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     Abstract: Persistence is the speed with which a time series returns to its mean after a shock.
Although several measures of persistence have been proposed in the literature, when they are
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1 Introduction

The term persistence refers to the extent to which future values of a particular variable are

related to past observations of the same variable.1 From an econometric point of view, the

concept of persistence is closely related to the order of integration of a variable (Paya et al.

2007), and it is defined as the speed of a univariate time series to return to its long-run level

after a shock (Andrews and Chen 1994; Willis 2003; Marques 2004; Pivetta and Reis 2007).2

Different factors could be associated with the persistence of a time series, including the duration

(or persistence) of the shock that is affecting the process, if the shock happens in isolation or

together with another shock so that non-linearities are induced, and the possibility that internal

propagation mechanisms translate serially uncorrelated shocks into highly correlated time

series.

Understanding the dynamics of persistence is a crucial issue with significant policy implica-

tions in different disciplines since it can play a central role in determining how policy responds

to shocks over time (Canarella and Miller 2016). Therefore, to enhance policymaking, it is

desirable to have a good measure of persistence that allows for an accurate monitoring of the

evolution of the persistence of the time series of interest and a more profound understanding

of how shocks affect their underlying stochastic properties. In practice, although there are

several estimators of persistence, the estimated persistence may differ substantially depending

on the estimator used.

To motivate this claim, table 1 shows three measures of persistence applied to the U.S.

monthly-headline inflation rate in four different periods (see the description of these estimators

1 This is a property of interest for policymakers in different disciplines. For example, relevant questions include “How
long is inflation going to remain high after a shock?”, “How long will temperatures stay elevated?”, “Have precipitations
permanently decreased in some regions?”, “How fast will rivers return to their normal levels after heavy rain?”

2 This should be understood as reduced-form persistence in the economics literature (Fuhrer 2010).
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in section 3.2).3 It shows two ways of modeling inflation: short- and long-memory models.4

The table illustrates the inconsistency between the messages obtained from three different

measures of persistence commonly used in literature. Said inconsistency is not only present

in terms of the level of persistence but also in its evolution. As an example of the former,

take the period 1950M1-2023M9: the nonparametric measure indicates a medium persistence.

In contrast, the parametric and the long-memory semiparametric measures indicate high

persistence. The inconsistency does not seem to be a consequence of the atypical evolution

of inflation during the pandemic. Suppose we exclude the latter period and focus on three

different subperiods. In that case, we observe that the long-memory estimator suggests that

persistence was lower between 2010-2019 compared to 2000-2009, while short-term memory

models suggest that persistence increased over the period. Moreover, said increase is just

marginal according to the nonparametric estimator, while it turned from anti-persistent to

persistent according to the parametric one. This provides an illustrative example applied to a

macroeconomic time series, but equivalent discrepancies could be observed in different cases

that interest other disciplines.

The discrepancy between the estimators of persistence shown in table 1 is not new in the

literature, as Dias and Marques (2010) noticed. For instance, the studies of Andrews and Chen

(1994) and Pivetta and Reis (2007) have found significant differences between the estimates

of the cumulative impulse response (CIR), the half-life, and the largest-root autoregressive

estimators of inflation persistence.5 According to them, for example, if the persistence of a

series is estimated with the sum of autoregressive coefficients (ρ̂) and the data is generated by

an AR(p) model with p > 1 and a linear time trend, the least-squares estimators of the process

can exhibit substantial biases, which can be downward and large (Andrews and Chen 1994).

3 We use an inflation example due to the recent importance that this variable has taken worldwide. However, the same can
be said by applying the estimators to variables regarding other sciences (see section 2 for a discussion).

4 Short-memory models have mainly been used to derive estimators of persistence, especially in economics. Long-memory
models prove helpful in many fields of science as a parsimonious way of modeling highly persistent processes.

5 While in table 1 we did not use the estimators CIR, the half-life, and the largest-root autoregressive estimators, all of
them are related to the parametric estimator (ρ̂) also described in section 3.
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Table 1: Estimators of Persistence Applied to the U.S. Headline Inflation for
Different Periods1

Period
Short-memory Models Long-memory Model

Nonparametric (γ̂) Parametric (ρ̂) Semiparametric (d̂GPH)

1950M1-2023M9 0.712 0.851 0.410
(0.016) (0.039) (0.150)

1990M1-1999M12 0.658 0.311 0.408
(0.045) (0.168) (0.150)

2000M1-2009M12 0.592 -0.074 0.204
(0.044) (0.214) (0.150)

2010M1-2019M12 0.675 0.291 0.161
(0.045) (0.106) (0.150)

1 The estimators are described in section 3.2. Standard errors are in parenthesis. The
colors indicate low (green), medium (orange), and high (red) inflation persistence for
the nonparametric and parametric estimators.

Further, Dias and Marques (2010) notice that if the data is generated with an AR(p) model

with p > 1, the estimated persistence may diverge depending on the persistence measure used.

The difference between estimates stems from the fact that the shape of the impulse-response

function of the process varies with a specific combination of the autoregressive coefficients.

Thus, if two processes have the same ρ, but the sum of elements (coefficients) are different

between the two AR(p) models, the CIR, the largest-root, and the half-life autoregressive

estimators of persistence may yield different levels of persistence.6

One plausible explanation for the discrepancies in the messages obtained regarding persistence

through different estimators is that some require specific time series properties that seldom hold

in real data. Moreover, real-time series data may have some particularities (hereafter called

contaminations). By contamination, we refer to time series displaying certain “particularities or

anomalies”, including measurement errors, outliers, structural changes, seasonal and cyclical

patterns, or unit roots. We use the term “contamination” to indicate that we do not observe the

time series of interest. We observe the addition of the data of interest plus contamination.7

6 See table 2 in Dias and Marques (2010).
7 The term contamination is used in the literature in the same sense (see Haldrup and Nielsen 2007; McCloskey and Perron

2013; Hou and Perron 2014, for example).
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These anomalies could be affecting the accuracy of persistence measurements. However, it is

unclear whether precision losses are similar or homogeneous across all measures of persistence

or if they are responsible for the discrepancies in the messages obtained. Thus, the researcher

may not know which estimator is an appropriate indicator of the “true” persistence of the series

of interest. Therefore, the goal of the paper is to understand how different anomalies alter the

measurements of persistence and to study if one of the indicators provides a more accurate

or robust measurement of persistence on average, despite the possible contamination of the

series that is sometimes inevitable when working with real data. This could justify focusing on

certain estimators when the different measures indicate incompatible messages. To that end,

this paper presents a statistical exercise to compare the performance of different estimators of

persistence that are usually found in the literature under contaminated and uncontaminated

data. We contribute to the literature by providing researchers with some elements to choose

the most appropriate measure of persistence for the specific question they wish to address.

Two words of caution are in order. First, we focus on univariate time-series frameworks

and abstract from discussing whether the research question requires a more sophisticated

framework.8 Second, our starting point is the assumption that researchers are generally

interested in the intrinsic properties of the time series they study, so they want to abstract from

the impact that the anomalies may have in the time series of interest. This may implicitly

assume that these anomalies do not reflect the intrinsic evolution of the latter, or that the

evolution of interest is that of the uncontaminated time series. Nonetheless, whether the

anomalies are of interest is ultimately up to the researcher and the particular question at hand.9

8 For example, a structural or multivariate time series framework may be in order. This could be related to the earlier
discussion of understanding the behavior of the time series, where the nuances of how shocks affect its behavior may depend
on other variables that could also be observable to the researcher and could be used to nurture the analysis.

9 As an illustrative example, consider inflation persistence. In this case, there is a question of whether persistence should
be calculated over the monthly changes of seasonally adjusted price indices (so that it is estimated for the inflation level) or if
it should be calculated for the detrended time series (so that persistence is estimated for the inflation gap). From a purely
statistical point of view, the latter would seem appropriate since the researcher is interested in forecasting the stochastic
variation of the time series, which would require removing the trend that may be thought of as a deterministic component.
One could think of, for example, the long-term convergence of inflation to target when inflation targeting is adopted as a
deterministic trend. However, from an economic point of view, removing the trend is not appealing because, intuitively, the
existence of a trend in the inflation series indicates persistence, which is precisely what is being studied. Therefore, removing
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Although this study focuses on how time-series’ contamination may affect the measure of

persistence in a univariate time-series framework, we encourage the discussion of whether the

anomalies that we highlight are part of the intrinsic process of the time series, that could be of

interest for the researcher or relevant for policymaking, or if they are merely contamination

that may blur the underlying behavior that reflects the expected evolution of the time series. By

stressing the importance of this discussion, we hope to contribute to the literature on the topic

by encouraging a more profound understanding of the concept of persistence and drawing

attention to the nuances in interpreting this property.

To analyze the differences among estimators of persistence and gauge the robustness of the

different measures, in this paper, we perform a statistical exercise that uses Monte Carlo

simulations to compare them in univariate time series. Concretely, we consider nonparametric,

semiparametric, parametric time-domain and frequency-domain persistence measures and

investigate their performance when data is affected by contamination commonly found in

practice.

Overall, our results confirm that persistence measures are sensitive to contamination. In partic-

ular, if the data-generating process is an autoregressive of order one, AR(1), with parameter ρ

and no contamination, the autoregressive estimators, both the sum of autoregressive coeffi-

cient (ρ̂) and the autoregressive coefficient of order one (ρ̂1), along with the nonparametric

these trends modifies the definition of persistence. Moreover, the mere characterization of trends as deterministic components
is questionable, as these trends may reflect stochastic properties of the time series that are desirable to understand. In this
view, it would be preferable to focus on the persistence of the level of inflation. However, if a shock induces a positive trend
to the inflation series (albeit this trend is temporary), the estimated persistence may be close to 1, which, from a strictly time
series perspective, would indicate that the series will not return fast to its mean level. However, in a case such as this one, the
policymaker may know (or expect) that the trend only reflects a shock that has temporarily deviated inflation from its mean
but is expected to revert as the shock disappears and the economy adjusts. From this perspective, removing the linear trend
may be helpful in evaluating the behavior of inflation without considering the structural changes of the time series that are
expected to be temporary. Although, to our knowledge, this discussion has not drawn sufficient attention in the literature,
some previous work has delved into related discussions. For example, Marques (2004) emphasizes that the mean of inflation
should be seen as exogenous to the model and allowed to vary over time. Other previous studies had already touched on this
subject, and while they took the mean of inflation as exogenous, they allowed for structural breaks of that level. See, for
example, Burdekin and Siklos (1999), Bleaney (2000), Levin and Piger (2004), Marques (2004), and O’Reilly and Whelan
(2005). However, a lot of the literature has not focused on the justification of removing or not the trend but has just estimated
persistence either on inflation level (Benati 2008; Pivetta and Reis 2007; Gambetti et al. 2008), or inflation gap (Cogley and
Sargent 2001, 2005; Cogley and Sbordone 2008), without acknowledging what interpretation should be given to the measures
reported.
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estimator (γ̂), perform the best at any true value of ρ.10 The integer order of integration tests,

the Augmented Dickey-Fuller (ADF), and the Kwiatkowski et al. (1992) (KPSSµ), perform

as expected and improve their performance with sample size. The long-memory estimators

are the worst performers, as they suggest that the data is generated by a long-memory process

when this is not the case: the data is generated by an AR(1) (short memory) model.11 In the

presence of contaminations, table 2, which summarizes the performance of each measure

under different anomalies, indicates that the ADF test is the most effective measure of per-

sistence among all. The bias in the rejection probability of the ADF test is zero for almost

all the contaminations studied in this paper. This tells us that even if the data-generating

process (DGP) is contaminated, the ADF test correctly identifies that the persistence is not

infinite. However, a drawback regarding this measure is that it does not yield an objective,

scalar measure of persistence. Thus, it is useless for most applications (see studies in the next

section). The nonparametric estimator, γ̂, according to table 2, is the second best measure of

persistence, measured by a lower deviation from the uncontaminated case in most anomalies

analyzed in this paper. Thus, the nonparametric estimator is more robust to contaminations

than even the most commonly used autoregressive measures, ρ̂ and ρ̂1.12

When the DGP is a fractionally integrated process with parameter d, FI(d), and the process

is not contaminated, only the long-memory persistence measures perform correctly, as they

are the only ones that consider the long-memory property of the data. The nonparametric

estimator, γ̂, increases with the value of d, while the autoregressive measures, in contrast to

the AR(1) case, fail to estimate the true persistence of the process, especially when the DGP is

nonstationary, i.e., the true d ≥ 0.5. Surprisingly, in the presence of contaminations, the long-

memory estimators do not perform well in most situations. If the data belongs to the stationary

10 See section 3.2 for details on the estimation of all parameters used.
11 This is to be expected as said indicators are built for long-memory processes.
12 The nonparametric and the long-memory estimators were not designed for the autoregressive process, and we do

not know the true value of γ or the long-memory parameter (d) for the AR(1) processes. Therefore, we evaluate their
performance using the difference between the estimated value under contamination versus the estimated value under no
contamination.
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region, the ADF performs as expected and rejects the null of infinite persistence; however,

as before, it does not yield a scalar measure of persistence and might not be completely

useful. Thus, in the stationarity region, the γ estimator of persistence deviates less from the

uncontaminated case, being the most robust estimator. In contrast, when the DGP belongs

to the nonstationary mean-reverting region, the autoregressive estimators, ρ̂ and ρ̂1, deviate

less from the uncontaminated case. However, this is not because they are correctly estimating

the persistence, it is because they were made to measure persistence for stationary short-

memory processes, so long-memory nonstationary processes lead said estimators to measure

persistence as almost infinite and the bias under contamination is small compared to the

uncontaminated case. The tests for the integer order of integration perform badly as well:

the null hypothesis rejection probability decreases (increases) for the ADF (KPSSµ) test, the

greater the true d is, leading to erroneous conclusions of infinite persistence. Regarding the

long-memory and nonparametric estimators of persistence, their performance depends on

the type of contamination and the true d, being the γ estimator the one deviating less most

of the times from the uncontaminated case. Therefore, if the DGP is FI(d) and d ≥ 0.5, the

nonparametric estimator γ̂ or the long-memory estimators are the most robust.
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Table 2: Summary of the Performance of Persistence Estimators or Test1

Estimator
or test

Performance under contamination
Discussion and

recommendation
Ranks among the best

for data with
ReferenceShort-memory process Long-memory process

A
ut

or
eg

re
ss

iv
e

ρ̂1 It performs well on average. Even in contaminated

processes, it is not among the worst estimators, and the

differences with the estimation without contamination

are small.

The differences with the estimation without contamina-

tion are small. However, it indicates short memory or

infinite persistence.

Very good for short memory process. A trend and structural changes.

Andrews and Chen (1994)

ρ̂ It underperforms relative to ρ̂1 (except in the case of

small measurement errors).

The differences with the estimation without contamina-

tion are small. However, it indicates short memory or

infinite persistence.

Choose ρ̂1 over ρ̂. Additive outliers and structural

changes.

ĈIR It performs poorly under contamination, except under

temporary change outliers that do not affect it severely.

High errors under contamination. Sensitive to contamination. We do not recommend using it if we

suspect contamination that cannot be removed.

Never ranks among the best.

L̂AR It performs poorly under contamination except under

temporary change outliers that do not affect it severely.

High errors under contamination. Sensitive to contamination. We do not recommend using it if we

suspect contamination that cannot be removed.

Never ranks among the best.

ĤLC Does not perform well under contamination with low

values of true autoregressive parameters. A higher true

AR(1) parameter improves performance for all contami-

nation processes.

High errors under contamination. It could be a good alternative if the true process is known to be a short

memory process with high autoregressive parameters.

A trend and structural changes. How-

ever, only for short-memory processes

with a high ρ.

N
on

-p
ar

am
et

ri
c γ̂ Very good performance across types of contamination

and level of true autoregressive parameters.

Very good performance across types of contamination

and d parameters.

Seems to be the most robust scalar measure of persistence: it performs

well across contaminated short- and long-memory processes. We rec-

ommend choosing this measure if we wish to have a scalar measure if

DGP is unknown, contamination is suspected, and its type is unknown

or not easy to remove.

All but temporary change outliers.

Marques (2004)

O
rd

er
of

in
te

gr
at

io
n

te
st

s

ADF

test

It ranks as the best in many cases (across contamination

types and AR parameter values).

It ranks as the best in many cases (across contamination

types and d values).

It is a robust estimator that may be used under different DGPs if only

an integral order of integration test is desired. The drawback is that it

is not a scalar, so it may not be desirable because it does not indicate

the persistence level.

All but structural changes.

Kwiatkowski et al. (1992)
KPSS

test

It performs well across contaminated processes and AR

parameter values. It is among the best estimators in the

presence of cycles or small measurement errors.

It performs relatively well across contaminated pro-

cesses and levels of d. For higher levels of d, it ranks

among the best estimators in the presence of cycles,

small measurement errors, and additive outliers.

It is a robust estimator that may be used under different DGPs if only

an integral order of integration test is desired. The drawback is that it

is not a scalar, so it may not be desirable because it does not indicate

the persistence level. Choose ADF over KPSS, although using both

can test for structural changes.

A cycle and measurement errors.

L
on

g-
m

em
or

y

d̂GPH It does not work for short-memory processes. It performs well under cycle contaminations. It is the

most robust to a wider range of contaminations, although

it does not beat the unit root tests. However, it is perhaps

an adequate scalar measure.

We strongly recommend its use if the process is long-memory. A cycle and additive outliers. Geweke and Porter-Hudak

(1983)

d̂HP It does not work for short-memory processes. With a trend, under low levels of d, has a good perfor-

mance.

We recommend its use if the process is long-memory. A trend and a structural change. Hou and Perron (2014)

d̂LW It does not work for short-memory processes. It is robust to structural changes. We recommend its use if the process is long-memory. A structural change and additive out-

liers, but for low levels of d.

Robinson (1995)

1 The estimators ranking displayed in column 5 is a summary of tables 7, 12, B.1, and C.1. See the description and the references of these estimators in section 3.2.
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In an effort to facilitate the interpretation of the results presented and provide researchers and

policymakers with a tool that allows to apply our findings in practice, table 2 summarizes, for

each measure of persistence analyzed, its performance under the different anomalies studied

when the underlying time series is a short or long-memory process. The last column of the

table provides our recommendation based on the statistical exercise presented in this work. The

purpose of this table is to provide guidelines, based on our results, on the estimator that would

be more appropriate for measuring persistence in the presence of different contamination

processes. Naturally, this table will be more useful if the researcher has more information

about the underlying time series, including the type of anomalies that it displays and its DGP.

Unfortunately, having this knowledge is not always easy in practice, so we recommend using

this table at the discretion of the researcher, and just as a guideline of what estimator could be

more robust to the kind of contamination that the series may display.

The rest of the paper is organized as follows. In section 2 we summarize the existing literature

on inflation persistence. In section 3 we describe our methodology and show how the autore-

gressive and long-memory processes are contaminated. Besides, we describe the measures of

persistence that will be compared. Section 4 presents results for short-memory autoregressive

processes, and section 5 for the case of long-memory processes. Section 6 discusses our results

and concludes.

2 Literature

In a time series context, the term persistence indicates the extent to which future values of a

particular variable are related to past observations of the same variable. In other words, the

persistence of a univariate time series refers to its tendency to converge slowly towards its

long-run level (Paya et al. 2007). In this sense, this property of time series is of great interest

to some branches of science, such as physics, hydrology, climatology, geopolitics, finance,

and economics.
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Some studies have focused on getting a better understanding of the persistence property, either

through comparing the effect of temporal aggregation on different measures of persistence

(Paya et al. 2007); the implications of noisy data (Haldrup and Nielsen 2007); the robustness

of some measures of short-term memory to levels shifts processes and to deterministic time

trends (McCloskey and Perron 2013); or the link between outliers, nonlinearities, and the

degree of persistence in some data generating processes (Ahmad and Donayre 2016).

Some researchers have instead studied the characteristics of the models used to measure

persistence (Hendry 1980; Hendry and Mizon 2000; Clements and Hendry 2001). As the

concept of persistence refers to the extent to which future values of a series are related to past

observations, it is straightforward to link the persistence of a univariate time series with its

forecasting ability. Thus, Castle (2006) reviews, examines, and proposes practical solutions

regarding model specification and nonstationarity in a forecasting context, which can, in

principle, be applied to measure persistence. Along these lines, in a model specification

framework, for instance, Bontemps and Mizon (2003) and Hendry and Krolzig (2005) argue

that using information criteria is not enough to select a model, especially as it does not ensure

congruence and, consequently, a misspecified model could be selected. Therefore, using only

information criteria to fit a model to measure persistence could lead to erroneous conclusions

about the in-sample characteristics of the series, provided that the model does not match the

data-generating process.

The very interesting mathematical properties of the persistence of a univariate time series

presented in the studies above reflect the importance of understanding each of the existing

techniques to measure this property and their flaws, especially for its wide applications in

different branches of science. For instance, Akgul et al. (2011) use the Hurst exponent (long-

memory parameter) to measure network traffic flow, which is fundamental in diagnosing

computer networks and potential anomalies. Further, Gil-Alana (2021) estimates a linear

time trend in the global mean sea level data, assuming that the errors in the regression model

10



might be fractionally integrated. He found that estimating the persistence of sea level data by

imposing the strong assumption that errors are either I(0) or I(1), leads to a downward bias

in the estimated persistence. This study is consistent with other works such as Ercan et al.

(2013), which discusses various autoregressive techniques to forecast sea levels in the Caspian

Sea and the region of Peninsular Malaysia.

Similar to the previous examples, more hydrology papers measuring persistence for different

time series have been published. An excellent example of this is Habib (2020), who uses

detrended fluctuation analysis to estimate the long-term memory of 17,359 hydrology series.

He concluded, as Gil-Alana (2021) and Ercan et al. (2013), that persistence is an important

characteristic to consider when forecasting or explaining the properties of hydrology and

climatology series. In a more operational sense, Chaves and Lorena (2019) use the Hurst

exponent and the autocorrelation function to analyze the presence of persistent processes in

the Descoberto reservoir (Brazil) inflows to assess its operational reliability after an important

failure in 2017. In a study regarding the chemical properties of the Arctic Ocean, Abbott et al.

(2015) measures the persistence of carbon nutrients exported to the aquatic ecosystems by the

collapsing of upland permafrost across the North Slope of Alaska.

Measures of persistence have also been used to estimate temperature readings and their

anomalies. For instance, Triacca et al. (2014) use the cumulative impulse response (CIR) to

measure the persistence of global temperature, while Gil-Alana et al. (2022), using fractional

differentiation, investigates the properties of the temperature and precipitation anomalies in

the U.S. Both studies find the presence of persistence in the analyzed time series. Measures

such as the coefficient of determination (R2), reduction of error (RE), and coefficient of error

(CE) have been used for paleo climatic research, which uses indirect estimates of past climate

for climate reconstruction Macias-Fauria et al. (2012). A seasonal I(d) was proposed by Gil-

Alana (2017) to model de El Niño Southern Oscillation in order to understand its persistence,

besides using the classic I(0) versus I(1) approach. Similarly, Yaya et al. (2020) measure the

11



persistence of low air quality in California, U.S., using fractionally integrated models; while

Deo and Hurvich (1998), applying the same type of models as Yaya et al. (2020), measure the

persistence of globally rising temperatures.

In a different spectrum of science, the persistence property has also found its applications in

finance, for instance, for calculating risk management measures such as the value-at-risk (VaR)

via long-memory GARCH models (Aloui and Mabrouk 2010). In a different study, Bariviera

et al. (2017) uses the Hurst exponent to test the presence of long memory in bitcoin return series.

Also, the sum of autoregressive coefficients has been applied to measure the persistence of

bank’s profit coefficients and to know its determinants by regressing the estimated persistence

measure against some macroeconomic covariates (Goddard et al. 2011). Unit root tests have

also been proposed, for instance, Yarovaya et al. (2022) use them to test for persistence in the

return series of four board classes of financial assets: equity indexes, precious metals, 10-year

benchmark bonds, and cryptocurrencies. Deo and Hurvich (1998) consider estimating a linear

trend for a time series in the presence of additive long-memory noise with memory parameter

and apply it to the S&P 500 return data.

The persistence of different macroeconomic series has also been of great interest in economics.

Within this context, scholars have extensively delved into the discussion of inflation persis-

tence. Fuhrer (2010) contributes by providing an extensive discussion regarding the different

measures of persistence used in the economics literature for inflation. Davig and Doh (2014)

use a Markov-switching time series model using Bayesian methods to measure inflation per-

sistence within different monetary policy regimes in the United States: pre- and post-Volcker

disinflation. In a nonparametric fashion, Marques (2004) measures inflation persistence in the

euro area and the United States by exploring the close relationship between persistence and

mean reversion. Canarella and Miller (2016) detect structural breaks in inflation persistence

series for the U.S. and countries that target their inflation levels. Alogoskoufis and Smith

(1991) explore the relationship between the persistence of price inflation and exchange-rate
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regimes. Utilizing Bayesian methods, Cogley et al. (2010) analyze post-World War II U.S.

inflation gap persistence. Furthermore, others have researched the persistence of other in-

dicators such as purchasing power parity (PPP) and GDP. For instance, Murray and Papell

(2002) demonstrates that univariate methods offer limited insights into the magnitude of the

half-lives of PPP deviations. Cheung and Lai (2000) explore heterogeneity in the persistence of

deviations from parity. Conversely, other authors such as Estrada et al. (2015), Gil-Alana et al.

(2023), and Hess and Iwata (1997) focus on the persistence of shocks in GDP, while the studies

of Capistrán and Ramos-Francia (2009); Noriega and Ramos-Francia (2009); Noriega et al.

(2013) are examples of the estimation of inflation persistence for the case of Mexico. Despite

the large number of measures assessing the persistence of time series,13 the significance of this

property in the context of different disciplines, and the apparent variations in the evolution of

persistence that are suggested by different measurements, there is, to the best of the authors’

knowledge, a notable absence of studies addressing the question of which estimate provides a

more appropriate measure. The objective of this paper is to contribute to filling in this gap.

3 Methodology

3.1 The Design of Autoregressive or Long-memory Processes with Contamination

We consider two types of processes: short-memory (autoregressive of order one) and long-

memory processes. An autoregressive model of order p, abbreviated AR(p), is of the form

Xt = α + ρ1Xt−1 + ρ2Xt−2 +⋯ + ρpXt−p +wt , (1)

where Xt is weakly stationary,14 α is a constant, ρ1, ρ2, . . ., ρp are nonzero constants, and wt is

a white noise series with mean zero and variance σ2
w, WN(0, σ2

w). The univariate long-memory

13 See, for example, Burdekin and Siklos (1999), Bleaney (2000), Pivetta and Reis (2007).
14 See Hamilton (1994, 45) for the definition of weakly stationary.
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processes under consideration are fractionally integrated process given by

(1 −L)dYt = εt , t = 1,2, . . . ,

Yt = 0 , t ≤ 0 ,

(2)

where εt is a WN(0, σ2
ε). We assume that Xt or Yt are not observable due to data contami-

nation.15 Instead, we observe a series Zt defined as the addition of Xt or Yt plus vt, with vt

being the error term contaminating the process Xt or the process Yt.

For the contamination we consider the following noise mechanisms:

1. Linear trend. In this case, vt = βt, t = 1,2, . . . , T and β is a nonzero constant. This

type of contamination has been normally addressed in the literature of persistence,

for example, in Tsay (1984); Deo and Hurvich (1998); Gil-Alana (2003); Craigmile

et al. (2004); Gil-Alana (2005); McCloskey and Perron (2013); Gil-Alana et al. (2020,

2022). We present results for different values of β.

2. Cycles. In this case, vt = A sin(2πft), t = 1,2, . . . , T , where A is the amplitude

and f the frequency. Akgul et al. (2011) and Yaya et al. (2020) study time series

persistence with the presence of cycles or seasonalities in long- and short-memory

models, respectively. We present results for different amplitudes, A, and different

frequencies, f .

3. A contamination mechanism, used in Haldrup and Nielsen (2007), given by

vt =
θ

(1 − αL)
δt + ηt , (3)

where ηt ∼ iid(0, σ2
η) is a measurement error and δt is a Bernoulli variable which can

take either of the values +1 or -1 with probability p/2. Otherwise, the value of δt equals
15 According to Schennach (2016), the statistical analysis of error-contaminated data has a long history, dating back at least

to the early days of econometrics, and it remains a fairly active field.
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zero. Both ηt and δt are independent of wt and εt. It is assumed that α ≤ 1, with the

lag-operator L.

(a) Simple measurement errors. Set θ = 0, therefore, vt = ηt. This type of error has

been largely studied in the literature. For short-memory models, see, for example,

Ashley and Vaughan (1986); Staudenmayer and Buonaccorsi (2005). For long-

memory models, see, for example, Haldrup and Nielsen (2007); Perron and Qu

(2010); McCloskey and Perron (2013). In this case, the variable that we do not

observe has a well-defined, quantitative meaning (e.g., annual income), but our

recorded measure of it may contain an error (e.g., reported income). We present

results for different signal-to-noise ratios (σ2
η/σ

2
w for short-memory processes or

σ2
η/σ

2
ε for long-memory processes).

(b) Additive outliers (AO). Set α = 0, therefore, vt = θδt. According to Dias and

Marques (2010), this type of contamination corresponds to shocks that affect

observations in isolation due to some nonrepetitive events (one-off events that

cause a spike in the series), which may occur as a result of special events, for

example, changes in VAT rates or union strikes. Haldrup and Nielsen (2007) study

the effects of AO in estimators of the long-memory parameter used to measure

persistence. We present results for different values of θ.

(c) Temporary change outliers (TC). Set a nonzero α and ∣α∣ < 1 and vt = θδt/(1−αL).

It is not a one-time effect like the additive outlier; the effect of a temporary change

outliers will persist, but its effect will die out. The effect of temporary change

outliers was introduced and analyzed in Fox (1972); Ih Chang and Chen (1988);

Chen and Liu (1993b,a) for short-memory models and in Haldrup and Nielsen

(2007) for long-memory models. We present results for different values of θ.

(d) Structural level shifts (SC). Set α = 1, therefore, the outliers have a permanent

effect, and the vt term is the sum of all past outlier shocks to the process, vt =
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θδt/(1 − L). In economics, one particular example of a structural change is a

reallocation of labor and other resources across the economy and a structural level

shift is a particular case of structural change (Tsay 1988). Tsay (1988) analyzed

the effect of structural level shifts on SARIMA models and Haldrup and Nielsen

(2007); McCloskey and Perron (2013) on long-memory models.

The contamination mechanism might not be visible using an eyeball test. In figures 1 and A.2,

we illustrate the effect that contamination has in a single time series realization for autore-

gressive of order one with parameter ρ1 = 0.5 and long-memory processes with differencing

parameter d = 0.25. Figure 1 shows that small measurement errors, additive outliers, and

temporary change outliers (their effects are shown in the gray lines in panels c, d and f) have

a small effect on the shape of the time series (blue lines). However, a deterministic trend, a

cycle, and a structural change (whose effects are displayed in the gray lines in panels a, b,

and e) have a visual larger effect on the shape of the uncontaminated time series (blue line).

In this paper, we investigate which contamination causes larger effects on the estimators of

persistence.

3.2 Measures of Persistence

We compare different estimators of persistence, including tests for unit root and asymptotic

weak stationarity, autoregressive measures of persistence, estimators of the long-memory

parameter, and a nonparametric measure of persistence. The specific estimators used are

detailed below:

Unit root tests and I(0) test. If the time series contains a unit root, its persistence is unques-

tionably large (infinite), and its variance is unbounded. A series with a unit root has
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Figure 1: Autoregressive Realization Contamination1

1 Each time series has 1,024 observations. For panel (a), the slope of the deterministic trend used is 0.005. For panel (b), the
amplitude and the frequency of the cycle are three and 0.001, respectively, while for panel (c), the signal-to-noise ratio of the
small measurement error takes the value of one. For panel (d), the outlier size used is five. For panel (e), the probability of a
structural change is 0.035, while for panel (f), the persistence of the temporary change takes the value of 0.8.

infinite “memory,” in the sense that a shock in period t influences all periods t + k,

k > 0, which means that any shock to a series with a unit root persists forever. In the

literature, Gadea and Mayoral (2006) uses several tests: the Augmented Dickey-Fuller

test (Dickey and Fuller 1979, 1981), the Phillips Perron test (Phillips and Perron 1988),

and the MZ-GLS test proposed by Ng and Perron (2001) to test for unit root, I(1). They

also use the KPSS of Kwiatkowski et al. (1992) to test for asymptotic weak stationarity,

I(0). They applied these tests to quarterly inflation rates in 21 OCDE economies, and
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they found that for most of the countries, both the I(0) and the I(1) hypotheses are

rejected. This result has been interpreted in the literature as an indicator of a behavior

midway between the I(0) and the I(1) formulations. Fuhrer (2010) uses the Augmented

Dickey-Fuller (ADF) test and the Phillips Perron (PP) test for unit root. He applies the

tests to three different series of inflation computed using the Consumer Price Index

(CPI), Price Consumer Expenditure Index (PCE), and the Gross Domestic Product

(GDP) from the United States. He concludes that the results of the tests are ambiguous:

one rejects the null hypothesis of unit root for some series of inflation and for some

periods. Lovcha and Perez-Laborda (2018) use the ADF test for I(1) and the KPSS

to test for I(0). Both tests are used with the specifications of (i) drift stationary and

(ii) trend stationary with drift. They applied the test to United States’ PCE quarterly

inflation, and they found that the KPSS and ADF tests contradict each other for the

pre-Volker period (1954Q3 to 1979Q2), which is often regarded as a symptom of long

memory in the data. In this paper we evaluate the performance of the ADF and KPSS

tests.

Autoregressive measures. This method assumes that the inflation process, {Xt}, t ∈ Z,

follows a weakly-stationary autoregressive process of order p, AR(p), which we write

as (1).

The model (1) may be re-parameterized as

∆Xt = α +
p

∑
j=1

δj∆Xt−j + (ρ − 1)Xt−1 +wt , (4)

where

ρ =
p

∑
j=1

ρj , (5)
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δj = −
p

∑
i=1+j

ρi .

In the context of model (1), persistence can be defined as the speed at which inflation

converges to equilibrium after a shock in the disturbance term: if a shock raises

inflation today by 1%, how long does it take for the effect of the shock to die off? The

concept of persistence is therefore intimately linked to the impulse response function

(IRF) of the AR(p) process. However, the impulse response function is not a useful

measure of persistence, as it is an infinite-length vector. Therefore, to overcome this

difficulty, several scalar statistics have been proposed in the literature to summarize the

information contained in the IRF and serve as a measure of inflation persistence. These

include the “sum of the autoregressive coefficients in (5),” the “cumulative impulse

response function,” (CIR), the “largest autoregressive root” (LAR), (Stock 1991, 2001),

and the “half-life” cycle (HLC). The half-life cycle is the number of periods for which

the effect of a unit shock remains above 1/2. For ∣ρ∣ < 1, a large value of ρ indicates

higher persistence (Pivetta and Reis 2007). In this context, Xt is said to be (highly)

persistent if, following a shock to the error term, Xt converges slowly to its mean. In

other words, persistence and mean reversion are inversely related: high persistence

implies low mean reversion and vice versa (Fuhrer 2010).

The cumulative impulse response measure of persistence based on an estimator of ρ is

given by

CIR =
1

1 − ρ
. (6)

Note that a large value of ρ implies that the cumulative impact of the shock will be

large. Andrews and Chen (1994) argued that the CIR is a good way of summarizing

the information contained in the IRF and, thus, a good scalar measure of persistence.
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Long-memory parameter. The integration parameter d (Granger 1966; Hosking 1981) has

also been used as a measure of persistence (see Hassler and Wolters (1995); Hsu

(2005); Zagaglia (2009), for example). The LRD parameter measures the intensity

of dependence; higher (lower) values of d indicate higher (lower) dependence. It is

desirable to test for stationarity before estimating any LRD parameter. Some work

has used the estimated d parameter to test for short-memory (d = 0) or unit-root time

series (d = 1) (see, for example Kim and Phillips (2006) and Phillips (2007)). The

long-memory parameter is estimated using three different semiparametric methods:

GPH (Geweke and Porter-Hudak 1983), local Whittle (LW) (Robinson 1995), and HP

(Hou and Perron 2014). They are semiparametric because they do not make explicit

assumptions on the behavior of the autocovariances at short lags or on the spectral

density apart from the origin.

These methods are based on the behavior of the spectral density at the origin. Under

the assumption that the process {Yt}, t ∈ Z, is stationary, the model near the origin is

given by

SX(f) ∼ S∗(f)∣f ∣−2d (7)

as f → 0, where −1/2 < d < 1/2, and S∗(f) is a function with S∗(0) = bf > 0 (Beran

2013). The model is semiparametric because it treats the short-memory component,

S∗(⋅), nonparametrically (Beran 2013). Among these methods, we use the one pro-

posed by Geweke and Porter-Hudak (1983) (GPH). Taking logarithms on both sides of

(7) and evaluating the spectral density function at the Fourier frequency, fj = j/N , we

have that

logSY (fj) ≈ log bf − 2d log ∣fj ∣ + log [
S∗(fj)
bf
] . (8)
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Noting that the logarithm of the periodogram, Ŝ(p)Y (⋅), may be written as

log Ŝ
(p)
Y (fj) = log

⎡
⎢
⎢
⎢
⎢
⎣

Ŝ
(p)
Y (fj)

SY (fj)

⎤
⎥
⎥
⎥
⎥
⎦

+ logSY (fj) , (9)

and combining (8) and (9), we have

log Ŝ
(p)
Y (fj) ≈ log bf − 2d log ∣fj ∣ + log [

S∗(fj)
bf
] + log

⎡
⎢
⎢
⎢
⎢
⎣

Ŝ
(p)
Y (fj)

SY (fj)

⎤
⎥
⎥
⎥
⎥
⎦

= (log bf −C) − 2d log ∣fj ∣ + log [
S∗(fj)
bf
] + uj ,

where uj = log [Ŝ
(p)
Y (fj)/SY (fj)] + C and C = 0.577216... is the Euler’s constant

(Geweke and Porter-Hudak 1983; Hurvich et al. 1998). One can estimate H using the

linear regression

yj = α0 + α1 log ∣fj ∣ + ej , (10)

j = 1, . . . ,m, where yj = log Ŝ
(p)
Y (fj), α0 = log bf −C, α1 = −2d, and

ej = log (S∗(fj)/bf) + uj . The number m is known as the bandwidth parameter (Be-

ran 2013, 442). Geweke and Porter-Hudak (1983) propose the estimator of d given

by d̂GPH = −α1/2 with the bandwidth parameter chosen such that as m→∞, m/T → 0

(Beran 2013, 442). We show in results for m = ⌊T 0.65⌋. Results from other bandwidth

exponents are available from the authors.

We also use the local Whittle estimator, denoted by LW. This estimator only re-

quires that we specify the parametric form of the spectral density around the origin

(Künsch 1987). This essentially involves Whittle’s estimation of the “model” (7)

over frequencies fj = j/T , j = 1, . . . ,m, where m plays a similar role as in the GPH

estimator satisfying, as T → ∞, 1/m +m/T → 0 (see assumption A4 in Robinson
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1995). The local Whittle estimator is denoted by ĤLW and Robinson (1995) shows that
√
m(ĤLW −H)

d
Ð→ N(0,1/4).

Finally, we also test the modified local Whittle estimator by Hou and Perron in Hou

and Perron (2014), denoted by HP. This estimator has good properties under local

contaminations, including processes whose spectral density functions dominate at low

frequencies: (i) random level shifts, (ii) deterministic level shifts, and (iii) deterministic

trends. The data-generating process is given by

Zt = C +Xt +Ut , (11)

where C is a constant, {Xt}, t ∈ Z, is a process with memory parameter H ∈ [1/2,1),

and {Ut}, t ∈ Z, is a low-frequency contamination process.

Nonparametric estimator of persistence. Marques (2004) introduced a nonparametric mea-

sure of persistence, denoted as γ. The measure, γ, defines persistence as the uncondi-

tional probability of a stationary stochastic process {Xt}, t ∈ Z, not crossing its mean,

µ, in period t. By noticing that {Xt} does not cross the mean in period t if and only if

(Xt − µ)(Xt−1 − µ) > 0, γ is defined as

γ = Pr{[(Xt − µ) > 0 ∧ (Xt−1 − µ) > 0] ∨ [(Xt − µ) < 0 ∧ (Xt−1 − µ) < 0]} . (12)

If a time series converges slowly to its equilibrium level (the mean) after a shock,

then such a series, by definition, must exhibit a low level of mean reversion and

must cross its mean infrequently. In this case, γ simply measures how infrequently a

given stationary process crosses its mean. This estimator requires stationarity and is

defined independently of the specific underlying data-generating process. Moreover,
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γ has a broader scope than ρ because the latter requires the DGP to follow a pure

autoregressive process.

Marques (2004) proposed to estimate γ by

γ̂ = 1 −
n

T
, (13)

where n stands for the number of times the series crosses the mean during the time

interval with T + 1 observations. Note that γ, by definition, and γ̂ by construction,

are always between zero and one. Values of γ̂ close to 0.5 signal the absence of any

significance persistence, values above 0.5 signal significant persistence, and values

below 0.5 signal negative long-run autocorrelation. Being nonparametric, this measure

has the advantage of robustness against model misspecifications and outliers in the

data, as will become evident below.

4 Analyzing the Performance of Persistence Measures under Contamination for

Autoregressive (Short-memory) Processes

In this section, we study the performance of some of the most popular measures of time-series

persistence. These measures are (i) the autoregressive measures of persistence (ρ̂1, ρ̂, ĈIR, L̂R,

and ĤLC); (ii) the tests of the integer order of integration, I(1) or I(0); (iii) the nonparametric

estimator (γ̂); and (iv) three estimators of long-memory (d̂GPH, d̂LW, d̂HP). All the estimators

were described in section 3.2.

Before starting with the different types of contamination, we illustrate, using simulations,

the performance of these persistence estimators on uncontaminated simulated autoregres-

sive processes of order one (short-memory models). We simulate nsim = 1,000 autore-

gressive process of size T = 1,024; 2,048, and 4,096 with autoregressive parameters of

ρ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. We report the mean, bias, and root-
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mean-square error (RMSE) for the autoregressive methods, the mean and standard deviation

for the nonparametric estimator, and the long-memory-parameter estimators and the corre-

sponding rejection probabilities for the integer order of integration tests. The results are

presented in table 3 and can be summarized as follows:

Autoregressive estimators. Table 3 shows the simulation results for five persistence estima-

tors based on autoregressive processes. For T = 1024, the estimators ρ̂1 and ρ̂ are the

best overall regarding bias and RMSE. The cumulative impulse response estimator,

ĈIR, performs well for lower values of ρ, and its bias and RMSE increase with ρ.

The largest root of the autoregressive process and the half-life cycle estimators, L̂R,

and ĤLC, perform well for higher ρ values, and their bias and RMSE decrease with

ρ. Table 3 also shows that the performance of these estimators improves with the

sample size. If the DGP is an autoregressive process, using the estimators ρ̂1 and ρ is

recommended.

I(1) and I(0) tests. Table 4 shows the rejection probabilities for the ADF and KPSS tests

for different values of ρ. For T = 1,024, the ADF test rejects the null hypothesis of

unit root almost for all values of ρ except for ρ = 0.95. However, it rejects the null of

the unit root for bigger samples for all values of ρ. This test only indicates that the

persistence is not infinite and it doesn’t provide any scalar measure of persistence. We

expect this result because the simulated AR processes are weakly stationary and for

higher values of ρ and small samples, the test might perform poorly. For the KPSS,

we show results for the test assuming the process is I(0) and trend-I(0), named KPSSµ

and KPPSτ , respectively. We expect the former to perform better for the simulated

AR processes. The KPSS tests reject the null hypothesis of I(0) more often than the

nominal significance value of 5% for higher values of ρ. However, its performance

improves with the sample size. If the DGP is an autoregressive process, using the
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Table 3: Autoregressive Measures of Persistence for Autoregressive Processes of Order One with
Parameter ρ1

ρ Stat T = 1,024 T = 2,048 T = 4,096

ρ̂1 ρ̂ ĈIR L̂R ĤLC ρ̂1 ρ̂ ĈIR L̂R ĤLC ρ̂1 ρ̂ ĈIR L̂R ĤLC

Mean 0.103 0.097 1.115 10.501 -7.620 0.101 0.098 1.113 10.354 -7.518 0.100 0.097 1.111 10.296 -7.478
0.10 Bias 0.003 -0.003 0.004 0.501 -0.347 0.001 -0.002 0.002 0.354 -0.245 0.000 -0.003 0.000 0.296 -0.205

RMSE 0.027 0.062 0.035 2.993 2.076 0.022 0.044 0.027 2.414 1.674 0.016 0.032 0.020 1.822 1.264

Mean 0.200 0.194 1.251 5.135 -3.895 0.200 0.198 1.250 5.069 -3.850 0.200 0.197 1.250 5.042 -3.831
0.20 Bias 0.000 -0.006 0.001 0.135 -0.094 0.000 -0.002 0.000 0.069 -0.048 0.000 -0.003 0.000 0.042 -0.029

RMSE 0.030 0.061 0.048 0.882 0.613 0.022 0.041 0.034 0.574 0.399 0.015 0.029 0.024 0.400 0.278

Mean 0.298 0.296 1.428 3.384 -2.677 0.300 0.297 1.429 3.354 -2.656 0.300 0.299 1.428 3.347 -2.652
0.30 Bias -0.002 -0.004 -0.001 0.050 -0.035 0.000 -0.003 0.000 0.021 -0.015 0.000 -0.001 0.000 0.014 -0.010

RMSE 0.029 0.053 0.058 0.345 0.240 0.021 0.036 0.043 0.241 0.168 0.015 0.027 0.031 0.172 0.120

Mean 0.397 0.392 1.661 2.533 -2.083 0.399 0.396 1.666 2.513 -2.069 0.399 0.398 1.665 2.509 -2.066
0.40 Bias -0.003 -0.008 -0.005 0.033 -0.023 -0.001 -0.004 -0.001 0.013 -0.009 -0.001 -0.002 -0.002 0.009 -0.006

RMSE 0.028 0.051 0.077 0.185 0.130 0.021 0.035 0.057 0.132 0.092 0.014 0.023 0.039 0.089 0.062

Mean 0.498 0.494 1.998 2.013 -1.719 0.499 0.497 1.998 2.008 -1.715 0.500 0.499 2.000 2.003 -1.712
0.50 Bias -0.002 -0.006 -0.002 0.013 -0.009 -0.001 -0.003 -0.002 0.008 -0.006 0.000 -0.001 0.000 0.003 -0.002

RMSE 0.027 0.046 0.106 0.110 0.077 0.020 0.031 0.080 0.081 0.057 0.014 0.020 0.056 0.056 0.040

Mean 0.595 0.592 2.481 1.683 -1.486 0.599 0.598 2.501 1.670 -1.477 0.599 0.599 2.496 1.670 -1.477
0.60 Bias -0.005 -0.008 -0.019 0.016 -0.011 -0.001 -0.002 0.001 0.003 -0.002 -0.001 -0.001 -0.004 0.003 -0.002

RMSE 0.026 0.037 0.156 0.074 0.052 0.018 0.025 0.112 0.050 0.035 0.012 0.017 0.076 0.034 0.024

Mean 0.698 0.696 3.326 1.435 -1.311 0.698 0.698 3.326 1.432 -1.309 0.699 0.699 3.331 1.430 -1.307
0.70 Bias -0.002 -0.004 -0.007 0.006 -0.004 -0.002 -0.002 -0.008 0.004 -0.003 -0.001 -0.001 -0.003 0.002 -0.001

RMSE 0.022 0.029 0.243 0.047 0.033 0.016 0.020 0.177 0.033 0.024 0.011 0.015 0.120 0.022 0.016

Mean 0.796 0.795 4.951 1.256 -1.184 0.799 0.798 4.992 1.252 -1.181 0.799 0.799 4.978 1.252 -1.181
0.80 Bias -0.004 -0.005 -0.049 0.006 -0.005 -0.001 -0.002 -0.008 0.002 -0.002 -0.001 -0.001 -0.022 0.002 -0.002

RMSE 0.019 0.023 0.449 0.030 0.021 0.013 0.016 0.326 0.021 0.015 0.010 0.011 0.245 0.016 0.011

Mean 0.896 0.895 9.774 1.117 -1.084 0.898 0.898 9.878 1.114 -1.082 0.899 0.899 9.970 1.112 -1.081
0.90 Bias -0.004 -0.005 -0.226 0.006 -0.004 -0.002 -0.002 -0.122 0.003 -0.002 -0.001 -0.001 -0.030 0.001 -0.001

RMSE 0.015 0.016 1.349 0.019 0.013 0.010 0.011 0.964 0.012 0.009 0.007 0.008 0.685 0.009 0.006

Mean 0.946 0.946 19.326 1.057 -1.041 0.948 0.948 19.591 1.055 -1.040 0.949 0.949 19.842 1.054 -1.039
0.95 Bias -0.004 -0.004 -0.674 0.004 -0.003 -0.002 -0.002 -0.409 0.002 -0.002 -0.001 -0.001 -0.158 0.001 -0.001

RMSE 0.011 0.011 3.867 0.012 0.009 0.007 0.008 2.659 0.008 0.006 0.005 0.005 1.915 0.006 0.004

1 Each statistic is estimated based on 1,000 realizations.

ADF test helps the researcher to discard infinite persistence. Rejecting the null of I(0)

indicates that the order of integration is nonzero and one should explore non integer

integration orders (Lee and Schmidt 1996), in particular, in small samples.

Nonparametric estimator. Table 5 shows the results for the nonparametric estimator. First,

notice that for all the values of ρ, we report the mean estimated value and its standard

deviation over 1,000 simulations. We were not able to derive the true value of γ.

However, because all the simulated AR processes are persistent, we expected the

estimated γ to be between 0.5 and 1: lower values of ρ imply lower values γ and

higher values of ρ imply higher values of γ. The results of this table show that γ̂

increases with ρ, which means that the estimator performs in the right direction and
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Table 4: Tests of I(1) and I(0) for Autoregressive Processes with Parame-
ter ρ. Rejection Probabilities for Nominal Size of 5% 1

T = 1,024 T = 2,048 T = 4,096

ρ ADF KPSSµ KPSSτ ADF KPSSµ KPSSτ ADF KPSSµ KPSSτ

0.10 1.000 0.045 0.048 1.000 0.053 0.044 1.000 0.035 0.037
0.20 1.000 0.054 0.060 1.000 0.040 0.049 1.000 0.048 0.040
0.30 1.000 0.058 0.062 1.000 0.053 0.049 1.000 0.057 0.058
0.40 1.000 0.043 0.050 1.000 0.047 0.055 1.000 0.050 0.064
0.50 1.000 0.045 0.072 1.000 0.056 0.065 1.000 0.044 0.051
0.60 1.000 0.068 0.073 1.000 0.045 0.073 1.000 0.056 0.056
0.70 1.000 0.073 0.080 1.000 0.069 0.071 1.000 0.061 0.077
0.80 1.000 0.073 0.098 1.000 0.072 0.087 1.000 0.060 0.088
0.90 1.000 0.145 0.169 1.000 0.126 0.172 1.000 0.113 0.123
0.95 0.996 0.264 0.419 1.000 0.253 0.348 1.000 0.201 0.319

1 The rejections probabilities were computed based on 1,000 realizations.

also performs similarly for all sample sizes. The improvement of higher sample sizes

is only in terms of its variability. We also expected this estimator to be lower than one

because other processes are mean-reverting and more persistent than the simulated AR

in this exercise. We point out that the results in the table are close to the true values of

γ reported in (Dias and Marques 2010, Table 1).16

Long-memory estimators. Table 6 shows three estimators of the long-memory parameter.

We expect the estimators to perform badly because the DGPs under consideration are

short-memory. Similar to the case for the nonparametric estimator, we do not know the

true long-memory parameter, d, but we expected the estimators of d to be close to zero

for any ρ value, provided that the DGP has short-memory and the estimators are made

to detect long-memory in the data. Table 6 shows that for T = 1,024, the estimated

values of d increase with ρ. The estimated values of d also fall out of the stationarity

region for values of ρ ≥ 0.9, that is, d̂ > 0.5 and this result does not improve with the

sample size. Hence, for the simulated AR processes in consideration, this class of

estimators is providing the wrong information suggesting the presence of long-term

persistence and nonstationarities for large values of ρ. In conclusion, the long-memory

16 We did not find in Dias and Marques (2010) any guide to compute these true values of γ for autoregressive processes.
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estimators are not recommended to be used as a measure of persistence if the DGP is

an autoregressive process with relatively high values of ρ.

Table 5: Nonparametric Estimator of Persis-
tence for Autoregressive Processes of Order
One with Parameter ρ1

ρ Statistic T = 1,024 T = 2,048 T = 4,096

0.1 Mean 0.534 0.533 0.532
SD 0.015 0.011 0.008

0.2 Mean 0.565 0.564 0.564
SD 0.016 0.012 0.008

0.3 Mean 0.598 0.598 0.597
SD 0.016 0.011 0.008

0.4 Mean 0.631 0.631 0.631
SD 0.016 0.011 0.008

0.5 Mean 0.667 0.667 0.667
SD 0.016 0.011 0.008

0.6 Mean 0.704 0.705 0.705
SD 0.016 0.011 0.008

0.7 Mean 0.747 0.747 0.747
SD 0.017 0.011 0.008

0.8 Mean 0.795 0.796 0.795
SD 0.016 0.011 0.008

0.9 Mean 0.857 0.856 0.856
SD 0.016 0.012 0.008

0.95 Mean 0.899 0.899 0.899
SD 0.016 0.012 0.008

1 The estimator and its standard deviation were
computed using 1,000 realizations.

4.1 Contaminating Short-memory Processes

In this section, we investigate the effect of the contamination processes described in section 3.1,

namely: i) linear trend (Trend), ii) cycles (Cycle), iii) small measurement errors (SME),

iv) additive outlier (AO), v) structural change (SC), and vi) temporary change outliers (TCO).

For comparison, we include the results for the uncontaminated processes in the column

named AR(1). Table 7 shows the results for autoregressive processes for different values

of ρ contaminated with the six mechanisms with a given set of parameters (specified in the

corresponding columns). Results for other values of ρ are in appendix B, table B.1. We
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Table 6: Long-Memory Estimators of Persistence for Autoregressive Pro-
cesses of Order One with Parameter ρ1

ρ Statistic T = 1,024 T = 2,048 T = 4,096

d̂GPH d̂HP d̂LW d̂GPH d̂HP d̂LW d̂GPH d̂HP d̂LW

0.1 Mean 0.009 -0.004 -0.005 0.008 -0.003 -0.004 0.002 -0.004 -0.005
SD 0.061 0.053 0.048 0.048 0.041 0.038 0.034 0.029 0.028

0.2 Mean 0.024 0.013 0.011 0.013 0.006 0.004 0.008 0.004 0.002
SD 0.060 0.051 0.047 0.048 0.040 0.038 0.036 0.029 0.028

0.3 Mean 0.040 0.031 0.026 0.028 0.021 0.017 0.017 0.012 0.011
SD 0.061 0.053 0.048 0.046 0.040 0.038 0.036 0.028 0.027

0.4 Mean 0.065 0.060 0.052 0.044 0.041 0.036 0.033 0.029 0.026
SD 0.062 0.051 0.048 0.046 0.038 0.037 0.035 0.029 0.028

0.5 Mean 0.104 0.104 0.093 0.076 0.074 0.067 0.053 0.052 0.048
SD 0.062 0.052 0.050 0.048 0.040 0.039 0.037 0.029 0.028

0.6 Mean 0.165 0.168 0.155 0.124 0.127 0.118 0.087 0.090 0.085
SD 0.061 0.051 0.050 0.047 0.037 0.037 0.038 0.030 0.029

0.7 Mean 0.255 0.272 0.257 0.194 0.207 0.197 0.149 0.156 0.150
SD 0.061 0.053 0.052 0.047 0.039 0.038 0.035 0.030 0.030

0.8 Mean 0.386 0.426 0.408 0.318 0.352 0.340 0.258 0.283 0.275
SD 0.062 0.052 0.052 0.047 0.041 0.041 0.036 0.032 0.032

0.9 Mean 0.600 0.666 0.649 0.533 0.602 0.589 0.470 0.536 0.527
SD 0.063 0.059 0.058 0.048 0.044 0.044 0.036 0.035 0.035

0.95 Mean 0.770 0.820 0.805 0.713 0.783 0.771 0.657 0.737 0.729
SD 0.059 0.054 0.054 0.046 0.043 0.043 0.035 0.034 0.034

1 The estimator and its standard deviation were computed using 1,000 realizations.

select the set of parameters in table 7 considering that the contamination processes are not

detected using an eyeball test. The results are confirmed using different sets of parameters, as

shown in appendix B. The results for each contamination mechanism are presented in terms

of absolute-value differences between the mean estimator (or rejection probability) under

contamination and the mean estimator (or mean rejection probability) under noncontamination:

values closer to zero indicate better performance. The results are presented for a sample size of

T = 4,096, and the means or rejections probabilities were computed using 1,000 simulations.

Trend. Table 7 and table B.1 show the results for a trend value of β = 0.005 and ten values

of ρ. For all values of ρ, the ADF test correctly rejects the null hypotheses of the unit

root, and it is therefore considered a robust test under a linear trend. The estimator ρ̂1
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is among the three best estimators for all values of ρ, and it is also a robust estimator

under the presence of trends. Finally, we find the nonparametric estimator among the

three best estimators; however, this estimator does not work correctly for large values

of ρ. Figure B.1 shows the effect of a linear trend, under different slopes, for four

estimators of persistence: ρ̂1, ρ, γ, and d̂GPH. For the model-specific methods, panels

(a) and (b), the figure shows the results for the estimators ρ̂1 and ρ̂ as a function of the

true value of ρ and the slope values between 0.001 to 0.1. These results indicate that

the model-specific estimators are affected, in terms of RMSE, only if the true value

of ρ is below 0.7, this suggests that very low slope values of the trend can yield high

estimated persistence, when it is not the case. Higher slopes also have a stronger effect,

that is, the greater the slope, the greater the estimated persistence. Furthermore, we

show the effect of linear trends on two other estimators: the nonparametric (panel (c))

and the long-memory (panel (d)) estimators. Trends also have a detrimental effect

on these estimators: higher trend values imply higher bias of these estimators. In

the tables 7 and B.1, we show detailed results with a trend value of 0.005 because

small trends have enough effect on all the estimators, even though trends are possibly

visible and easy to remove. This is an important finding because low-persistence time

series contaminated by trends cause the estimators to indicate higher persistence; in

other words, a linear trend fools the estimators. However, our results indicate that

if the researcher ignores the presence of a linear trend for low slope values, one can

(i) discard infinite persistence using the ADF test, (ii) if one knows that the DGP

is an AR(1) process, using ρ̂1 is a good strategy, and finally, (iii) the nonparametric

estimator is a good scalar estimator of persistence that does not require knowing the

DGP process.

Cycle. Table 7 shows results for cycle contamination such that vt = sin [2π(0.01)t],

t = 1, . . . , T , that is, a cycle with unitary amplitude and a frequency of 0.01. Under
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this type of contamination, the ADF test correctly rejects the null hypothesis of the

unit root, and it is also robust to cycles for all values of ρ. As for the ADF test, the

nonparametric estimator, γ̂, is among the three best estimators for all values of ρ.

Finally, the KPSS test is among the best in seven out of 10 cases. Results for different

amplitudes and frequencies are shown in figure B.2. Figure B.2 shows the effect of

cycles in four estimators: ρ̂1, ρ̂, γ̂, and d̂GPH. Panels (a) and (b) show the effect on the

model-specific estimators. For the estimator ρ̂1, when the values of ρ are small, at

lower and higher frequencies, the RMSE is higher than for larger values of ρ. It also

shows that for frequencies around 0.20, the estimator is almost unaffected regardless of

the amplitudes. For higher values of ρ, the cycles have a small effect on the estimator

ρ̂1. For the estimator ρ̂, panel (b) in figure B.2, the results indicate that this estimator

only shows a detrimental effect caused by cycles when the frequency is small and is

considered the best model-specific estimator. For the nonparametric estimator, γ̂, we

show the estimated value for different frequencies in the horizontal axis and amplitudes

(blue lines). We show the estimated values for three different values of ρ, namely,

0.10, 0.50, and 0.95 (red lines). The results indicate that for lower values of ρ, the

estimator shows a threshold value where below this threshold one “overestimates” the

“true” value of γ and after this threshold one “underestimates” the “true” value of γ.

When the persistence is high, say ρ = 0.95, the presence of a cycle always causes an

“underestimation” the “true” value of γ. The effect of a cycle on the long-memory

estimator is shown in figure B.2-(d): the cycle has the effect of underestimating the

“true” value of d for small frequencies and is unaffected for larger frequencies and

the threshold value is 0.166. Overall, for different amplitudes and frequencies, the

model-specif method performs the best. We also point out that the results in the table

indicate that the nonparametric estimator is among the best estimators when a cycle

is present. Thus, we recommend using the nonparametric estimator if the researcher
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suspects the presence of cycles, but these cannot be removed. Notice that cycles with

small frequencies behave as a linear trend. Therefore, we recommend using the ADF

test to discard infinite persistence, the use of a model-specific estimator if one knows

that the process is an AR(1), and using the nonparametric estimator if one does not

know the type of process or the presence of cycles.

Small measurement errors. In this case, we set σ2
w = 1 and σ2

η = 1, that is, we have a unitary

signal-to-noise ratio. Under this contamination, the ADF test, as before, shows its

robustness against contaminations, in this case against small measurement errors. The

nonparametric estimator, γ̂, appears among the best estimators in eight out of ten

cases shown in the table. Interestingly, as the true value of ρ increases, the KPSS

test of I(0) data becomes one of the best measures, especially when ρ ≥ 0.5. Thus,

when there are measurement errors, both the ADF and KPSS tests are indicative that,

although the data is contaminated, the persistence is not infinite and the series will

indeed return to its long-run value relatively fast. In the presence of measurement

errors, the nonparametric estimator is, thus, an excellent complement to the ADF

and KPSS test because it complements the test by providing an objective, scalar

measure of persistence. Figure B.3 shows four estimators of persistence (ρ̂, ρ̂1, γ̂,

and d̂GPH) when the measurement error takes on multiple values of the signal-to-

noise ratio. The autoregressive estimators of panels (a) and (b) show that the bias

of the estimators increases with the signal-to-noise. Between both estimators, ρ̂ is

the most robust, as the bias for lower values of ρ is smaller, in contrast to ρ̂1. The

nonparametric estimator deviates from the uncontaminated case whenever the signal-

to-noise increases. However, its bias does not decrease when ρ gets closer to the unit

root, if compared to the autoregressive estimators. Finally, the long-memory estimator

does not deviate much from the uncontaminated case; however, this happens because

this estimator is not designed for short-memory processes and tends to indicate the
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presence of long-memory (long-term persistence). Hence, using the ADF or KPSS test

to discard infinite long-term persistence is a good strategy, and using the nonparametric

estimator yields a scalar measure of persistence that is robust to small measurement

errors.

Additive outliers. Table 7 shows the results for contamination by additive outliers with

parameters θ = 1.2 and p = 0.025, which refer to the outlier size and the probability

of the outlier occurring, respectively. Again, the ADF test shows its robustness

against additive outliers, being the persistence measure that deviates less from the

uncontaminated case. The nonparametric estimator appears among the best estimators

in nine out of ten cases shown in the table, strengthening the argument of it being one

of the most robust estimators of persistence. Note, however, that if this contamination

is present, the deviation from the uncontaminated estimate is small for all estimated

measures, meaning that additive outliers may not be problematic if present in the

data. Further, the results depicted in figure B.4 make the previous affirmation quite

compelling: considering the four estimators of panels (a), (b), (c), and (d) and if we

allow the size of the outlier, θ, to vary, the difference compared to the uncontaminated

DGP will be negligible. Nonetheless, some comments are in order. First, the long-

memory estimates assume a long-memory DGP and are almost unaffected according to

the RMSE shown in the figure. Second, most of the times, the nonparametric estimator

may be preferred, as it is completely model-free and, thus, the researcher lowers the

risk of wrong persistence estimation.

Structural change. Table 7 shows results for structural-change contamination with param-

eters θ = 1 and a probability of structural change given by p = 0.06. In this case, the

results are quite different from the previous four contaminations. When the DGP is

contaminated with a structural change, the ADF test does not perform as in previous
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cases: it doesn’t work for any value of ρ. The ADF test indicates that most of the

tested series have infinite persistence, as the null hypothesis of unit root presence in

the data cannot be rejected. The nonparametric estimator performs well for eight out

of ten values of ρ. However, the model-specific estimator, ρ̂1, works in nine out of ten

cases, and it is the less affected estimator by the structural change. Figure B.5 shows

the behavior of the ρ̂, ρ̂1, γ̂, and d̂GPH estimators when the probability, p, and the size, θ,

of the structural change are allowed to vary. The four panels of the figure show that

structural change size matters for the estimators’ performance. When θ = 0.5 all the

estimators show either low RMSEs or no deviation from the “true” values of γ or d. If θ

increases to the unit, the RMSE increases for model-specific estimators: the estimators

ρ̂1 and ρ̂ show that the RMSE increases for higher structural changes probabilities. The

increment on the RMSE is bigger for lower values of ρ. The estimator d̂GPH estimates

values compatible with nonstationary time series: as in previous cases, this is not a

good method to estimate the persistence since it indicates long-term persistence and the

AR(1) processes under analysis are short-term persistent. This type of contamination

has a highly detrimental effect on all the estimators: if it can be identified and its effect

removed, we suggest using model-specific estimators such as ρ̂1 and the nonparametric

estimator.

Temporary change outliers. Table 7 shows the results for the size and duration of the outlier

θ = 1 and α = 0.50, respectively. Again, the ADF test shows its robustness for all

values of ρ, now against a temporary-change outlier contaminating the DGP. The

nonparametric estimator appears among the best estimators in eight out of ten cases

shown in the table, while some model-specific estimators appear among the three best

estimators. Hence, the results on the table suggest that in the presence of temporary

change outliers contaminating the data, the ADF test will always correctly identify that,

although contaminated, the DGP is not infinitely persistent, which can be further com-
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plemented by applying the nonparametric estimator, γ̂, to obtain a more informative

scalar measure of the DGP persistence. According to Table 7, the use of autoregressive

measures is not fully recommended for this type of contamination, even though that set

of estimators is among those that deviate less from the uncontaminated case, because

the true value of ρ is crucial for selecting the appropriate estimator. On the one hand,

in panels (a) and (b) of figure B.6, we show the performance of two autoregressive

measures of persistence when the temporary change outlier can take on multiple values

of θ and α. It can be appreciated that for the ρ̂1 (ρ̂) estimator, only when the duration

of the outlier is one (greater than 0.9), the RMSE is greater than zero, and it increases

with the outlier size. On the other hand, if we look at the performance of the γ̂ and

d̂GPH estimators in panels (c) and (d) of the figure, we can notice that the deviation

also increases with the size of the outlier, but a much lower value of α is needed for

the measures to deviate from the uncontaminated case, being the d̂GPH estimator the

one that deviates the most. Thus, although the autoregressive estimators (according

to figure B.6) appear to be the ones with lower RMSE, the estimators are still sen-

sitive to the true value of ρ, which can be a problem if it is unknown that this type

of contamination is present. Therefore in the presence of temporary change outliers,

although more sensitive to the duration of the outlier, the autoregressive measures and

the γ̂ estimators may be preferred, especially the latter, as it is parameter-free and its

deviations from the uncontaminated case are almost similar to the ρ̂ and ρ̂1 estimators.
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Table 7: Estimators or Tests for Time-series Persistence for Autoregressive Processes of
Order One with Parameter ρ 1

Parameter Estimator or test AR(1)
Contamination (Difference between contaminated and uncontaminated, AR(1), in absolute value)2, 3

Trend Cycle SME AO SC TCO
(β = 0.005) (A = 1, f = 0.01) (SNR = 1) (θ = 1.2, p = 0.025) (θ = 1, p = 0.06) (θ = 1, α = 0.5)

ρ̂1 0.10 0.61 0.34 0.07 0.00 0.77 0.01
ρ̂ 0.10 0.88 0.55 0.08 0.00 0.88 0.02

ĈIR 1.12 2.42 0.67 0.08 0.00 11.10 0.02
L̂AR 10.50 9.10 8.22 688.83 0.48 9.34 1.20

ρ = 0.1 ĤLC -7.62 6.34 5.71 477.46 0.34 6.51 0.83
γ̂ 0.53 0.36 0.13 0.02 0.00 0.37 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.87 0.00
KPSSµ 0.04 0.96 0.04 0.00 0.00 0.92 0.00
d̂GPH 0.01 0.56 0.17 0.00 0.01 0.71 0.02
d̂HP 0.00 0.00 0.51 -0.01 0.00 0.06 0.00
d̂LW -0.01 0.53 0.50 -0.01 -0.01 0.70 0.00

ρ̂1 0.30 0.47 0.25 0.20 0.01 0.59 0.01
ρ̂ 0.30 0.68 0.44 0.19 0.01 0.68 0.01

ĈIR 1.43 2.84 0.79 0.32 0.02 13.27 0.01
L̂AR 3.38 2.08 1.55 8.73 0.11 2.25 0.07

ρ = 0.3 ĤLC -2.68 1.46 1.09 6.06 0.08 1.58 0.05
γ̂ 0.60 0.31 0.10 0.07 0.00 0.31 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.79 0.00
KPSSµ 0.06 0.94 0.06 0.00 0.00 0.90 0.00
d̂GPH 0.04 0.51 0.17 0.02 0.04 0.66 0.04
d̂HP 0.03 0.08 0.45 0.01 0.03 0.13 0.03
d̂LW 0.03 0.50 0.44 0.00 0.03 0.66 0.03

ρ̂1 0.50 0.31 0.16 0.31 0.01 0.41 0.00
ρ̂ 0.49 0.47 0.28 0.25 0.01 0.48 0.00

ĈIR 2.00 3.28 0.90 0.77 0.05 14.88 0.00
L̂AR 2.01 0.78 0.48 3.63 0.05 0.91 0.00

ρ = 0.5 ĤLC -1.72 0.55 0.34 2.53 0.04 0.64 0.00
γ̂ 0.67 0.24 0.07 0.11 0.00 0.25 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.67 0.00
KPSSµ 0.04 0.96 0.04 0.00 0.00 0.92 0.01
d̂GPH 0.10 0.48 0.19 0.06 0.10 0.62 0.10
d̂HP 0.10 0.20 0.41 0.05 0.10 0.25 0.10
d̂LW 0.09 0.47 0.40 0.05 0.09 0.62 0.09

ρ̂1 0.80 0.09 0.04 0.36 0.01 0.14 0.00
ρ̂ 0.80 0.13 0.04 0.19 0.01 0.17 0.00

ĈIR 4.95 3.95 1.05 3.17 0.24 17.15 0.09
L̂AR 1.26 0.13 0.05 1.05 0.02 0.19 0.01

ρ = 0.8 ĤLC -1.18 0.09 0.04 0.74 0.01 0.14 0.00
γ̂ 0.80 0.12 0.02 0.15 0.00 0.13 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.22 0.00
KPSSµ 0.07 0.93 0.05 0.00 0.00 0.87 0.00
d̂GPH 0.39 0.56 0.42 0.30 0.38 0.66 0.38
d̂HP 0.43 0.53 0.52 0.32 0.42 0.60 0.42
d̂LW 0.41 0.53 0.51 0.30 0.41 0.64 0.41

ρ̂1 0.95 0.01 0.00 0.18 0.00 0.02 0.00
ρ̂ 0.95 0.01 0.00 0.06 0.00 0.02 0.00

ĈIR 19.33 4.37 1.12 14.93 1.19 17.29 0.54
L̂AR 1.06 0.01 0.00 0.25 0.00 0.02 0.00

ρ = 0.95 ĤLC -1.04 0.01 0.00 0.18 0.00 0.02 0.00
γ̂ 0.90 0.03 0.00 0.12 0.00 0.04 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.15 0.00
KPSSµ 0.26 0.65 0.04 0.01 0.00 0.56 0.00
d̂GPH 0.77 0.80 0.78 0.66 0.77 0.84 0.77
d̂HP 0.82 0.83 0.84 0.69 0.82 0.85 0.82
d̂LW 0.81 0.81 0.82 0.67 0.80 0.84 0.80

1 Results for other values of ρ are available in the appendix B, table B.1.
2 Each entry in the table, in columns 4-9, shows the difference, in absolute value, between the mean under contamination

and the mean under noncontamination. The means were computed over 1,000 replications. For example, when ρ = 0.1,
the uncontaminated mean of the ρ̂1 estimator yields a persistence of 0.10 (see column 3, AR(1)), and if we estimate it
again, but with the trend, the mean of the ρ̂1 estimator is 0.71. Therefore, the difference is 0.61. Notice that for the ADF
and KPSS tests, we report the mean probability of rejections and the difference between these probabilities between
contaminated and noncontaminated processes.

3 In blue are the three estimators or tests with the best performance. Darker blue indicates the best performance. Lower
values indicate better performance. Remember that the long-memory estimators are excluded from the race of the top
three estimators because they are not designed for short-memory processes. We show them to illustrate that they tend
to indicate long-term persistence mistakenly. Some observations might not be colored when their difference is zero,
however, it is not because we are not considering them for the analysis but because the criteria to select the top three
estimators used more than two decimals, thus being greater than the colored observations.
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5 Analyzing the Performance of Persistence Measures under Contamination for

Fractionally Integrated (Long-memory) Processes

In this section, we study the performance of the same measures of time-series persistence of

section 4, described in section 3.2, but applied to uncontaminated and contaminated fractionally

integrated processes of order d, FI(d). As before, we start illustrating, using simulations, the

performance of the persistence estimators on uncontaminated simulated fractionally integrated

processes. We simulate nsim = 1,000 FI(d) processes of order d of size T = 1,024; 2,048,

and 4,096 with parameters d = 0.1, 0.2, 0.3, 0.4, 0.45, 0.55, 0.6, 0.7, 0.8, 0.9, and 0.95. We

remind the reader that the FI(d) with d ∈ [0,0.5) are stationary mean-reverting processes

while FI(d) with d ∈ (0.5,1) are nonstationary mean-reverting processes. We report for

the long-memory methods, mean, bias, and root-mean-square error (RMSE). We report the

corresponding rejection probabilities for the integer order of integration tests. We also report

the mean and standard deviation for the nonparametric and autoregressive estimators. Recall

that for the nonparametric and autoregressive estimators, the true value of γ or ρ is unknown

for long-memory processes. The results are the following:

Long-memory estimators. Table 8 shows the simulation results for three persistence esti-

mators based on long-memory models and described in section 3.2. For each d we

show the mean, bias, and root-mean-square error. For T = 1024, the d̂GPH is the best

overall regarding bias and RMSE, especially when d belongs to the stationarity region,

d < 0.5. According to the table, the second best estimator is d̂LW, whose performance

improves with d, especially if it belongs to the nonstationary mean-reverting region.

The d̂HP estimator, although not the best, also yields estimates near the true parameter

and its performance improves for processes with d ≥ 0.5. Table 8 also shows that the

performance of these three estimators improves with the sample size. We recommend
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using the local Whittle estimator, d̂LW, if the DGP is long-term persistent because its

performance yields the lower RMSE among the three estimators.

I(1) and I(0) tests. Table 9 shows the rejection probabilities for the ADF and KPSS tests for

different values of d. The ADF test performs well for d ≤ 0.5 for all sample sizes: the

test correctly rejects the null of the unit root. For values of d ∈ (0.5,1), a nonstationary

FI(d), the test does not perform well; however, its performance improves for higher

values of d, that is, the rejections probabilities get closer to the nominal size of 5%.

The KPSSµ should reject the null of d = 0; however, this only happens for values of

higher values of d. The KPSSτ test performance shows a similar pattern to the KPSSµ

test, but recall that the simulated processes don’t have a trend.

Nonparametric estimator. Table 10 shows the results for the nonparametric estimator, γ̂. For

all values of d, we report the mean and its standard deviation over 1,000 simulations.

We were not able to derive the true value of γ. However, because all the simulated

FI processes are long-term persistent, we expected the estimated γ̂ to be between 0.5

and 1: lower values of d imply lower values of γ, while higher values of d imply

higher values of γ. In the table, the estimated value of γ̂ increases with the value of d,

meaning that the estimator behaves as expected. Further, one thing to notice is that

when the process is fractionally integrated, the γ̂ estimator is greater than the estimator

when an autoregressive process generates the data. This can indicate the estimator’s

robustness due to its model-free characteristics and that long-memory processes are

more persistent than short-memory processes. Moreover, the performance of γ̂ is

almost the same for different sample sizes.

Autoregressive estimators. Table 11 shows five autoregressive estimators of persistence. As

with the case of the long-memory estimators applied to autoregressive data, we expect

that these estimators perform poorly as well because the DGPs under consideration
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in this section are long-memory and the autoregressive estimators are designed for

short-memory time series. As for the nonparametric estimator, we do not know the

true parameter, ρ. One expects that, for long-memory time series, the autoregressive

processes indicate high persistence. Table 11 shows that for T = 1,024, the estimated

values of ρ̂ increases with d; that is, the autoregressive measures indicate lower

values of persistence for d < 0.40 and indicate higher persistence for higher values of

persistence for d ≥ 0.40.
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Table 8: Long-Memory Measures of Persistence for Fractionally Integrated
Processes with Parameter d1

d Statistic
T = 1,024 T = 2,048 T = 4,096

d̂GPH d̂HP d̂LW d̂GPH d̂HP d̂LW d̂GPH d̂HP d̂LW

0.10
Mean 0.10 0.09 0.09 0.10 0.09 0.09 0.10 0.09 0.09
Bias 0.00 -0.01 -0.01 -0.00 -0.01 -0.01 0.00 -0.01 -0.01
RMSE 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03

0.20
Mean 0.20 0.18 0.18 0.20 0.19 0.19 0.20 0.19 0.19
Bias 0.00 -0.02 -0.02 0.00 -0.01 -0.01 -0.00 -0.01 -0.01
RMSE 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03

0.30
Mean 0.30 0.28 0.28 0.30 0.29 0.29 0.30 0.29 0.30
Bias 0.00 -0.02 -0.02 0.00 -0.01 -0.01 0.00 -0.01 -0.00
RMSE 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03

0.40
Mean 0.40 0.37 0.39 0.40 0.39 0.39 0.40 0.39 0.39
Bias 0.00 -0.03 -0.01 0.00 -0.01 -0.01 0.00 -0.01 -0.01
RMSE 0.06 0.07 0.05 0.05 0.05 0.04 0.04 0.03 0.03

0.45
Mean 0.45 0.42 0.43 0.45 0.43 0.44 0.45 0.44 0.44
Bias 0.00 -0.03 -0.02 0.00 -0.02 -0.01 0.00 -0.01 -0.01
RMSE 0.06 0.07 0.05 0.05 0.05 0.04 0.04 0.04 0.03

0.55
Mean 0.56 0.52 0.54 0.55 0.53 0.54 0.55 0.54 0.55
Bias 0.01 -0.03 -0.01 0.00 -0.02 -0.01 0.00 -0.01 -0.00
RMSE 0.06 0.08 0.05 0.05 0.06 0.04 0.04 0.04 0.03

0.60
Mean 0.61 0.56 0.59 0.61 0.58 0.60 0.61 0.58 0.60
Bias 0.01 -0.04 -0.01 0.01 -0.02 -0.00 0.01 -0.02 -0.00
RMSE 0.07 0.09 0.05 0.05 0.07 0.04 0.04 0.04 0.03

0.70
Mean 0.72 0.66 0.70 0.71 0.68 0.70 0.71 0.69 0.70
Bias 0.02 -0.04 -0.00 0.01 -0.02 -0.00 0.01 -0.01 0.00
RMSE 0.07 0.13 0.05 0.05 0.08 0.04 0.04 0.05 0.03

0.80
Mean 0.83 0.78 0.80 0.82 0.79 0.81 0.82 0.81 0.81
Bias 0.03 -0.02 0.00 0.02 -0.01 0.01 0.02 0.01 0.01
RMSE 0.07 0.15 0.05 0.06 0.10 0.04 0.05 0.05 0.04

0.90
Mean 0.92 0.90 0.90 0.93 0.91 0.91 0.92 0.91 0.91
Bias 0.02 -0.00 -0.00 0.03 0.01 0.01 0.02 0.01 0.01
RMSE 0.07 0.11 0.05 0.06 0.05 0.04 0.05 0.05 0.03

0.95
Mean 0.96 0.93 0.94 0.96 0.94 0.95 0.96 0.95 0.95
Bias 0.01 -0.02 -0.01 0.01 -0.01 -0.00 0.01 0.00 0.00
RMSE 0.06 0.12 0.05 0.05 0.15 0.04 0.04 0.06 0.03

1 Each statistic is estimated based on 1,000 realizations.
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Table 9: Tests of I(1) and I(0) for Fractionally Integrated Processes with
Parameter d. Rejection Probabilities for Nominal Size of 5% 1

T = 1,024 T = 2,048 T = 4,096

d ADF KPSSµ KPSSτ ADF KPSSµ KPSSτ ADF KPSSµ KPSSτ

0.10 1.00 0.13 0.15 1.00 0.16 0.17 1.00 0.18 0.22
0.20 1.00 0.27 0.29 1.00 0.34 0.40 1.00 0.43 0.51
0.30 1.00 0.41 0.48 1.00 0.51 0.60 1.00 0.64 0.75
0.40 1.00 0.57 0.64 1.00 0.67 0.76 1.00 0.78 0.88
0.45 1.00 0.61 0.72 1.00 0.73 0.84 1.00 0.83 0.92
0.55 0.97 0.72 0.81 1.00 0.84 0.93 1.00 0.94 0.98
0.60 0.90 0.78 0.84 0.98 0.89 0.94 1.00 0.96 0.98
0.70 0.65 0.85 0.89 0.84 0.93 0.98 0.94 0.99 1.00
0.80 0.29 0.90 0.93 0.45 0.95 0.98 0.58 0.98 1.00
0.90 0.11 0.93 0.96 0.14 0.98 0.99 0.18 1.00 1.00
0.95 0.09 0.95 0.96 0.09 0.98 0.99 0.10 1.00 1.00

1 The rejections probabilities were computed based on 1,000 realizations.

Table 10: Nonparametric Estimators of Per-
sistence for Fractionally Integrated Processes
with Parameter d1

d Statistic T = 1,024 T = 2,048 T = 4,096

0.10 Estimator 0.54 0.54 0.54
SD 0.02 0.01 0.01

0.20 Estimator 0.58 0.58 0.58
SD 0.02 0.01 0.01

0.30 Estimator 0.64 0.64 0.64
SD 0.02 0.02 0.01

0.40 Estimator 0.71 0.71 0.71
SD 0.03 0.03 0.02

0.45 Estimator 0.75 0.75 0.76
SD 0.04 0.03 0.03

0.55 Estimator 0.83 0.83 0.84
SD 0.05 0.04 0.04

0.60 Estimator 0.86 0.87 0.88
SD 0.05 0.04 0.04

0.70 Estimator 0.92 0.92 0.94
SD 0.04 0.03 0.03

0.80 Estimator 0.95 0.96 0.97
SD 0.03 0.02 0.02

0.90 Estimator 0.97 0.98 0.98
SD 0.02 0.02 0.01

0.95 Estimator 0.98 0.98 0.99
SD 0.02 0.01 0.01

1 The estimator and its standard deviation were
computed using 1,000 realizations.
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Table 11: Autoregressive Estimators of Persistence for Fractionally Integrated Processes
with Parameter d1

d Stat T = 1,024 T = 2,048 T = 4,096

ρ̂1 ρ̂ ĈIR L̂R ĤLC ρ̂1 ρ̂ ĈIR L̂R ĤLC ρ̂1 ρ̂ ĈIR L̂R ĤLC

0.10 Estimator 0.11 0.20 1.12 10.64 -7.72 0.11 0.22 1.12 9.71 -7.07 0.11 0.25 1.12 9.33 -6.81
SD 0.03 0.09 0.04 6.86 4.76 0.02 0.08 0.03 2.43 1.69 0.02 0.07 0.02 1.55 1.07

0.20 Estimator 0.24 0.44 1.32 4.27 -3.29 0.24 0.48 1.32 4.18 -3.23 0.25 0.51 1.33 4.10 -3.18
SD 0.04 0.10 0.06 0.67 0.47 0.03 0.08 0.05 0.50 0.35 0.02 0.06 0.03 0.32 0.22

0.30 Estimator 0.39 0.63 1.65 2.60 -2.13 0.40 0.68 1.67 2.52 -2.08 0.41 0.72 1.70 2.45 -2.03
SD 0.04 0.09 0.12 0.30 0.21 0.03 0.07 0.09 0.21 0.14 0.02 0.05 0.07 0.14 0.10

0.40 Estimator 0.56 0.77 2.29 1.81 -1.57 0.58 0.81 2.39 1.74 -1.53 0.59 0.84 2.47 1.69 -1.49
SD 0.05 0.06 0.27 0.16 0.11 0.04 0.05 0.25 0.13 0.09 0.03 0.04 0.21 0.09 0.07

0.45 Estimator 0.64 0.82 2.81 1.58 -1.41 0.66 0.86 3.00 1.52 -1.37 0.68 0.89 3.17 1.47 -1.34
SD 0.05 0.06 0.42 0.13 0.09 0.04 0.04 0.43 0.10 0.07 0.03 0.03 0.36 0.07 0.05

0.55 Estimator 0.78 0.89 4.90 1.28 -1.20 0.81 0.92 5.52 1.24 -1.17 0.83 0.94 6.28 1.20 -1.14
SD 0.05 0.04 1.29 0.08 0.06 0.04 0.03 1.34 0.06 0.04 0.03 0.02 1.39 0.05 0.03

0.60 Estimator 0.84 0.92 6.92 1.19 -1.14 0.87 0.94 8.03 1.16 -1.11 0.89 0.96 9.72 1.12 -1.09
SD 0.05 0.03 2.35 0.07 0.05 0.03 0.02 2.38 0.05 0.03 0.03 0.01 2.85 0.03 0.02

0.70 Estimator 0.92 0.96 14.95 1.09 -1.06 0.94 0.97 19.72 1.06 -1.05 0.96 0.98 27.48 1.04 -1.03
SD 0.03 0.02 6.95 0.04 0.03 0.02 0.01 8.36 0.02 0.02 0.02 0.01 12.66 0.02 0.01

0.80 Estimator 0.97 0.98 39.77 1.04 -1.03 0.98 0.99 56.32 1.02 -1.02 0.99 0.99 92.09 1.01 -1.01
SD 0.02 0.01 25.10 0.02 0.01 0.01 0.01 32.23 0.01 0.01 0.01 0.00 64.36 0.01 0.01

0.90 Estimator 0.99 0.99 116.99 1.01 -1.01 0.99 0.99 215.43 1.01 -1.01 1.00 1.00 364.15 1.00 -1.00
SD 0.01 0.01 156.26 0.01 0.01 0.00 0.00 236.23 0.01 0.00 0.00 0.00 356.46 0.00 0.00

0.95 Estimator 0.99 0.99 196.10 1.01 -1.01 1.00 1.00 290.49 1.00 -1.00 1.00 1.00 984.51 1.00 -1.00
SD 0.01 0.01 872.74 0.01 0.00 0.00 0.00 2205.00 0.00 0.00 0.00 0.00 5962.44 0.00 0.00

1 The estimator and its standard deviation were computed using 1,000 realizations.
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5.1 Contaminating Long-memory Processes

In this section, we investigate the effect of the contamination processes described in section 3.1.

Again, we present the results for i) Trend, ii) Cycle, iii) SME, iv) AO, v) SC, and vi) TCO, and

for comparison, we include the results for the uncontaminated processes in the column FI(d).

Table 12 shows the results for long-memory processes for different values of d contaminated

with the six mechanisms with a given set of parameters. Results for other values of ρ are

in appendix C, table C.1. We select the set of parameters in table 12 considering that the

contaminations are not detected using an eyeball test. The results for each contamination

mechanism are presented in terms of the absolute value difference between the estimator’s

means (or probability of test rejection) for the uncontaminated process and the estimator’s

means (or probability of test rejection) for the contaminated process: lower values imply

better performance and higher values imply worse performance. Results for a different set of

parameters are presented in appendix C, and the conclusions are similar to the ones presented

in this section. The results are for a sample size of T = 4,096 and the means or rejection

probabilities were computed using 1,000 simulations.

Trend. Table 12 shows the results for a trend value of β = 0.005. Similarly to the autore-

gressive case, when the data is contaminated with a deterministic trend, the ADF is

the best performer; however, the same drawback as before applies: it does not yield

us a scalar measure of persistence; it only tells us that the process is not infinitely

persistent. Therefore, additional measures are needed if the researcher is looking for a

result different from a dichotomous indicator of infinite persistence or nonpersistence.

The estimator γ̂ performs well in eight out of eleven cases of d displayed in the table.

Something noteworthy is that although the ρ̂, ĤLC and L̂R estimators are rated among

the best three for certain values of d, this is not because the estimators seem to provide
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an adequate measure of persistence, but because the uncontaminated case is already

indicating an incorrect level of persistence, plausibly because the DGP of the data is

long-memory, and the estimators assume short-memory properties. Therefore, when

compared to the estimated persistence under the uncontaminated case, these estimators

seem robust, but we know that they were inappropriate for this kind of processes.

Hence, the best candidates to measure persistence under the DGP analyzed are the

long-memory estimators, which do not deviate much from the estimated persistence of

the uncontaminated process and are, consequently, near the true d of the process. If we

let the value of the trend vary, in figure C.1 we observe that between the long-memory

estimators d̂GPH and d̂HP (panels (a) and (b)) the d̂HP estimator is the best performer, as

the RMSE is not as sensitive to the trend and the value of d as the d̂GPH estimator. The γ̂

and ρ̂ estimators depicted in panels (c) and (d) show that the estimators perform as ex-

pected only for high values of d, compared to the uncontaminated case, and they show

a positive bias for smaller values of d. Hence, when the FI(d) DGP is contaminated

with a deterministic trend, the estimator γ̂, although biased for increasing values of

the trend slope, is the best estimator according to figure C.1. Therefore, we propose to

use the ADF test if one seeks to reject infinite persistence. In terms of scalar measures

of persistence, we propose using the d̂HP estimator if one knows that the process is an

FI(d), and using the nonparametric estimator if the DGP is unknown.

Cycle. Table 12 shows the estimated persistence of a long-memory process contaminated with

a deterministic cycle, such that vt = sin [2π(0.01)t], t = 1, . . . , T ; that is, a cycle with

unitary amplitude and a frequency of 0.01. The best performer is the nonparametric

estimator, γ̂: for all values of d, the nonparametric estimator deviates less from the

estimator based on the uncontaminated series. The table also shows that the ADF test

is the best performer in nine out of eleven cases of d. Both estimators are the best

and second-best performers when d < 0.5. When d belongs to the mean-reverting
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region, the ρ̂, ρ̂1, and ĤLC autoregressive estimators of persistence display misleading

information regarding the true persistence of the data, as the uncontaminated case is

already measured as practically infinitely persistent, which causes a low deviation when

measuring contaminated data. Accordingly, if the DGP is stationary and fractionally

integrated, the γ̂ estimator is preferred. In figure C.2, we extend the analysis by letting

the cycle take on multiple amplitude and frequency values. We can see that the d̂GPH

estimator in panel (a) is the one that displays the best performance in terms of RMSE.

If the true d of the process is low, the estimator becomes sensitive to cycles with low

frequencies combined with high amplitudes. The d̂HP estimator performs well also,

but not as good as the d̂GPH estimator. This estimator is also sensitive to cycles with

high amplitudes and low frequencies; however, the RMSE is higher for processes with

low d. The γ̂ and ρ̂ estimators depicted in panels (c) and (d) of figure C.2 show that

the estimated persistence will deviate from the uncontaminated case with increasing

amplitudes of the cycle. Besides, it seems that both measures will accurately estimate

the persistence of the process irrespective of the amplitude of the cycle if its frequency

is equal to a certain value that depends on the integration parameter, d. Therefore,

for a FI(d) process contaminated with a deterministic cycle, the d̂GPH estimator is the

indisputable winner. We also should consider the nonparametric estimator, which

shows a lower deviation from the uncontaminated case for higher values of d.

Small measurement errors. In table 12, we show the estimated persistence of an FI(d)

process contaminated with a small measurement error. To construct the error, we set

σ2
w = 1 and σ2

η = 1 from equation (3): we have a unitary signal-to-noise ratio, SNR. As

before, the ADF and KPSS tests are the best performers for all values of d. If a scalar

measure of persistence is required by the researcher, the γ̂ estimator follows the tests

as the third-best measure of persistence, in particular, when the DGP belongs to the

stationarity region. However, according to figure C.3, if the process has a d > 0.5, the
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long-memory estimators of persistence outperform the rest, as the estimated persistence

of the uncontaminated case goes in line with the true d of the process; therefore, the

RMSE of the estimators under contamination is small. As before, the autoregressive

parameters yield incorrect information regarding their robustness: their deviations

from the uncontaminated case are small, relative to other contaminations, because the

estimated persistence under no contamination is already measured as almost infinite.

The robustness of the long-memory estimators to this contamination is displayed in

figure C.3, where we let the signal-to-noise ratio take on different values greater, equal,

and less than one. Panel (a) shows that the d̂GPH estimator is the most robust of all

the four estimators due to the RMSE being approximately zero irrespective of the

size of the SNR and the process’ true value of d. The d̂HP estimator in panel (b) only

performs right if d < 0.5 and the error has a low SNR. The γ̂ and ρ̂ estimators of

panels (c) and (d), respectively, deviate from the uncontaminated estimate with the

size of the SNR, that is, the greater the SNR, the further the estimator deviates from

the uncontaminated estimator. Hence, in the presence of small measurement errors, the

d̂GPH is the safest option to obtain a scalar, (slightly) unbiased, estimate of persistence.

We also recommend the use of the nonparametric estimator if one does not know that

the process is, but if it is suspected to be contaminated by SME.

Additive outliers. Table 12 shows the results for contamination by additive outliers with

parameters θ = 1.2 and p = 0.025, which refer to the outlier size and the probability of

the outlier occurring, respectively. The nonparametric estimator is the best performer;

it works well in ten out of eleven cases. The ADF test performs well in seven out

of eleven cases. If the process is nonstationary but mean-reverting (d > 0.5), the

autoregressive estimators are, according to the table, some of the most robust; however,

as before, the uncontaminated case measures almost infinite persistence. Thus, when

applying said estimators to contaminated processes, the difference between estimates
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of persistence is small. Figure C.4 shows that, actually, the long-memory estimators

d̂GPH and d̂HP are the best performers for any value of d and θ. The d̂GPH estimator

in panel (a) has the lowest RMSE of both long-memory estimators, becoming the

best performer among the four depicted, followed by the d̂HP estimator, which RMSE

increases only with the value of d. The γ̂ and ρ̂ estimators of panels (c) and (d) show

that both estimators do not deviate from the uncontaminated case if the true d of the

process or the θ of the outlier increase. Therefore, when measuring the persistence of a

long-memory process, we recommend using the d̂GPH and the nonparametric estimators.

We do not encourage the use of the ρ̂ estimator, as it assumes a short-memory process

to perform the estimation.

Structural change. Table 12 shows the results of the estimated persistence of an FI(d) process

contaminated with a structural change with parameters θ = 1, and a probability of struc-

tural change p = 0.06. The table shows that, in contrast to the previous contaminations,

the ADF test is not robust to this contamination. Under structural changes, the d̂HP and

γ̂ estimators are the best performers. Although the tables show that the autoregressive

measures are the best by deviating little from the uncontaminated case, it is the same as

in the previous contaminations: autoregressive-based estimators deviate less because

they are, already, measured as infinitely persistent. Figure C.5 shows the d̂GPH, d̂HP, γ̂,

and ρ̂ estimators when the structural change can take on different sizes (θ = 1.0,1.5)

and different probabilities of happening. As depicted, the γ̂, and ρ̂ estimators do not

perform well under structural changes, as they estimate the processes as very persistent

when, in fact, it is not, e.g., if d = 0.45. The performance of long-memory estimators

improves when the probability of a structural change is low and the true value of d is

high. Between both estimators, the d̂HP displays the lowest RMSE for low values of

d; besides, it is more robust to low values of θ than the d̂GPH estimator. Thus, in the

presence of structural change in the data-generating process, all the estimators will be
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biased; however, the d̂HP estimator yields the lowest RMSE among the long-memory

estimators. We also recommend the nonparametric estimator, which performs well if

one does not know the type of process or the presence of structural changes. Again,

this exercise stresses that this type of contamination has a highly detrimental impact

on the estimation of persistence, so, if possible, the researcher is advised to test for its

presence, and if it can be identified, to remove it.

Temporary change outliers. Table 12 shows the estimated persistence of an FI(d) process

contaminated with a temporary change outlier with size and duration θ = 1 and

α = 0.50, respectively. In the presence of a temporary change outlier, on the one hand,

the ADF test and the nonparametric estimator, γ̂, perform well in ten out of eleven

cases. Figure C.6 shows how the d̂GPH, d̂HP, γ̂, and ρ̂ estimators perform when there is a

temporary change outlier that can take on different values of duration and size, α and

θ. The d̂GPH estimator of panel (a) shows that the estimator is biased only if the α of the

outlier is one and d belongs to the stationarity region. Besides, the RMSE increases

with θ, meaning that bigger outliers fool the estimator into measuring a higher level of

persistence. The d̂HP, in panel (b), estimator performs better when the duration is one

than the d̂GPH estimator. Further, this estimator appears to be more robust to the size of

θ compared to the d̂HP estimator. However, irrespective of the level of α, the RMSE of

the d̂HP estimator will be greater than zero for values of d ∈ (0.5,0.9]. The estimators in

panels (c) and (d) show the γ̂, and ρ̂ estimators. These estimators perform well if d the

parameter α is small, below 0.8; otherwise, they deviate from the estimated persistence

of the uncontaminated process with increasing values of d. Both estimators appear to

function similarly. Therefore, if the DGP is contaminated with a temporary change

outlier, according to our results the best estimators are the long-memory estimators,

provided that they are robust to any value of α and θ, in contrast to the other two

measures. We also recommend using the nonparametric estimator when temporary
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change outliers are present and one suspects or knows that the DGP is long-memory,

as its performance is also good.

48



Table 12: Estimators or Tests for Time-series Persistence for Fractional Integrated Processes
with Parameter d1

Parameter Estimator or Test FI(d) Contamination (Difference between contaminated and uncontaminated estimators, FI(d), in absolute value)2, 3

Trend Cycle SME AO SC TCO
(β = 0.005) (A = 1, f = 0.01) (SNR = 1) (θ = 1.2, p = 0.025) (θ = 1, p = 0.6) (θ = 1, α = 0.5)

ρ̂1 0.11 0.71 0.44 0.03 0.11 0.87 0.12
ρ̂ 0.20 0.98 0.68 0.05 0.20 0.97 0.21

ĈIR 1.12 3.52 1.79 1.04 1.12 12.48 1.14
L̂AR 10.64 1.40 2.28 -40.89 11.39 1.16 9.11

d = 0.1 ĤLC -7.72 -1.29 -1.91 28.00 -8.24 -1.11 -6.66
γ̂ 0.54 0.36 0.13 0.02 0.00 0.37 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.86 0.00
KPSSµ 0.13 0.87 0.13 0.05 0.00 0.83 0.00
d̂GPH 0.10 0.47 0.13 0.06 0.00 0.62 0.00
d̂HP 0.09 0.00 0.45 0.06 0.00 0.03 0.00
d̂LW 0.09 0.46 0.44 0.06 0.00 0.62 0.00

ρ̂1 0.39 0.78 0.59 0.14 0.38 0.89 0.39
ρ̂ 0.63 0.96 0.81 0.35 0.62 0.97 0.63

ĈIR 1.65 4.57 2.44 1.16 1.62 14.71 1.65
L̂AR 2.60 1.29 1.71 7.97 2.68 1.12 2.58

d = 0.3 ĤLC -2.13 -1.21 -1.51 -5.86 -2.19 -1.09 -2.12
γ̂ 0.64 0.27 0.08 0.09 0.00 0.27 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.77 0.00
KPSSµ 0.41 0.59 0.32 0.08 0.01 0.55 0.00
d̂GPH 0.30 0.27 0.08 0.13 0.00 0.41 0.00
d̂HP 0.28 0.00 0.26 0.14 0.00 0.02 0.00
d̂LW 0.28 0.26 0.24 0.12 0.00 0.41 0.00

ρ̂1 0.64 0.82 0.73 0.29 0.63 0.91 0.63
ρ̂ 0.82 0.95 0.87 0.65 0.82 0.97 0.82

ĈIR 2.81 6.06 3.72 1.41 2.72 17.25 2.79
L̂AR 1.58 1.22 1.38 3.61 1.61 1.10 1.58

d = 0.45 ĤLC -1.41 -1.16 -1.27 -2.83 -1.43 -1.07 -1.42
γ̂ 0.75 0.16 0.03 0.13 0.00 0.17 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.67 0.00
KPSSµ 0.62 0.38 0.22 0.05 0.00 0.32 0.00
d̂GPH 0.45 0.14 0.05 0.14 0.00 0.26 0.01
d̂HP 0.42 0.00 0.16 0.17 0.00 0.03 0.01
d̂LW 0.43 0.13 0.14 0.14 0.00 0.26 0.01

ρ̂1 0.97 0.97 0.97 0.85 0.96 0.97 0.97
ρ̂ 0.98 0.98 0.98 0.95 0.98 0.98 0.98

ĈIR 39.77 43.81 40.85 8.35 37.33 57.84 38.61
L̂AR 1.04 1.03 1.03 1.19 1.04 1.03 1.04

d = 0.8 ĤLC -1.03 -1.02 -1.02 -1.13 -1.03 -1.02 -1.03
γ̂ 0.95 0.00 0.00 0.06 0.00 0.01 0.00

ADF 0.29 0.00 0.02 0.09 0.01 0.08 0.00
KPSSµ 0.90 0.03 0.01 0.00 0.00 0.04 0.00
d̂GPH 0.83 0.01 0.01 0.12 0.00 0.03 0.01
d̂HP 0.78 0.01 0.04 0.34 0.01 0.04 0.00
d̂LW 0.80 0.01 0.02 0.12 0.00 0.03 0.00

ρ̂1 0.99 0.99 0.99 0.96 0.99 0.99 0.99
ρ̂ 0.99 0.99 0.99 0.98 0.99 0.99 0.99

ĈIR 196.10 248.66 508.84 36.11 197.65 211.98 60.98
L̂AR 1.01 1.01 1.01 1.05 1.01 1.01 1.01

d = 0.95 ĤLC -1.01 -1.01 -1.01 -1.03 -1.01 -1.01 -1.01
γ̂ 0.98 0.00 0.00 0.03 0.00 0.00 0.00

ADF 0.09 0.00 0.01 0.01 0.00 0.01 0.00
KPSSµ 0.95 0.00 0.00 0.00 0.00 0.01 0.00
d̂GPH 0.96 0.00 0.01 0.09 0.00 0.00 0.00
d̂HP 0.93 0.00 0.01 0.21 0.01 0.02 0.00
d̂LW 0.94 0.00 0.01 0.09 0.00 0.00 0.00

1 Results for other values of d are in the appendix C in table C.1.
2 Each entry in the table, in columns 4-9, shows the absolute difference between the mean under contamination and the

mean under noncontamination. The means were computed over 1,000 replications. For example, when d = 0.1, the
uncontaminated mean of the d̂GPH estimator yields a persistence of 0.10 (see column 3, FI(d), and if we estimate it again,
but with the trend, the mean of the d̂GPH estimator is 0.57. Therefore, the difference is 0.47. Notice that for the ADF
and KPSS tests, we report the mean probability of rejections and the difference between these probabilities between
contaminated and noncontaminated processes.

3 In blue are the three estimators or tests with the best performance. Darker blue indicates the best performance. Lower
values indicate better performance. Remember that autoregressive model-based estimators are excluded from the race of
the top three estimators because they are not designed for long-memory processes. We show them to illustrate that they
tend to indicate short-term persistence mistakenly. Some observations might not be colored when their difference is
zero, however, it is not because we are not considering them for the analysis, but because the criteria to select the top
three estimators used more than two decimals, thus being greater than the colored observations.
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6 Discussion and Concluding Remarks

In this paper we compared the robustness of different univariate measures of persistence

used in the literature when the data is contaminated with trends, cycles, measurement errors,

additive and temporary change outliers, or structural changes. For the analysis, we considered

autoregressive (short-memory) and fractionally integrated (long-memory) processes with

different parameters ρ and d, respectively. Our results indicate that if the data-generating

process is an autoregressive process of order one, AR(1), with parameter ρ and no contam-

ination, the autoregressive estimators, ρ̂ and ρ̂1, along with the nonparametric estimator, γ̂,

perform the best at any true value of ρ. The integer order of integration tests, ADF, and

KPSSµ, perform as expected and improve their performance with the sample size. In the

presence of contamination processes, the ADF test is the most effective measure of persistence,

correctly identifying that persistence is not infinite in almost all cases. However, if a scalar

measure is needed, the nonparametric estimator, γ̂, is the best among the scalar estimators, as

it deviates less from the uncontaminated case in all contamination processes analyzed but the

temporary change outliers. When the DGP is a fractionally integrated process with parameter

d and the process is not contaminated, only the long-memory persistence measures perform

correctly, as they are the only ones that consider the long-memory property of the data. Under

contamination, if the data belongs to the stationarity region, the ADF test and the γ̂ estimator

perform well. However, if the data belongs to the nonstationary region, the best estimators are

the long-memory and the nonparametric one, depending on the contamination and the nominal

value of d.

Figure 2 summarizes results based on tables 7 and B.1 for autoregressive processes and

tables 12, and C.1 for long-memory processes. In particular, it shows the fraction of times

where each estimator ranks among the best three, among long and short- memory processes,

under different parameters and anomalies. We refer to said fraction as success rate. Recall
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Figure 2: Estimators Performance (Success Rates in %) Under Six Types of Contamination
for AR(1) and FI(d) Processes1
1 Results based on tables 7, 12, B.1, and C.1. The success rates are computed based on the number of
times the estimators appear among the three best estimators. The green horizontal lines indicate 25%,
50%, and 75%.

that the tables were computed using a set of parameters selected such that the identification

of the contamination is difficult using an eyeball test. First, note that when the DGP are

autoregressive processes, the long-memory model-specific estimators (d̂GPH, d̂HP, and d̂LW) are

excluded from the comparison as they are not meant to measure persistence for autoregressive

processes. In the same way, when the DGP is a long-memory process, we eliminate the

autoregressive model-specific estimators (ρ̂1, ρ̂, ĈIR, ĤLC and L̂AR) from the comparison

because these are not expected to measure persistence for fractionally integrated processes.

Moreover, highly-persistent short-memory time series mislead the long-memory estimators

by indicating the presence of long-term persistence, while long-memory time series mislead

the autoregressive-based estimators by indicating short-term memory or infinite memory.

Therefore, we only compare estimators designed for each DGP. The table illustrates that the

order of integration tests, especially the ADF, have the highest success rates. However, as
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mentioned in sections 4 and 5, these tests do not yield a scalar estimate of persistence; they only

indicate whether the data has infinite persistence or not. Hence, if the researcher is interested in

a scalar measure of persistence, the figure shows that the nonparametric estimator, γ̂, is the best

for both processes, with a success rate greater than eighty for both data-generating processes.

Third, if the process is autoregressive, the estimators with the highest success rate after the γ̂

estimator are the ρ̂ and ρ̂1 estimators. The other three autoregressive estimators, ĈIR, ĤLC,

and L̂AR, do not perform as well as the other two, especially the ĈIR and L̂AR, which have

two and zero percent success rate respectively. As a result, both measures should be avoided.

If the DGP is a FI(d), the best estimator after the γ̂ is the d̂GPH, which has an almost 40 percent

success rate. Nonetheless, notice that the d̂HP and d̂LW estimators are near the success rate of

d̂GPH. This means that if we had only focused on one of the three long-memory estimators,

its success rate would be much higher. Thus, apart from the nonparametric estimator, the

long-memory estimators perform well under contaminated long-memory processes.

How should we proceed to measure the persistence of a time series? Based on the results of

sections 4 and 5, the desirable thing is to know the underlying process of the time series we

are interested in and if an anomaly is present or not. Therefore, we should proceed to test

for trends, cycles, or structural changes. Suppose the anomalies found are not of interest to

the researcher (because they do not display an intrinsic or underlying property of the time

series of interest). In that case, they should be removed if possible. In the ideal case that we

can identify and remove possible contamination processes, a more precise scalar, objective

persistence estimate can be obtained. To do this step, we start with an eyeball test and then a

statistical test to be as certain as possible regarding the series’ structure. For example, if an

autoregressive process is contaminated with a trend, the trend should be removed, as none of

the estimators studied in this paper are constructed to consider the existence of trends.17 In this

particular example, after removing the trend, either the autoregressive or the nonparametric

17 As discussed in section 1, this may run into interpretation problems.
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estimators are the safest. If other types of contamination are detected and can be removed,

persistence can be measured with the most appropriate estimator, depending on the underlying

process.

Once we have removed the trends, cycles, or structural changes, we should test whether

the data-generating process is an autoregressive process with parameter ρ or a fractionally

integrated process of order d and whether the data has infinite persistence with the order of

integration tests. While we consider these two steps as the most important of the process

because they will dictate the set of appropriate persistence estimators available for use, it

is important to keep in mind that, with the existing tests, in practice, it may be complex to

identify precisely the underlying DGP, particularly for autoregressive processes with high

autoregressive parameters. If the researcher can identify the DGP, and for instance, it is an

AR(1), the best-performing estimators ρ̂1, ρ̂, and γ̂ should be the tools to consider for the

analysis. If, instead, the DGP is an FI(d), the long-memory and γ̂ estimators should be used.

If the type of DGP cannot be easily identified, it would be preferable to use a robust estimator

to both of them, which, in case the researcher wants a scalar measure of persistence, it would

be γ̂. The order of integration tests can be applied, according to tables 7 and 12, to almost any

series, yielding robust results.

If other types of contamination are detected but cannot be removed, the researcher will have to

use the tools at her disposal, and, according to the results in this paper, she should proceed

as follows. If a cycle is present, the γ̂ estimator is the one to choose. Although it might be

biased, the results display that it has a lower deviation from the estimated persistence of the

uncontaminated series among all estimators. If there is a structural change in the data, any of

the model-based or γ̂ estimators may be used as long as the persistence is estimated before

and after the break date and not for the whole series. If there is evidence of outliers (additive

or temporary change) in the data, any of the model-based estimators and the γ̂ estimator can

be used, as this type of contamination does not have an apparent effect on the estimators.
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However, in practice, the contamination of the series may not be observable by the researcher,

so obtaining a clean, uncontaminated time series will be challenging. Moreover, it can also

be difficult to distinguish the DGP of the time series of interest. In these cases, the best we

can do is to use the most robust measure of persistence. In light of the results shown in this

paper, the nonparametric measure of persistence is the best alternative in these cases since it

provides, on average, the most robust point measure of persistence in the presence of different

types of contamination that are commonly found in real-time series data, and for different

DGP. This provides a strong case for researchers to use this estimator as their first alternative.

Finally, multiple contaminations may affect the statistical process of interest and persistence

statistics. We do not have an answer to how a researcher should proceed in such a case, and

we will keep this question open for future research.
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A Auxiliary and Additional Figures

Figure A.1 shows six different autocorrelation functions. On the left-hand side, the auto-

correlation functions are for AR(1) processes with parameters ρ = 0.1, 0.5, and 0.95 (all

weakly-stationary processes). The autocorrelation functions on the right-hand side are for

FI(d) processes with parameters d = 0.1, 0.45, and 0.95 (two weakly stationary and one non-

stationary processes). The panels on this figure show that the rate of decay for long-memory

processes, FI(d) is lower (hyperbolic rate) than for autoregressive processes (exponential rate).

Long-memory processes are long-term persistent processes and autoregressive processes are

short-term persistent.
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Figure A.1: Autocorrelation Function for Realizations of an AR(1) process with ρ = 0.1, 0.5,
and 0.95 (on the left-hand side) and an FI(d) with d = 0.1, 0.45, and 0.95 (on the right-hand
side).
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Figure A.2 shows the effect of the six types of contaminations on an FI(d = 0.25). The

panels of this figure show that the trend, cycle, and structural change have a visible large

contamination effect (gray lines) compared to other contamination mechanisms; that is, the

gray line departs from the uncontaminated lines (blue lines).
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Figure A.2: Long-memory Process Realization with Six Types of Contamination1

1 Each time series has 1,024 observations. For panel (a), the slope of the deterministic trend used is 0.005. For panel (b), the
amplitude and the frequency of the cycle are three and 0.001 respectively, while for panel (c), the signal-to-noise ratio of
the small measurement error takes the value of one. For panel (d), the outlier size used is five. For panel (e), the probability
of a structural change is 0.035, while for panel (f), the persistence of the temporary change takes the value of 0.8. The
long-memory process is an FI(d = 0.25).
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B Additional Results for Autoregressive (Short-memory) Processes

In this appendix, we show results for the effects of the six contamination mechanisms described

in section 3.1. In particular, this appendix shows results for different contamination parameters,

nsims = 1,000, and realizations of length T = 4,096. We also show results only for two

model-specif estimators (ρ1 and ρ), the nonparametric estimator (γ̂), and one estimator of long-

term persistence (d̂GPH). For the model-specific estimators, we present the RMSE (panel (a)

and panel (b)), and for the other two estimators, we present the mean over 1,000 estimators

(panel (c) and panel (d)).

Contamination with Deterministic trend. Figure B.1 shows results for slope values be-

tween 0.001 and 0.01 with steps of 0.001 and different values of ρ. The results indicate

that the model-specific estimators have a higher RMSE or higher deviations from

the uncontaminated cases for lower values of ρ. The RMSE or deviations from the

uncontaminated cases are small for higher values of ρ.

Contamination with cycles. Figure B.2 presents the results for amplitude values between

0.1 and 1.5 and frequency values between 0 and 0.5, each with steps of 0.1. The

results indicate that, among the model-specific estimators, the RMSE is greater for

the ρ̂1 estimator. As before, the RMSEs and deviations from the uncontaminated case

are higher for lower values of ρ, and higher amplitude values for the nonparametric

estimator.

Contamination with small measurement errors. Figure B.3 presents the estimated persis-

tence when the signal-to-noise can take on values between 0.5 and 1.5, with steps of

0.2. The RMSE of the model-specific estimators increases until some point with ρ,

then decreases to almost zero when ρ is high. The ρ̂ estimator has lower RMSE for any

ρ, than the ρ̂1 estimator. The RMSE and deviations increase with the signal-to-noise.
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Contamination with additive outliers. Figure B.4 shows the results when the size of the

outlier, θ, takes on values between 0 and 1.2 in 0.2 increments. The RMSE and

deviations of the estimators from the uncontaminated case are negligible and robust to

the value of θ. The estimators are robust to this type of contamination.

Contamination with structural change. Figure B.5 shows the estimated persistence when

the outlier size can be either 0.5 or 1 and when the probability of the structural change

takes on values between 0 and 0.1. The RMSE of the model-specific estimators

increases with the size of the structural change but decreases with the level of ρ̂;

the estimators appear to be robust to the probability of the structural change. The

deviations from the uncontaminated case are also due to the value of θ and irrespective

of the probability.

Contamination with temporary change outlier. Figure B.6 shows the persistence estima-

tions when the temporary change outlier contaminating the process takes on two values

of θ, 1 and 1.5, and α values between 0 and 1 in 0.1 increments- The autoregressive

estimators are only affected when α = 1 and the RMSE decreases with the value of ρ.

The ρ̂1 has the lower RMSEs. The nonparametric and long-memory estimators deviate

from the uncontaminated case for lower α.
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Figure B.1: Performance of ρ̂, ρ̂1, γ̂, and d̂GPH Persistence Estimators for Autoregressive
Processes of Order One with Parameter ρ Contaminated with a Deterministic Trend with
Different Slopes1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, ρ̂1 and ρ̂, and the estimated value for the nonparametric estimator, γ̂, and the long-memory estimator, d̂GPH.
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Figure B.2: Performance of ρ̂, ρ̂1, γ̂, and d̂GPH Persistence Estimators for Three Autoregressive
Processes of Order One with Parameters ρ = 0.1,0.5, and 0.95 Contaminated with a Deter-
ministic Cycle with Multiple Amplitudes and Frequencies1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, ρ̂1 and ρ̂, and the estimated value for the nonparametric estimator, γ̂, and the long-memory estimator, d̂GPH.
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Figure B.3: Performance of ρ̂, ρ̂1, γ̂, and d̂GPH Persistence Estimators for Autoregressive
Processes of Order One with Parameter ρ Contaminated with a Small Measurement Error1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, ρ̂1 and ρ̂, and the estimated value for the nonparametric estimator, γ̂, and the long-memory estimator, d̂GPH.
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Figure B.4: Performance of ρ̂, ρ̂1, γ̂, and d̂GPH Persistence Estimators for Autoregressive
Processes of Order One with Parameter ρ Contaminated with an Additive Outlier1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, ρ̂1 and ρ̂, and the estimated value for the nonparametric estimator, γ̂ and the long-memory estimator, d̂GPH.
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Figure B.5: Performance of ρ̂, ρ̂1, γ̂, and d̂GPH Persistence Estimators for Autoregressive
Processes of Order One with Parameter ρ Contaminated with a Structural Change1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, ρ̂1 and ρ̂, and the estimated value for the nonparametric estimator, γ̂, and the long-memory estimator, d̂GPH.
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Figure B.6: Performance of ρ̂, ρ̂1, γ̂, and d̂GPH Persistence Estimators for Autoregressive
Processes of Order One with Parameter ρ Contaminated with a Temporary Change Outlier1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, ρ̂1 and ρ̂, and the estimated value for the nonparametric estimator, γ̂, and the long-memory estimator, d̂GPH.
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Table B.1: Estimators or Tests for Time-series Persistence for Autoregressive Processes of Order
One with Parameter ρ1

Parameter Estimator or Test AR(1) Contamination (Difference between contaminated and uncontaminated estimators, AR(p), in absolute value)

Trend Cycle SME AO SC TCO
(β = 0.005) (A = 1, f = 0.01) (SNR = 1) (θ = 1.2, p = 0.025) (θ = 1, p = 0.06) (θ = 1, α = 0.5)

ρ̂1 0.20 0.54 0.29 0.14 0.01 0.68 0.01
ρ̂ 0.19 0.78 0.50 0.14 0.00 0.78 0.01

ĈIR 1.25 2.62 0.73 0.18 0.01 12.33 0.01
L̂AR 5.14 3.79 3.10 94.48 0.20 3.99 0.23

ρ = 0.2 ĤLC -3.90 2.64 2.16 65.50 0.14 2.79 0.16
γ̂ 0.57 0.33 0.12 0.04 0.00 0.34 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.84 0.00
KPSSµ 0.05 0.95 0.05 0.00 0.00 0.91 0.00
d̂GPH 0.02 0.54 0.17 0.01 0.02 0.69 0.03
d̂HP 0.01 0.04 0.48 -0.01 0.01 0.09 0.02
d̂LW 0.01 0.52 0.47 -0.01 0.01 0.68 0.01

ρ̂1 0.40 0.39 0.20 0.26 0.01 0.50 0.00
ρ̂ 0.39 0.58 0.37 0.23 0.01 0.58 0.00

ĈIR 1.66 3.06 0.85 0.50 0.03 13.44 0.01
L̂AR 2.53 1.26 0.86 5.38 0.08 1.41 0.02

ρ = 0.4 ĤLC -2.08 0.89 0.61 3.74 0.05 1.00 0.01
γ̂ 0.63 0.28 0.09 0.09 0.00 0.28 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.72 0.00
KPSSµ 0.04 0.96 0.04 0.02 0.00 0.92 0.00
d̂GPH 0.06 0.49 0.17 0.03 0.06 0.63 0.07
d̂HP 0.06 0.13 0.43 0.02 0.06 0.17 0.06
d̂LW 0.05 0.48 0.42 0.02 0.05 0.63 0.05

ρ̂1 0.60 0.24 0.11 0.35 0.01 0.32 0.00
ρ̂ 0.59 0.37 0.19 0.26 0.01 0.38 0.00

ĈIR 2.48 3.50 0.97 1.16 0.08 15.71 0.01
L̂AR 1.68 0.48 0.27 2.52 0.04 0.59 0.01

ρ = 0.6 ĤLC -1.49 0.34 0.19 1.76 0.03 0.42 0.00
γ̂ 0.70 0.21 0.05 0.13 0.00 0.21 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.51 0.00
KPSSµ 0.07 0.93 0.07 0.01 0.00 0.88 0.00
d̂GPH 0.16 0.48 0.24 0.10 0.16 0.61 0.16
d̂HP 0.17 0.28 0.41 0.10 0.17 0.34 0.17
d̂LW 0.15 0.46 0.40 0.09 0.15 0.61 0.15

ρ̂1 0.70 0.16 0.07 0.38 0.01 0.23 0.00
ρ̂ 0.70 0.25 0.10 0.24 0.01 0.27 0.00

ĈIR 3.33 3.69 1.01 1.85 0.13 16.40 0.04
L̂AR 1.43 0.27 0.13 1.70 0.03 0.35 0.01

ρ = 0.7 ĤLC -1.31 0.19 0.09 1.20 0.02 0.25 0.01
γ̂ 0.75 0.17 0.04 0.14 0.00 0.18 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.38 0.00
KPSSµ 0.07 0.93 0.06 0.00 0.00 0.86 0.00
d̂GPH 0.26 0.50 0.31 0.18 0.25 0.62 0.25
d̂HP 0.27 0.40 0.44 0.19 0.27 0.47 0.27
d̂LW 0.26 0.47 0.43 0.17 0.25 0.61 0.25

ρ̂1 0.90 0.03 0.01 0.27 0.01 0.06 0.00
ρ̂ 0.89 0.04 0.01 0.11 0.00 0.06 0.00

ĈIR 9.77 4.22 1.14 7.10 0.56 18.16 0.24
L̂AR 1.12 0.04 0.01 0.50 0.01 0.07 0.00

ρ = 0.9 ĤLC -1.08 0.03 0.01 0.35 0.01 0.05 0.00
γ̂ 0.86 0.07 0.01 0.14 0.00 0.08 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.09 0.00
KPSSµ 0.14 0.86 0.04 0.01 0.00 0.75 0.01
d̂GPH 0.60 0.69 0.62 0.50 0.60 0.76 0.60
d̂HP 0.67 0.70 0.71 0.54 0.66 0.75 0.66
d̂LW 0.65 0.68 0.69 0.52 0.65 0.74 0.64

1 See notes in table 7.
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C Additional Results for Fractionally Integrated (long-memory) Processes

Contamination with deterministic trend. Figure C.1 shows results for slope values be-

tween 0.001 and 0.01 with steps of 0.001 and different values of d. The results

indicate that the model-specific estimators have a higher RMSE or higher deviations

from the uncontaminated cases for lower values of d. The RMSE or deviations from

the uncontaminated cases are small for higher values of ρ. The most robust estimator,

in this case, according to the figure is the d̂HP estimator.

Contamination with cycles. Figure C.2 shows the results for a cycle-contaminated process

with amplitudes from 0.2 to 1.5, and frequency values between 0 and 0.5. The model-

specific parameters increase their RMSE when the cycle’s frequency and the level

of d are low. The deviations of the nonparametric and the autoregressive estimators

increase with the cycle’s amplitude.

Contamination with small measurement errors. Figure C.3 shows the results when the

measurement error takes on multiple signal-to-noise ratio values, specifically from

0.5 to 1.5. The RMSE of the long-memory estimators increases with the signal-to-

noise and the level of d; however, the d̂GPH estimator displays RMSEs near zero for

any values of the snr and d. The deviation from the uncontaminated case of the γ̂

estimator increases with the signal-to-noise and underestimates persistence, in contrast

to previous contaminations.

Contamination with additive outliers. Figure C.4 shows the results for when the size of the

outlier changes and takes on values between 0.2 and 1.2. The long-memory estimators

yield very low RMSEs, which only increase when d is high and the estimators are the

d̂HP. The d̂GPH estimator yields very low RMSEs irrespective of the size of the outlier.

The nonparametric and autoregressive estimators deviate little from the uncontaminated

case; however, the latter might not provide the correct information.
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Contamination with structural change. Figure C.5 shows the results when the structural

change can take on different probabilities and sizes. The RMSE of the long-memory

estimators is lower for high values of d and higher for increasing values of θ. The d̂HP

estimator display the lowest RMSE for lower values of d. The deviations from the

uncontaminated case of the nonparametric estimator also increase with the size of the

structural change.

Contamination with temporary change outliers. Figure C.6 shows the estimated persis-

tence when the temporary change outlier can take on different values of size, θ, and the

duration, α, which lies between 0 and 1. The RMSEs of the long-memory estimators

are the lowest, only increasing when the α is one or the value of d is high.
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Figure C.1: Performance of d̂GPH, d̂HP,γ̂, and ρ̂ Estimators of Persistence for Fractionally
Integrated Processes with Parameter d Contaminated with a Deterministic Trend1

1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, d̂GPH and d̂HP, and the estimated value for the nonparametric estimator, γ̂, and the autoregressive estimator, ρ̂.
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Figure C.2: Performance of d̂GPH, d̂HP, γ̂, and ρ̂ Estimators of Persistence for Fractionally
Integrated Processes with Parameter d Contaminated with a Deterministic Cycle1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, d̂GPH and d̂HP, and the estimated value for the nonparametric estimator, γ̂, and the autoregressive estimator, ρ̂.
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Figure C.3: Performance of d̂GPH, d̂HP, γ̂, and ρ̂ Estimators of Persistence for Fractionally
Integrated Processes with Parameter d Contaminated with a Small Measurement Error1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, d̂GPH and d̂HP, and the estimated value for the nonparametric estimator, γ̂, and the autoregressive estimator, ρ̂.
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Figure C.4: Performance of d̂GPH, d̂HP, γ̂, and ρ̂ Estimators of Persistence for Fractionally
Integrated Processes with Parameter d Contaminated with an Additive Outlier1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, d̂GPH and d̂HP, and the estimated value for the nonparametric estimator, γ̂, and the autoregressive estimator, ρ̂.
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Figure C.5: Performance of d̂GPH, d̂HP,γ̂, and ρ̂ Estimators of Persistence for Fractionally
Integrated Processes with Parameter d Contaminated with a Structural Change1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, d̂GPH and d̂HP, and the estimated value for the nonparametric estimator, γ̂ and the autoregressive estimator, ρ̂.
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Figure C.6: Performance of d̂GPH, d̂HP,γ̂, and ρ̂ Estimators of Persistence for Fractionally
Integrated Processes with Parameter d Contaminated with a Temporary Change Outlier1
1 Calculations based on 1,000 realizations of a time series with 4,096 observations. We show the RMSE for the model-specific
estimators, d̂GPH and d̂HP, and the estimated value for the nonparametric estimator, γ̂ and the autoregressive estimator, ρ̂.
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Table C.1: Estimators or Tests for Time-series Persistence for Fractional Integrated Processes
with Parameter d 1

Parameter Estimator or Test FI(d) Contamination (Difference between contaminated and uncontaminated estimators, FI(d), in absolute value)1,2

Trend Cycle SME AO SC TCO
(β = 0.005) (A = 1, f = 0.01) (SNR = 1) (θ = 1.2, p = 0.025) (θ = 1, p = 0.6) (θ = 1, α = 0.5)

ρ̂1 0.24 0.75 0.51 0.08 0.23 0.88 0.25
ρ̂ 0.44 0.97 0.75 0.17 0.43 0.97 0.44

ĈIR 1.32 3.99 2.05 1.09 1.31 13.38 1.33
L̂AR 4.27 1.34 1.97 23.87 4.41 1.14 4.13

d = 0.2 ĤLC -3.29 -1.24 -1.69 -16.89 -3.39 -1.10 -3.20
γ̂ 0.58 0.32 0.11 0.06 0.00 0.32 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.84 0.00
KPSSµ 0.27 0.73 0.26 0.09 0.01 0.69 0.01
d̂GPH 0.20 0.37 0.10 0.10 0.00 0.51 0.00
d̂HP 0.18 0.00 0.35 0.10 0.00 0.02 0.00
d̂LW 0.18 0.36 0.33 0.10 0.00 0.52 0.00

ρ̂1 0.56 0.81 0.68 0.23 0.55 0.91 0.56
ρ̂ 0.77 0.96 0.85 0.57 0.77 0.97 0.77

ĈIR 2.29 5.53 3.16 1.30 2.23 16.60 2.28
L̂AR 1.81 1.24 1.48 4.53 1.85 1.11 1.81

d = 0.4 ĤLC -1.57 -1.17 -1.34 -3.47 -1.60 -1.08 -1.58
γ̂ 0.71 0.20 0.05 0.12 0.00 0.21 0.00

ADF 1.00 0.00 0.00 0.00 0.00 0.71 0.00
KPSSµ 0.57 0.43 0.27 0.05 0.00 0.39 0.00
d̂GPH 0.40 0.18 0.06 0.14 0.00 0.31 0.01
d̂HP 0.37 0.00 0.19 0.16 0.00 0.03 0.01
d̂LW 0.39 0.18 0.16 0.13 0.00 0.31 0.01

ρ̂1 0.78 0.87 0.82 0.44 0.77 0.93 0.78
ρ̂ 0.89 0.95 0.91 0.79 0.89 0.97 0.89

ĈIR 4.90 8.56 5.87 1.83 4.68 21.13 4.83
L̂AR 1.28 1.16 1.22 2.32 1.30 1.08 1.29

d = 0.55 ĤLC -1.20 -1.11 -1.16 -1.94 -1.21 -1.06 -1.20
γ̂ 0.83 0.08 0.01 0.14 0.00 0.10 0.00

ADF 0.97 0.00 0.00 0.03 0.00 0.57 0.00
KPSSµ 0.72 0.26 0.10 0.02 0.00 0.21 0.01
d̂GPH 0.56 0.08 0.04 0.14 0.00 0.18 0.01
d̂HP 0.52 0.00 0.10 0.19 0.00 0.03 0.01
d̂LW 0.54 0.07 0.08 0.14 0.00 0.18 0.01

ρ̂1 0.84 0.89 0.86 0.53 0.83 0.94 0.84
ρ̂ 0.92 0.95 0.93 0.85 0.92 0.97 0.92

ĈIR 6.92 10.83 7.92 2.23 6.58 23.68 6.79
L̂AR 1.19 1.13 1.16 1.93 1.20 1.07 1.20

d = 0.6 ĤLC -1.14 -1.09 -1.11 -1.66 -1.15 -1.05 -1.14
γ̂ 0.86 0.05 0.01 0.13 0.00 0.07 0.00

ADF 0.90 0.00 0.00 0.07 0.00 0.54 0.00
KPSSµ 0.78 0.18 0.08 0.00 0.00 0.16 0.00
d̂GPH 0.61 0.06 0.03 0.14 0.00 0.14 0.00
d̂HP 0.56 0.01 0.07 0.21 0.01 0.03 0.01
d̂LW 0.59 0.05 0.07 0.13 0.00 0.14 0.01

ρ̂1 0.92 0.93 0.93 0.71 0.92 0.96 0.92
ρ̂ 0.96 0.96 0.96 0.91 0.95 0.97 0.95

ĈIR 14.95 18.78 16.02 3.77 14.09 31.50 14.58
L̂AR 1.09 1.07 1.08 1.44 1.09 1.05 1.09

d = 0.7 ĤLC -1.06 -1.05 -1.06 -1.31 -1.07 -1.03 -1.06
γ̂ 0.92 0.01 0.00 0.10 0.00 0.03 0.00

ADF 0.65 0.00 0.00 0.13 0.00 0.29 0.00
KPSSµ 0.86 0.06 0.03 0.00 0.00 0.07 0.00
d̂GPH 0.72 0.02 0.02 0.13 0.00 0.07 0.01
d̂HP 0.66 0.01 0.06 0.25 0.01 0.05 0.01
d̂LW 0.70 0.02 0.04 0.13 0.00 0.07 0.00

ρ̂1 0.99 0.99 0.99 0.93 0.99 0.99 0.99
ρ̂ 0.99 0.99 0.99 0.98 0.99 0.99 0.99

ĈIR 116.99 119.21 119.28 20.77 107.59 135.65 112.45
L̂AR 1.01 1.01 1.01 1.08 1.02 1.01 1.01

d = 0.9 ĤLC -1.01 -1.01 -1.01 -1.06 -1.01 -1.01 -1.01
γ̂ 0.97 0.00 0.00 0.04 0.00 0.00 0.00

ADF 0.11 0.00 0.01 0.03 0.01 0.01 0.00
KPSSµ 0.93 0.01 0.00 0.00 0.00 0.01 0.00
d̂GPH 0.92 0.00 0.01 0.10 0.00 0.01 0.00
d̂HP 0.90 0.00 0.01 0.32 0.00 0.00 0.00
d̂LW 0.90 0.00 0.01 0.10 0.00 0.01 0.00

1 See notes in table 12.
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