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Georg Helbing, Zhiwei Shen, Martin Odening and Matthias Ritter 

Humboldt-Universität zu Berlin, Germany 

 

Abstract 

“Bodenrichtwerte” reflect the average location value 

of land plots within a specific area. They constitute an 

important source of information that contributes to 

price transparency on land markets. In Germany, 

“Bodenrichtwerte” are provided by publicly appoint-

ed expert groups (Gutachterausschüsse). Using em-

pirical data from Mecklenburg-Western Pomerania 

between 2013 and 2015, this article examines the 

relation between “Bodenrichtwerten” and statistically 

determined location values. It turns out that “Boden-

richtwerte” tend to underestimate location values of 

arable land by 11.5% on average. This underestima-

tion can be traced back to the pronounced increase of 

land prices in the observation period. As an alterna-

tive to the expert-based determination of location 

values, we suggest a nonparametric smoothing proce-

dure that rests on the Propagation-Separation Ap-

proach. The application of this data-driven procedure 

achieves an accuracy comparable to that of official 

“Bodenrichtwerte” at the one-year ahead prediction 

of location values without the requirement of expert 

knowledge. 

Key Words 

land value; adaptive weight smoothing; agricultural 

land markets; propagation-separation approach; Bo-

denrichtwert 

1 Introduction 

Information about realized prices is crucial for the 

price formation process on land markets. An im-

portant source of information that contributes to price 

transparency on land markets are location values, 

estimates for which (referred to as Bodenrichtwerte, 

BRW) are provided by publicly appointed expert 

groups (Gutachterausschüsse) in Germany. According 

to the Federal Building Code (BAUGESETZBUCH), 

BRW are intended to reflect the average location val-

ue (per square meter) of pieces of land. The purpose 

of these values is to reduce transaction costs related to 

real estate transactions by offering reliable bench-

marks for purchases and taxation.  

Unfortunately, three features of land markets im-

pede the accurate estimation of location values. First, 

land markets are characterised by a relatively low 

liquidity. For example, in Germany on average only 

less than one percent of the agricultural area is sold 

each year (STATISTISCHES BUNDESAMT, 2015). Actu-

ally, it may happen that only a few or even no land 

transactions take place within a particular sub-district 

(Gemarkung) during one or two years. As a conse-

quence, estimating location values typically warrants 

pooling observations from sub-districts for which one 

can assume a similar location value. In practice, this 

entails a bias-variance trade-off: by including weighted 

observations from other sub-districts, one can reduce 

variance, but if the assumption of equal location value 

is violated, considerable bias may be incurred. The 

second feature that impedes estimation of location 

values is that land is an extremely heterogeneous as-

set: its value depends on a variety of attributes and 

conditioning variables, such as soil quality, plot size, 

land use systems, or distance to cities.
1
 This heteroge-

neity complicates a direct comparison of observed 

prices. The third characteristic that complicates the 

determination of BRW is the dynamics inherent to 

land markets. Changes in the location value of land 

may arise from changes in interest rates or agricultural 

product prices, technological change, or changes in 

legislation. To capture these dynamics, BRW are up-

dated every two years at the latest. The method to be 

applied in this task is comparative analysis, i.e., pool-

ing prices of similar plots and adjusting prices for 

deviations of the underlying plot to make them com-

parable. For this purpose, homogeneous sub-districts 

showing similar price determining attributes, so-called 

location value zones (Bodenrichtwertzonen), are de-

fined.  

In view of the aforementioned characteristics of 

land markets, it is quite obvious that expert groups 

face a challenging statistical estimation problem. Ob-

served transactions have to be filtered to reflect mar-

ket conditions, i.e., purchases between family mem-

bers, forced sales, or seizure should be ruled out.  

                                                           
1
  See HÜTTEL et al. (2013) and the literature cited therein 

for an overview on land price determinants. 
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Moreover, prices that are untypical need to be identi-

fied as outliers and either adjusted or dropped. Finally, 

observed transactions need to be ‘translated’ to reflect 

typical land characteristics of the sub-district, which 

implies that observed prices have to be weighted or 

otherwise adjusted. While there are some clear proce-

dures for filtering, much intuition is required for ad-

justing and weighting observed land prices when up-

dating the location value estimates. In practice, expert 

knowledge comes into play at this point. In the case 

that no sufficient amount of transactions for pooling is 

available, ‘deductive methods’ may be applied (BUN-

DESMINISTERIUM FÜR VERKEHR, BAU UND STADT-

ENTWICKLUNG, 2011). These include the considera-

tion of past location values and general market trends. 

From a scientific point of view, the question aris-

es if BRW actually reflect location values and how the 

procedure applied by the experts can be assessed. In 

particular, it would be interesting to analyse if BRW 

show systematic biases and if so, where and why these 

biases occur.
2
 Any answer to these questions has to 

cope with the problem that location values are hypo-

thetical values and thus unobservable. Nonetheless, 

given their definition, one would expect that BRW do 

not systematically deviate from realized prices in a 

location value zone. 

Against this background the contribution of this 

paper is twofold. First, we aim at the evaluation of 

BRW as indicators of location values of agricultural 

land through a comparison of BRW and sample statis-

tics of observed land prices. Second, we propose a 

statistical smoothing procedure as a data driven alter-

native to the expert-based approach. More specifically, 

we make use of an adaptive smoothing procedure that 

has been introduced as the “Propagation-Separation 

Approach” (PSA) by POLZEHL and SPOKOINY (2006) 

into the literature. This method was originally devel-

oped as “Adaptive Weights Smoothing” in the context 

of image denoising (POLZEHL and SPOKOINY, 2000). 

Recently, it has also been used in geology for the es-

timation of seismic parameter fields (GITIS et al., 

2015). The paper most similar to ours is KOLBE et al. 

(2015) who use PSA for the estimation of land values 

in an urban context. We follow their statistical proce-

dure, but in contrast to KOLBE et al. (2015) we create 

a benchmark that allows us to compare the BRW with 

                                                           
2
  Biases of BRW could be rooted in the underlying meth-

odological procedure. Apart from that, expert groups 

might have a tendency to update BRW conservatively in 

phases of booming land prices to dampen further price 

increases. 

the PSA-based estimation. Moreover, we assess the 

predictive performance of the BRW and PSA in terms 

of out-of-sample evaluation. PSA is a nonparametric 

regression method that allows separating the underly-

ing structure in the data from distorting noise by 

means of an iterative locally adaptive smoothing algo-

rithm. Unlike conventional smoothing algorithms, 

such as fixed-bandwidth kernel regression, PSA does 

not only consider the distance between two locations 

when determining the weight of observations; rather, 

it adds a second component that takes into account the 

difference in resulting regression estimates. The at-

tractiveness of PSA is based on an appealing statisti-

cal property: the estimator obeys a “small modelling 

bias condition” meaning that it shows the smallest 

variance given a predetermined bias which can be 

controlled by the econometrician (POLZEHL and 

SPOKOINY, 2006). Thus, PSA addresses the variance-

bias trade-off in pooling observations from different 

sub-districts. Previous applications have documented 

that PSA performs well, if data show large homoge-

neous zones that are separated by sharp discontinuities 

(BECKER and MATHÉ, 2013). In contrast, SHEN et al. 

(2016) report that PSA has difficulties to identify out-

liers in otherwise homogeneous data. Thus, it is not 

clear whether PSA constitutes a viable alternative to 

the expert-based determination of location values. The 

application and the evaluation of this rather new sta-

tistical method constitutes the second contribution of 

our study. We note that we do not aim at developing a 

superior statistical method in order to substitute BRW; 

rather, we are interested in exploring if PSA may be 

used as a complement or a benchmark for official BRW. 

The remainder of the article is organized as fol-

lows: Section 2 describes the land transaction data 

from Mecklenburg-Western Pomerania that we use as 

the empirical basis of our analysis. Afterwards, we 

derive a benchmark for assessing the performance of 

location value estimators. In Section 3, we analyse 

whether BRW show a significant bias and what fac-

tors this hinges on. In particular, we are interested in 

whether there are any significant differences in bias 

between different expert groups. In Section 4, we 

introduce the PSA method in general and demonstrate 

how it can be applied to our data. Section 5 presents 

the results of an out-of-sample forecast application, 

which compares the performance of BRW and PSA at 

the one-year ahead prediction of location value. The 

paper ends with an assessment of the current practice 

of calculating BRW and answers the question if the 

use of formal statistical procedures can improve the 

informational content of BRW. 
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2  Empirical Data and Derivation of 
a Benchmark 

Mecklenburg-Western Pomerania is one of the former 

East German states and is located in the northeast of 

Germany. Its land market is characterised by one of 

the highest turnover rates in Germany: in 2014, 2.7% 

of the agricultural land were sold, whereas the average 

in Germany amounts to 0.8%. About 30% of the 

transactions are conducted by the Bodenverwertungs- 

und -verwaltungs GmbH (BVVG). As in most Ger-

man states, the prices for agricultural land experienced 

a strong rise after 2007: the price for arable land in-

creased from almost 0.50 EUR/m² in 2007 to around 2 

EUR/m² in 2015, which means a growth by factor 4 

(see Figure 1). Remarkably, the prices in Mecklen-

burg-Western Pomerania stagnated around the aver-

age prices in East Germany for a long period, but have 

caught up to the average prices for the whole of Ger-

many since 2007. This means that the increase in pric-

es was much stronger in Mecklenburg-Western Pom-

erania than in other East German states.  

In this study, we use a data set of purchases of 

arable land in Mecklenburg-Western Pomerania 

through the years 2013-2015.
3
 We drop some transac-

tions that are labelled as ‘unsuited to analysis’ since 

they took place between family members or show 

other irregularities that mark them as not being repre-

sentative. We also cut off prices below the first per-

                                                           
3
  Data source: Landesweite Datensammlung des Oberen 

Gutachterausschusses für Grundstückswerte im Land 

Mecklenburg-Vorpommern (OGAA M-V) 

centile and above the 99
th
 percentile for each year 

from 2013-2015. This serves to remove extreme pric-

es, which are unrealistic for agricultural land and are 

therefore most likely affected by some sort of error, 

e.g., a misplaced decimal point, or are a very untypi-

cal sale.
4
 Altogether, we obtain 4,374 observations 

over three years. The summary statistics in Table 1 

depict an almost linear increase in mean land prices of 

about 0.23 EUR/m² from 2013 to 2015. The distribu-

tion of prices in the years 2013-2015 is depicted in 

Figure 2. The spatial unit of analysis that is used for 

location value estimation is the sub-district (Ge-

markung), a historic administrative unit that is usually 

situated at a sub-municipality level. In Mecklenburg-

Western Pomerania, there are 3,557 sub-districts alto-

gether, which implies that in most years there is not 

even one observation per sub-district available. This 

gives rise to the necessity of using observations from 

several years for location value prediction. Experts 

may use deductive methods and their experience for 

this purpose. For PSA, we will pool time-adjusted 

prices from 2013 and 2014 as the basis for predicting 

the location values of 2015.  

                                                           
4
  While the values we cut off at the upper price range are 

clearly outliers (the 99
th

 percentile differs from the mean 

by up to 3.5 standard deviations), the first percentile on-

ly differs by 1.5 standard deviations on average. We 

consider the prices below that mark unrealistically low, 

but to safeguard against distortions introduced by a  

hypothetical inadequate outlier removal, we also per-

formed all the computations in this paper on the data 

without removing data below the first percentile. The 

results differ only slightly and are equivalent in terms of 

our research questions. 

Figure 1.  Prices for arable land 2000–2015 in Mecklenburg-Western Pomerania, East Germany, and 

whole Germany 

 
Source: STATISTISCHES BUNDESAMT 
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In order to assess the predictive performance of 

BRW and PSA, we need to establish a benchmark, 

given that the true location values are not observable. 

We call this benchmark empirical location values 

(ELV). An important property of ELV is that by de-

sign they are an unbiased estimator of location value. 

Briefly, they are obtained by calculating the average 

price of sold arable land in a sub-district in a given 

year. However, we first perform an adjustment of the 

observed purchase prices. This step serves to reduce 

the variance of ELV by shifting observed prices to-

wards the expected value, which is particularly useful 

to mitigate extreme prices and to some extent should 

compensate the fact that in many sub-districts only 

few transactions are observed per year. Adjustment 

consists in subtracting from the observed prices the 

effects of certain individual plot characteristics, e.g., 

an above-average fertility, so that we 

obtain the price that would have been 

realised had the transacted plot been 

‘typical’ for its sub-district. 

To calculate the effects of condi-

tioning variables, we set up a linear 

regression model for (log) land-prices. 

We consider soil quality and plot size as 

covariates. Soil quality is known to 

have a considerable influence on land 

prices (e.g., HENNIG et al., 2014). Plot 

size on the other hand is included be-

cause we hypothesize that large plot 

sizes tend to be sold by the federal trust 

(BVVG) that is in charge of adminis-

trating formerly state owned land. It is 

not unlikely that the prices from these 

sales differ from sales among private 

parties (HÜTTEL et al., 2016). Given the 

observed linear trend in our data, we 

also account for temporal effects by 

including time dummy variables. More-

over, regional dummy variables are 

included to reduce the risk of omitted variable bias. 

Through temporal and spatial dummy variables, all 

unobserved effects that are constant over time or 

space are captured. Finally, we also include the quad-

ratic soil quality and plot size terms, since we found 

that the corresponding model achieves a lower BIC 

than the one with only the linear terms. Hence, we fit 

the following log-linear regression model to our data 

(see next paragraph for details): 

 

 log(𝑝𝑖,𝑗,𝑡) =  𝛼1𝑠𝑖,𝑗,𝑡 +  𝛼2𝑠𝑖,𝑗,𝑡
2 + 𝛽1𝑞𝑖,𝑗,𝑡

+ 𝛽2𝑞𝑖,𝑗,𝑡
2 + 𝛾𝐼𝑖,𝑗,𝑡,2014

+ 𝛿𝐼𝑖,𝑗,𝑡,2015 + ∑ 𝜗𝑘

6

𝑘=2

𝐽𝑖,𝑗,𝑡,𝑘

+  𝑏 +  𝜀𝑖,𝑗,𝑡

(1) 

Figure 2.  Density plots of price distribution for the years 2013, 

2014 and 2015 

 
Note:  2013 (black), 2014 (blue) and 2015 (green). Dashed lines indicate the 

median. The kernel bandwidth used for estimating the densities is 0.13. 

Source: own elaboration 

Table 1. Summary statistics of observed purchase prices, plot size and soil quality of sold pieces of land 

Summary 

statistics 

Plot size 

(ha) 

Soil 

quality 

Prices 

(EUR/m²) 

Prices 2013 

(EUR/m²) 

Prices 2014 

(EUR/m²) 

Prices 2015 

(EUR/m²) 

Mean 8.89 38.18 1.64 1.43 1.64 1.92 

Standard 

Deviation 
19.94 8.14 0.76 0.66 0.72 0.82 

Observations 4,374 4,278 4,374 1,651 1,479 1,244 

Note:  Soil quality is measured on a scale from 0 to 120 in ascending order. Different total counts result from missing soil quality 

values in the data set. In the subsequent analyses, the largest possible datasets are used. 

Source: own elaboration 
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where 𝑠𝑖,𝑗,𝑡 denotes plot size of transaction 𝑖 in sub-

district 𝑗 in year 𝑡, 𝑞𝑖,𝑗,𝑡 denotes the corresponding soil 

quality, 𝐼𝑖,𝑗,𝑡,2014 and 𝐼𝑖,𝑗,𝑡,2015 are time dummy varia-

bles indicating the year the transaction took place in. 

The 𝐽𝑖,𝑗,𝑡,𝑘 are dummy variables indicating which re-

gion the area is located in, and 𝑏 is a constant. The 

subsequent adjustment step corrects actual prices for 

effects of above-average or below-average values of 

soil quality and plot size:
5
 

 

 log(�̃�𝑖,𝑗,𝑡) = log(𝑝𝑖,𝑗,𝑡)  −  �̂�1(𝑠𝑖,𝑗,𝑡  −  𝑠𝑗)

− �̂�2(𝑠𝑖,𝑗,𝑡
2  −  𝑠𝑗

2
) 

−�̂�1 (𝑞𝑖,𝑗,𝑡 − 𝑞𝑗) − �̂�2(𝑞𝑖,𝑗,𝑡
2 − 𝑞𝑗

2
) 

(2) 

where �̃�𝑖,𝑗,𝑡 denotes adjusted prices. We determine 

average soil quality 𝑞𝑗 and average plot size 𝑠𝑗 of sub-

district 𝑗 by taking the mean soil quality and plot size 

of all sold plots in that sub-district from 2013–15 (see 

Table 1 for summary statistics). Note that we do not 

adjust for temporal effects, because we want to esti-

mate time-varying location values. In a final step, the 

ELV �̃�𝑗,𝑡 of sub-district 𝑗 in year 𝑡 is derived by re-

transforming the adjusted log-price with the exponen-

tial and taking the sub-district- and year-wise mean of 

the adjusted prices: 

 

 

�̃�𝑗,𝑡 =
1

𝑛𝑗,𝑡
∑ �̃�𝑖,𝑗,𝑡

𝑛𝑗,𝑡

𝑖=1

 (3) 

where 𝑛𝑗,𝑡 denotes the number of observations in sub-

district j in year t. 

The model in Equation (1) is estimated with OLS 

yielding highly significant effects for all covariates, as 

displayed in Table 2. The effects of the years 2014 

and 2015 reflect the upward trend of land prices ob-

served in our data. Soil quality has a positive effect on 

land prices as expected. Plot size, too, shows a posi-

tive effect. We are aware that the rather simple model 

in Equation (1) may not capture heterogeneity of land 

prices completely, but the moderate model fit suggests 

                                                           
5
  The fact that average soil quality and average plot size 

refer to sub-districts (Gemarkungen) and not to location 

value zones (Bodenrichtwertzonen) may drive a wedge 

between BRW and ELV. However, we expect this po-

tential deviation to be small, since location value zones, 

which typically comprise several sub-districts, are by 

definition regions of homogeneous natural conditions. 

that ELV constitute a fair approximation of the true 

location value. 

 

Table 2. Regression model for price adjustment 

Covariate Effect (EUR/m²) Standard error 

Intercept -0.8972*** 0.1280 

Year 2014 0.1240*** 0.0153 

Year 2015 0.2592*** 0.0158 

Soil Quality 0.0412*** 0.0070 

Soil Quality Squared -0.0003*** 9.5635e-05 

Plot Size (ha) 0.0082*** 0.0008 

Plot Size Squared (ha) -2.2212e-05*** 5.2412e-06 

Expert Group 2 0.2541*** 0.0208 

Expert Group 3 0.1148*** 0.0239 

Expert Group 4 0.2027*** 0.0276 

Expert Group 5 -0.0539** 0.0245 

Expert Group 6 -0.0686*** 0.0217 

Note:  The effects refer to log-prices. R² = 0.30. *** denotes 

significance at the 1% level, ** at the 5% level. Standard 

errors are robust. 

Source: own elaboration 

 

To measure the performance of a location value 

predictor, we use the mean squared error (MSE) and 

the bias, as explained in the following. The calculation 

basis for these measures is the so-termed ‘observed 

deviation’, which denotes the deviation 𝜃𝑗,𝑡 −  �̃�𝑗,𝑡 of a 

predicted value 𝜃𝑗,𝑡 from the ELV �̃�𝑗,𝑡, that we ob-

serve for each sub-district 𝑗 and year 𝑡. Being a  

common measure of predictive performance, the  

MSE is usually computed with regard to the true value 

that is to be estimated. Seeing as true location values 

are not observable, however, we can only compute  

the MSE with respect to ELV. The relationship 

 between the MSE with respect to a benchmark  

and the MSE with respect to the true location value 

can be derived from the decomposition 𝑀𝑆𝐸 =

𝐸 [(𝜃 − 𝜃)
2

] =  𝐸 [(𝜃 − �̃�)
2

] + 𝐸 [(�̃� − 𝜃)
2

] +

2𝐸[(𝜃 − �̃�)(�̃� − 𝜃)].  

More than in the MSE itself, we are interested  

in the MSE difference between two predictors 𝜃1  

and 𝜃2. We have 𝑀𝑆𝐸2 − 𝑀𝑆𝐸1 = 𝐸 [(𝜃2 − �̃�)
2

] −

𝐸 [(𝜃1 − �̃�)
2

] + 2𝐸[(𝜃2 − 𝜃1)(�̃� − 𝜃)]. If the devia-

tions (𝜃2 − 𝜃1) and (�̃� − 𝜃) have a low correlation, 

then 𝐸[(𝜃2 − 𝜃1)(�̃� − 𝜃)] ≈ 𝐸[(𝜃2 − 𝜃1)]𝐸[(�̃� −

𝜃)] = 0.
6
 It follows that the MSE with respect to the 

                                                           
6
  We have 𝐸[(�̃� − 𝜃)] = 0, because ELV is an unbiased 

location value estimator. 
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benchmark (i.e., computed on the basis 

of the observed deviation) is equivalent 

to the MSE with respect to the true 

location value for comparing predic-

tors. Therefore, we use the MSE with 

respect to ELV as a measure of per-

formance in this study. Finally, we are 

interested in the bias of a predictor, 

which we estimate with the mean ob-

served deviation. 

3  Analysing BRW Bias 
and Deviations from 
Empirical Location 
Values 

In this section, we will have a closer 

look at BRW as one-year ahead predic-

tor with the goal of assessing bias and 

identifying the factors that explain the 

observed deviation. It is important to 

note that our data set does not contain 

BRW for all sub-districts, so we have to perform this 

analysis on the subset (‘BRW test set’) of sub-districts 

and years for which we have a BRW and at least one 

suitable transaction. This leaves us with 900 (in 2013), 

664 (in 2014) and 808 (in 2015) sub-districts, respec-

tively. 

Figure 3 displays boxplots of ELV, BRW, and the 

observed deviation of BRW. We find that compared to 

ELV, BRW show a smaller variability as well as a 

lower price level, which indicates an underestimation 

of location values. We, therefore, expect to find a sig-

nificant bias for BRW. For the test set, we obtain for 

BRW a bias of −0.22 EUR/m². This means an under-

estimation by 11.5% in relation to average land prices 

in 2015. In order to infer whether this figure is statisti-

cally significant, we perform a one-sample t-test for 

the null hypothesis of zero bias. From the resulting p-

value < 10−15 we conclude that BRW has a signifi-

cant, negative bias. To make our result more robust to 

violations of the normality assumption underlying the 

t-test, we also perform Wilcoxon’s signed-rank test for 

the null-hypothesis of the median being equal to zero. 

This test only requires the weaker assumption that the 

distribution of the observed deviation is symmetric, 

which is approximately given, as illustrated by Figure 

3. Here again we obtain a p-value < 10−15, which 

corroborates the previous result. This shows that BRW 

actually tend to underestimate location values. 

Figure 4 depicts the spatial distribution of ob-

served differences between BRW and ELV. Apparent-

ly, there are some regional clusters, in particular in the 

Southern half. This observation suggests that system-

atic factors exist that explain the bias of BRW. To 

analyse the observed deviation of BRW from ELV 

further, we develop a linear regression model for the 

absolute value of the observed deviation – this does 

not cover the direction of the deviation, but only its 

magnitude. To determine what factors lead to an over- 

or underestimation, we furthermore perform a logistic 

regression of the sign of observed deviation against 

the same factors. As explanatory variables in both 

models, we consider the indicators of average soil 

quality and average plot size computed as in Equation 

(2), a time dummy and a categorical variable indicat-

ing which expert group determined the BRW.
7
 The 

rationale of choosing these covariates is as follows: 

one might conjecture that experts tend to oversmooth 

location values in areas with high soil quality, i.e., 

high land prices. Likewise, experts may have difficul-

ties to smooth prices for small plots, which are often 

sold at high prices (per square meter). Moreover, since 

BRW are not continuously updated, they may lag 

                                                           
7
  There are six expert groups in our BRW test set, with 

506, 300, 462, 389, 259, and 552 observations, respec-

tively. 

Figure 3.  Distribution of ELV and BRW, as well as observed 

deviation in the BRW test set 

 
Source: own elaboration 
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behind the actual development of location values, 

particularly during a period of booming prices. Final-

ly, the expert groups themselves may have an impact 

on the bias, because BRW are not calculated with a 

clear algorithm but involve personal judgements that 

may differ among expert groups. However, the effect 

of this variable has to be interpreted with caution, 

because it is difficult to separate the impact of experts 

from unobserved regional effects. As both expert 

group and year are categorical variables and we use a 

model without a constant, we have to exclude one 

dummy variable from the model. We chose the time 

dummy for 2013, which is then the reference year. All 

expert group dummies are included so that they can be 

interpreted as regional fixed effects. To better quantify 

the regional effects, we use centred versions of the 

variables ‘average plot size’ and ‘average soil quality' 

by subtracting their individual means.  

Table 3 summarises the results of the regression 

model estimated with OLS. Since a Breusch-Pagan 

test rejected the hypothesis of homoscedastic residuals 

(p-value 5.817e-08), we computed robust standard 

errors for the estimated coefficients. Both years as 

well as average plot size and average soil quality are 

significant at least at the 5% level. Note that we have 

already adjusted ELV for the effects of soil quality 

and plot size of individual transactions. The effects of 

this regression model, therefore, refer to properties of 

a sub-district, not of transactions. The effect of aver-

age plot size is significant at the 1% level, yet – at less 

than 0.01 EUR/ha and 0.05 EUR for a sub-district 

with mean average plot size 𝑠𝑗 of 9.77 ha – rather 

small in magnitude. Average soil quality has an effect 

of 0.16 EUR/m² for a sub-district of mean average soil 

quality 𝑞𝑗 of 38.94. Temporal effects are in the same 

order of magnitude as average soil quality. The mag-

nitude of bias in BRW increases with every year, 

which we attribute to the linear increase in mean land 

prices that we have observed between 2013 and 2015. 

It seems as though BRW do not sufficiently take mar-

ket trends into account. As for expert effects, we find 

that all expert groups show effects significant at the 

1% level, ranging from 0.36 EUR/m² to 0.48 EUR/m². 

This means that there is a significant deviation in 

Figure 4.  Mean deviation of BRW from ELV per sub-district from 2013 to 2015 

 
Note:  Categories are based on quintiles. The blank sub-districts are owing to a lack of BRW values and/or transactions for our analysis. 

Source:  own elaboration 
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2013 for all expert groups, which even increases in the 

following years. To determine, however, if a system-

atic over- or underestimation is present, we perform a 

logistic regression.  

Table 4 summarises the effects of our covariates 

on the probability of BRW overestimating (positive 

sign) or underestimating (negative sign) location value. 

We find that average plot size shows a significant neg-

ative effect, meaning that the larger transacted plots in 

a sub-district on average, the more does BRW tend to 

underestimate its location value. The results for aver-

age soil quality do not show any significant effect for 

the direction of the bias. Finally, we see that all expert 

groups tend to underestimate location values in 2013, 

even though this effect is comparatively weak and not 

significant for Group 4. In the years 2014 and 2015, no 

significant change occurs in this regard. 

To summarise the findings of this section, our 

analysis shows that there is a significant negative bias 

in BRW – meaning that experts systematically under-

estimate location value in our BRW test set. This un-

derestimation may be linked to the fact that in the 

years covered by our study, we observe a nearly linear 

increase in land prices, suggesting that experts do not 

sufficiently take the trend into consideration, which is 

corroborated by our regression analysis of BRW devi-

ation from ELV. This analysis has further shown that 

high average soil quality in a sub-district likewise 

increases deviation, but in both directions; market 

trend therefore does not appear to be the only source 

of erroneous assessment, but it accounts more than 

other factors for the observed bias. Finally, we have 

found some heterogeneity between expert groups, 

which can also be interpreted as regional heterogeneity. 

4  A Propagation-Separation  
Approach for Estimating  
Location Value 

In the introduction to this paper, we have pointed out 

that data scarcity requires to pool observations from 

different sub-districts to estimate location values. 

Depending on how the pooling is carried out, it trades 

a reduced variance for an increased bias. In the previ-

ous section, we have seen that BRW show a relatively 

low variance compared to the benchmark, but at the 

same time are afflicted by a significant bias. In the 

present section, we introduce a statistical procedure, 

which unlike BRW selects the sub-districts used for 

pooling in a purely data-driven way for every sub-

district. 

The “Propagation-Separation Approach” (PSA; 

POLZEHL and SPOKOINY, 2006) is an iterative, adap-

tive procedure based on local constant regression. The 

underlying idea of this approach is to find for every 

point 𝑥𝑖 a maximal local neighbourhood in which the 

local constant parametric assumption is not violated – 

in other words, in which we can assume equal loca-

tion value. At the beginning of the procedure, a small 

neighbourhood 𝑈0(𝑥𝑖) of every point 𝑥𝑖 is considered 

to estimate the location value 𝜃(𝑥𝑖).
8
 Afterwards, in 

                                                           
8
  For our analysis, the initial neighbourhood includes only 

𝑥𝑖 itself. 

Table 3.  Coefficients of absolute value of BRW  

deviation (OLS linear regression).  

Covariate Coeff. Std. error 

Year 2014 0.0496** 0.0207 

Year 2015 0.1084*** 0.0199 

Avg. Plot Size (ha) 0.0061*** 0.0008 

Avg. Soil Quality 0.0041*** 0.0015 

Expert Group 1 0.4493*** 0.0204 

Expert Group 2 0.4531*** 0.0299 

Expert Group 3 0.4813*** 0.0232 

Expert Group 4 0.4630*** 0.0266 

Expert Group 5 0.4135*** 0.0260 

Expert Group 6 0.3645*** 0.0228 

Note:  Dependent variable is the absolute value of deviation. 

𝜌2= 0.09. ** and *** denote significance at the 5 and 1% 

levels, respectively. Standard errors are robust. 

Source: own elaboration 

 

 

Table 4.  Coefficients of direction of BRW  

deviation (logistic regression). 

Covariate Coeff. Std. error 

Year 2014 0.0215 0.1107 

Year 2015 0.0995 0.1034 

Avg. Plot Size (ha) -0.0378*** 0.0054 

Avg. Soil Quality -0.0068 0.0077 

Expert Group 1 -0.6761*** 0.1124 

Expert Group 2 -0.9148*** 0.1645 

Expert Group 3 -0.5953*** 0.1174 

Expert Group 4  -0.0762 0.1378 

Expert Group 5 -1.0220*** 0.1541 

Expert Group 6 -0.6559*** 0.1208 

Note:  Dependent variable is the sign of deviation (1 = non-

negative, 0 = negative). The model has been fit with ML. 

Nagelkerke pseudo-R² = 0.06. *** denotes significance at 

the 1% level.  

Source: own elaboration 
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each step 𝑘, we update the initial location value esti-

mate by including new points 𝑥𝑗 from an extended 

neighbourhood 𝑈𝑘(𝑥𝑖); but those candidates 𝑥𝑗 are 

tested for homogeneous location value and only used 

for re-estimation of location value if the hypothesis of 

local homogeneity 𝜃(𝑥𝑖) = 𝜃(𝑥𝑗) is not rejected. This 

iterative procedure is continued until we reach a pre-

defined maximal radius of the neighbourhood. 

Following KOLBE et al. (2015), the underlying 

local regression model for estimating the location 

values can be described as 

 
𝑦𝑖 = 𝜃(𝑥𝑖) + 𝜖𝑖 ,         𝜖𝑖~𝑁(0, 𝜎𝑖

2) 
(4) 

where 𝑦𝑖 denotes the observed log price of agricultural 

land, 𝑥𝑖 is a vector of explanatory variables which 

determine the distribution of observation 𝑦𝑖. It is 

worth mentioning that PSA in general would be able 

to detect stable trends as well, which is not done here 

due to the short observation period of three years. This 

requires the specification of an appropriate parametric 

model. When Equation (4) is assumed to be a local 

parametric model such as a time trend model, PSA 

can determine the longest homogeneous time intervals 

where the same parameter coefficients hold. In fact, 

PSA has been successfully applied to capture tem-

poral structure breaks in finance and insurance (SHEN 

ET AL., 2016; CHEN and NIU, 2014; CHEN et al., 

2010). Since we are interested in finding sub-districts 

with homogeneous location values, 𝑥𝑖 simply refers to 

location coordinates [𝑥1𝑖, 𝑥2𝑖] in our case.
9
 In a local 

regression model, the local parameter 𝜃(𝑥𝑖) can be 

estimated by the weighted maximum likelihood esti-

mation where a nonnegative weight 𝑤𝑖𝑗 = 𝑤𝑖𝑗(𝑥𝑖) ≤

1 is given to each observation 𝑦𝑗, 𝑖, 𝑗 = 1, … , 𝑛. The 

corresponding local maximum likelihood estimator 

for a fixed 𝑥𝑖 is given by: 

 

 
�̃�(𝑥𝑖) = argmax

𝜃
∑ 𝑤𝑖𝑗(𝑥𝑖)log𝑝(𝑦𝑗, 𝜃)

𝑛

𝑗=1

, 
(5) 

where 𝑝(⋅, 𝜃) denotes the density function. If the den-

sity function 𝑝(⋅, 𝜃) belongs to the exponential family, 

for instance a Gaussian distribution, POLZEHL and 

SPOKOINY (2006) have shown that the explicit solu-

tion of (5) is in fact a Nadaraya-Watson estimator: 

                                                           
9
  We use the coordinates of a sub-district’s centre point as 

coordinates of the sub-district. 

 
�̃�(𝑥𝑖) =

∑ 𝑤𝑖𝑗(𝑥𝑖)𝑦𝑗
𝑛
𝑗=1

∑ 𝑤𝑖𝑗(𝑥𝑖)𝑛
𝑗=1

. 
(6) 

As above mentioned, the PS approach is an iterative 

procedure, and in each iteration step, the local estima-

tor is defined as a weighted mean of observations. 

Therefore, in iteration step 𝑘 (i.e., within the neigh-

bourhood  𝑈𝑘(𝑥𝑖)), the adaptive local estimator 

�̃�𝑘(𝑥𝑖) is 

 

 
�̃�𝑘(𝑥𝑖) =

∑ 𝑤𝑖𝑗
𝑘 (𝑥𝑖)𝑦𝑗

𝑛
𝑗=1

∑ 𝑤𝑖𝑗
𝑘 (𝑥𝑖)𝑛

𝑗=1

. 
(7) 

The main advantage of the PS approach arises from 

the construction of the weights 𝑤𝑖𝑗
𝑘 (𝑥𝑖). The determi-

nation of weights in the PS approach not only consid-

ers the likeness of the data with the sub-district of 

interest, but also controls the bias possibly introduced 

from the extension of data samples. To be specific, the 

weights depend on the product of two components: 

the location component 𝐾loc and the homogeneity 

component 𝐾hom: 
 

 
𝑤𝑖𝑗

𝑘 = 𝐾loc(𝑙𝑖𝑗
𝑘 )𝐾hom(𝑠𝑖𝑗

𝑘 ), 
(8) 

where 𝐾loc(⋅) and 𝐾hom(⋅) are two kernel functions 

that are non-negative and strictly monotonically de-

creasing on the support [0, 1], for example the triangu-

lar kernel function. Similar to the standard nonpara-

metric regression, the argument in the location compo-

nent 𝐾loc is the Euclidean distance measure between 

the locations 𝑖 and 𝑗 divided by the bandwidth ℎ𝑘: 

 

 
𝑙𝑖𝑗

𝑘 =
𝜌(𝑥𝑖, 𝑥𝑗)

ℎ𝑘
 (9) 

On the other hand, 𝑠𝑖𝑗
𝑘  in the homogeneity component 

is a statistical penalty:  
 

 
𝑠𝑖𝑗

𝑘 =
𝑇𝑖𝑗

𝑘

𝜆
, (10) 

where 𝑇𝑖𝑗
𝑘 is the test statistic for a constant local para-

metric estimate and 𝜆 is the critical value of the test 

statistic 𝑇𝑖𝑗
𝑘. The homogeneity component 𝐾hom(𝑠𝑖𝑗

𝑘 ) 

becomes relevant for controlling the bias when ex-

tending the size of neighbourhood  𝑈𝑘(𝑥𝑖). To test the 

hypothesis of local homogeneity 𝜃(𝑥𝑖) = 𝜃(𝑥𝑗) at 

each step 𝑘, the estimates �̃�𝑖
𝑘−1(𝑥𝑖) and �̃�𝑗

𝑘−1(𝑥𝑗) 

obtained from the previous iteration is compared. 
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Following POLZEHL and SPOKOINY (2006) and BECK-

ER and MATHÉ (2013), the test statistic 𝑇𝑖𝑗
𝑘 is con-

structed based on the Kullback-Leibler divergence 

between the pointwise parameter estimates of the pre-

vious iteration step at two different points. Formally it 

states  

 
𝑇𝑖𝑗

𝑘 = 𝑁𝑖
𝑘−1𝒦ℒ(�̃�𝑖

𝑘−1, �̃�𝑗
𝑘−1) 

(11) 

where 𝑁𝑖
𝑘 = ∑ 𝑤𝑖𝑗

𝑘 (𝑥𝑖)𝑛
𝑗=1 . The decision rule of the 

test requires to compare 𝑇𝑖𝑗
𝑘 with the corresponding 

critical values 𝜆. The null hypothesis of parameter 

homogeneity is rejected if 𝑇𝑖𝑗
𝑘 > 𝜆. As a result, 

𝑠𝑖𝑗
𝑘 =

𝑇𝑖𝑗
𝑘

𝜆
> 1, 𝐾hom(𝑠𝑖𝑗

𝑘 ) = 0 and 𝑤𝑖𝑗
𝑘 = 0, i.e., obser-

vation 𝑥𝑗 does not belong to  𝑈𝑘(𝑥𝑖) and will not be 

used to estimate 𝜃(𝑥𝑖).These two characteristics of the 

PS approach are very desirable: it extends the homo-

geneous neighbourhood with non-zero weights to 

reduce the variance of the estimates, and separates 

every two regions with different parameter values to 

control the bias. 

In summary, the procedure for a fixed location 𝑥0 

is provided as follows: 

1) Start with the smallest initial bandwidth ℎ0, com-

pute the initial estimate �̃�0(𝑥𝑖) according to (6) 

with 𝑤𝑖𝑗
0 = 𝐾loc(𝑙𝑖𝑗

0 ). 𝑁𝑖
0 = ∑ 𝑤𝑖𝑗

0 (𝑥𝑖)𝑛
𝑗=1  

2) For 𝑘 = 1, the bandwidth is extended to ℎ1. Cal-

culate the components 𝑙𝑖𝑗
1 =

𝜌(𝑥𝑖,𝑥𝑗)

ℎ1  and 𝑠𝑖𝑗
1 =

𝑇𝑖𝑗
1

𝜆
= 𝜆−1𝑁𝑖

0𝒦ℒ(�̃�𝑖
0, �̃�𝑗

0). Then derive the adaptive 

weights 𝑤𝑖𝑗
1 = 𝐾loc(𝑙𝑖𝑗

1 )𝐾hom(𝑠𝑖𝑗
1 ) and estimate 

�̃�1(𝑥𝑖). 

3) For 𝑘 ≥ 2, the bandwidth increase to ℎ𝑘. Derive 

the adaptive weights 𝑤𝑖𝑗
𝑘 = 𝐾loc(𝑙𝑖𝑗

𝑘 )𝐾hom(𝑠𝑖𝑗
𝑘 ) 

with 𝑙𝑖𝑗
𝑘 =

𝜌(𝑥𝑖,𝑥𝑗)

ℎ1  and 

𝑠𝑖𝑗
𝑘 =

𝑇𝑖𝑗
𝑘

𝜆
= 𝜆−1𝑁𝑖

𝑘−1𝒦ℒ(�̃�𝑖
𝑘−1, �̃�𝑗

𝑘−1) and 

𝑁𝑖
𝑘 = ∑ 𝑤𝑖𝑗

𝑘 (𝑥𝑖)𝑛
𝑗=1  Then estimate �̃�𝑘(𝑥𝑖). 

4) The procedure stops if 𝑘 = 𝑘∗, otherwise 𝑘 = 𝑘 +

1. 𝑘∗ indicates that the bandwidth ℎ𝑘 reaches the 

pre-defined maximum bandwidth ℎ∗.
10
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  Note that the iteration is continued even if the homoge-

neity hypothesis is rejected for all 𝑥𝑖 in  𝑈𝑘(𝑥𝑖). The 

procedure does not require that “homogeneous areas” be 

contiguous. 

The crucial parameter of PS approach is the critical 

value 𝜆 that determines the number of observations to 

be used in the estimation of each location value. 

Greater values of 𝜆 allow the inclusion of more points 

into a homogeneous region, leading to a smoother 

parameter surface and potentially a higher bias at re-

duced variance. In fact, for 𝜆 → ∞, we obtain a non-

adaptive kernel smoother. On the other hand, smaller 

values of 𝜆 will lead to a stricter selection of homoge-

neous regions and less points being included into the 

estimation. As a result, less available information is 

used and the variance of the estimate is generally 

higher. Due to the multiple testing procedure in this 

adaptive algorithm, there is no well-defined unique 

choice of 𝜆 (KOLBE et al., 2015). POLZEHL and 

SPOKOINY (2006) suggest performing Monte Carlo 

simulations of the relevant likelihood function with 

globally constant parameters on the design space. 𝜆 

can then be chosen as the smallest value that ensures 

the homogeneity assumption holds everywhere with a 

high probability. For computing 𝜆 and the correspond-

ing PSA estimates, we use the package ‘aws’ for the 

statistical software R (POLZEHL, 2016). 

5  Comparing BRW and PSA 

In this section, we compare the performance of BRW 

and PSA at the one-year ahead prediction of location 

values. For this purpose, we use a training set for PSA 

based on adjusted prices from 2013 and 2014, and a 

test set of ELV from 2015 for validation purposes. As 

explained in Section 2, the low number of observa-

tions in 2014 requires that we pool data from 2013 

and 2014. Moreover, it is convenient that for obtain-

ing our training set, we use the same procedure that 

we previously applied to compute ELV, but only tak-

ing into account observations from 2013 and 2014 

since we cannot include information from the test set. 

In particular, we use Equation (2) for price adjustment 

where we furthermore add the estimated temporal 

effect 𝛾 to observations from the year 2014. This ap-

proach to temporal pooling is very similar to the de-

ductive methods available to land price experts. The 

resulting prices reflect the 2014 price level of typical 

plots. As with ELV, we compute the mean per sub-

district and obtain a training set of 1,556 average pric-

es that represent the initial location value estimates for 

PSA. There are, however, 3,557 sub-districts in Meck-

lenburg-Western Pomerania, so we do not have PSA 

estimates of the 2015 location values for all sub-

districts; moreover, we do not have corresponding 
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BRW for all sub-districts, either. Consequently, we 

have to filter the 2015 ELV data by selecting only 

those sub-districts, for which we have a value in the 

PSA training set and a BRW to enable a fair compari-

son. This reduces the number of sub-districts in the 

test set to 502. 

As explained above, PSA has two parameters λ 

and ℎ𝑚𝑎𝑥 that control the threshold of the homogenei-

ty test and the maximum distance of observations that 

are included in local estimation, respectively. For our 

PSA baseline predictor, λ is 9.72 as determined by 

Monte Carlo simulation (POLZEHL and SPOKOINY, 

2006) (cf. Section 4). ℎ𝑚𝑎𝑥 can be selected such that 

for any cell on the grid, all other cells lie within the 

maximum distance. As we use a 100x100 grid, we set 

ℎ𝑚𝑎𝑥 to 150, which is slightly greater than the length 

of the grid’s diagonal. This is the configuration of our 

default PSA predictor ‘PSA1’. 

To demonstrate the sensitivity of the results to 

parameter choice, we also perform PSA with a re-

duced value of ℎ𝑚𝑎𝑥 (‘PSA2’) as well as with greater 

(‘PSA4’) and smaller (‘PSA3’) values of λ. Further-

more, we seek to account for the fact that expert-based 

estimates can leverage trends observed during the past 

years for prediction, whereas PSA is limited to syn-

chronous data. To reflect this possibil-

ity, we combine PSA with a linear 

trend, based on the effect γ from the 

regression model in Equation (1) fitted 

to the 2013/14 data. We compute this 

trend-adjusted predictor (‘PSA5’) as 
𝑝

𝑒γ̂, where �̂� is the PSA baseline predic-

tor. The rationale behind this expres-

sion is the following. We assume that 

there is a linear upward trend in the 

data from 2014 to 2015, adding a fixed 

quantity to the 2014 log-prices, i.e., 

log(𝑝𝑗,2015) = log(𝑝𝑗,2014) +  𝛾. In 

order to de-trend PSA, we need to 

subtract this shift 𝛾, which is estimated 

as 𝛾 with the regression model in 

Equation (1) based on 2013/14 log-

prices. Hence, we have log(�̃�𝑗) =

log(�̂�𝑗) −  𝛾 and accordingly �̃�𝑗 =

exp(log(�̂�𝑗) − 𝛾) =  
𝑝𝑗

𝑒�̂�, where �̂�𝑗 is 

the PSA-estimate for the price in 2015 

of area j and �̃�𝑗 is the corresponding 

de-trended estimate. If no abrupt 

change in trend is expected for the 

next year, this should improve the PSA estimate sig-

nificantly. An overview of the predictors used in our 

analysis and of their characteristics is provided in 

Table 5. 

Figure 5 contains in its upper panel boxplots of 

the distributions of empirical location values in the 

test set and the predicted values. The lower panel dis-

plays boxplots of the differences between predicted 

and empirical location values. The more a predictor’s 

deviations from ELV are centred around zero, the less 

bias it has. A first impression is that BRW as well as 

PSA predictors have a significant bias, with the single 

exception to the trend-adjusted PSA5. Altogether, the 

distributions of observed deviation are quite similar. 

Figure 5.  Top: Empirical and predicted location values for 2015. 

Bottom: Observed deviation in 2015. 

 

Note: Observed deviation is the differences between predicted and empirical loca-

tion value. 1-5 denote PSA1-PSA5. 

Source: own elaboration 

Table 5. Characteristics of the used predictors 

Predictor Description  

BRW Expert based location value 

PSA1 𝜆 = 9.72; ℎ𝑚𝑎𝑥 = 150 

PSA2 𝜆 = 9.72;  ℎ𝑚𝑎𝑥 = 10 

PSA3 𝜆 = 0.972;  ℎ𝑚𝑎𝑥 = 150 

PSA4 𝜆 = 97.2;  ℎ𝑚𝑎𝑥 = 150 

PSA5 PSA1 trend-adjusted 

Source: own elaboration 
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To formally compare the predictors, we compute the 

MSE and test whether the predictors (i) have a bias 

significantly different from zero and (ii) have a signif-

icantly smaller bias than BRW. For (i), we perform 

one-sample t-tests assuming a non-homogeneous vari-

ance, and additional non-parametric Wilcoxon’s 

signed-rank tests as in Section 3. For (ii), we carry out 

two-sample t-tests assuming a non-homogeneous var-

iance (Welch test) and, to make the results robust 

against a violation of the t-test’s normality assump-

tion, Wilcoxon’s rank-sum test.  

Table 6 lists the results of these tests as well as 

the MSE for every predictor. We find that all predic-

tors have a significant, negative bias in the same order 

of magnitude. The single exception to this is PSA5, 

that shows a smaller negative bias which is only sig-

nificant at the 10% level. The MSE, too, indicates a 

similar performance of all PSA predictors and BRW, 

with the MSE of PSA5 of course being lower due to 

its reduced bias. 

In summary, our results show that PSA in various 

configurations can reach the same level of accuracy in 

terms of MSE and bias as BRW. Since, apart from 

PSA5, none of the PSA estimators have shown less 

bias than BRW, we find that its data-driven approach 

to pooling does not show any apparent advantage over 

the fixed BRW zones. The substantial improvement of 

PSA5 achieved by considering linear trend on top of 

PSA indicates how strongly the general market trend 

from 2013-2015 impacts on the performance of pre-

dictors. The fact that, like PSA, BRW does not seem 

to take trend into consideration would explain the 

negative bias, especially seeing as the increase in 

mean land prices from 2014 to 2015 (0.28 EUR/m²) 

lies in the same order of magnitude. 

 

6  Discussion and Conclusion 

In our analysis of sales prices of arable land in Meck-

lenburg-Western Pomerania over the years 2013-

2015, we have found that BRW significantly underes-

timates location values of the following year. A re-

gression analysis of the observed deviation has point-

ed towards regional heterogeneity, soil quality, and 

temporal effects as explanatory factors of this devia-

tion. Indeed, we observe a strong linear increase in 

mean land prices for every year from 2013-2015, 

which suggests that the time trend is not sufficiently 

taken into account in BRW estimation. However, soil 

quality also shows a strong effect, suggesting that 

experts have difficulties in correctly considering soil 

quality for location value estimation. Secondly, we 

find that on our 2015 test data, PSA predicts location 

values with an accuracy comparable to that of BRW, 

both in terms of bias and MSE. These findings are in 

line with KOLBE et al. (2015), who find that PSA is 

able to replicate BRW in an urban context. The per-

formance depends to a limited degree on the choice of 

the algorithm’s parameters, but neither bias nor MSE 

have proven too sensitive in this regard. Since PSA 

does not achieve a reduction of bias, it appears as 

though its adaptive approach does not hold any ad-

vantage over fixed BRW zones in the estimation of 

location values of agricultural land aside from the 

automated and objective procedure. The performance 

improvement when a linear trend is taken into consid-

eration, however, hints at a potential for improving 

BRW or PSA as location value estimators by com-

plementing these approaches with conventional fore-

casting techniques. It should be emphasized, however, 

that this finding is specific to the observation period in 

Table 6.  Estimated bias, test statistics of the applied tests and the mean squared error (MSE) w.r.t. ELV 

Predictor Bias 

(EUR/m²) 

Test (i): One-

sample t-test 

Test (i): Wilcoxon 

signed rank test 

Test (ii):  

Welch test 

Test (ii): Wilcoxon 

rank sum test 

MSE 

(EUR/m²)² 

BRW -0.25 -8.3069*** 38835*** - - 0.5143 

PSA1 -0.27 -9.2707*** 36889*** -0.5686 124360 0.5107 

PSA2 -0.28 -9.4556*** 36698*** -0.7162 123940 0.5167 

PSA3 -0.26 -8.2711*** 37092*** -0.2607 123980 0.5665 

PSA4 -0.27 -9.1851*** 37403*** -0.4924 124780 0.5067 

PSA5 -0.05 -1.8638* 60394 4.6367*** 148140*** 0.4352 

Note:  *** denotes significance at the 1%, * at the 10% significance level. 

Source: own elaboration 
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this study that is characterized by a steady increase of 

land prices. Extrapolating a linear trend when prices 

begin to stagnate will result in a bias as well. It is 

noteworthy at this point that PSA in a different con-

figuration could also be used to identify structural 

breaks in the price trend.  

A further comment seems apposite at this point. 

One might argue that BRW are not intended to fore-

cast location values and even trying to do so may fail 

in information efficient markets. On the other hand, 

market participants may use BRW as a yardstick for 

their price expectations of prospective land transac-

tions. Thus, BRW should be up-to-date and not lag 

behind current market conditions. In a rapidly chang-

ing environment a biannual update of BRW, as re-

quested by law, may lead to a sluggish adjustment of 

location values.  

A practical issue with PSA is that outliers are 

usually not smoothed by PSA – the reason being that 

the homogeneity test, that is performed at every itera-

tion when smoothing the sub-district with the outlier, 

will most certainly result in zero weights for most 

values other than the outlier itself. On the one hand, 

this is precisely the sort of behaviour that we wish, 

because it keeps the bias low when pooling values. On 

the other hand, it does not allow us to reach a reason-

able estimate for the outlier itself. The reasons for the 

occurrence of such singular values may be manifold, 

and it is impractical to derive a general rule of treating 

them – in this analysis, we have opted for an a priori 

removal of the highest and lowest percentiles of pric-

es. Our original concern that the results might be too 

sensitive to the choice of parameters has proven un-

justified after this outlier removal. It seems that results 

for different parameters diverge more strongly in the 

presence of extreme values. 

One limitation to our results is that our data set is 

of rather limited size. Carrying out similar calcula-

tions for other regions with a longer time series of 

land prices and BRW could improve the reliability of 

our findings. Moreover, our observation period is 

characterised by a strong linear upward trend of mean 

land prices. Further assessment of BRW and PSA on 

data without such a trend might elucidate if the per-

formance of PSA holds under different market condi-

tions, too. This caveat notwithstanding, we have found 

PSA to be a convenient tool for the automatic estima-

tion of location value of agricultural land in a trans-

parent way since no expert knowledge is required for 

the procedure. Such a tool can complement the expert-

based approach and serve as a benchmark. 
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