − dq/q
dp/p . Since from the demand

curve q = λqmaxF̄ (p) and dq/dp = −λqmaxf(p), the demand elasticity is pf(p)
1−F (p) .

When F is a Pareto distribution with scale pm and shape α,

F̄ (p) = Pr(v > p) =


(
pm
p

)α
for p ≥ pm

1 for p < pm

(23)

so that, above the minimum price pm, demand is

q = λqmax

(
pm
p

)α
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Therefore, we obtain
p

pm
=

(
q

λqmax

)− 1
α

C.2 Proof of Claim 5

The optimal ex ante quantity choice is just q = qtarget for which the loss is zero. The

optimal ex ante price choice solves

min
p∈R+

E

(Ψ · ( p

pm

)−ε

− qtarget

)2
 (24)

Denote x ≡
(

p
pm

)−ε
. The first-order condition for the choice of p (resp. x) in (24) is

x =
E[Ψ]qtarget

E[Ψ2]
(25)

The expected block size is then

E[Ψx] =
E[Ψ]2qtarget

E[Ψ2]
≤ qtarget (26)

Replacing (25) in the value of the loss function (24) yields

E[Ψ2]− E[Ψ]2

E[Ψ2]
(qtarget)2 =

Var(Ψ)

E[Ψ2]
(qtarget)2

C.3 Proof of Proposition 6

We first find the expression of the marginal cost Γ in (10). The first-order condition is

ci(x1, . . . , xN ; η) = γpxi (27)
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where γ is the Lagrangian of constraint (2). Since c is homogeneous of degree 1, we

have

c(x1, . . . , xN ; η) =
N∑
i=1

ci(x1, . . . , xN ; η)xi = γ
N∑
i=1

pxixi = γq (28)

Therefore, Γ = γ. Evaluating at q = 1 yields

Γ(η, px) = c(x1(1, px, η), . . . , xN (1, px, η); η) (29)

To prove the proposition, we now take logarithms of the blockchain designer’s objective

and maximize over p and q. The first-order conditions for the price choice and quantity

choice are

ε(1− β)ν

p∗
+

εβ

p∗
=

βE[Ψ]

p∗E[Ψ]− E[ΓΨ]
(30)

(1− β)ν

q∗
+

β

q∗
=

β/εpm(q∗)−1−1/εE[Ψ1/ε]

pm(q∗)−1/εE[Ψ1/ε]− E[Γ]
(31)

Denote ν̄ = (1− β)ν + β. Then, we obtain

p∗ =
εν̄

εν̄ − β

E[ΓΨ]

E[Ψ]
(32)

q∗ =

(
εν̄

εν̄ − β

1

pm

E[Γ]
E[Ψ1/ε]

)−ε

(33)

The log values of price controls and quantity controls are then

logVp = −εν̄ log(p∗/pm) + (1− β) log(E[Ψν ]) + β log(p∗E[Ψ]− E[ΨΓ]) (34)

logVq = ν̄ log(q∗) + β log(pm(q∗)−1/εE[Ψ1/ε]− E[Γ]) (35)

Replacing the optimal choices with their values in (32) and (33), we obtain
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logVp = −ν̄ log(p∗/pm) + (1− β) log(E[Ψν ]) + β log(
β

εν̄ − β
E[ΨΓ]) (36)

logVq = ν̄ log(q∗) + β log(
β

εν̄ − β
E[Γ]) (37)

Simplifying yields

logVp − logVq = ν̄ε logE[Ψ] (38)

+(ν̄ε− β)(logE[Γ]− logE[ΨΓ])

−εν̄ logE[Ψ1/ε] + (1− β) logE[Ψν ]

For the joint log-(Ψ,Γ), with mean

µ =

µΨ

µΓ


and variance–covariance matrix

Σ =

 σ2
Ψ σΨ,Γ

σΨ,Γ σ2
Γ


we have

logE[Ψ] = µΨ +
1

2
σ2
Ψ (39)

logE[Γ]− logE[ΨΓ] = −µΨ −
1

2
σ2
Ψ − σΨ,Γ (40)

logE[Ψ1/ε] =
1

ε
µΨ + (

1

ε2
)
1

2
σ2
Ψ (41)

logE[Ψν ] = ν(µΨ +
1

2
νσ2

Ψ) (42)

Putting them together, we obtain the result

logVp − logVq = 1

2

((
ν̂ − ν̄

ε

)
σ2
Ψ − 2(εν − β)σΨ,Γ

)
(43)
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where ν̂ = (1− β)ν2 + β.

C.4 Proof of Proposition 10

Let us start by defining the notion of optimality in this dynamic context. Let qt be the

equilibrium quantity at time t. Denote as xt = qt−qtarget

qtarget the percentage deviation from

the target at time t. Denote as λ the arrival rate in normal times (i.e., the expected

arrival rate). Consider a shock to the demand curve λ−1
t ≡ λ−1 + zt. At the protocol

set price pt, the quantity lies on the demand curve qt = λtq
maxF̄ (pt). The deviation

from target xt can be due to the shock to demand zt or to a protocol price pt that is

not properly set so that qt deviates from the target.

We have the expression pt = F̄−1( qt
qmaxλt

). From the expression of the ADT-TFMs,

we have

pt+1 = F̄−1(
qtarget(1 + xt)

qmaxλt
)g(d× xt) (44)

Without loss of generality at time t+ 1, demand returns to normal so that λt+1 = λ.

Known Intensity of Demand: Suppose for now that the realization of zt, i.e.,

λt, is known; then, the deviation from the target quantity at time t+ 1 is

xt+1 =
F̄
(
F̄−1( q

target(1+xt)
qmaxλt

)g(d× xt)
)

F̄ (ptarget)
− 1 (45)

We can see that by setting

g(d× xt) =
F̄−1( q

target

qmaxλ )

F̄−1( q
target(1+xt)

qmaxλt
)

(46)

we guarantee that the quantity at time t+1 is at the target. The issue is that demand

λt is uncertain, so we look at the function f that performs in the worst-case scenario.
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Unknown Intensity of Demand: Because demand is uncertain, the adjustment

function can depend on the gap from target xt but not on λt. Thus, we need to evaluate

the deviation that is closest for the worst-case value of zt. We have

ln F̄−1

(
qt+1

qtarget

)
= ln F̄−1(

qtarget(1 + xt)

qmaxλt
)− ln F̄−1(

qtarget

qmaxλ
) + ln g(d× x) (47)

Suppose that − ln F̄−1 is concave; then, for any xt and zt = λ−1
t − λ−1,

ln F̄−1(
qtarget

qmaxλ
)− ln F̄−1(

qtarget(1 + xt)

qmaxλt
) ≥ 1

ε(qtarget)
(xt + zt) (48)

From (47), we have that ln g(d × x) is the closest approximation of ln F̄−1( q
target

qmaxλ ) −

ln F̄−1( q
target(1+xt)

qmaxλt
) that is independent of zt. Therefore, f(d × x) = x/ε(qtarget); i.e.,

d = ε(qtarget) and f = exp.

C.5 Proof of Proposition 12

From equation (33), the optimal quantity for a monopolistic miner is, for β = 1,

q∗ =

(
ε

ε− 1

1

pm

E[Γ]
E[Ψ1/ε]

)−ε

(49)

With Ψ = λqmax. Now, suppose that the minimum user valuation is greater than the

expected marginal cost pm > E[Γ]. Then, by including her own transactions up to the

block size limit qmax and paying the base fee to herself, the validator obtains a positive

value in expectation. Therefore, MMIC requires that pm ≤ E[Γ]; thus,

q∗ ≤ qmax

(
ε− 1

ε

)ε

E[λ1/ε]ε (50)

By Jensen’s inequality, E[λ1/ε]ε ≤ E[λ]. Thus, the block size limit is set to match user

demand in expectation; then, E[λ] = 1, and thus,

q∗

qmax
≤

(
ε− 1

ε

)ε

(51)
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The right-hand side is an increasing function for ε > 1 with limit e−1.

These bounds provide valuable insights for studies of TFMs involving monopolistic

validators (Nisan, 2023; Lavi et al., 2022) and TFMs designed to prevent validators

from monopolizing all surplus (Bahrani et al., 2023).

Figure A1 illustrates how the upper bound of the ratio q∗/qmax changes with ε.

This upper bound approaches an asymptote of e−1 ≈ 37%, and it reaches 95% of this

limit when ε = 10.42. Ethereum currently sets the target block size to half the block

size limit. The correct interpretation of this result is that any ADT-TFM with a target

block size exceeding 37% of the block size that meets user demand in an average demand

scenario would not be invulnerable to a simple form of MEV. This is because MMIC

necessitates that the validator has no incentive to include her own value-extracting

transactions while simultaneously reducing the effective supply available to users.
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Figure A1: Optimal target block size for a monopolist validator as a function of ε

D Numerical Examples

Methodology: The inference of a demand curve requires random variation

in supply to distinguish between shifts along the demand curve and shifts in

the demand curve itself. Nevertheless, such random variation in supply is rare
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because of the programmatically defined rules of blockchains.

Instead, a different strategy, informed by the user demand model presented in

Section 3, is adopted. Lemma 1 shows that, for any density f of user valuations,

the price elasticity of demand is the tail ratio
pf(p)

1− F (p)
. Specifically, if the

distribution is Pareto, the price elasticity is its Pareto tail coefficient. Knowing

the Pareto tail of the distribution of user valuations allows determination of the

optimal adjustment parameter from Proposition 10 as the inverse of the Pareto

tail coefficient.

In this analysis, transaction gas prices serve as the nearest proxy for user val-

uations, given the available data. A Pareto distribution is fitted to the empirical

distribution of effective transaction gas prices in each randomly selected block

to calculate the optimal adjustment rate. However, this approach is not without

limitations.8 First, gas prices censor user valuations at the lower end of the dis-

tribution because of the base fee. Second, pending transactions in the mempool,

which carry lower base fees, are not included. Consequently, the estimate will

reflect a heavier tail than the actual user valuation distribution. Therefore, the

estimate of the Pareto tail coefficient is an underestimate, meaning its inverse—

the optimal adjustment rate—will be overestimated. The adjustment parameters

identified here should thus be considered an upper bound.9 To address these lim-

itations, several robustness exercises are performed, which include restricting the

estimation to blocks with a minimum gas price below a certain threshold (to limit

the censoring of low valuations) and to blocks that are less than full (to limit the

censoring of mempool transactions). These robustness exercises do not alter the

primary conclusions of this numerical analysis.
8As users demand different amounts of block space, each transaction is weighted by the gas units that it

uses to fit the Pareto distribution.
9Given that the optimal adjustment rate found here is lower than its current value of 12.5%, this upper

bound estimate offers valuable insights for the design of Ethereum’s TFM.
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Discussion: The estimate from a sample prior to the merge suggests an ad-

justment rate of 6.57% (tail coefficient 15.22), while the optimal adjustment rate

for the blocks following the merge is 8.68% (tail coefficient 11.53). The observa-

tion that the current adjustment rate of 12.5% overshoots more before the merge

than after aligns with the findings of Leonardos et al. (2022). The authors pos-

tulate that this discrepancy is because inter-block times were (approximately)

exponentially distributed prior to the proof-of-stake upgrade whereas they are

constant in Ethereum’s proof-of-stake protocol. A constant block arrival rate

more accurately reflects my model, suggesting that an estimate around 8% is

more suitable for the current blockchain. One might wonder whose price elastic-

ity our estimate represents and why it is so high (over 10). The adjustment rate

represents the inverse elasticity of the marginal user submitting her transaction

for inclusion in the next block. Given the low block size limit, which is set because

of technological constraints, it is not implausible that a marginal decentralized

finance (DeFi) user with sensitive transactions would exhibit significant demand

elasticity, similarly to how high-frequency traders are sensitive to spreads.

Another consideration is that this analysis does not account for users whose

transactions remain in the mempool for several blocks before confirmation. No-

tably, under EIP-1599, base fees do not decrease fast enough after a surge in

demand. A TFM that responds to intra-day or intra-hourly demand variations

would not need to adjust prices based on the size of the previous block. Instead, it

could maintain fixed prices during high-demand periods, fill blocks, and monitor

the mempool for price adjustments. However, mempool data are typically not

recorded on-chain (i.e., as part of the immutable blockchain) and can be easily

manipulated.
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Alternative Calculations: This section presents the results of supplemen-

tary robustness checks to validate the primary numerical analysis findings. These

checks are performed under various conditions to address potential concerns high-

lighted above, such as the base fee causing censoring of low valuations and the

exclusion of pending mempool transactions. To investigate the consistency of the

Pareto tail coefficient and the optimal adjustment rate, I adjust the selection of

blocks within a size range of qtarget(1± δ%) and different limits on base fees.

The estimations are performed on three samples: the full sample, the pre-

merge sample, and the post-merge sample. Tables A2, A3, and A4 provide

detailed results. The estimated optimal adjustment rates are consistently lower

than the 12.5% adjustment rate and remain stable under various data partition-

ings. The estimate is smaller for the pre- than for the post-merge sample, as

previously found. The adjustment rates decrease as the window around the tar-

get block size widens and the maximum base fee increases. Ethereum transaction

fees are paid in units of gwei. The increase in rates as the max base fee limit

becomes more restrictive (for blocks with a base fee of less than 30 gwei) can

only produce thicker tails because of a restricted range and censoring. Variations

based on δ, the window of the target block size, are quite robust, with an ad-

justment rate in the full sample estimation ranging from 7.33% to 8.03% for a

more accommodating max base fee of 200 gwei. Estimates from the pre-merge

and post-merge samples suggest that the optimal adjustment rate lies within the

6% to 10% window, where the latter serves as an upper limit.

Blockchain designers must adopt simple, robust, and principled methods for

updating TFM parameters. However, updating parameters and the “rules of the

game" as we go might not be best tack for fostering scalability. Considering

nondeterministic adjustment rates for TFMs could provide a solution. Prelim-

inary quantitative explorations using adjustment rates derived from prices and
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Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 12.45 8.03 7189
100 11.83 8.45 6645
60 11.01 9.08 5867
30 9.50 10.53 4130

33%

200 12.77 7.83 43718
100 12.09 8.27 40471
60 11.26 8.88 35649
30 9.48 10.55 25193

87.5%

200 13.64 7.33 78881
100 12.62 7.92 70769
60 11.53 8.67 60141
30 9.50 10.53 41140

Table A2: Shape of Pareto fit α and optimal adjustment rate s for the different maximum
gas prices (base fee) in units of gwei and selection of blocks within size qtarget ± δ% (full
sample estimation)

Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 11.46 8.73 5088
100 11.24 8.89 4962
60 10.84 9.23 4688
30 9.55 10.47 3547

33%

200 11.48 8.71 30029
100 11.29 8.86 29454
60 10.89 9.18 27884
30 9.55 10.47 21288

87.5%

200 11.32 8.83 42042
100 11.15 8.97 41348
60 10.78 9.28 39426
30 9.47 10.56 30890

Table A3: Shape of Pareto fit α and optimal adjustment rate s for the different maximum gas
prices (base fee) in units of gwei and selection of blocks within size qtarget ± δ% (post-merge
sample estimation)
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Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 14.85 6.73 2101
100 13.57 7.37 1683
60 11.70 8.55 1179
30 9.15 10.93 583

33%

200 15.59 6.41 13689
100 14.22 7.03 11017
60 12.57 7.96 7765
30 9.09 11.01 3905

87.5%

200 16.29 6.14 36839
100 14.69 6.81 29421
60 12.96 7.71 20715
30 9.58 10.44 10250

Table A4: Shape of Pareto fit α and optimal adjustment rate s for the different maximum
gas prices (base fee) in units of gwei and selection of blocks within size qtarget±δ% (pre-merge
sample estimation)

quantities of the preceding two blocks have shown promising results in terms of

how well these rates reflect market conditions during the relevant periods. A

more stable and manipulation-resistant approach could involve calculating an

average elasticity over a range of prior blocks. Alternatively, introducing noise to

the target block size, effectively the “supply curve”, could help us infer demand

fluctuations under normal conditions.
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