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Automated Calibration of Farm-Sale Mixed Linear Programming 
Models using Bi-Level Programming 
Wolfgang Britz 
University of Bonn 

 

Abstract 
We calibrate Linear and Mixed Integer Programs with 
a bi-level estimator, minimizing under First-order-con-
ditions (FOC) conditions a penalty function consider-
ing the calibration fit and deviations from given param-
eters. To deal with non-convexity, a heuristic generates 
restart points from current best-fit parameters and 
their means. Monte-Carlo analysis assesses the ap-
proach by drawing parameters for a model optimizing 
acreages under maximal crop shares, a land balance 
and annual plus intra-annual labour constraints; a 
variant comprises integer based investments. Resulting 
optimal solutions perturbed by white noise provide cal-
ibration targets. The approach recovers the true pa-
rameters and thus allows for systematic and automated 
calibration. 

Keywords 
linear programming; mixed linear programming; cali-
bration; bi-level programming; farm-scale model 

1 Introduction 
A stronger focus of agricultural policy on agri-environ-
mental interactions and on the differentiated farm-scale 
impacts of policy instruments has renewed the interest 
in programming models (cf. BRITZ et al., 2012). Here, 
two strands can be observed in literature. The first 
builds on Positive-Mathematical Programming (PMP, 
HOWITT, 1995, for a review see HECKELEI et al., 2012). 
By introducing non-linearities, PMP allows for interior 
solutions and calibration of models where the number 
of binding constraints is lower than the number of non-
zero variables subject to calibration. That led to PMP 
based programming models with a quite limited con-
straint set. Such models operate at regional level (cf. 
BRITZ and WITZKE, 2012), at the level of farm types 
inside regions (cf. GOCHT and BRITZ, 2011) or at single 
farm level (cf. LOUHICHI et al., 2015), covering small 
regions or even whole Europe (BRITZ and WITZKE, 
2012; LOUHICHI et al., 2015). The simulation behav-
iour of PMP based models is to a large degree deter-
mined by the non-linear terms. This motivates a body 

of literature dealing with estimating and calibrating 
PMP type models (cf. MEREL and BUCARAM, 2010; 
HOWITT et al., 2012), including efforts to bridge the 
gap between econometric work and programming mod-
els (cf. JANSSON and HECKELEI, 2011; ARATA and 
BRITZ, 2019). The estimation of parameters of pro-
gramming models in their FOC is termed “Econometric 
Mathematical Programming” (EMP) by BUYSSE et al. 
(2007), for a review see DE FRAHAN (2019), the cited 
applications estimate dual cost functions. This paper 
links to this body of literature by exploring the applica-
tion of EMP to Linear Programming (LP) and Mixed 
Linear Programming (MIP) models. 

Whereas PMP requires non-linearities, LP and 
MIP approaches are more common for detailed so-
called bio-economic farm-scale models, for a review 
see JANSSEN and ITTERSUM (2007). Here, the alloca-
tive response depends solely on the interplay between 
the linear objective and the linear constraints: as any 
(not degenerate) solution is always on the corner of the 
constraint set, changes in a simulation imply a jump 
from one such corner to another. Furthermore, in any 
LP solution, the number of variables away from their 
bounds is at most as high as the number of binding con-
straints. A LP hence requires a rich constraint set to 
avoid highly specialized solutions. Integer variables, 
for instance to depict indivisibilities in investments, are 
common in this type of model. 

The seminal paper by HOWITT (1995) on PMP fo-
cuses on the FOC during calibration of programming 
models, i.e. calibration reduces or even completely re-
moves differences between marginal costs and reve-
nues. Here, a two-step approach is common both in 
price endogenous market and farm-scale models. First, 
data are corrected to fit into the model’s constraints. 
While data balancing for market-scale models requires 
typically advanced balancing techniques (cf. RODRI-
GUEZ, 2014; BRITZ, 2021), farm scale models rely 
mostly on simpler approaches such as scaling resource 
coefficients to remove infeasibilities. A second step, 
often called benchmarking, choses parameters such 
that production and behavioural functions replicate the 
observed data. Here, certain parameters are considered 
as fix and given, such as substitution elasticities. Others 
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are then chosen such that behavioural and productions 
functions replicate observed quantities at observed 
prices, in case of PMP, entries in the objective function. 

In opposite to the growing literature body on PMP, 
little has been published on calibration of constraint-
rich farm-scale models, which might also reflect their 
declined use after the emergence of PMP. TROOST and 
BERGER (2014) report in detail on a systematic ap-
proach not applying PMP. JAYET et al. (2020) in their 
model documentation describe the calibration of the 
Europe-wide farm type LP Aropaj as “The calibration 
algorithm is based on sequential calculations, combin-
ing Monte-Carlo and gradient methods. In practice, 
randomization of calibration parameters alternating 
with ‘local’ gradient based improvement of the crite-
rion is generated from a large number of LP runs for 
each of AROPAj farm groups.” While the authors re-
port which parameters are subject to calibration (maxi-
mal cropping shares, feed requirement, livestock life 
cycle) and how squared differences from observed 
acreages, herd sizes and feed use are weighted to define 
the penalty to minimize, the reference above is all detail 
given on the algorithm itself, beside reporting that be-
tween 1,000 and 2,000 runs of each LP are performed. 

We develop in here a generic bi-level based pro-
gramming approach which penalizes deviations from a-
priori distributions both of parameters and of error 
terms between simulated and observed values. The pa-
per is organized as follows. We next present an algo-
rithmic approach discussing how to systematically re-
move infeasibilities, to calibrate the model and to avoid 
degenerate solutions resulting from calibration. The ap-
proach estimates (selected) parameters of a LP or MIP 
under some maximizing behaviour. We follow with ap-
plications to two smaller farm-scale didactic models, a 
LP and MIP. We test and assess the algorithm on vari-
ants of these models, solved for one or simultaneously 
for multiple years. In the latter case, degrees of free-
doms do not longer allow for perfect calibration. Spe-
cifically, we randomly generate parameters for the 
model, add normal distributed white noise of different 
variance to its optimal solution, and finally use the al-
gorithm to calibrate the model against these observa-
tions. We assess the achieved calibration fit, the com-
puting load and if the algorithm recovers in average the 

                                                      
1  We do not explicitly treat in the following mathematical 

presentation the case of equality constraints, lower and 
upper bounds on the decision variables or the case of free 
decision variables, such as an activity which captures 
both buying and selling of a net-put. The proposed esti-
mator covers all these cases. The case of a double 

original parameters. After presenting these applica-
tions, we discuss before we summarize. 

2 Methodology 

This section comprises three interlinked parts. We will 
first introduce the bi-level estimation framework; next 
address how to deal during calibration with constraints 
where both the RHS entry and resource coefficients are 
considered fixed, and finally introduce a modification 
to the objective function which reduce the step-sizes of 
the marginal cost curves in the LP to improve calibra-
tion. 

2.1 General Setup of Bi-Level Problem 
As in HOWITT (1995), we start with the following 
gross-margin maximization problem at farm scale: 

max
𝑥𝑥

�𝑔𝑔𝑔𝑔𝑗𝑗
𝑗𝑗

𝑥𝑥𝑗𝑗 

𝑠𝑠. 𝑡𝑡.�𝑎𝑎𝑖𝑖𝑗𝑗
𝑗𝑗

𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖 [𝛼𝛼𝑖𝑖] 

𝑥𝑥𝑗𝑗 ≥ 0 

(1) 

With x being the vector of non-negative decision vari-
ables indexed with j, b the constraint vector indexed 
with i, 𝛼𝛼 the related duals, gm the vector of objective 
function entries (gross margins) and a the coefficients 
related to the constraints1. 

The PMP literature mostly discusses the case of 
perfect calibration against one observation of acreages 
and herd sizes as decision variables, treating the coef-
ficients a as fix. Applications of EMP such as ARATA 
and BRITZ (2019) estimating with degrees of freedom 
introduce error terms on decision variables. We follow 
this approach in here such that observed levels might 
not be perfectly matched. A necessary condition for 
calibration of non-zero decision variables x in (1) is the 
balance of marginal revenues and marginal costs, po-
tentially considering multiple observations t: 

𝑔𝑔𝑔𝑔𝑗𝑗,𝑡𝑡 −�𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑖𝑖,𝑡𝑡
𝑖𝑖

= 0  (2) 

bounded variable is included in the example as crop acre-
ages are both non-negative and partly upper bounded 
based on maximum shares on the total land. We also have 
the land balance as an equality in the constraint set of our 
didactic model. 
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This fundamental requirement is the cornerstone of 
PMP. Replacing the linear objective by, for instance, 
by a quadratic function, allows for interior solutions. 
Appropriate parameterization generates a strictly con-
vex problem, such that second order conditions (SOC) 
hold at the calibration point. Additionally, the con-
straints of (1) must be feasible at the observed point. 

Our bi-level program (VICENTE and CALAMA,I 
1994) for calibration relates instead to a linear model 
and considers (certain) entries in a, potentially ele-
ments of b, the gross margins gm and the x as observed 
with errors. We, therefore, introduce a penalty function 
𝑔𝑔(𝑥𝑥,𝑔𝑔𝑔𝑔,𝑎𝑎, 𝑏𝑏) minimized under the FOCs and con-
straints of (1): 

min
𝑥𝑥,𝑎𝑎,𝑔𝑔𝑔𝑔,𝑏𝑏,𝛼𝛼

𝑔𝑔(𝑥𝑥,𝑎𝑎,𝑔𝑔𝑔𝑔, 𝑏𝑏) 

𝑠𝑠. 𝑡𝑡 

�𝑔𝑔𝑔𝑔𝑗𝑗,𝑡𝑡 −�𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑖𝑖,𝑡𝑡
𝑖𝑖

� 𝑥𝑥𝑗𝑗,𝑡𝑡 = 0 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗, 𝑡𝑡 

�𝑏𝑏𝑖𝑖 −  �𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗,𝑡𝑡
𝑗𝑗

�𝛼𝛼𝑖𝑖,𝑡𝑡 = 0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖, 𝑡𝑡 

𝑔𝑔𝑔𝑔𝑗𝑗,𝑡𝑡 −�𝑎𝑎𝑖𝑖𝑗𝑗𝛼𝛼𝑖𝑖,
𝑖𝑖

≤ 0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖, 𝑡𝑡 

�𝑎𝑎𝑖𝑖𝑗𝑗
𝑗𝑗

𝑥𝑥𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖 

𝑥𝑥𝑗𝑗 ≥ 0 

𝛼𝛼𝑖𝑖 ≥ 0 

(3) 

Bi-level problems were first introduced by Stackelberg 
and mainly optimize some leader strategy subject to the 
followers’ optimal answer. Here, they are applied to an 
estimation framework where the inner problem com-
prises the constraints and FOC of model (1). The outer 
problem is the estimator which “proposes” parameters 
to the inner one. It “responds” by returning the optimal 
primal and dual solution x, 𝛼𝛼 at these parameter values 
or by reporting the infeasibilities. This process in en-
capsulated in a gradient based solver. The applications 
of EMP by JANSSON and HECKELEI (2011) or ARATA 
and BRITZ (2019) are formally equal to (3), but relate to 
problems with a quadratic objective.  

                                                      
2  As we will discuss later, degenerate solutions are com-

monly found and will mean that perfect calibration in the 
strict sense is not possible. See next section. 

Our application differs from these examples by 
considering multiple constraints as inequalities. More 
important, there is no second-differentiable production 
(or cost respectively profit) function which guarantees 
a unique solution to (3) and/or helps to reduce non-con-
vexities in the solution space. Equally, the number of 
inequalities in our model is large compared to the num-
ber of decision variables, a typical feature of bio-eco-
nomic models. Finally, we also consider the case of in-
teger variables. 

In opposite to the linear model (1) to optimize, the 
bi-level calibration problem (3) comprises cubic equal-
ity and quadratic in-equality constraints: the parameters 
a, the decisions variables x and the duals 𝛼𝛼 are esti-
mated simultaneously and their products occur in its 
first three constraints of (3). The first two cubic expres-
sions are not strictly convex. They express FOC in the 
Karush-Kuhn-Tucker (KKT) form, due to non-negativ-
ity conditions on x and the presence of inequality con-
straints; related duals 𝛼𝛼 can be zero. These non-convex-
ities render the problem numerically demanding. We 
present therefore an algorithm to improve solving such 
bi-level programming approaches. 

We assess below applications with negative de-
grees of freedom where more parameters are estimated 
than elements of x entering the penalty function, such 
that perfect calibration is likely possible.2 Solving sim-
ultaneously for multiple years can imply positive de-
grees of freedom, instead. The bi-level problem (3) 
captures hence the continuum between (perfect) cali-
bration and an estimation of parameters of the Leontief 
production function in (1) under the assumption of 
profit maximizing behaviour. 

2.2 Data Balancing 
The PMP literature rarely discusses cases where (1) is 
infeasible at the calibration point, probably as PMP 
based models typically comprise few constraints. Many 
PMP based models comprise, besides a land balance, 
only restrictions relating to policy instruments such as 
set-aside obligations which act as a (direct) binding 
constraints to the production mix (cf. FFSIM: LOUHI-
CHI et al., 2010; IFM-CAP: LOUHICHI et al., 2015). In 
detailed bio-economic models, infeasibilities are more 
likely to occur during calibration. (3) comprises the 
constraints of the model used for simulation (1), such 
that the bi-level estimator will also (try to) remove any 
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infeasibilities implied by the coefficients a and the 
RHS vector b at the observed point x. 

If not all a and b are subject to calibration, or 
bounds on them present, feasibility and thus perfect 
calibration cannot be guaranteed. We, therefore, mini-
mize first squared differences between the calibration 
targets 𝑥𝑥𝚥𝚥,𝑡𝑡�  and a feasible solution 𝑥𝑥𝑗𝑗,𝑡𝑡 in a separate data 
balancing step (4). This sub-model comprises solely the 
constraints comprising fixed coefficients not subject to 
estimation, in here the land balance and maximal crop 
shares. Optimizing (4) provides a new solution 𝑥𝑥𝑗𝑗,𝑡𝑡 
where perfect calibration is at least technically feasible, 
and shows the impact of fixing some coefficients. In 
real world models, (4) might comprise constraints re-
lating to policy instruments where resource coefficients 
and RHS entries are fixed and given by the law book. 

min
𝑥𝑥
𝑔𝑔(𝑥𝑥) =��𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝑥𝑥𝚥𝚥,𝑡𝑡� �2

𝑗𝑗,𝑡𝑡

 

𝑏𝑏𝚤𝚤� −  �𝑎𝑎𝚤𝚤𝚥𝚥����𝑥𝑥𝑗𝑗,𝑡𝑡
𝑗𝑗

≥ 0, 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠 𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 

𝑥𝑥𝑗𝑗 ≥ 0  

(4) 

Using only constraints with fixed coefficients in (4) re-
sults in linear constrains. This allows including integer 
variables as modern MIP solvers work efficiently for lin-
early constrained problems with a quadratic objective. 
Subsequent calibration steps should be judged against 
the solution of (4), and not against the original targets 
𝑥𝑥𝚥𝚥,𝑡𝑡� . (4) can be dropped if all coefficients a and b are sub-
ject to calibration and their bounds do not prevent perfect 
calibration, or if sub-perfect calibration is accepted. The 
link of (4) to the bi-level problem (3) is threefold. First, 
the fixed coefficients in (4) will also be fixed in (3) and 
second, we will judge in the following the fit achieved 
by (3) against the solution of (4), and third, (4) provides 
a preliminary estimate for integer variables. 

2.3 Avoiding Degenerate Solutions 
For any vector of shadow prices 𝛼𝛼, there exists a vector 
of gross margins gm balancing the exhaustion condi-
tions (2) for the non-zero elements of x. If the number 
of non-zero x exceed the number of binding constraints, 
a set of linear dependent solutions will result. In this 
case, some decision variables can be shifted away from 
the calibration point(s) and others adjusted to keep the 
constraints feasible without changing the objective 
value. This is one reason why non-linearities are intro-
duced in PMP. 

Here, we borrow the idea of PMP to introduce 
some costs increasing in x, using a step-wise lineariza-
tion approach as proposed by SCHMID and SINABELL 
(2005). We introduce gross margin depression effects 
from more specialized programs, by reducing the gross 
margin of any crop stepwise by not more in total than 
1% of their expected mean; from a zero crop share to 
the maximal share allowed. These small gross margin 
changes should hardly impact the allocative response 
of the model and could in real-world applications be 
based on empirical evidence, e.g. considering preced-
ing crop effects. Let 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔𝑗𝑗,𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔 [ha] measure the 
amount by which crop j in year t exceeds an entry in 
critShare, a matrix of given crop specific shares at 
which a further gross margin depressions gmd occur. 
bland depicts the available land [ha] and gmDepr [€/ha] 
the changes in gross margins related to critShare such 
that the farm’s total gross margin 𝑔𝑔𝑔𝑔∗ to maximize 
now becomes: 

 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔𝑗𝑗,𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔

≥ 𝑥𝑥𝑗𝑗 −  𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑐𝑐𝑠𝑠�������������𝑗𝑗,𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏�𝑙𝑙𝑎𝑎𝑙𝑙𝑔𝑔 

𝑔𝑔𝑔𝑔∗

= ��𝑥𝑥𝑗𝑗,𝑡𝑡𝑔𝑔𝑔𝑔𝚥𝚥,𝑡𝑡�������
𝑗𝑗,𝑡𝑡

−  � 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔𝑗𝑗,𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑐𝑐���������𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔

� 

(5) 

The terms 𝑥𝑥𝑗𝑗,𝑡𝑡𝑔𝑔𝑔𝑔𝑗𝑗,𝑡𝑡 in the new objective function 
shown in the second line capture the gross margin 
changes of a crop between a zero share and the first el-
ement of critShare, the second term stepwise decreases 
each crop’s gross margin as its share grows. Assume 
100 critical shares 1%, 2%....100% and a maximal 
gross margin change of 1% of 500 €/ha, i.e. 5 € /ha in 
total. This results in a uniform decrease in gross mar-
gins of 5/100 = 0.05 €/ha in each depression step and 
provides a stepwise linearization of a quadratic relation 
between the gross margin of a crop gm and its acreage 
x. By using non-uniform gross margin decrements, any 
other convex relation might be recovered. We opt for 
an approach which increases the step-width up to the 
maximal allowed crop share. The resulting larger 
gross-margin changes at smaller crop shares are 
deemed favourable in calibration as they reduce rela-
tive errors.  
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In Figure 1, the blue curve indicates the  
marginal costs before introducing the terms 
∑ 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔𝑗𝑗,𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑠𝑠𝑚𝑚𝑐𝑐���������𝑗𝑗,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  in the objective, 
while the black one depicts them after their integration. 
The modification to the objective function reduces the 
step-width of the stepwise marginal cost curve of the 
LP. This dampens the unwanted impact of a potentially 
degenerate solution resulting from calibration where 
the primal solution can move between neighbouring 
points of the solution space without changing the ob-
jective. Such a case is depicted in Figure 1 where at the 
given gross margin gm, the decision variable can move 
between the points x1 and x2, reduced to x1 to x2’ by the 
modification. This stabilizes the bi-level estimation 
framework as moving variables by more than the cur-
rent step-width according to (5) will imply some small 
changes in the overall gross margin (steps on the black 
marginal cost curve in Figure 1). We consider fifty 
steps and let the step width at which changes occur in-
crease in the crop share with an exponent of 1.5, instead 
of using linear increments. This renders is likely that 
the relevant flat ranges depicting degenerate solutions 
after the modification become smaller (x1 to x2’ in Fig-
ure 1). Due to the non-linearity, this range will be de-
termined by the step width of the crop with the smallest 
crop share involved in the degeneracy. This is likely 
smaller than the average step width under the linear so-
lution (100%/50) as two crops with more than a 50% 
crop share can never occur in a degenerate solution. 

When referring in the following to (1) and the re-
lated bi-level problem (3), these problems comprise the 
(updated) equations from (5), i.e. the additional ine-
qualities defining 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔 and the updated objective 
function and its FOC. 

3 Technical Implementation and 
Restart Heuristics 

We describe in the following three key elements of im-
plementing the bi-level estimation. First, the use of a 
specific package in GAMS which eases its formulation 
and solution, second, how to detect primal degenerate 
solutions, and third, how to improve in cases the solver 
only finds a local optimum in the non-convex solution 
space, by systematically restarting the solver with dif-
ferent start values. 

3.1 Implementation and Solving of the  
Bi-Level Problem  

Our didactic example is encoded in GAMS (General 
Algebraic Modelling System), a set-driven Algebraic 
Modelling Language easing the translation from math-
ematical notation into computer code. GAMS provides 
transparent interfaces to solvers to efficiently optimize 
the LP or MIP (1) and the bi-level NLP problem (3). 
Program control features such as loop and if-else 
blocks and in-built functions allow us to perform the 
Monte-Carlo analysis presented below. The code is 
found in the annex (bilevel_calmip.gms).  

In order to generate problem (3) from an existing 
model (1), the FOC would need to be coded and equa-
tions defined where constraints are multiplied with 
their duals. This is cumbersome and error-prone for de-
tailed bio-economic farm-scale models comprising 
hundredth of different variables and equations. Further-
more, gradient based solvers for NLP problems will 
easily fail on the not strictly convex KKTs in (3). This 
is why specialized solvers are used for Mixed-Comple-
mentary Problems (MCP). However, such MCP prob-

lems do not comprise an objective 
function. We therefore draw on the 
Extended Mathematical Program-
ming package (EMP, FERRIS et al., 
2009) and the NLPEC solver (FER-
RIS and GAMS DEVELOPMENT, 
2009). We only need to define the 
simulation model (1) and the penalty 
function 𝑔𝑔(𝑥𝑥,𝑔𝑔𝑔𝑔,𝑎𝑎, 𝑏𝑏) in GAMS, as 
the EMP package allows, inter-alia, 
automatic formulation of the FOCs 
of a bi-level program. The NLPEC 
solver then provides smooth approx-
imations of the KKT conditions to 
overcome convexity issues. It dele-
gates the generated bi-level pro- 
gram to a multi-purpose NLP solver. 

Figure 1.  Modified marginal cost curve 

 
Source: authors 
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Generally, the bi-level problem should comprise all po-
tentially binding constraints. For sake of simplicity, all 
constraints can be added, including cases such as pure 
reporting identities known to never carry a dual value. 
So far, not many applications of this package to eco-
nomic problems are found in literature (cf. BRITZ et al., 
2013; KUHN et al., 2016; ARATA and BRITZ, 2019).  

 Before solving the bi-level problem, we optimize 
model (1) at current parameter values. This provides a 
feasible starting solution to (3) as all FOCs of the lower 
model are satisfied and no constraints are violated. 
From there, the solver starts its search towards a solu-
tion close to the calibration targets by updating param-
eters. We use the so-called penalty formulation offered 
by the EMP package which moves the KKT conditions 
into the objective function of the bi-level program. Ac-
cordingly, only constraints including bounds on deci-
sion variables of (1) enter (3) as constraints. We solve 
the problem twice, first with a weight of 1/100 for the 
KKT conditions in the objective (initMu in the NLPEC 
steering file). This low weight for KKT violations  
allows the solver to update parameters quite easily. 
However, this implies that the resulting solution only 
represents a primal feasible solution to the LP with con-
siderable dual infeasibilities, i.e. the resulting solution 
is sub-optimal. In a second final solve, the weight for 
KKT violations is increased to 1.E+6 (finalMu in the 
NLPEC steering file) to remove dual infeasibilities. 
CONOPT4 finds a local minimum to the bi-level prob-
lem typically in a few seconds as long as the number of 
observations is small, benefitting from parallelism. 

3.2 Detecting Degenerate Solutions and 
Improving on Local Optima 

Problem (3) is not convex as the SOC are zero. It allows 
for (and will in many cases result in) degenerate solu-
tions rooting in linear dependencies. Restarting the 
solver on the simulation model (1) at estimated param-
eters will likely simply reproduce the primal solution 
of (3), even if it is degenerate. Therefore, after solving 
(3), we reset all decision variables to zero and solve the 
LP at the estimated parameters with a different solver 

                                                      
3  We repeatedly switch between five variants of the pertur-

bation. The first two perturb based on the current best  
set of parameters, only, multiplying each parameter  
with 𝑁𝑁(1; 0.05) and 𝑁𝑁(1; 0.10), respectively. The third 
one multiplies it with 𝑁𝑁(1; 0.10) and adds 𝑁𝑁(1; 0.01) 
times the a-priori mean of all parameters. Similarly, the 
fourth one multiplies the current best parameters with 

to check for deviations. In case of integers being pre-
sent, they will be unfixed in this solve which can pro-
voke additionally differences between the optimum of 
the bi-level problem and the subsequent solve of (1). 

Finding a global optimum for a bi-level program-
ming approach where the inner problem comprises in-
equalities and bounds is computationally challenging. 
Improved calibration of the model typically requires 
switching the slack status of multiple inequality con-
straints. A gradient based solver will typically not con-
sider changes in the RHS or coefficients in currently 
non-binding constraints, as they have no impact on the 
duals or the feasibility status. It will, therefore, tend to 
find a local optimum only, depending on its start val-
ues. To improve here, we need an outer loop which of-
fers different start points to the gradient based solver 
(even if no integers are present). 

With a sufficiently small parameter space, system-
atic search algorithms such as a grid search might be 
used for this. As already smaller changes in parameters 
can have a larger impact on the model’s fit, a quite fine-
grained grid would be needed. Already three grid 
points such as [lower bound, mode, upper bound] for 
each of the twenty parameters in our model would 
mean 3^20 tries which is computationally impossible. 
We draw here instead on the algorithm proposed by 
SCHÄFER and BRITZ (2017) which construct restart 
points by perturbing stochastically the current best pa-
rameters (see also Figure 3). 3 

The outer-loop requires at least a maximum num-
ber of re-starts of the bi-level problem as a stopping cri-
terion, here chosen as hundred to test many models in 
a Monte-Carlo analysis. In applications to one actual 
model, only, a higher number might be appropriate. Be-
sides restricting the maximum number of starting 
points, one might stop testing further restart points once 
a parameter set offers a satisfactory fit, here defined 
based on the deviations from the calibration targets, 
and not considering deviations from expected parame-
ters values: 

𝑓𝑓𝑖𝑖𝑡𝑡 =
1

𝑇𝑇 ∗ 𝐽𝐽
��𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝑥𝑥𝚥𝚥,𝑡𝑡� �2

𝑗𝑗,𝑡𝑡

  (6) 

𝑁𝑁(1; 0.50) and adds 𝑁𝑁(1; 0.10) times the a-priori mean 
to others. The last one only uses the expected mode of the 
parameters, adding 𝑢𝑢(−0.5; 2.5). These choices are 
clearly arbitrary and the outcome of some testing. Still, 
as they are defined relative to the expected parameter 
modes and current best parameter values, they can be 
used with other problems as well. 
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The fit is not measured based on the solution of (3) re-
turned by the solver. Instead, we reset all x to zero and, 
potentially, unfix integers and solve the primal model 
(1) at the parameter estimates, to detect potential de-
generate solutions. 

Repeated restarts until a very accurate threshold in 
(6) is reached will improve in average over many cali-
bration exercises the fit at the cost of higher run time 
and vice versa. We opt here for a compromise which 
increases the threshold of what is considered a suffi-
cient fit the more restart points where already tested.  
In the didactic application below, the fit relates to aver-
age squared deviations in ha, with acreages adding up 
to 100. We start with a minimal fit of zero in the first 
trial, linearly increased to two at maximum of 100  
trials. Starting with a very low threshold will trigger  
restarts of the bi-level estimator even if the accuracy  
of early trials is already quite high to allow for cheap 
further improvements. We consider the chosen maxi-
mal threshold of two as sufficiently close to the “true” 
observations after one hundred trials; the typical fit 
achieved is far better as discussed below, as long as the 
number of observations is small. Increasing the thresh-
old slightly after each restart also reflects that perfect 
calibration with multiple observations is often impossi-
ble. Furthermore, as discussed in section 2.3 above, the 
step sizes of the gross margin changes in (5) determine 
ultimately the possible calibration quality. 

Incorporating integer variables directly in the bi-
level estimation framework is not possible with our 
solver, preventing a generic approach for MIP prob-
lems. If coefficients relating to integer variables are 
treated as fixed and given, integers variables can be 
fixed in the bi-level estimator. They become free vari-
ables in the subsequent solve at currently drawn param-
eters to assess the fit. In our tests, the algorithm could 
in average considerably improve the calibration com-
pared to the “true” parameters with integer variables4 
present, as long as the number of observations was 
small. That is surprising as, once integers are present, 
not only the FOC must hold at the current parameter 
choice, but the resulting objective must also be higher 
than any other integer solution. This condition cannot 
be tested in an estimation framework for larger number 
of integers. 

                                                      
4  The GAMS code comprises the necessary code to test the 

discussed extension of the model with integer variables 
and the changes in calibration set-up. 

4 An Example Application 

The example application uses a clearly defined data 
generation process and not empirical observations, 
such as found in Farm Accountancy Data Network. 
This allows to judge the properties of the bi-level esti-
mation process, for instance, with regard to recover 
“true” para-meters, which are unknown when using 
empirical data. Instead, we construct rather simple LP 
and MIP models for which we draw parameters in a 
Monte-Carlo analysis, perturb their optimal solution 
with white noise and then let the bi-level estimator find 
parameters which calibrate them. 

4.1 Model Setup 
Our didactic model (see Table 1) covers five crops and 
comprises elements related to crop production found in 
most bio-physical models: a land balance, maximal 
cropping shares, and annual and monthly labour con-
straints. The version comprising integers add machin-
ery requirements and related investments. While land 
and yearly labour endowments as well as maximal crop 
shares are fixed, we generate variants based on Monte-
Carlo analysis where other endowments and model co-
efficients differ. 

Specifically, we consider different labour endow-
ment available in three peak months as variying con-
straints. Each peak month has a labour endowment of 
50% above the 1,000 hours available annually divided 
by twelve months, perturbed for the variants by a uni-
form distribution of u(0.9;1.1). Revenues in € per ha for 
each crop and year are drawn stochastically from a uni-
form distribution u(1,000;1,200) and costs in € per ha 
for each crop from u(400;500). We infer from there la-
bour needs per hour by making an assumption how 
much of the total gross margin of the farm remunerates 
land. The remainder of the total gross margin is used to 
estimate a shadow price per labour hour, and based on 
this, to derive an estimate of total labour needs per ha 
from revenue exhaustion for each crop. The total an-
nual labour needs for each crop serve as a basis to allo-
cate labour need shares to the three peak months, mul-
tiplied with u(0.75;1.25). For each observed year, we 
have hence ten potentially binding constraints (land, 
four labour constraints, five maximal cropping shares) 
and five decision variables. 
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Table 1.  Characteristics of didactic models  
subject to Monte-Carlo analysis 

Model block Elements Details 
Decision varia-
bles and objec-
tive function, 
LP 

Five crop acreages 
for 1 to 10 years 

Revenues differ by 
year (fixed), variable 
cost time independent 
(MC) 

Decision varia-
bles and objec-
tive function, 
MIP 

As above, integer 
based investments 
into different ma-
chines by type and 
size, once for all 
years 

Machinery costs and 
yearly operation ca-
pacity (fixed) 

Constraints 

Land balance RHS: 100 ha (fixed) 
Total annual la-
bour 

RHS: 1,000 hours 
(fixed); crop specific 
labour needs (MC) 

Labour in three 
peak months 

RHS: 1,000 hours / 
12 times * 1.5 
(+MC); crop specific 
labour needs (MC) 

Maximal crop 
shares 

Fixed 

Machinery needs 
(only MIP) 

Fixed 

Note: Elements indicated as fixed are not subject to calibration, 
MC: element is subject to Monte-Carlo analysis to test calibration 
of different variants of the same structural model. 
Source: authors 

 
In the model version with integer variables, we  

introduce machinery requirements covered by in- 
vestments taken for the whole period. We consider  
five machine types of different sizes [10; 50; 100],  
referring to the acreage in ha which can be operated  
per year. Related annual investment costs are 
[1,000; 4,000; 6,000]  €. This implies costs of 
[100; 80; 60] €/ha and year at full capacity use, i.e.  

increasing returns-to-scale. For each machinery type,  
a convex combination between neighbouring points  
of the concave set is endogenously chosen, where the 
chosen points are depicted by integer variables (see 
Figure 2). Machinery requirements at farm level are  
defined as the total acreage covered by the crops need-
ing the machine, in average over the years. Further de-
tails can be found in the GAMS code in the annex and 
in the supplementary material.  

Equation (7) below depicts the penalty function 
𝑔𝑔(𝑥𝑥,𝑔𝑔𝑔𝑔,𝑎𝑎, 𝑏𝑏) chosen for (3). Entries of crops into the 
land constraint are unity and not subject to calibration. 
The same holds for the maximal crop shares. Labour 
demands and the per hectare costs c are subject to cali-
bration, they are considered time-invariant, while we 
treat the RHS vector b as given. 

We introduce as the first term in the penalty func-
tion absolute squared differences between the simu-
lated 𝑥𝑥𝑗𝑗 and observed acreages 𝑥𝑥𝚥𝚥� , identical to (6). Sec-
ond, we add relative squared differences between the 
estimated per ha cost 𝑐𝑐𝑗𝑗 and the “true” parameters 𝑐𝑐𝑗𝑗 in 
the penalty function, and finally, squared relative dif-
ferences for the resource coefficients subject to calibra-
tion: 

min
𝑥𝑥,𝑐𝑐,𝑎𝑎,𝛼𝛼

𝑔𝑔(𝑥𝑥, 𝑐𝑐,𝑎𝑎) =𝑤𝑤𝑥𝑥��𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝑥𝑥𝚥𝚥,𝑡𝑡� �2

𝑗𝑗,𝑡𝑡

+ 𝑤𝑤𝑐𝑐��
𝑐𝑐𝑗𝑗 − 𝑐𝑐𝚥𝚥�
𝑐𝑐𝚥𝚥�

�
2

𝑗𝑗

 

+ 𝑤𝑤𝐴𝐴  ��
𝑎𝑎𝑖𝑖𝑗𝑗 − 𝑎𝑎𝚤𝚤𝚥𝚥�
𝑎𝑎𝚤𝚤𝚥𝚥�

�
2

𝑖𝑖,𝑗𝑗

 

(7) 

The weights 𝑤𝑤𝑥𝑥 for definition 
in x are as in (6); 𝑤𝑤𝑐𝑐 referring 
to the per ha costs c is equal to 
the number of crops, and the 
weights for the resource coef-
ficients subject to calibration 
𝑤𝑤𝐴𝐴 are equal to the number of 
constraints times the number 
crops. In a real world applica-
tion, differentiated weights 
across types of decision varia-
bles are likely, such as for 
crops and herd sizes. The use 
of relative squared deviations 
for the parameters is moti-
vated by the fact there is no 
common unit across resource 
and objective function coeffi- 

Figure 2.  Convex combination over a concave set of investment  
possibilities to depict returns-to-scale 

 
Source: authors 
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cients, such that penalizing absolute changes would 
make limited sense. This decision and the choice of the 
weights 𝑤𝑤𝑥𝑥, 𝑤𝑤𝑐𝑐   and 𝑤𝑤𝐴𝐴 will affect the estimates, espe-
cially the trade-off between model fit and deviations 
from the a-priori information on (certain) parameters. 
Results in here (see section 4.3) show small estimated 
errors on the here known coefficients in combination 
with a good fit. This gives some confidence that the 
chosen weights were appropriate. For empirical appli-
cations, a sensitivity analysis with the weights might be 
warranted. 

In order to test the calibration process, we first op-
timize (1) at the “true” parameters (partly randomly 
drawn). Next we add white noise error terms with dif-
fering 𝜎𝜎2 = [2,5,10] to the optimal solution 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to 
generate random calibration targets: 

𝑥𝑥𝚥𝚥,𝑡𝑡� = 𝑥𝑥𝑗𝑗,𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑛𝑛(0,𝜎𝜎2) (8) 

This implies that allocative decisions are observed with 
errors. The follow-up data balancing step ensures that 
calibration targets do not violate the maximal crop 
shares, the land balance and non-negative conditions; 
constraints with coefficients not subject to calibration. 
This step minimizes the first term of (7), targeting the 
outcome of (8): 

min
𝑥𝑥
𝑔𝑔(𝑥𝑥) =��𝑥𝑥𝑗𝑗,𝑡𝑡 − 𝑥𝑥𝚥𝚥,𝑡𝑡� �2

𝑗𝑗,𝑡𝑡

 

𝑠𝑠. 𝑡𝑡. 
�𝑥𝑥𝑗𝑗,𝑡𝑡 = 𝑏𝑏𝑙𝑙𝑎𝑎𝑙𝑙𝑔𝑔
𝑗𝑗

 

0 ≤ 𝑥𝑥𝑗𝑗,𝑡𝑡 ≤ 𝑔𝑔𝑎𝑎𝑥𝑥𝑐𝑐ℎ𝑎𝑎𝑐𝑐𝑠𝑠𝑗𝑗 

(9) 

The data generation process resulting from (8) and (9) 
cannot generate 𝑥𝑥𝑗𝑗,𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in average where some crops 
will be frequently zero at the optimum. Adding errors 
terms in (8) to zero observations and truncating at zero 
to ensure non-negativity of the observed in (9) will 
bring such zero observations in average over the draws 
into the solution. The land balance will then imply 
downward bias for non-zero observations. 

If the model is solved for multiple years, revenues 
r per hectare change stochastically across years, while 
all estimated coefficients are time invariant. If perfect 
calibration is possible will depend on the number of 
time points, as discussed in the next section. 

There is a trade-off in (7) between the calibration 
fit and staying close to the mode of the parameters. Set-
ting the weights for parameters to zero will imply uni-
formed priors. That is, however, dangerous as e.g. the 

overall farm gross margin is not controlled during esti-
mation. If the cost entries c for all crops are changed by 
the same absolute amount, the dual of the land balance 
as an equality constraint will change accordingly. 
There are hence likely linear dependencies in the 
model. This problem can be partly avoided by remov-
ing the land balance and its dual value from the lower 
level and move the land balance instead in the upper 
level in (3). After the solution, the costs of all crops can 
be reduced by an assumed land rent. A similar approach 
was used by cf. KANELLOPOULOS et al. (2010) in a 
PMP model. We consider here the more usual case 
where a priori information on the parameters is used, 
and duals are not explicitly controlled. 

4.2 Set-up of the Tests and Assessing  
the Performance of the Estimator 

We set-up the model such that it comprises one or mul-
tiple years (see also Figure 3). For each number of 
years, we generate fifty model variants by randomly 
drawing parameters, i.e. yearly revenues, time invariant 
costs and four labour requirements for each crop. Max-
imum crop shares and farm endowments besides labour 
availability in peak months remain unchanged. For 
each variant we first determine the optimal solution at 
this given parameters. From there, we generate twenty 
different calibration targets by adding white noise error 
terms to the optimal solution for all crops, including 
unobserved ones. We hence consider the LP as the true 
data generation process. We explore to what extend  
the algorithm recovers in average the true parameters, 
assessing in parallel its calibration performance. For 
each number of years and the different variances of the 
error terms considered, this implies 1,000 draws (fifty 
different sets of parameters times twenty different  
error terms). For each draw, the search algorithm will 
test up to hundred perturbations of the parameters and 
related restarts of the solver on the bi-level problem. As 
discussed above, the required fit to stop the search pro-
cess increases linearly from zero for the first try to two 
[ha²]. 

For each instance and draw, we solve the data bal-
ancing problem (4) and use its solution as the calibra-
tion target in (7). We next (a) perturb the current best 
solution of the parameters, (b) solve the primal model 
(1) at fixed resulting parameter values, (c) unfix the pa-
rameter and solve (3) (at fixed integers in case of the 
MIP model), (d) fix the parameters to the solution of 
(3), set decision variables to zero, unfix the integers in 
case of MIP, and solve problem (1). The results from 
(1) determine the fit. If the fit is above the threshold and 
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the maximal number of restarts not yet reached, we re-
peat (a)-(d). 

The twenty randomly drawn labour requirements 
and the five cost entries in the objective are the param-
eters subject to calibration. Jointly with the number of 
observations and crops, they determine the degrees of 
freedom. A model comprising one year, only, suggests 
an undetermined model with twenty free parameters 
(25 parameters minus 5 FOC conditions). Bounds on 
the parameter, in-equalities and non-linearities in (3) 
exclude an exact definition of the degrees of freedom. 
Already with two years, (almost) perfect calibration 
was not always possible. In this case, we face 2x5=10 
FOC conditions. We lose for each of the potentially 
four binding labour constraints in each year one degree 
of freedom, as one of the crop specific coefficients is 
depending on the others. Along with bounds on param-
eters, this explains cases where perfect calibration is 
impossible already with two years. For such cases, the 
algorithm acts as Bayesian estimator where the struc-
ture of the model and the observations jointly deter-
mine the posteriori of the parameters and the error 
terms. Minimizing squared relative differences of the 

parameters in combination with some weights to ex-
press a-priori information is a rather intuitive approach. 
Formally, under normal distributed errors, the approach 
maximizes the log-likelihood of the posterior density 
(HECKELEI et al., 2008) which further motivates its use 
as the penalty function. The quadratic function with its 
linear derivatives is also a good choice for gradient 
based solvers, but alternatives such as a (cross)-entropy 
approach could be used as well. 

We assess the algorithm firstly by its ability to cal-
ibrate the model sufficiently accurate based on the av-
erage fit. Its efficiency is assessed by the number of re-
quired restarts which strongly impact computing time. 

4.3 Results 
We test the case of one year (= one observation) with 
different standard deviations of the white noise error 
added to the “true” model solution. With one observa-
tion, the coefficient of variance for the estimated pa-
rameters is in the one to five percent range, depending 
on the variance of the error term, while mean deviations 
from the true parameters are below one percent (see Ta-
ble 2). Deviations are expected due to truncation in the 

Figure 3.  Overview on methodology  

 
Source: authors 
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data generation process discussed above, which also 
implies bias for estimated parameters. 

Against that background, the almost perfect fit 
might be astonishing, even more so the low coefficients 
of variance. Equally, the size of the error term has a 
quite limited impact on the statistics. This might firstly 
reflect quite limited stability ranges of the drawn solu-
tions, i.e. relative small changes in coefficients of the 
“true” simulation model lead to larger changes in the 
primal solution. Secondly, the maximal crop shares de-
termine to some extent the solution. For a crop bounc-
ing against its upper share limit in the “true” case, a 
positive perturbation will mean that data balancing 
based on (5) will pull them to, or close to the upper 
limit. We might hence expect similar effects in models 
with a richer constraint set narrowing down the solution 
space. 

The average fit of the calibration with one obser-
vation (see Table 3) above does almost not respond to 
the average size of white noise errors error added, and 
is very small with just 0.022 to 0.027. The calibration 
fit which can be achieved reflects, as discussed above, 
the step-width of the gross margin depression mecha-
nism. The average fit of the bi-level estimator suggests 
that it is almost always possible to find a parameter  
sets for which the FOC hold at the calibration target.  

Increasing the variance of the error term has a very 
moderate impact on the performance of the estimator. 
There are no considerable differences in the fit from a 
model application perspective, i.e. with regard to the fit 
of the simulation model, or with regard to required re-
starts of the model, when the average distance between 
the “true” model and the calibration target increases 
considerably. 

As expected, introducing integer variables renders 
calibration harder (see Table 4): it drives up the re-
quired average restarts substantially and reduces con-
siderably the fit. This also reflects that the threshold in-
creases dynamically with the number of restarts, i.e. if 
the algorithm does not find a good fit after a few re-
starts, it will also consider a lower fit as sufficient to 
stop further searches. 

Overall, the results suggest that an acceptable cal-
ibration might also be possible in case of integer varia-
bles. Introducing integers reduces in here the average 
error term, but worsens the fit of the estimation step. 
Equally, integer variables drive up the number of re-
quired restarts. The reason for the in average smaller 
error term is the returns-to-scale effect which favours 
more specialized solutions, where crops hit more often 
their maximal cropping shares or don’t enter the opti-
mal solution. The data balancing step might be pushed 

Table 2.  Mean error, coefficient of variance of error and mean relative error of estimated parameters, 
no integers 

 𝑵𝑵(𝟎𝟎;𝟐𝟐) 𝑵𝑵(𝟎𝟎;𝟓𝟓) 𝑵𝑵(𝟎𝟎;𝟏𝟏𝟎𝟎) 
Per ha costs -0.1282 (0.015,-0.0001) -0.0967 (0.016,-0.0001) -0.0769 (0.014,-0.0001) 
Labour per ha, total +0.0004 (0.010,+0.0002) -0.0086 (0.012,-0.0007) -0.0071 (0.012, +0.0009) 
Labour per ha, July -0.0019 (0.027,-0,0002) -0.0071 (0.031,-0.0042) -0.0081 (0.033, -0.0048) 
Labour per ha, August 0.0057 (0.025,+0.0056) +0.0044 (0.028,+0.0045) +0.0071 (0.031, +0.0066) 
Labour per ha, September 0.0008 (0.020,+0.0016) +0.0019 (0.030,+0.0030) +0.0019 (0.030, +0.0030) 

Note: parameter statistics are expressed as averages over crops; coefficient of variance (first) and mean relative mean error (second) in 
brackets. Column headings refer to the white error noise added to the optimal solution of the model variant. 
Source: authors` calculations 
 

Table 3.  Quality of fit and required restarts for the case of one observation, no integers 
 𝑵𝑵(𝟎𝟎;𝟐𝟐) 𝑵𝑵(𝟎𝟎;𝟓𝟓) 𝑵𝑵(𝟎𝟎;𝟏𝟏𝟎𝟎) 
Fit of simulation model 0.022 (0-0.19) 0.026 (0-0.33) 0.027 (0-0.26) 
Fit of bi-level estimator 0.0027 (0-0.19) 0.0013 (0-0.15) 0.0004 (0-0.24) 
Error term 2.02 (0-12.07) 12.95 (0– 94.00) 48.80 (0-299) 
Fit improvement -94.65% -97.73% -98.65% 
# of starts 2.04 (1-13) 2.27 (1-16) 2.57 (1-18) 

Note: (1) Fit measured as squared deviations between calibration target and solution in ha, divided by number of observation, i.e. five, 
reflecting the number of crops. (2) First number in each cell is the mean; min and max in brackets. (3) The error term measures the average 
squared deviation of the calibration target from the uncalibrated model solution. (4) Fit improvement: relation between fit of calibrated 
model and uncalibrated one as expressed by the error term. 
Source: authors` calculations 
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in some instances towards the simulated solution. The 
reduced overall fit is expected as the parameters related 
to the machinery requirements restrictions which are 
linked to the integers are not under control of the esti-
mator. 

We test the case of multiple observations (i.e. a 
simultaneous solution for multiple years) only for the 
case of 𝑁𝑁(0; 2), for results see Table 5, which com-
prises for comparison the single observation case. The 
average number of restarts with two observations in-
creases from around 2.42 to around 2.97, while the fit 
worsens only slightly to 0.048. This might still be con-
sidered a perfect calibration in terms of average 
squared differences in ha for a farm with 100 ha. A drop 
in the calibration performance with multiple observa-
tions is expected. In the case of one observation, only, 
the per ha crop costs alone can be used to solve for the 
FOC of type (2). Calibration in case of two or more ob-
servations requires updates to other coefficients as 
well. Parameter updates will change the primal solution 

if they relate to binding constraints, only, and will typ-
ically impact the fit of all years simultaneously. In case 
of two observations, there was one draw out of the 
thousand with a larger error term where the algorithm 
could not find any solution improving the fit. In case of 
three observations, larger calibration errors are quite 
common reflecting the fact that degrees of freedom 
seem regularly exhausted. 

With higher number of time points, the problem is 
no longer undetermined for many of the draws. That 
reduces the average fit. Due to the dynamic thresholds 
in the outer loop of the algorithm, this also implies in 
average more starts of the solver. Still, for up to five 
observations, the fit of the calibrated model is substan-
tially improved compared to the uncalibrated one. 

The impact of introducing integer variables on the 
fit and more so on the required restart is much stronger 
as seen from Table 6. The integers with their related 
constraints restrict the solution space considerably fur-
ther compared to the LP model above, and drive the 

Table 4.  Quality of fit and required restarts for the case of one observation, integers included 
 𝑵𝑵(𝟎𝟎;𝟐𝟐) 𝑵𝑵(𝟎𝟎;𝟓𝟓) 𝑵𝑵(𝟎𝟎;𝟏𝟏𝟎𝟎) 
Fit of simulation model 0.227 (0-6.64) 0.650 (0-32.97) 1.615 (0-61.95) 
Fit of bi-level estimator 5.526 (0-1105) 4.757 (0-1559) 1.254 (0-179) 
Error term 1.958 (0-12.11) 12.622 (0–98.23) 46.857 (0-349) 
Fit improvement -81.20% -93.56% -95.03% 
# of starts 14.51 (1-100) 18.46 (1-100) 23.22 (1-100) 

Note: for explanations, see Table 3. 
Source: authors` calculations 
 

Table 5.  Quality of fit and required restarts for different number of observations, no integers 
# of 
obs. 

Fit of 
simulation model 

Fit of 
bi-level estimator 

Error term Fit improvement # of starts 

1 0.022 (0-0.192) 0.0027 (0-0.19) 2.02 (0-12.07) -94.65% 2.04 (1-13) 
2 0.048 (0-6.06) 0.020 (0-6.06) 2.17 (0.01-8.62) -96.90% 2.97 (1-100) 
3 0.114 (0-3.33) 0.076 (0-2.78) 2.17 (0.06-7.75) -94.07% 6.03 (1-100) 
5 0.259 (0-1.60) 0.210 (0-1.58) 2.08 (0.19-6.07) -86.35% 11.73 (1-67) 
10 0.792 (0.15-1.96) 0.760 (0.12-1.93) 2.05 (0.55-3.94) -60.98% 30.76 (1-75) 

Note: for explanations, see Table 3. 
Source: authors` calculations 
 

Table 6.  Quality of fit and required restarts for different number of observations, with integers 
# of obs. Fit of 

simulation model 
Fit of 

bi-level estimator 
Error term Fit improvement # of starts 

1 0.227 (0-6.64) 5.526 (0-1105) 1.958 (0-12.11) -81.199% 14.51 (1-100) 
2 0.470 (0-8.01) 3.267 (0-846) 2.092 (0.01-10.76) -74.85% 26.72 (1-100) 
3 0.579 (0-6.66) 6.442 (0-1980) 2.098 (0.01-7.78) -70.50% 29.38 (1-100) 
5* 0.916 (0.002-4.83) 1.250 (0-187) 2.079 (0.18-5.69) -56.32% 38.50 (1-100) 

10** 1.057 (0.20-3.40) 1.001 (0.13-3.62) 1.953 (0.67-3.53)) -47.78% 40.75 (10-100) 
Note: for explanations, see Table 3. * based on 33x20 experiments. ** based on 5x20 experiments. 
Source: authors` calculations 
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model towards more specialized solutions. This implies 
that the changes to the parameters subject to estimation 
are less likely to allow fitting to given calibration tar-
gets, which differ from the model solution at the “true” 
parameters. This optimal solution at the true parameters 
clearly also reflects the integers and related constraints, 
but the related coefficient entries are here not consid-
ered uncertain. Furthermore, integers are fixed to their 
optimal values at the currently drawn parameter values 
during estimation such that the estimator cannot con-
sider that other integer values might become optimal if 
parameters are updated. This becomes only visible in 
the subsequent solve of (1). 

Already with five observations, finding solutions 
with a good fit with integer present takes very long.5 In 
many cases, even hundred restarts could not deliver a 
fit better than the maximal considered threshold of two. 

Our model is quite small such that one might ex-
pect a bi-level problem with a few variables and equa-
tions, only. Due to the gross margin depression mecha-
nism, the simulation model comprises, however, for 
each time point and crop 50 non-negative variables and 
inequalities. In the bi-level program, that implies 200 
endogenous variables: the primal variables and related 
duals as well as the slacks in the equations and their 
duals. For five crops and five periods, that already im-
plies 200x5x5 = 5,000 variables. Due to complementa-
rity conditions, the EMP package will automatically re-
move some of them from the model. Still, the resulting 
bi-level estimation problem for five time points com-
prises slightly more than 2,500 equations and 5,000 
variables. 

5  Discussion 
Compared to PMP, the proposed calibration method 
has a different focus. In PMP, the coefficient matrix is 
usually taken as fix and given, while non-linearities are 
introduced to capture “unobserved” costs or revenues. 
We consider instead objective function entries and 
(some) resource coefficients as observed with errors, 
minimized during calibration, without adding new ele-
ments to the model. If the model subject to calibration 
likely misses constraints faced by the farmer and/or in 

                                                      
5  Each trial required from a few to several ten seconds to 

solve. With 50x20 Monte-Carlos and each Monte-Carlo 
draw subject to up to 100 restarts with perturbed param-
eter sets, the time requirements became prohibitive for 
larger number of observations. One reason was that 

other cases of (other) assumed unobserved costs or rev-
enues, a PMP approach might be more appropriate. An-
other difference to PMP is that we refrain from struc-
tural model changes which strongly impact its alloca-
tive response. The proposed gross margin depression 
mechanism is deliberately parameterized such that it 
“just” allows for “interior” solutions while largely 
maintaining the step-wise marginal cost curves of the 
original LP. PMP instead overwrites the solution be-
haviour of a LP with a low number of constraints. 
Closed-form solutions (c.f MEREL and BUCARAM, 
2010) are now available to calibrate different types of 
PMP models against (certain sets of) price elasticities. 
In our framework, price elasticities could be used to in-
troduce observations with updated prices and decision 
variables. 

Using our approach with a higher number of ob-
servations is a special case of EMP where profit-maxi-
mal parameters of a Leontief production function are 
estimated. Compared to e.g. ARATA and BRITZ (2019) 
the estimator faces in our examples more inequality 
constraints and considers integers. Resulting non-con-
vexities in the solution space of the bi-level problem 
require restart heuristics to find better local optima. 
This cannot guarantee a global optimum, but is found 
to improve considerably the fit. Besides a maximal 
number of restarts, we used a minimal fit as a stopping 
criterion in our large-scale Monte-Carlo analysis. This 
might not be necessary in real-world applications to a 
small number of model instances where also more re-
starts could be used. Alternatively, one might experi-
ment with so-called global solvers, an option we dis-
carded after tests did not look promising. We conclude 
from our tests that the heuristics work quite well with 
pure linear models, but that no general conclusion can 
be drawn in presence of integers. The model layout 
with investments decisions for multiple machines in 
different sizes, required by different sets of crops and 
depicted as integers, proved quite challenging for larger 
number of observations, but performed still quite well 
with one or two.  

TROOST and BERGER 2014 discuss an alternative 
approach using real-world observations to calibrate a 
larger set of MIP programming models. While they 
consider somewhat more parameter as uncertain com-

CONOPT4 went sometimes into infinite loops which re-
quired breaking that solve manually such that the pro-
cesses could not run completely unintended. Generating 
all results required more than a week despite solving dif-
ferent tests in parallel. 
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pared to our didactic application example, they con-
sider also 0-1 parameter choices such as “if all agents 
face either unlimited or zero demand or supply of this 
good”. In total, they tested around 2,400 parameter 
combinations from which they fixed only those which 
in all three observation years could improve some ag-
gregate measure of fit across the around 500 farms. For 
the rest, they conducted large-scale uncertainty analy-
sis simulation experiments. Thus, their approach aims 
mostly at excluding some parameters from this second 
step. The advantage of the TROOST and BERGER (2014) 
approach is firstly that the individual models need not 
to be technically integrated into one problem as in our 
approach. Indeed, each single instance of their model 
has many thousands variables and equations which 
might exclude a simultaneous bi-level estimation 
framework. Secondly, their approach can be used with 
MIP models where coefficients related to integers are 
considered uncertain. But it clearly cannot calibrate in-
dividual models (almost) perfectly. 

A detailed comparison to the approach of JAYET et 
al. (2020) is not possible with the available infor-
mation. They also consider selected resource coeffi-
cients as uncertain – but as it seems not objective func-
tion entries - and improve model calibration of each in-
stance independently by testing in some systematic 
way different parameter sets. 

The true data generation process is unknown in 
real-world application. Data on production processes 
on farm (crop nutrient requirements, necessary field 
operations and related machinery and labour needs, 
feed and stable place requirements etc.), knowledge on 
likely constraining endowments (land, labour, machin-
ery, buildings, water rights etc.) and assumptions on 
optimizing behaviour are the elements in building a de-
tailed bio-economic model. This information typically 
stems from a mix of sources, such as data from official 
statistics, often at the level of administrative units in-
stead of individual agents, farm accounting data, farm 
planning handbooks, field experiments, questionnaires, 
econometric work etc., (cf. the discussion of parame-
terization in TROOST and BERGER, 2014). Many of the 
resulting model parameters are not directly observed 
for the farm instances subject to calibration. Further-
more, observed yields, netput quantities, prices etc. 
might deviate from expectations used when allocative 
decisions were taken. That renders it inviting to con-
sider parameters as uncertain, but runs the risk of over-
fitting model instances during calibration. Still, besides 
a well-motivated model structure and parameterization, 
a satisfactory fit against multiple observations provides 

more or less the only indication to what extent a bio-
economic farm-scale model provides a good represen-
tation of the real technology and decision behaviour. 

Working with algorithms which provide a system-
atic approach to calibration such as the one proposed in 
here increases transparency in calibration. Algorithms 
require clear decisions on what parameters are changed 
up to what range, and on relative weights used to pe-
nalize deviations from given calibration targets and 
given parameters. Our findings suggest that, firstly, the 
proposed algorithm is able to recover the true parame-
ters in Monte-Carlo experiments and, secondly, that it 
enables quite accurate calibration as long as degrees of 
freedom allow for it. As such, there is some confidence 
that a parameterization resulting from its application is 
a reasonable choice against the background of the cho-
sen settings, such as calibration targets and assumed 
distributions of parameters and errors terms. A further 
advantage is that it can be entirely encoded in GAMS, 
a software widely used in field of farm-scale program-
ming models. Indeed, we were able to apply the ap-
proach also successfully in the highly detailed bio-eco-
nomic farm model FARMDYN (BRITZ et al., 2016). 

Summary and Conclusion 

We present a rather universally applicable algorithm 
which calibrates a (farm-scale) LP or MIP model draw-
ing on the idea of PMP (HOWITT, 1995) by systemati-
cally adjusting uncertain coefficients in the model, but 
without introducing new structural elements such as 
non-linear “unobserved” costs. The aim here is to base 
the allocation steering of the simulation model solely 
on the interplay of the linear objective and the (rich) 
constraint set of the model. As such, the proposed ap-
proach to calibration is hardly suitable to most models 
where now PMP is applied. We apply a bi-level esti-
mation framework where the outer problem controls 
the fit of the calibration and the lower problem is the 
actual simulation model, represented by its FOCs. 
Technically, we use the EMP package of GAMS in 
combination with the NLPEC solver to automatically 
convert the simulation model into its FOC. Due to the 
non-convex solution space and the presence of integer 
variables, the application of a gradient based solver to 
find local minima is combined with heuristics to gener-
ate starting points from existing good solutions. 

We exemplify the application with a simple di-
dactic model with a land balance, several labour and 
maximal crop share constraints; a variant of this model 
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introduces machinery requirements linked to integers 
depicting investments in machines. The approach is 
tested in a systematic way by starting with known 
model parameterizations and related optimal solutions, 
for different number of observations. We perturb the 
optimal solutions by white noise, next apply some data 
balancing step as one would also expect in a real-world 
application (e.g. to render observations consistent to 
maximal crop shares and given land) and next calibrate 
the model against the resulting observations. For just 
one observation, we find (almost) perfect calibration in 
all tests. With growing number of observations, we 
move away from an underdetermined model such that 
the algorithm searches a best-fit parameter set, but still, 
in average, allows for a quite accurate calibration 
against the perturbed observations. Jointly with the 
GAMS code of the example found as an annex, the pre-
sented approach opens the door for more transparent, 
systematic and automated calibration of farm-scale 
programming models. It was also successfully tested 
with the quite detailed bio-economic farm model 
FARMDYN (BRITZ et al., 2016) to calibrate it to crop 
shares and animal herds. 
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Appendices 

Appendix A: Details with Regard to Machinery Requirements and Investments 
We model increasing return-to-scale in in-
vestments into five different machine 
types t by interpolating linearly based on 
convex combinations between neighbor-
ing points of a concave set, depicting ma-
chines of increasing sizes s (see Figure 
A1) These two neighboring points are en-
dogenously determined by integer varia-
bles. Let machI depict these integer varia-
bles for machine of type t and size s. Let 
𝑠𝑠′(𝑠𝑠) denote the set of points which are 
not neighbors of s. The following equation 
(1) ensure that (a) if s is selected, only 
neighboring points can be chosen and (b) 
if it is not selected, not more than two non-
neighbors are active: 

� 𝑔𝑔𝑎𝑎𝑐𝑐ℎ𝐼𝐼𝑠𝑠′ 𝑡𝑡

𝑠𝑠′(𝑠𝑠)

≤ 2(1 −𝑔𝑔𝑎𝑎𝑐𝑐ℎ𝐼𝐼𝑠𝑠 
𝑡𝑡 ) 

(1) 

The firm can realize based on the fractional variables 
mach a linear combination between the active two 
neighboring points on the concave set: 

mach𝑠𝑠𝑡𝑡 ≤ machI𝑠𝑠𝑡𝑡 

�mach𝑠𝑠𝑡𝑡 = 1
𝑠𝑠

 (2) 

The machinery requirements, here expressed in hec-
tares, are covered by the chosen machine mix where re-
lated entries in resource constraint matrix A are unity if 
the crop c requires that type of machine t and zero other-
wise: 

�mach𝑠𝑠𝑡𝑡  ≥�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑐𝑐

𝐴𝐴𝑡𝑡,𝑐𝑐
𝑠𝑠

 (3) 

In case of multiple years, the average annual require-
ments are defined by the RHS of (3) and the costs per 
machine multiplied with the number of years in the ob-
jective function. 

Figure A1. Convex combination over concave set 

 
Source: authors 
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Appendix B: Some Notes on the GAMS Code 
The code was tested with the GAMS version 34.2. The 
necessary option files for NLPEC and CONOPT4 and 
the GAMS code are available as a zip container. Note 
that the maximal number of processors used for CON-
OPT4 is set to 3 (threads = 3) in the option file, a setting 
which might need adjustment on other machines. As 
the program generates larger intermediate files, it is 
recommended to place the GAMS code on a local disk 
and not in a network. The seed of the random generator 
in GAMS is fixed which should guarantee that the same 
sequence of random numbers is drawn when the pro-
gram is restarted.  

The first block of the GAMS code comprises three 
globals which can be used to generate model variants 
as indicated by comments, i.e. different number of ob-
servations, different variance for the white noise error 
term used in data generation and, finally, adding or not 

the integer variables and related equations. The option 
with multiple farms was not tested in here. 

The code produces two GDX files which are  
dynamically updated during the Monte-Carlo draws. 
Best*.gdx reports statistics about the individual restarts 
and comprises the current best variables found in  
the bi-level estimator. Results*.gdx only reports the  
final best results from each draw along with statistics 
summarizes these draws. The file names report the set-
tings used, best_1_5_no.gdx reports for the case of 
1 observation, a variance of 5 and no integers. It should 
be relative straightforward to test the framework for 
more than the current five crops. Beside extending the 
set c, also the cross-set with the machinery types 
machType_crop would need to be expanded. The code 
proposes to use CPLEXD to solve the LP or MIP prob-
lems. If no integers are used, it can be replaced by a 
multi-purpose NLP solver such as CONOPT4. 

 
 

Appendix C: GAMS Code of Didactic Model 
See bilevel_capmip.gms and the different options file 
in the annex, which need to be copied in the same  
directory. To ease installation, all files are also availa-
ble as a zip-archive (Code_plus_options_files.zip). 
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bilevel_calmip.gms

$title Bi-level based calibration of farm-scale MIP or LP programming model
$offlisting
$ondotl
 option limCol=0,limRow=0,solprint=silent
 option NLP=CONOPT4;
*-----------------------------------------------------------------------------------------------
*
*   The following globals allow to test the model with different # of farm and time points,
*   different variances of the error terms and with/without integer based machiney requirements
*
*-----------------------------------------------------------------------------------------------
*
* ---# of observations
*
$setglobal nt 1
*
* --- # of farms
*
$setglobal nf 1
*
* --- Critical limit to stop search algorithm
*
$evalglobal critFit 1 + (%nf%**.2) $ (%nf% > 1) + %nt%**(.2)
*
* --- set variance of error term
*
$setglobal  var 2
*
* --- introduce integer based machinery requirements (no/yes)
*
$setglobal int yes
*
* -- unique name for results
*
$setglobal postfix _%nt%_%var%_%int%
$ife %nf%>1 $setglobal postfix _%nf%_%nt%_%var%_%int%

*------------------------------------------------------------------------------
*
*  Sets and parameters in simulation model
*
*------------------------------------------------------------------------------

   set c "crop activities"           / c1*c5 /;
   alias(c,c1);
   set f "farms"                      / f1*f%nf% /;
   set t "observations"               / t1*t%nt% /;
   set m1 "Months with labour peaks"  / jul,aug,sep /;
   set i   "Constraints"              / land,labour,set.m1 /;
   set m(i) / set.m1 /;
   set gmd "Gross margin depression levels" /  dep1*dep49/;
   set machSize "Different machinery sizes for binary var" / size0*size3/;
   alias(machSize,machsize1);
   set machType "Different machines" / m1*m5/;
   set machType_crop(machType,c) "Which machines are required for which crops" /
       m1.(c1,c2,c3)
       m2.(c2,c3,c4)
       m3.(c3,c4,c5)
       m4.(c4,c5,c1)
       m5.(c5,c1,c2)
   /;

   parameter
         p_r(f,c,t)         "Revenues per ha"
         p_c(c)             "Variable costs per ha"
         p_b(f,i)           "Endowments"
         p_x(i,c)           "True entries in constraint matrix"
         p_gm(c)            "Average gross margin per ha"
         p_critShare(c,gmd) "Crop shares at which gross margins are stepwise reduced"
         p_redLevl(c,gmd)   "Gross margin reduction in each step"
         p_maxCropShare(c)  "Maximum crop shares"  / c1 0.33, c2 0.5, c3 0.5, c4 0.66, c5 1 /
         p_machSize(machSize) /size1 10,   size2 50,   size3 100 /
         p_machCost(machSize) /size1 1000, size2 4000, size3 6000 /
    ;

   positive variable
            v_gmRed(f,c,gmd,t)                  "Gross margin reduction level"
            v_x(f,c,t)                          "Crop allocation"
   ;
   binary variable v_machI(f,machType,machSize) "Neighbouring points on concave curve"
   ;
   variable
            v_c(f,c)                            "Estimated costs term per ha"
            v_pxf(f,i,c)                        "Estimated resource coefficients, per farm"
            v_mach(f,machtype,machSize)         "Machine selection via convex combination"
            v_machReq(f,machtype)               "Machinery requirements, average over planning horizon"
            v_obje                              "Objective value: Gross margin of farm"
   ;
   equations
             e_obje                             "Objective function"
             e_constr(f,i,t)                    "Resource constraints"
             e_landBal(f,t)                     "Land balance"
             e_machReq(f,machType)              "Machine requirement definition, in average over planning period"
             e_convComb1(f,machType,machSize)   "Convex combinations: only two neighboring points allowed"
             e_convComb2(f,machType)            "Convex combinations: share add up to one"
             e_convComb3(f,machType,machSize)   "Convex combinations: restrict fractionals to selected points"
             e_convComb4(f,machType)            "Convex combinations: cover machine needs"
             e_gmRed(f,c,gmd,t)                 "Gross margin reduction level definition"
   ;

*  -------------------------------------------------------------------------
*
*     Model equations and definitions, equivalent to model (1) in paper
*
*  -------------------------------------------------------------------------
*
*  --- endowment constraints, vector b used for scaling
*
   e_constr(f,i,t) $ (not sameas(i,"land")) .. sum(c, v_x(f,c,t)*v_pxf(f,i,c))/p_b(f,i) =L= 1;
*
*  --- land balance is always binding
*
   e_landBal(f,t) .. sum(c, v_x(f,c,t))/ p_b(f,"land") =E= 1;
*
*  --- first equation in (5) (division by land for scaling)
*
   e_gmRed(f,c,gmd,t) ..

        v_gmRed(f,c,gmd,t)/p_b(f,"land") =G= v_x(f,c,t)/p_b(f,"land") -  p_critShare(c,gmd);
*
*  --- that is modifed farm gross margin equation, second equation in (5)
*      (per year and hectare, and normalized by 100 for better scaling)
*
   e_obje ..

      v_obje * card(t) * card(f) * sum(f,p_b(f,"land"))
                  =E=   sum[ (f,c,t), (p_r(f,c,t)-v_c(f,c)) * v_x(f,c,t)
                                    - sum(gmd, v_gmRed(f,c,gmd,t)*p_redLevl(c,gmd))]
*
*     --- yearly costs of machine use
*
$ifi "%int%"=="yes"    - sum((f,machType,machSize), v_mach(f,machType,machSize) * p_machCost(machSize) * card(t))
       ;

*  -------------------------------------------------------------------------
*
*     Extension to binaries to depict investments into machines
*
*  -------------------------------------------------------------------------
*
*  --- define machinery requirements, average of planning period
*      (define scale-dependent machinery choice)
*
   e_machReq(f,machType) ..

       v_machReq(f,machType)/p_b(f,"land")
         =E= sum((machType_crop(machType,c),t), v_x(f,c,t))/(p_b(f,"land")*card(t));
*
*  --- convex combination: (over concave point) two neighbouring point need to sum up to zero
*
   e_convComb1(f,machType,machSize) ..

        sum(machSize1 $ (abs(machSize.pos - machSize1.pos) gt 1),v_machI(f,machType,machSize1))
            =L= ( 1 - v_machI(f,machType,machSize))*2;
*
*  --- Selected shares must add up to unity
*
   e_convComb2(f,machType) ..

      sum(machSize, v_mach(f,machType,machSize)) =E= 1;
*
*  --- only use selected point on concave set
*
   e_convComb3(f,machType,machSize) ..

      v_mach(f,machType,machSize) =L= v_machI(f,machType,machSize);
*
*  --- convex combination: the coefficient weighted sum covers the machinery requirements
*
   e_convComb4(f,machType) ..

      sum(machSize,v_mach(f,machType,machSize)*p_machSize(machsize))
                 =E= v_machReq(f,machType);
*
*  --- crop rotational restrictions
*
   model m_fullM "Full simulation model"
                   / e_obje,e_constr,e_landBal,e_gmRed,
$ifi "%int%"=="yes"  e_machReq,e_convComb1,e_convComb2,e_convComb3,e_convComb4
*
                   /;
   m_fullM.solvelink = 5;
   m_fullM.holdfixed = 1;
   m_fullM.optcr     = 0;
   m_fullM.optfile   = 1;
   option kill=v_machI;

*  -------------------------------------------------------------------------
*
*    Bi-level estimation framework
*
*  -------------------------------------------------------------------------
*
   parameter
      p_xObs(f,c,t)                    "Observations in current calibration exercise"
   ;

   equation e_penalty "Penalty function: squared dev for crop allocation, and relative squared dev. for parameters, with weights"
            e_fitDat  "Penalty function for data: squared dev for crop allocation"
            e_pxf     "Define farm specific coefficient"
            e_pcf     "Define farm specific cost per ha"
   ;
   variable v_fit      "Penalty function value"
            v_fitDat   "Fit for observations";
*
   positive variable
            v_px(i,c)  "Estimated resource coefficients"
            v_cc(c)    "Estimated cost per ha"
            v_xf(f)    "Farm specific efficieny multiplier for resource coefficients (only used with multiple farms)"
            v_cf(f)    "Farm specific efficieny multiplier for cost (only used with multiple farms)"
   ;

   e_penalty .. v_fit =E= sum( (f,c,t), sqr[  v_x(f,c,t)  - p_xObs(f,c,t) ] )/(card(c)*card(t)*card(f))
                        + sum( (f,c),   sqr[ (v_cc(c)     - p_c(c))/p_c(c)   ] )/(card(c))
                        + sum( (i,c),   sqr[ (v_px(i,c)   - p_x(i,c))/p_x(i,c) ] )/(card(c)*card(i))
$ifthene.nf %nf%>1
                        + sum( (f),     sqr[ (v_xf(f)   - 1)               ] ) /(card(f))
                        + sum( (f),     sqr[ (v_cf(f)   - 1)               ] ) /(card(f))
$endif.nf
  ;
$iftheni.nf %nf%==1
*
*  --- No farm specific scale effect in case of only one farm
*
  e_pxf(f,i,c) $ (v_pxf.range(f,i,c) ne 0) .. v_pxf(f,i,c) =E= v_px(i,c);
  e_pcf(f,c)                               .. v_c(f,c)     =E= v_cc(c);
$else.nf
*
*  --- farm specific effects in case of multiple farms
*
  e_pxf(f,i,c) $ (v_pxf.range(f,i,c) ne 0) .. v_pxf(f,i,c) =E= v_px(i,c) * v_xf(f);
  e_pcf(f,c)                               .. v_c(f,c)     =E= v_cc(c)   * v_cf(f);
$endif.nf

  option kill=v_cc,kill=v_px,kill=v_cc,kill=v_xf,kill=v_cf;
*
*  -- set up bi-level estimation problem
*
   model m_biLevel/ e_penalty,e_pxf,e_pcf,e_obje,e_constr,e_landbal,e_gmRed
   $$ifi "%int%"=="yes"                                   e_machReq e_convComb2 e_convComb4
   /;
   m_bilevel.optfile   = 1;
   m_bilevel.solvelink = 5;
   m_bilevel.holdfixed = 1;
   m_bilevel.reslim    = 120;
   m_bilevel.iterlim   =  5000;

*
*  --- top level variables: SSQ, estimated costs per ha, estimated labour needs
*
   $$iftheni.nf %nf%==1
      $$set leader bilevel v_fit v_c v_cc v_pxf v_px
   $$else.nf
      $$set leader bilevel v_fit v_c v_cc v_cf v_pxf v_px v_xf
   $$endif.nf
*
*  --- lower level: farm optimization problem
*
                        $$set follower max v_obje v_x v_gmRed                  e_obje e_constr e_landBal e_gmRed
   $$ifi "%int%"=="yes" $$set follower max v_obje v_x v_gmRed v_mach v_machReq e_obje e_constr e_landbal e_gmRed e_machReq e_convComb2 e_convComb4

   option MPEC=nlpec;
   $$onecho  > "%emp.info%"
    %leader%
    %follower%
   $$offecho
*
*  -------------------------------------------------------------------------
*
*     Data balancing problem: ensure that observations exhaust land
*                             and fit into maximal crop shares
*
*  -------------------------------------------------------------------------

   e_fitDat .. v_fitDat =E= sum( (f,c,t), sqr[  v_x(f,c,t)  - p_xObs(f,c,t) ] )/(card(c)*card(t)*card(f));

   model m_fitDat / e_fitDat,e_landBal /;
   m_fitDat.solveLink=5;
   m_fitDat.holdFixed=1;
   m_fitDat.optFile=1;

*  -------------------------------------------------------------------------
*
*     Monte-Carlo set-up and search algorithm around bi-level estimator
*
*  -------------------------------------------------------------------------

   set fe / set.f,"",best /;
   set stats      "Statistics" / avg,obs,mean,min,max,meanErr,meanErrR,stdDev,covVar,ori /;
   set parDraws   "Repeated generation of random parameters for crops"          /var1*var50/;
   set errDraws   "Random observations to which each model is calirbated"       /draw1*draw20/;
   set trials     "Repeated applications of bi-level estimator if not optimal"  / try1*try100/;

   alias(parDraws,parDraws1);
   alias(errDraws,errDraws1);

   set sumUp(*,*,*) "Parameters and metrics to summarize"
                  / emp."".(fit,fitEmp,fitUncalib,"fitImp%",nTries),
                           (set.f).(set.i).(set.t),
                           (set.f).(set.c).(set.t)
                           ,"".(set.c).(set.i),
                           (set.f).(set.c)."c",(set.f)."".(set.t) /;

   set trialRep / fit,fitEmp,"fitImp%",thresHold,MoldelStatMFirst,fitObje,ObjeEMP,
                  modelstatM,solveStatM,mode,bestV,obje,modelStatB,solveStatB,"dFit%"/;

   parameter p_trials(*,*,*,*)    "Report array for results from bi-level estimator from trials"
             p_report(*,*,*,*,*)  "Summary report, comprising only best resuls from each draw"
             p_aveFarm            "Intermediate data to construct parameter errDraws"
             p_infeasCor          "Intermediate parameter to avoid that tiny infeasibility are passed from bi-level solver to LP"
   ;

   scalar nTries  "Current number of tries for reportint"
          best    "Current best, from solving simulation model at EMP results"
          bestEmp "Related current best fit value of bi-level estimator"
   ;

*
*  --- outer loop: different random parameterization of true models, will generate different "true" observations
*
   scalar infes,retry,tests;
*
*  --- settings in case of one farrm
*
   p_b(f,"land")   = 100;
   p_b(f,"labour") = 1000;
*
*  --- the following can be used to restart after a number of parDraws if the program crashed
*      (e.g. by a restart of a computing server). Don't foget to change the seed in that case
*       to avoid the same sequence of parameters draws is generated.
*
*  execute_load "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
*  execute_load "results%postfix%.gdx" p_report;

   loop(parDraws $ (parDraws.pos ge 1),
*
      infes = 1;
*
*     --- the parameter draws might lead to a infeasible program. We therefore draw
*         until we find a set which generates a feasible solution
*
      while(infes,
*
*       --- multiple farms: draw endowments and set max crop acreage from maximam crop share
*
         p_b(f,"land")   $ (card(f) gt 1) = uniform(50,150);
         p_b(f,"labour") $ (card(f) gt 1) = p_b(f,"land") * uniform(0.90,1.10) * 10;
         v_x.up(f,c,t) $ (p_maxCropShare(c) ne 1) = p_b(f,"land")*p_maxCropShare(c);
*
*       --- available labour in peak months: 50% than what average availability (total divived by twelve months) suggests,
*                                            plus some randomness
*
         p_b(f,m) = 1.5 / 12 * p_b(f,"Labour") * uniform(0.9,1.1);
*
*        --- yearly revenues and costs are drawn from uniform distribution
*
         p_r(f,c,t) = uniform(900,1300);
         p_c(c)     = uniform(400,500);
*
*        --- each crop requires one hectare
*
         p_x("land",c) = 1;
*
*        --- average of total farm gross margin over the years (= equal to renumeration of constraints)
*            (for integer case, consider investment in all type of machine for medium size)
*
         p_aveFarm("gm")   =          sum( (f,c,t), p_r(f,c,t)-p_c(c))/(card(c)*card(t)*card(f))
             $$ifi "%int%"=="yes"   - sum(machType, p_machCost("size3"))/sum(f,p_b(f,"land"))
         ;
*
*        --- average return per ha: 75% of average gross margin
*
         p_aveFarm("land") = p_aveFarm("gm") * 3/4;
*
*        --- average return per labour hour: gross margin not allocated to land, distributed over available labour
*
         p_aveFarm("labour") = (p_aveFarm("gm") - p_aveFarm("land"))*[sum(f,p_b(f,"land"))/card(f)] /[sum(f,p_b(f,"labour"))/card(f)];
*
*        --- labour needs per ha: average gross margin minus assumed returns to land, divided by returns per labour hour
*                                 and some randomness
*
         p_x("labour",c)  = max(1,(p_aveFarm("gm") - p_aveFarm("land")
*                                   --- consider scale effect: crops with an average share will tend to use
*                                       larger machinery with lower per unit cost
                                   $$ifi %int%==yes + (p_maxCropShare(c)-0.5) * 2
                               )/p_aveFarm("labour")  *  uniform(0.95,1.060));

         p_aveFarm("labourT") = sum(c, p_x("labour",c))/card(c) * sum(f,p_b(f,"land"))/card(f);
*
*        --- derived labour needs in peak period, with some randomness
*
         p_x(m,c)  = p_x("labour",c) * 1.5/12 * uniform(0.75,1.25);
*
*        --- average of each crop's gross margin over the years

         p_gm(c) = sum((f,t), p_r(f,c,t) - p_c(c))/(card(t)*card(f));
*
*        --- critical share up to maximum share allowed, steps get larger when moving towards the maximum crop share
*
         p_critShare(c,gmd) = (gmd.pos/(card(gmd)+1))**1.5 * p_maxCropShare(c);
*
*        --- each step reduces gross margin by 1%
*
         p_redLevl(c,gmd) = 0.01 / (card(gmd)+1) * p_gm(c);
*
*        --- fix parameters in simulation models and solve (= generate "true" observations)
*
         v_c.fx(f,c)          = p_c(c);
         v_pxf.fx(f,i,c)      = p_x(i,c);
         $$setglobal alg QCP
         $$ifi "%int%"=="yes" $setglobal alg MIQCP
         option %alg%=CPLEXD;
         v_mach.up(f,machType,machSize)  = 1;
         solve m_fullM using %alg% maximizing v_obje;
         infes = (m_fullm.modelstat ne 1)
      );
*
*     --- store given data (observed allocation, coefficients)
*
      p_report(parDraws,"obs",f,i,t)    = e_constr.m(f,i,t);
      p_report(parDraws,"obs",f,c,t)    = v_x.l(f,c,t);
      p_report(parDraws,"obs","",c,i)   = p_x(i,c);
      p_report(parDraws,"obs","",c,"c") = p_c(c);
      p_report(parDraws,"obs",f,"c",t)  = sum(c,p_c(c)*v_x.l(f,c,t));
*
*     ---- loop with different, randomly generated calibration targets
*
      loop(errDraws,
*
*        --- randomly drawn observation for crop allocation around "observed" point
*            by adding white noitse
*
         p_xObs(f,c,t) = p_report(parDraws,"obs",f,c,t) + normal(0,%var%);
*
*        --- fit to land constraint and max crop shares
*
         v_fitDat.up = inf;
         solve m_fitDat using NLP minimizing v_fitDat;
         if ( m_fitDat.modelstat ne 2, abort "Data balancing problem failed");
*
*        --- store generated data and remove any tiny infeasibility in land exhaustion,
*            become calibration targets
*
         p_xObs(f,c,t) = v_x.l(f,c,t);
         p_xObs(f,c,t) = p_xObs(f,c,t) * p_b(f,"land") / sum(c1, p_xObs(f,c1,t));
*
*        --- start value for fit is the incalibrated model
*           (= the model's optimal solution is part of the penalty function of the bi-level estimator,
*              its fit is hence is diffence against the generated data)
*
         v_fit = sum( (f,c,t), sqr(p_report(parDraws,"obs",f,c,t) - p_xObs(f,c,t)))/(card(c)*card(t)*card(f));
         p_trials(parDraws,errDraws,"ori","fit")       = v_fit.l;
         best = v_fit.l;
*
*        --- solve repeatidly the bi-level program with different start valeus, either until fit is below dynamic threshold
*            or maximal # of trials are reached
*
         retry = 0;
         loop (trials $ (     (best > min(p_trials(parDraws,errDraws,"ori","fit"),%critFit% * trials.pos/card(trials)))
                           or (trials.pos eq 1) ),

             v_fitDat.up  $ ( best < p_trials(parDraws,errDraws,"ori","fit") ) = best*1.01 + inf $ mod(trials.pos,2);
             p_trials(parDraws,errDraws,trials,"threshold") = %critFit% * trials.pos/card(trials);

             infes = 1;
             tests = 0;
             while ( infes $ (not retry),
*
*                --- perturbation options for current best parameter estimates (size of error term
*                    increases over the trials)
*
                 if ( mod(trials.pos,5) le 3,
                    v_cc.l(c)   = v_cc.l(c)     * normal(1.0,max(0.01,trials.pos/card(trials)*0.1));
                    v_px.l(i,c) = v_px.l(i,c)   * normal(1.0,max(0.01,trials.pos/card(trials)*0.1));
                    v_xf.l(f)  $ (card(f) gt 1)  = v_xf.l(f)    * normal(1.0,max(0.01,trials.pos/card(trials)*0.2));
                    v_cf.l(f)  $ (card(f) gt 1)  = v_cf.l(f)    * normal(1.0,max(0.01,trials.pos/card(trials)*0.2));
                 else
                    v_cc.l(c)   = p_c(c)       * uniform(-1,3);
                    v_px.l(i,c) = p_x(i,c)     * uniform(-1,3);
                    v_xf.l(f)  $ (card(f) gt 1) = 1 * uniform(-1,3);
                    v_cf.l(f)  $ (card(f) gt 1) = 1 * uniform(-1,3);
                 );
*
*                --- make sure that preturbed estimates fit into parameter constraints of -/+ 90% around a priori mode
*
                 v_cc.l(c)   = min(max(v_cc.l(c),   p_c(c) *0.1),p_c(c)  *1.9);
                 v_px.l(i,c) = min(max(v_px.l(i,c),p_x(i,c)*0.1),p_x(i,c)*1.9);
                 v_xf.l(f)   = min(max(v_xf.l(f),0.1),1.9);
                 v_cf.l(f)   = min(max(v_cf.l(f),0.1),1.9);
*
*                --- maximal number of trials are almost reached and fit is still worse than uncalibrated model:
*                    stick very close to uncalibrated solution (same for second try)
*
                 if ( ((trials.pos gt 0.90 * card(trials)) or (trials.pos eq 2)) $  (best ge p_trials(parDraws,errDraws,"ori","fit")),
                      v_cc.l(c)   = min(max(v_cc.l(c) , p_c(c)  * 0.999),p_c(c)    * 1.001);
                      v_px.l(i,c) = min(max(v_px.l(i,c),p_x(i,c)* 0.999),p_x(i,c)  * 1.001);
*                     --- we use the parameter mode in case first trial did not improve best
                      if ( trials.pos eq 2, v_cc.fx(c)  = p_c(c);v_px.fx(i,c) = p_x(i,c);v_xf.fx(f)=1;v_cf.fx(f)=1);
                 );

*                --- first trial uses the a priori mode
                 if ( trials.pos eq 1,
                    v_cc.l(c)    = p_c(c);
                    v_px.l(i,c)  = p_x(i,c);
                    v_xf.l(f)    = 1;
                    v_cf.l(f)    = 1;
                 );

                 v_pxf.fx(f,i,c)  = min(max( v_px.l(i,c) * v_xf.l(f),p_x(i,c)*0.1),p_x(i,c)*1.9);
                 v_c.fx(f,c)      = min(max( v_cc.l(c)   * v_cf.l(f),p_c(c ) *0.1),p_c(c)  *1.9);

*                --- each crop requires one hectare of land (cannot be perturbed)

                 v_pxf.fx(f,"land",c)      = 1;
                 v_px.fx("land",c)         = 1;

                 if ( mod(trials.pos,4) eq 0,
                    v_px.fx(i,c) = v_px.l(i,c) * sum(f, p_b(f,i) / smax(t, sum(c1,p_xObs(f,c1,t)*v_px.l(i,c1))));
                 elseif ( mod(trials.pos,4) eq 1 ),
                    v_px.fx(i,c) = v_px.l(i,c) * sum(f, p_b(f,i) / smin(t, sum(c1,p_xObs(f,c1,t)*v_px.l(i,c1)))) * card(t);
                 elseif ( mod(trials.pos,4) eq 2 ),
                    v_px.fx(i,c) = v_px.l(i,c) * sum(f, p_b(f,i) / sum(t, sum(c1,p_xObs(f,c1,t)*v_px.l(i,c1)))) * card(t);
                 );
*
*                --- solve simulation model at current perturbed paramters:
*                    that will generate a starting point where all FOCs
*                    of the inner problem are holding
*
                 v_mach.up(f,machType,machSize)   = 1;
                 v_machI.lo(f,machType,machSize)  = 0;
                 v_machI.up(f,machType,machSize)  = 1;
                 solve m_fullM using %alg% maximizing v_obje;
                 v_fitDat.l = sum( (f,c,t), sqr(v_x.l(f,c,t) - p_xObs(f,c,t)))/(card(c)*card(t)*card(f));
                 p_trials(parDraws,errDraws,trials,"MFirstFit") = v_fitDat.l;
                 infes = ((m_fullm.modelstat ne 1));
                 tests = tests + 1;
                 if ( tests eq 50, infes = 0);
             );

*
*            --- report model status of full model solve
*
             p_trials(parDraws,errDraws,trials,"ModelstatMFirst")   = m_fullM.modelstat;
*
             $$iftheni.int "%int%"=="yes"
*
*               --- with integers: fix integers during solve
*
                v_machI.fx(f,machType,machSize)  = round(v_machi.l(f,machType,machSize),0);
                v_mach.up(f,machType,machSize)   = v_machI.up(f,machType,machSize);
             $$endif.int
             solve m_fullM using %alg% maximizing v_obje;
*
*            --- bounds on estimated parameters, -/+ 90% around a priori mode
*
             v_cc.lo(c )  = p_c(c)   * 0.1;v_cc.up(c)   = p_c(c)   * 1.9;
             v_px.lo(i,c) = p_x(i,c) * 0.1;v_px.up(i,c) = p_x(i,c) * 1.9;
             v_xf.lo(f)   = 0.1; v_xf.up(f) = 1.9;
             v_cf.lo(f)   = 0.1; v_cf.up(f) = 1.9;
*
*            --- maximal number of trials are almost reached and fit is still worse than uncalibrated model:
*                stick very clos to uncalibrated solution (same for second try)
*
             if ( ((trials.pos gt 0.90 * card(trials)) or (trials.pos eq 2) ) $  (best ge p_trials(parDraws,errDraws,"ori","fit")),
                if ( trials.pos eq 2,
                   v_cc.lo(c)   = p_c(c)   * 0.99999; v_cc.up(c)   = p_c(c)   * 1.00001;
                   v_px.lo(i,c) = p_x(i,c) * 0.99999; v_px.up(i,c) = p_x(i,c) * 1.00001;
                else
                   v_cc.lo(c)   = p_c(c)   * 0.999; v_cc.up(c)   = p_c(c)   * 1.001;
                   v_px.lo(i,c) = p_x(i,c) * 0.999; v_px.up(i,c) = p_x(i,c) * 1.001;
                );
             );

             v_pxf.lo(f,i,c)      = -inf;
             v_pxf.up(f,i,c)      = +inf;
             v_pxf.fx(f,"land",c) = 1;
             v_px.fx("land",c)    = 1;

             v_c.lo(f,c)         = -inf;
             v_c.up(f,c)         = +inf;
*
*            ---- solve bi-level problem, if infeasible, second try. In case the model is declared immediately infeasible,
*                 switch off pre-processor in Conopt4
*
             if ( (v_fitDat.l > best) or ( trials.pos le 2) or (retry),

                 m_bilevel.optfile = 1;
                 solve  m_bilevel using emp minimizing v_fit;
                 if ( ((m_bilevel.modelstat gt 2) and (m_bilevel.modelstat lt 7)) or (m_bilevel.modelstat eq 19),
                     v_fitDat.up = inf;
                     if ( m_bilevel.modelstat eq 19, m_bilevel.optfile = 2);
                     solve  m_bilevel using emp minimizing v_fit;
                 );
*
*               -- store penalty function
*
                p_trials(parDraws,errDraws,trials,"fitObje")   = v_fit.l+eps;
*
*               --- store the fit and report the related objective value of the inner problem
*
                p_trials(parDraws,errDraws,trials,"fitEmp")    = sum( (f,c,t), sqr[  v_x(f,c,t)  - p_xObs(f,c,t) ] )/(card(c)*card(t)*card(f)) + eps;
                p_trials(parDraws,errDraws,trials,"ObjeEMP")   = v_obje.l;
                retry = 0;
             else
*
*               --- trial solve of full model already improved fit, check if
*                   estimator can top that (no perturbation of that point)
*
                retry = 1;
             );
*
*            --- fix estimates and solve primal model
*               (CPLEXD will allows change the start point, test for size of degenerate solution space)
*
             v_c.fx(f,c)          = v_c.l(f,c);
             v_pxf.fx(f,i,c)      = v_pxf.l(f,i,c);

             $$iftheni.int "%int%"=="yes"
*               --- de-fix integers
                v_mach.up(f,machType,machSize)     = 1;
                v_machI.lo(f,machType,machSize)    = 0;
                v_machI.up(f,machType,machSize)    = 1;
             $$endif.int
             solve m_fullM using %alg% maximizing v_obje;
             execerror = 0;
*
*            --- for reporting: round integer to remove tiny integer infeasibilities from CPLEXD
*
             v_machi.l(f,machType,machSize) = round(v_machi.l(f,machType,machSize),0);
             if ( ((m_fullM.modelstat gt 2) and (m_fullM.modelstat lt 7)) or (m_fullM.modelstat eq 10),
*               --- not a feasible solution: ensure that it is not use as best one
                v_fit = 2000;
             else
*               --- calculate fit of solve at fixed paramters
                v_fit = sum( (f,c,t), sqr(v_x(f,c,t) - p_xObs(f,c,t)))/(card(c)*card(t)*card(f));
             );
*
*            --- report key results for each try
*
             p_trials(parDraws,errDraws,trials,"modelstatM") = m_fullM.modelstat;
             p_trials(parDraws,errDraws,trials,"solvestatM") = m_fullM.solvestat;
             p_trials(parDraws,errDraws,trials,"fit")        = v_fit.l+eps;
             p_trials(parDraws,errDraws,trials,"mode")       = mod(trials.pos,5);
             p_trials(parDraws,errDraws,trials,"bestV")      = best;
             p_trials(parDraws,errDraws,trials,"obje")       = v_obje.l;
             p_trials(parDraws,errDraws,trials,"modelstatB") = m_bilevel.modelstat;
             p_trials(parDraws,errDraws,trials,"solvestatB") = m_bilevel.solvestat;
             nTries = trials.pos;

             if ( (v_fit.l lt best),
*
*               --- Current best or first solution: store
*
                p_trials(parDraws,errDraws,trials,"dFit%") = 1;
                p_trials(parDraws,errDraws,trials,"dFit%")  $ (best ne eps)
                    =    -(v_fit.l/p_trials(parDraws,errDraws,"ori","fit")-1) * 100
                       +  (best   /p_trials(parDraws,errDraws,"ori","fit")-1) * 100;

                p_trials(parDraws,errDraws,trials,"fitImp%")  $ (p_trials(parDraws,errDraws,"ori","fit") ne eps)
                   = (v_fit.l/p_trials(parDraws,errDraws,"ori","fit")-1) * 100;
                best    = v_fit.l;
                bestEmp = p_trials(parDraws,errDraws,trials,"fitEmp");
                p_trials(parDraws,errDraws,trials,"bestV")  = best;
                p_trials(parDraws,errDraws,"Best",trialRep) = p_trials(parDraws,errDraws,trials,trialRep);

                execute_unload "best%postfix%.gdx" v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
             elseif ( trials.pos eq 1),
*
*               --- if first trial did not find a better solution, store starting point as restart point for subsequent trials
*
                v_c.l(f,c)  = p_c(c);
                v_px.l(i,c) = p_x(i,c);
                v_x.l(f,c,t)  = p_report(parDraws,"obs",f,c,t);
                execute_unload "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
             else
*
*               --- if not best solution: load old solution and update report array
*
                p_trials( parDraws,errDraws,trials,"fitImp%")
                        $ (p_trials(parDraws,errDraws,"ori","fit") ne eps)
                   = (best/p_trials(parDraws,errDraws,"ori","fit")-1) * 100;

                execute_load   "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal;
                execute_unload "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
             );
         );

*        --- either a satisfactory fit found or the maximal # of trials is reached: reload best solution

         execute_load "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
*
*        --- reports for best solution
*
         p_report(parDraws,errDraws,"emp","","fit")           = best;
         p_report(parDraws,errDraws,"emp","","fitEmp")        = bestEmp;
         p_report(parDraws,errDraws,"emp","","fitUncalib")    = p_trials(parDraws,errDraws,"ori","fit");
         p_report(parDraws,errDraws,"emp","","fitImp%")   $ (p_report(parDraws,errDraws,"emp","","fitUncalib") gt eps)
               = (p_report(parDraws,errDraws,"emp","","fit")/p_report(parDraws,errDraws,"emp","","fitUncalib")-1)*100;
         p_report(parDraws,errDraws,"emp","","nTries")        = nTries;
*
*        --- report simulated duals, crop allocation, parameter estimates and total farm cost
*
         p_report(parDraws,errDraws,f,i,t)      = e_constr.m(f,i,t);
         p_report(parDraws,errDraws,f,"land",t) = e_landbal.m(f,t);
         p_report(parDraws,errDraws,f,c,t)      = v_x.l(f,c,t);
         p_report(parDraws,errDraws,"",c,i)     = v_px.l(i,c);
         p_report(parDraws,errDraws,f,c,"c")    = v_c.l(f,c);
         p_report(parDraws,errDraws,f,"c",t)    = sum(c,v_c.l(f,c)*v_x.l(f,c,t));
*
*        --- intermediate mean results (for curious users following the process ...)
*
         p_report(parDraws,"mean",sumup)   = sum(errDraws1 $ (errDraws1.pos le errDraws.pos), p_report(parDraws,errDraws1,sumUp))/errDraws.pos;
         execute_unload "results%postfix%.gdx" p_report;
     );
*
*    --- report averages for current draw (so far): mean, min and max
*
     p_report(parDraws,"mean",sumup)      = sum(errDraws, p_report(parDraws,errDraws,sumUp))/card(errDraws);
     p_report(parDraws,"min",sumup)       = smin(errDraws, p_report(parDraws,errDraws,sumUp));
     p_report(parDraws,"max",sumup)       = smax(errDraws, p_report(parDraws,errDraws,sumUp));
*
*    --- calculate std.dev. and coefficient of variance for all metrics, mean error and mean relative error
*
     p_report(parDraws,"stdDev",sumup)    = sqrt[sum(errDraws, sqr(p_report(parDraws,errDraws,sumUp)-p_report(parDraws,"obs",sumup)) )/card(errDraws)];
     p_report(parDraws,"covVar",sumup)    = (p_report(parDraws,"stdDev",sumup) / p_report(parDraws,"obs",sumup)) $ p_report(parDraws,"obs",sumup);
     p_report(parDraws,"meanErr",sumup)   = p_report(parDraws,"mean",sumup)   - p_report(parDraws,"obs",sumup)   $ p_report(parDraws,"obs",sumup);
     p_report(parDraws,"meanErrR",sumup)  = (p_report(parDraws,"meanErr",sumup) /p_report(parDraws,"obs",sumup)) $ p_report(parDraws,"obs",sumup);
*
*    --- calculate averages over draws so far
*
     p_report("avg",stats,sumup)       = sum(parDraws1 $ (parDraws1.pos le parDraws.pos), p_report(parDraws1,stats,sumup)) / parDraws.pos;
     execute_unload "results%postfix%.gdx" p_report;

   );
   option p_report:2:2:1;
   display p_report;
   execute_unload "results%postfix%.gdx" p_report;







conopt4.op2

* -------------------------------------------------
*   General Option file for CONOPT4
* -------------------------------------------------
threads = 3
Lim_Variable = 1.00e+30
flg_prep = 0
lfilos =  100
lfilog =  100
num_rounds = 1







conopt4.opT

* -------------------------------------------------
*   General Option file for CONOPT3
* -------------------------------------------------
threads = 3
Lim_Variable = 1.00e+30
lfilos =  10
lfilog =  10
*rtpiva = 1.E-15
*maxmem = t
num_rounds = 1
*Tol_Piv_Abs = 1.E-10
*Tol_Piv_Abs_NLTr = 1.E-12







jams.op2

  subsolveropt 2
  subsolver    nlpec







jams.opt

  subsolveropt 1
  subsolver    nlpec
* subsolvepar license=gamslice_test.txt
* ZipDebug WB_BILEVEL.zip







nlpec.op2

subsolveropt 2
subsolver conopt4
reftype penalty
dotGams DNLP.gms
initmu  100
finalmu 1e-6
allsolves








nlpec.opt

subsolveropt 1
subsolver conopt4
reftype penalty
*reftype mult
*slack none
dotGams DNLP.gms
initmu  1.0
*numsolves 9
*updatefac 0.05
finalmu 1e-6* subsolvepar license=gamslice_test.txt






$title Bi-level based calibration of farm-scale MIP or LP programming model
$offlisting
$ondotl
 option limCol=0,limRow=0,solprint=silent
 option NLP=CONOPT4;
*-----------------------------------------------------------------------------------------------
*
*   The following globals allow to test the model with different # of farm and time points,
*   different variances of the error terms and with/without integer based machiney requirements
*
*-----------------------------------------------------------------------------------------------
*
* ---# of observations
*
$setglobal nt 1
*
* --- # of farms
*
$setglobal nf 1
*
* --- Critical limit to stop search algorithm
*
$evalglobal critFit 1 + (%nf%**.2) $ (%nf% > 1) + %nt%**(.2)
*
* --- set variance of error term
*
$setglobal  var 2
*
* --- introduce integer based machinery requirements (no/yes)
*
$setglobal int yes
*
* -- unique name for results
*
$setglobal postfix _%nt%_%var%_%int%
$ife %nf%>1 $setglobal postfix _%nf%_%nt%_%var%_%int%

*------------------------------------------------------------------------------
*
*  Sets and parameters in simulation model
*
*------------------------------------------------------------------------------

   set c "crop activities"           / c1*c5 /;
   alias(c,c1);
   set f "farms"                      / f1*f%nf% /;
   set t "observations"               / t1*t%nt% /;
   set m1 "Months with labour peaks"  / jul,aug,sep /;
   set i   "Constraints"              / land,labour,set.m1 /;
   set m(i) / set.m1 /;
   set gmd "Gross margin depression levels" /  dep1*dep49/;
   set machSize "Different machinery sizes for binary var" / size0*size3/;
   alias(machSize,machsize1);
   set machType "Different machines" / m1*m5/;
   set machType_crop(machType,c) "Which machines are required for which crops" /
       m1.(c1,c2,c3)
       m2.(c2,c3,c4)
       m3.(c3,c4,c5)
       m4.(c4,c5,c1)
       m5.(c5,c1,c2)
   /;

   parameter
         p_r(f,c,t)         "Revenues per ha"
         p_c(c)             "Variable costs per ha"
         p_b(f,i)           "Endowments"
         p_x(i,c)           "True entries in constraint matrix"
         p_gm(c)            "Average gross margin per ha"
         p_critShare(c,gmd) "Crop shares at which gross margins are stepwise reduced"
         p_redLevl(c,gmd)   "Gross margin reduction in each step"
         p_maxCropShare(c)  "Maximum crop shares"  / c1 0.33, c2 0.5, c3 0.5, c4 0.66, c5 1 /
         p_machSize(machSize) /size1 10,   size2 50,   size3 100 /
         p_machCost(machSize) /size1 1000, size2 4000, size3 6000 /
    ;

   positive variable
            v_gmRed(f,c,gmd,t)                  "Gross margin reduction level"
            v_x(f,c,t)                          "Crop allocation"
   ;
   binary variable v_machI(f,machType,machSize) "Neighbouring points on concave curve"
   ;
   variable
            v_c(f,c)                            "Estimated costs term per ha"
            v_pxf(f,i,c)                        "Estimated resource coefficients, per farm"
            v_mach(f,machtype,machSize)         "Machine selection via convex combination"
            v_machReq(f,machtype)               "Machinery requirements, average over planning horizon"
            v_obje                              "Objective value: Gross margin of farm"
   ;
   equations
             e_obje                             "Objective function"
             e_constr(f,i,t)                    "Resource constraints"
             e_landBal(f,t)                     "Land balance"
             e_machReq(f,machType)              "Machine requirement definition, in average over planning period"
             e_convComb1(f,machType,machSize)   "Convex combinations: only two neighboring points allowed"
             e_convComb2(f,machType)            "Convex combinations: share add up to one"
             e_convComb3(f,machType,machSize)   "Convex combinations: restrict fractionals to selected points"
             e_convComb4(f,machType)            "Convex combinations: cover machine needs"
             e_gmRed(f,c,gmd,t)                 "Gross margin reduction level definition"
   ;

*  -------------------------------------------------------------------------
*
*     Model equations and definitions, equivalent to model (1) in paper
*
*  -------------------------------------------------------------------------
*
*  --- endowment constraints, vector b used for scaling
*
   e_constr(f,i,t) $ (not sameas(i,"land")) .. sum(c, v_x(f,c,t)*v_pxf(f,i,c))/p_b(f,i) =L= 1;
*
*  --- land balance is always binding
*
   e_landBal(f,t) .. sum(c, v_x(f,c,t))/ p_b(f,"land") =E= 1;
*
*  --- first equation in (5) (division by land for scaling)
*
   e_gmRed(f,c,gmd,t) ..

        v_gmRed(f,c,gmd,t)/p_b(f,"land") =G= v_x(f,c,t)/p_b(f,"land") -  p_critShare(c,gmd);
*
*  --- that is modifed farm gross margin equation, second equation in (5)
*      (per year and hectare, and normalized by 100 for better scaling)
*
   e_obje ..

      v_obje * card(t) * card(f) * sum(f,p_b(f,"land"))
                  =E=   sum[ (f,c,t), (p_r(f,c,t)-v_c(f,c)) * v_x(f,c,t)
                                    - sum(gmd, v_gmRed(f,c,gmd,t)*p_redLevl(c,gmd))]
*
*     --- yearly costs of machine use
*
$ifi "%int%"=="yes"    - sum((f,machType,machSize), v_mach(f,machType,machSize) * p_machCost(machSize) * card(t))
       ;

*  -------------------------------------------------------------------------
*
*     Extension to binaries to depict investments into machines
*
*  -------------------------------------------------------------------------
*
*  --- define machinery requirements, average of planning period
*      (define scale-dependent machinery choice)
*
   e_machReq(f,machType) ..

       v_machReq(f,machType)/p_b(f,"land")
         =E= sum((machType_crop(machType,c),t), v_x(f,c,t))/(p_b(f,"land")*card(t));
*
*  --- convex combination: (over concave point) two neighbouring point need to sum up to zero
*
   e_convComb1(f,machType,machSize) ..

        sum(machSize1 $ (abs(machSize.pos - machSize1.pos) gt 1),v_machI(f,machType,machSize1))
            =L= ( 1 - v_machI(f,machType,machSize))*2;
*
*  --- Selected shares must add up to unity
*
   e_convComb2(f,machType) ..

      sum(machSize, v_mach(f,machType,machSize)) =E= 1;
*
*  --- only use selected point on concave set
*
   e_convComb3(f,machType,machSize) ..

      v_mach(f,machType,machSize) =L= v_machI(f,machType,machSize);
*
*  --- convex combination: the coefficient weighted sum covers the machinery requirements
*
   e_convComb4(f,machType) ..

      sum(machSize,v_mach(f,machType,machSize)*p_machSize(machsize))
                 =E= v_machReq(f,machType);
*
*  --- crop rotational restrictions
*
   model m_fullM "Full simulation model"
                   / e_obje,e_constr,e_landBal,e_gmRed,
$ifi "%int%"=="yes"  e_machReq,e_convComb1,e_convComb2,e_convComb3,e_convComb4
*
                   /;
   m_fullM.solvelink = 5;
   m_fullM.holdfixed = 1;
   m_fullM.optcr     = 0;
   m_fullM.optfile   = 1;
   option kill=v_machI;

*  -------------------------------------------------------------------------
*
*    Bi-level estimation framework
*
*  -------------------------------------------------------------------------
*
   parameter
      p_xObs(f,c,t)                    "Observations in current calibration exercise"
   ;

   equation e_penalty "Penalty function: squared dev for crop allocation, and relative squared dev. for parameters, with weights"
            e_fitDat  "Penalty function for data: squared dev for crop allocation"
            e_pxf     "Define farm specific coefficient"
            e_pcf     "Define farm specific cost per ha"
   ;
   variable v_fit      "Penalty function value"
            v_fitDat   "Fit for observations";
*
   positive variable
            v_px(i,c)  "Estimated resource coefficients"
            v_cc(c)    "Estimated cost per ha"
            v_xf(f)    "Farm specific efficieny multiplier for resource coefficients (only used with multiple farms)"
            v_cf(f)    "Farm specific efficieny multiplier for cost (only used with multiple farms)"
   ;

   e_penalty .. v_fit =E= sum( (f,c,t), sqr[  v_x(f,c,t)  - p_xObs(f,c,t) ] )/(card(c)*card(t)*card(f))
                        + sum( (f,c),   sqr[ (v_cc(c)     - p_c(c))/p_c(c)   ] )/(card(c))
                        + sum( (i,c),   sqr[ (v_px(i,c)   - p_x(i,c))/p_x(i,c) ] )/(card(c)*card(i))
$ifthene.nf %nf%>1
                        + sum( (f),     sqr[ (v_xf(f)   - 1)               ] ) /(card(f))
                        + sum( (f),     sqr[ (v_cf(f)   - 1)               ] ) /(card(f))
$endif.nf
  ;
$iftheni.nf %nf%==1
*
*  --- No farm specific scale effect in case of only one farm
*
  e_pxf(f,i,c) $ (v_pxf.range(f,i,c) ne 0) .. v_pxf(f,i,c) =E= v_px(i,c);
  e_pcf(f,c)                               .. v_c(f,c)     =E= v_cc(c);
$else.nf
*
*  --- farm specific effects in case of multiple farms
*
  e_pxf(f,i,c) $ (v_pxf.range(f,i,c) ne 0) .. v_pxf(f,i,c) =E= v_px(i,c) * v_xf(f);
  e_pcf(f,c)                               .. v_c(f,c)     =E= v_cc(c)   * v_cf(f);
$endif.nf

  option kill=v_cc,kill=v_px,kill=v_cc,kill=v_xf,kill=v_cf;
*
*  -- set up bi-level estimation problem
*
   model m_biLevel/ e_penalty,e_pxf,e_pcf,e_obje,e_constr,e_landbal,e_gmRed
   $$ifi "%int%"=="yes"                                   e_machReq e_convComb2 e_convComb4
   /;
   m_bilevel.optfile   = 1;
   m_bilevel.solvelink = 5;
   m_bilevel.holdfixed = 1;
   m_bilevel.reslim    = 120;
   m_bilevel.iterlim   =  5000;

*
*  --- top level variables: SSQ, estimated costs per ha, estimated labour needs
*
   $$iftheni.nf %nf%==1
      $$set leader bilevel v_fit v_c v_cc v_pxf v_px
   $$else.nf
      $$set leader bilevel v_fit v_c v_cc v_cf v_pxf v_px v_xf
   $$endif.nf
*
*  --- lower level: farm optimization problem
*
                        $$set follower max v_obje v_x v_gmRed                  e_obje e_constr e_landBal e_gmRed
   $$ifi "%int%"=="yes" $$set follower max v_obje v_x v_gmRed v_mach v_machReq e_obje e_constr e_landbal e_gmRed e_machReq e_convComb2 e_convComb4

   option MPEC=nlpec;
   $$onecho  > "%emp.info%"
    %leader%
    %follower%
   $$offecho
*
*  -------------------------------------------------------------------------
*
*     Data balancing problem: ensure that observations exhaust land
*                             and fit into maximal crop shares
*
*  -------------------------------------------------------------------------

   e_fitDat .. v_fitDat =E= sum( (f,c,t), sqr[  v_x(f,c,t)  - p_xObs(f,c,t) ] )/(card(c)*card(t)*card(f));

   model m_fitDat / e_fitDat,e_landBal /;
   m_fitDat.solveLink=5;
   m_fitDat.holdFixed=1;
   m_fitDat.optFile=1;

*  -------------------------------------------------------------------------
*
*     Monte-Carlo set-up and search algorithm around bi-level estimator
*
*  -------------------------------------------------------------------------

   set fe / set.f,"",best /;
   set stats      "Statistics" / avg,obs,mean,min,max,meanErr,meanErrR,stdDev,covVar,ori /;
   set parDraws   "Repeated generation of random parameters for crops"          /var1*var50/;
   set errDraws   "Random observations to which each model is calirbated"       /draw1*draw20/;
   set trials     "Repeated applications of bi-level estimator if not optimal"  / try1*try100/;

   alias(parDraws,parDraws1);
   alias(errDraws,errDraws1);

   set sumUp(*,*,*) "Parameters and metrics to summarize"
                  / emp."".(fit,fitEmp,fitUncalib,"fitImp%",nTries),
                           (set.f).(set.i).(set.t),
                           (set.f).(set.c).(set.t)
                           ,"".(set.c).(set.i),
                           (set.f).(set.c)."c",(set.f)."".(set.t) /;

   set trialRep / fit,fitEmp,"fitImp%",thresHold,MoldelStatMFirst,fitObje,ObjeEMP,
                  modelstatM,solveStatM,mode,bestV,obje,modelStatB,solveStatB,"dFit%"/;

   parameter p_trials(*,*,*,*)    "Report array for results from bi-level estimator from trials"
             p_report(*,*,*,*,*)  "Summary report, comprising only best resuls from each draw"
             p_aveFarm            "Intermediate data to construct parameter errDraws"
             p_infeasCor          "Intermediate parameter to avoid that tiny infeasibility are passed from bi-level solver to LP"
   ;

   scalar nTries  "Current number of tries for reportint"
          best    "Current best, from solving simulation model at EMP results"
          bestEmp "Related current best fit value of bi-level estimator"
   ;

*
*  --- outer loop: different random parameterization of true models, will generate different "true" observations
*
   scalar infes,retry,tests;
*
*  --- settings in case of one farrm
*
   p_b(f,"land")   = 100;
   p_b(f,"labour") = 1000;
*
*  --- the following can be used to restart after a number of parDraws if the program crashed
*      (e.g. by a restart of a computing server). Don't foget to change the seed in that case
*       to avoid the same sequence of parameters draws is generated.
*
*  execute_load "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
*  execute_load "results%postfix%.gdx" p_report;

   loop(parDraws $ (parDraws.pos ge 1),
*
      infes = 1;
*
*     --- the parameter draws might lead to a infeasible program. We therefore draw
*         until we find a set which generates a feasible solution
*
      while(infes,
*
*       --- multiple farms: draw endowments and set max crop acreage from maximam crop share
*
         p_b(f,"land")   $ (card(f) gt 1) = uniform(50,150);
         p_b(f,"labour") $ (card(f) gt 1) = p_b(f,"land") * uniform(0.90,1.10) * 10;
         v_x.up(f,c,t) $ (p_maxCropShare(c) ne 1) = p_b(f,"land")*p_maxCropShare(c);
*
*       --- available labour in peak months: 50% than what average availability (total divived by twelve months) suggests,
*                                            plus some randomness
*
         p_b(f,m) = 1.5 / 12 * p_b(f,"Labour") * uniform(0.9,1.1);
*
*        --- yearly revenues and costs are drawn from uniform distribution
*
         p_r(f,c,t) = uniform(900,1300);
         p_c(c)     = uniform(400,500);
*
*        --- each crop requires one hectare
*
         p_x("land",c) = 1;
*
*        --- average of total farm gross margin over the years (= equal to renumeration of constraints)
*            (for integer case, consider investment in all type of machine for medium size)
*
         p_aveFarm("gm")   =          sum( (f,c,t), p_r(f,c,t)-p_c(c))/(card(c)*card(t)*card(f))
             $$ifi "%int%"=="yes"   - sum(machType, p_machCost("size3"))/sum(f,p_b(f,"land"))
         ;
*
*        --- average return per ha: 75% of average gross margin
*
         p_aveFarm("land") = p_aveFarm("gm") * 3/4;
*
*        --- average return per labour hour: gross margin not allocated to land, distributed over available labour
*
         p_aveFarm("labour") = (p_aveFarm("gm") - p_aveFarm("land"))*[sum(f,p_b(f,"land"))/card(f)] /[sum(f,p_b(f,"labour"))/card(f)];
*
*        --- labour needs per ha: average gross margin minus assumed returns to land, divided by returns per labour hour
*                                 and some randomness
*
         p_x("labour",c)  = max(1,(p_aveFarm("gm") - p_aveFarm("land")
*                                   --- consider scale effect: crops with an average share will tend to use
*                                       larger machinery with lower per unit cost
                                   $$ifi %int%==yes + (p_maxCropShare(c)-0.5) * 2
                               )/p_aveFarm("labour")  *  uniform(0.95,1.060));

         p_aveFarm("labourT") = sum(c, p_x("labour",c))/card(c) * sum(f,p_b(f,"land"))/card(f);
*
*        --- derived labour needs in peak period, with some randomness
*
         p_x(m,c)  = p_x("labour",c) * 1.5/12 * uniform(0.75,1.25);
*
*        --- average of each crop's gross margin over the years

         p_gm(c) = sum((f,t), p_r(f,c,t) - p_c(c))/(card(t)*card(f));
*
*        --- critical share up to maximum share allowed, steps get larger when moving towards the maximum crop share
*
         p_critShare(c,gmd) = (gmd.pos/(card(gmd)+1))**1.5 * p_maxCropShare(c);
*
*        --- each step reduces gross margin by 1%
*
         p_redLevl(c,gmd) = 0.01 / (card(gmd)+1) * p_gm(c);
*
*        --- fix parameters in simulation models and solve (= generate "true" observations)
*
         v_c.fx(f,c)          = p_c(c);
         v_pxf.fx(f,i,c)      = p_x(i,c);
         $$setglobal alg QCP
         $$ifi "%int%"=="yes" $setglobal alg MIQCP
         option %alg%=CPLEXD;
         v_mach.up(f,machType,machSize)  = 1;
         solve m_fullM using %alg% maximizing v_obje;
         infes = (m_fullm.modelstat ne 1)
      );
*
*     --- store given data (observed allocation, coefficients)
*
      p_report(parDraws,"obs",f,i,t)    = e_constr.m(f,i,t);
      p_report(parDraws,"obs",f,c,t)    = v_x.l(f,c,t);
      p_report(parDraws,"obs","",c,i)   = p_x(i,c);
      p_report(parDraws,"obs","",c,"c") = p_c(c);
      p_report(parDraws,"obs",f,"c",t)  = sum(c,p_c(c)*v_x.l(f,c,t));
*
*     ---- loop with different, randomly generated calibration targets
*
      loop(errDraws,
*
*        --- randomly drawn observation for crop allocation around "observed" point
*            by adding white noitse
*
         p_xObs(f,c,t) = p_report(parDraws,"obs",f,c,t) + normal(0,%var%);
*
*        --- fit to land constraint and max crop shares
*
         v_fitDat.up = inf;
         solve m_fitDat using NLP minimizing v_fitDat;
         if ( m_fitDat.modelstat ne 2, abort "Data balancing problem failed");
*
*        --- store generated data and remove any tiny infeasibility in land exhaustion,
*            become calibration targets
*
         p_xObs(f,c,t) = v_x.l(f,c,t);
         p_xObs(f,c,t) = p_xObs(f,c,t) * p_b(f,"land") / sum(c1, p_xObs(f,c1,t));
*
*        --- start value for fit is the incalibrated model
*           (= the model's optimal solution is part of the penalty function of the bi-level estimator,
*              its fit is hence is diffence against the generated data)
*
         v_fit = sum( (f,c,t), sqr(p_report(parDraws,"obs",f,c,t) - p_xObs(f,c,t)))/(card(c)*card(t)*card(f));
         p_trials(parDraws,errDraws,"ori","fit")       = v_fit.l;
         best = v_fit.l;
*
*        --- solve repeatidly the bi-level program with different start valeus, either until fit is below dynamic threshold
*            or maximal # of trials are reached
*
         retry = 0;
         loop (trials $ (     (best > min(p_trials(parDraws,errDraws,"ori","fit"),%critFit% * trials.pos/card(trials)))
                           or (trials.pos eq 1) ),

             v_fitDat.up  $ ( best < p_trials(parDraws,errDraws,"ori","fit") ) = best*1.01 + inf $ mod(trials.pos,2);
             p_trials(parDraws,errDraws,trials,"threshold") = %critFit% * trials.pos/card(trials);

             infes = 1;
             tests = 0;
             while ( infes $ (not retry),
*
*                --- perturbation options for current best parameter estimates (size of error term
*                    increases over the trials)
*
                 if ( mod(trials.pos,5) le 3,
                    v_cc.l(c)   = v_cc.l(c)     * normal(1.0,max(0.01,trials.pos/card(trials)*0.1));
                    v_px.l(i,c) = v_px.l(i,c)   * normal(1.0,max(0.01,trials.pos/card(trials)*0.1));
                    v_xf.l(f)  $ (card(f) gt 1)  = v_xf.l(f)    * normal(1.0,max(0.01,trials.pos/card(trials)*0.2));
                    v_cf.l(f)  $ (card(f) gt 1)  = v_cf.l(f)    * normal(1.0,max(0.01,trials.pos/card(trials)*0.2));
                 else
                    v_cc.l(c)   = p_c(c)       * uniform(-1,3);
                    v_px.l(i,c) = p_x(i,c)     * uniform(-1,3);
                    v_xf.l(f)  $ (card(f) gt 1) = 1 * uniform(-1,3);
                    v_cf.l(f)  $ (card(f) gt 1) = 1 * uniform(-1,3);
                 );
*
*                --- make sure that preturbed estimates fit into parameter constraints of -/+ 90% around a priori mode
*
                 v_cc.l(c)   = min(max(v_cc.l(c),   p_c(c) *0.1),p_c(c)  *1.9);
                 v_px.l(i,c) = min(max(v_px.l(i,c),p_x(i,c)*0.1),p_x(i,c)*1.9);
                 v_xf.l(f)   = min(max(v_xf.l(f),0.1),1.9);
                 v_cf.l(f)   = min(max(v_cf.l(f),0.1),1.9);
*
*                --- maximal number of trials are almost reached and fit is still worse than uncalibrated model:
*                    stick very close to uncalibrated solution (same for second try)
*
                 if ( ((trials.pos gt 0.90 * card(trials)) or (trials.pos eq 2)) $  (best ge p_trials(parDraws,errDraws,"ori","fit")),
                      v_cc.l(c)   = min(max(v_cc.l(c) , p_c(c)  * 0.999),p_c(c)    * 1.001);
                      v_px.l(i,c) = min(max(v_px.l(i,c),p_x(i,c)* 0.999),p_x(i,c)  * 1.001);
*                     --- we use the parameter mode in case first trial did not improve best
                      if ( trials.pos eq 2, v_cc.fx(c)  = p_c(c);v_px.fx(i,c) = p_x(i,c);v_xf.fx(f)=1;v_cf.fx(f)=1);
                 );

*                --- first trial uses the a priori mode
                 if ( trials.pos eq 1,
                    v_cc.l(c)    = p_c(c);
                    v_px.l(i,c)  = p_x(i,c);
                    v_xf.l(f)    = 1;
                    v_cf.l(f)    = 1;
                 );

                 v_pxf.fx(f,i,c)  = min(max( v_px.l(i,c) * v_xf.l(f),p_x(i,c)*0.1),p_x(i,c)*1.9);
                 v_c.fx(f,c)      = min(max( v_cc.l(c)   * v_cf.l(f),p_c(c ) *0.1),p_c(c)  *1.9);

*                --- each crop requires one hectare of land (cannot be perturbed)

                 v_pxf.fx(f,"land",c)      = 1;
                 v_px.fx("land",c)         = 1;

                 if ( mod(trials.pos,4) eq 0,
                    v_px.fx(i,c) = v_px.l(i,c) * sum(f, p_b(f,i) / smax(t, sum(c1,p_xObs(f,c1,t)*v_px.l(i,c1))));
                 elseif ( mod(trials.pos,4) eq 1 ),
                    v_px.fx(i,c) = v_px.l(i,c) * sum(f, p_b(f,i) / smin(t, sum(c1,p_xObs(f,c1,t)*v_px.l(i,c1)))) * card(t);
                 elseif ( mod(trials.pos,4) eq 2 ),
                    v_px.fx(i,c) = v_px.l(i,c) * sum(f, p_b(f,i) / sum(t, sum(c1,p_xObs(f,c1,t)*v_px.l(i,c1)))) * card(t);
                 );
*
*                --- solve simulation model at current perturbed paramters:
*                    that will generate a starting point where all FOCs
*                    of the inner problem are holding
*
                 v_mach.up(f,machType,machSize)   = 1;
                 v_machI.lo(f,machType,machSize)  = 0;
                 v_machI.up(f,machType,machSize)  = 1;
                 solve m_fullM using %alg% maximizing v_obje;
                 v_fitDat.l = sum( (f,c,t), sqr(v_x.l(f,c,t) - p_xObs(f,c,t)))/(card(c)*card(t)*card(f));
                 p_trials(parDraws,errDraws,trials,"MFirstFit") = v_fitDat.l;
                 infes = ((m_fullm.modelstat ne 1));
                 tests = tests + 1;
                 if ( tests eq 50, infes = 0);
             );

*
*            --- report model status of full model solve
*
             p_trials(parDraws,errDraws,trials,"ModelstatMFirst")   = m_fullM.modelstat;
*
             $$iftheni.int "%int%"=="yes"
*
*               --- with integers: fix integers during solve
*
                v_machI.fx(f,machType,machSize)  = round(v_machi.l(f,machType,machSize),0);
                v_mach.up(f,machType,machSize)   = v_machI.up(f,machType,machSize);
             $$endif.int
             solve m_fullM using %alg% maximizing v_obje;
*
*            --- bounds on estimated parameters, -/+ 90% around a priori mode
*
             v_cc.lo(c )  = p_c(c)   * 0.1;v_cc.up(c)   = p_c(c)   * 1.9;
             v_px.lo(i,c) = p_x(i,c) * 0.1;v_px.up(i,c) = p_x(i,c) * 1.9;
             v_xf.lo(f)   = 0.1; v_xf.up(f) = 1.9;
             v_cf.lo(f)   = 0.1; v_cf.up(f) = 1.9;
*
*            --- maximal number of trials are almost reached and fit is still worse than uncalibrated model:
*                stick very clos to uncalibrated solution (same for second try)
*
             if ( ((trials.pos gt 0.90 * card(trials)) or (trials.pos eq 2) ) $  (best ge p_trials(parDraws,errDraws,"ori","fit")),
                if ( trials.pos eq 2,
                   v_cc.lo(c)   = p_c(c)   * 0.99999; v_cc.up(c)   = p_c(c)   * 1.00001;
                   v_px.lo(i,c) = p_x(i,c) * 0.99999; v_px.up(i,c) = p_x(i,c) * 1.00001;
                else
                   v_cc.lo(c)   = p_c(c)   * 0.999; v_cc.up(c)   = p_c(c)   * 1.001;
                   v_px.lo(i,c) = p_x(i,c) * 0.999; v_px.up(i,c) = p_x(i,c) * 1.001;
                );
             );

             v_pxf.lo(f,i,c)      = -inf;
             v_pxf.up(f,i,c)      = +inf;
             v_pxf.fx(f,"land",c) = 1;
             v_px.fx("land",c)    = 1;

             v_c.lo(f,c)         = -inf;
             v_c.up(f,c)         = +inf;
*
*            ---- solve bi-level problem, if infeasible, second try. In case the model is declared immediately infeasible,
*                 switch off pre-processor in Conopt4
*
             if ( (v_fitDat.l > best) or ( trials.pos le 2) or (retry),

                 m_bilevel.optfile = 1;
                 solve  m_bilevel using emp minimizing v_fit;
                 if ( ((m_bilevel.modelstat gt 2) and (m_bilevel.modelstat lt 7)) or (m_bilevel.modelstat eq 19),
                     v_fitDat.up = inf;
                     if ( m_bilevel.modelstat eq 19, m_bilevel.optfile = 2);
                     solve  m_bilevel using emp minimizing v_fit;
                 );
*
*               -- store penalty function
*
                p_trials(parDraws,errDraws,trials,"fitObje")   = v_fit.l+eps;
*
*               --- store the fit and report the related objective value of the inner problem
*
                p_trials(parDraws,errDraws,trials,"fitEmp")    = sum( (f,c,t), sqr[  v_x(f,c,t)  - p_xObs(f,c,t) ] )/(card(c)*card(t)*card(f)) + eps;
                p_trials(parDraws,errDraws,trials,"ObjeEMP")   = v_obje.l;
                retry = 0;
             else
*
*               --- trial solve of full model already improved fit, check if
*                   estimator can top that (no perturbation of that point)
*
                retry = 1;
             );
*
*            --- fix estimates and solve primal model
*               (CPLEXD will allows change the start point, test for size of degenerate solution space)
*
             v_c.fx(f,c)          = v_c.l(f,c);
             v_pxf.fx(f,i,c)      = v_pxf.l(f,i,c);

             $$iftheni.int "%int%"=="yes"
*               --- de-fix integers
                v_mach.up(f,machType,machSize)     = 1;
                v_machI.lo(f,machType,machSize)    = 0;
                v_machI.up(f,machType,machSize)    = 1;
             $$endif.int
             solve m_fullM using %alg% maximizing v_obje;
             execerror = 0;
*
*            --- for reporting: round integer to remove tiny integer infeasibilities from CPLEXD
*
             v_machi.l(f,machType,machSize) = round(v_machi.l(f,machType,machSize),0);
             if ( ((m_fullM.modelstat gt 2) and (m_fullM.modelstat lt 7)) or (m_fullM.modelstat eq 10),
*               --- not a feasible solution: ensure that it is not use as best one
                v_fit = 2000;
             else
*               --- calculate fit of solve at fixed paramters
                v_fit = sum( (f,c,t), sqr(v_x(f,c,t) - p_xObs(f,c,t)))/(card(c)*card(t)*card(f));
             );
*
*            --- report key results for each try
*
             p_trials(parDraws,errDraws,trials,"modelstatM") = m_fullM.modelstat;
             p_trials(parDraws,errDraws,trials,"solvestatM") = m_fullM.solvestat;
             p_trials(parDraws,errDraws,trials,"fit")        = v_fit.l+eps;
             p_trials(parDraws,errDraws,trials,"mode")       = mod(trials.pos,5);
             p_trials(parDraws,errDraws,trials,"bestV")      = best;
             p_trials(parDraws,errDraws,trials,"obje")       = v_obje.l;
             p_trials(parDraws,errDraws,trials,"modelstatB") = m_bilevel.modelstat;
             p_trials(parDraws,errDraws,trials,"solvestatB") = m_bilevel.solvestat;
             nTries = trials.pos;

             if ( (v_fit.l lt best),
*
*               --- Current best or first solution: store
*
                p_trials(parDraws,errDraws,trials,"dFit%") = 1;
                p_trials(parDraws,errDraws,trials,"dFit%")  $ (best ne eps)
                    =    -(v_fit.l/p_trials(parDraws,errDraws,"ori","fit")-1) * 100
                       +  (best   /p_trials(parDraws,errDraws,"ori","fit")-1) * 100;

                p_trials(parDraws,errDraws,trials,"fitImp%")  $ (p_trials(parDraws,errDraws,"ori","fit") ne eps)
                   = (v_fit.l/p_trials(parDraws,errDraws,"ori","fit")-1) * 100;
                best    = v_fit.l;
                bestEmp = p_trials(parDraws,errDraws,trials,"fitEmp");
                p_trials(parDraws,errDraws,trials,"bestV")  = best;
                p_trials(parDraws,errDraws,"Best",trialRep) = p_trials(parDraws,errDraws,trials,trialRep);

                execute_unload "best%postfix%.gdx" v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
             elseif ( trials.pos eq 1),
*
*               --- if first trial did not find a better solution, store starting point as restart point for subsequent trials
*
                v_c.l(f,c)  = p_c(c);
                v_px.l(i,c) = p_x(i,c);
                v_x.l(f,c,t)  = p_report(parDraws,"obs",f,c,t);
                execute_unload "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
             else
*
*               --- if not best solution: load old solution and update report array
*
                p_trials( parDraws,errDraws,trials,"fitImp%")
                        $ (p_trials(parDraws,errDraws,"ori","fit") ne eps)
                   = (best/p_trials(parDraws,errDraws,"ori","fit")-1) * 100;

                execute_load   "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal;
                execute_unload "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
             );
         );

*        --- either a satisfactory fit found or the maximal # of trials is reached: reload best solution

         execute_load "best%postfix%.gdx"  v_c,v_cc,v_cf,v_pxf,v_px,v_xf,v_x,v_gmRed,v_obje,v_mach,e_constr,e_landBal,p_trials,nTries;
*
*        --- reports for best solution
*
         p_report(parDraws,errDraws,"emp","","fit")           = best;
         p_report(parDraws,errDraws,"emp","","fitEmp")        = bestEmp;
         p_report(parDraws,errDraws,"emp","","fitUncalib")    = p_trials(parDraws,errDraws,"ori","fit");
         p_report(parDraws,errDraws,"emp","","fitImp%")   $ (p_report(parDraws,errDraws,"emp","","fitUncalib") gt eps)
               = (p_report(parDraws,errDraws,"emp","","fit")/p_report(parDraws,errDraws,"emp","","fitUncalib")-1)*100;
         p_report(parDraws,errDraws,"emp","","nTries")        = nTries;
*
*        --- report simulated duals, crop allocation, parameter estimates and total farm cost
*
         p_report(parDraws,errDraws,f,i,t)      = e_constr.m(f,i,t);
         p_report(parDraws,errDraws,f,"land",t) = e_landbal.m(f,t);
         p_report(parDraws,errDraws,f,c,t)      = v_x.l(f,c,t);
         p_report(parDraws,errDraws,"",c,i)     = v_px.l(i,c);
         p_report(parDraws,errDraws,f,c,"c")    = v_c.l(f,c);
         p_report(parDraws,errDraws,f,"c",t)    = sum(c,v_c.l(f,c)*v_x.l(f,c,t));
*
*        --- intermediate mean results (for curious users following the process ...)
*
         p_report(parDraws,"mean",sumup)   = sum(errDraws1 $ (errDraws1.pos le errDraws.pos), p_report(parDraws,errDraws1,sumUp))/errDraws.pos;
         execute_unload "results%postfix%.gdx" p_report;
     );
*
*    --- report averages for current draw (so far): mean, min and max
*
     p_report(parDraws,"mean",sumup)      = sum(errDraws, p_report(parDraws,errDraws,sumUp))/card(errDraws);
     p_report(parDraws,"min",sumup)       = smin(errDraws, p_report(parDraws,errDraws,sumUp));
     p_report(parDraws,"max",sumup)       = smax(errDraws, p_report(parDraws,errDraws,sumUp));
*
*    --- calculate std.dev. and coefficient of variance for all metrics, mean error and mean relative error
*
     p_report(parDraws,"stdDev",sumup)    = sqrt[sum(errDraws, sqr(p_report(parDraws,errDraws,sumUp)-p_report(parDraws,"obs",sumup)) )/card(errDraws)];
     p_report(parDraws,"covVar",sumup)    = (p_report(parDraws,"stdDev",sumup) / p_report(parDraws,"obs",sumup)) $ p_report(parDraws,"obs",sumup);
     p_report(parDraws,"meanErr",sumup)   = p_report(parDraws,"mean",sumup)   - p_report(parDraws,"obs",sumup)   $ p_report(parDraws,"obs",sumup);
     p_report(parDraws,"meanErrR",sumup)  = (p_report(parDraws,"meanErr",sumup) /p_report(parDraws,"obs",sumup)) $ p_report(parDraws,"obs",sumup);
*
*    --- calculate averages over draws so far
*
     p_report("avg",stats,sumup)       = sum(parDraws1 $ (parDraws1.pos le parDraws.pos), p_report(parDraws1,stats,sumup)) / parDraws.pos;
     execute_unload "results%postfix%.gdx" p_report;

   );
   option p_report:2:2:1;
   display p_report;
   execute_unload "results%postfix%.gdx" p_report;



* -------------------------------------------------
*   General Option file for CONOPT4
* -------------------------------------------------
threads = 3
Lim_Variable = 1.00e+30
flg_prep = 0
lfilos =  100
lfilog =  100
num_rounds = 1



* -------------------------------------------------
*   General Option file for CONOPT3
* -------------------------------------------------
threads = 3
Lim_Variable = 1.00e+30
lfilos =  10
lfilog =  10
*rtpiva = 1.E-15
*maxmem = t
num_rounds = 1
*Tol_Piv_Abs = 1.E-10
*Tol_Piv_Abs_NLTr = 1.E-12



  subsolveropt 2
  subsolver    nlpec



  subsolveropt 1
  subsolver    nlpec
* subsolvepar license=gamslice_test.txt
* ZipDebug WB_BILEVEL.zip



subsolveropt 2
subsolver conopt4
reftype penalty
dotGams DNLP.gms
initmu  100
finalmu 1e-6
allsolves




subsolveropt 1
subsolver conopt4
reftype penalty
*reftype mult
*slack none
dotGams DNLP.gms
initmu  1.0
*numsolves 9
*updatefac 0.05
finalmu 1e-6* subsolvepar license=gamslice_test.txt


