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Abstract 

Using a 2007⁠–2014 panel of Austrian crop farms, we analyze the effect of multiple dimensions of 

land fragmentation on farms’ production efficiency and risk performance. We use Data 

Envelopment Analysis (DEA), a non-parametric linear programming approach, to estimate 

efficiencies. Technical efficiency is decomposed into i) scale efficiency, ii) pure technical 

efficiency, and iii) input-mix efficiency. Risk efficiency, a concept borrowed from modern 

portfolio theory, measures the performance of a farm relative to a mean-variance frontier. A 

second-stage DEA analysis reveals that farms with fewer plots and a shorter average farmstead to 

plot distance tend to be more technically efficient. Larger plots allow for better exploitation of 

returns to scale. The scattering of plots has no statistically significant effect on technical efficiency 

but provides benefits in terms of higher risk efficiency. Land consolidation projects should 

carefully weigh the costs and benefits associated with different dimensions of land fragmentation. 

 

Keywords: Land consolidation; Farmland fragmentation; Economies of scale; Agricultural 

productivity; Risk management; Data Envelopment Analysis 

 

JEL codes: Q12, Q15, Q18 

 

 

1 INTRODUCTION 

Land fragmentation (LF) describes a land use pattern in which “a single farm consists of numerous 

discrete parcels, often scattered over a wide area” (Binns 1950). A rich and long-standing debate 

about the adverse effects of LF on agricultural productivity (e.g., Binns, 1950; Sargent, 1952; 

Nylon, 1959; Shaw, 1963) prompted governments to apply land reforms (Beringer, 1962; 

Oldenbuerg, 1990) and land consolidation programs (Gatty, 1956; Jacoby, 1959; Lambert, 1963; 

Jiang, et al. 2022) to overcome unfavorable farm structures that impede rationalization of 

agricultural resource use. 

 

Especially, Western European countries have a long tradition of land consolidation dating back 

to the 19th century (Lambert, 1963) with an enormous increase in consolidation projects after World 

War II. In Austria, the total area where land consolidation and voluntary land exchange schemes 

were ever implemented amounts to more than 40% of the total agricultural area (BMLFUW, 2013). 

This might explain why the literature on the effects of LF on farm performance mainly focuses on 

developing and transition economies (e.g., Nguyen et al., 1996; Wan and Cheng, 2001; Tan et al., 

2008; Lu et al., 2018; Rahman and Rahman, 2009; Monchuk et al., 2010; Hung et al., 2007; Ali et 

al., 2018; Larochelle and Alwang, 2013; Rao, 2019; Ciaian et al., 2018; Deininger et al., 2012; 

Hristov et al., 2009; Di Falco et al., 2010; Boliari ,2013; Zenka et al., 2016; Looga et al., 2018) and 

little is known about how LF effects the performance of Western European farms (exceptions are 
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Latruffe and Piet, 2014 for France and Olsen et al., 2017 for Denmark, as well as the following 

studies focusing on dairy farms in Spain, Finland, and Ireland: Corral et al., 2011; Orea et al., 2015; 

Niskanen and Heikkilä, 2015; and Bradfield et al., 2020). As far as we know, no study assessing 

the productive implications of LF for Western European crop farms exists.2 

 

We contribute to the literature by assessing the effect of LF on farms’ technical and risk 

efficiency using a 2007–2014 panel of Austrian crop farms. This allows us to inform the ongoing 

debate about whether land consolidation as a partially publicly financed task will still be required 

in the future. While the number of land consolidation schemes and the area covered by land 

consolidation is decreasing in Austria (BMLFUW, 2023), Mansberger and Seher (2017) report that 

agricultural demand for land consolidation still exists in Austria’s alpine valleys, lowlands, and 

hilly regions, which is where crop farming in the country is concentrated. For centuries, partible 

and impartible inheritance traditions existed side by side in these regions, resulting in a 

considerable variation in LF across farms (Gatterer et al., 2024). The different institutional and 

agro-ecological context in Western Europe, such as high wages, advanced levels of 

mechanization/automation, better off-farm employment opportunities, and better functioning 

factor markets, compared to developing countries makes Austria an interesting case study region. 

 

While the private costs for farmers3 associated with fragmented land are well understood, the 

potential benefits of LF in terms of risk reduction and crop scheduling (Bentley, 1987) have 

received much less attention in the agricultural economics literature (exceptions are Blarel, 1992 

and Goland, 1993). A few relatively recent studies report beneficial effects of LF in terms of lower 

variability in yield or output (Kawasaki, 2010; Rao, 2019), reduction in farmers’ exposure to 

weather variability (Veljanoska, 2018), and improvement in farm households’ food security 

(Knippenberg et al., 2022). Against the background of increasing climate variability putting crop 

production at risk (Vogel et al., 2019; Beillouin et al., 2020), we contribute to this literature by not 

only assessing the effect of LF on farms’ technical, but also risk efficiency. 

 

The concept of risk efficiency originates from the literature on the performance evaluation of 

investment funds/portfolios (Markowitz, 1952). Risk efficiency measures the distance of a 

portfolio to a mean-variance frontier. Murthi et al. (1997) introduced the estimation of risk-return 

frontiers using Data Envelopment Analysis (DEA). We borrow the concept of Murty et al. (1997) 

for the performance assessment of mutual funds and provide an original application to the risk 

performance assessment of farms. We consider farms’ mean and standard deviation (negative semi-

deviation) of agricultural revenues over the 2007-2014 period as output and input variable in the 

DEA-models, respectively. Furthermore, we apply a recently introduced measure and 

decomposition of technical efficiency (Mendelová, 2022) that extend radial measures of technical 

efficiency to include slacks. This allows us to decompose technical efficiency into i) scale 

efficiency, ii) pure technical efficiency, and iii) input-mix efficiency shedding light on the channels 

through which the different dimensions of LF affect the technical efficiency of farms. 

 

                                                           
2 While the productivity of livestock farms can be affected by LF via the production of animal feed stuff, manure 

application, and transfer of livestock to pastures, the effect of LF on crop farms can be considered to be more relevant 

(Kapfer, 2007) due to the foremost importance of land as a production factor. 
3 Besides private costs and benefits for farmers, public benefits of LF in terms of higher biodiversity (Clough et al., 

2020) and public costs associated with higher pesticide and chemical fertilizer expenditure per hectare (Hou et al., 

2020; Abay et al., 2022) are reported. LF may result in extra roadwork, road safety issues, and greenhouse gas 

emissions (Latruffe and Piet, 2014; Hiironen and Niukkanen, 2014) are reported. 



3 

LF is a complex phenomenon that encompasses multiple dimensions: i) small farm size, ii) high 

number of plots, iii) low plot size, iv) irregularly shaped plots, v) spatial distribution of plots and 

iv) size distribution of the fields (King and Burton, 1982). The size and the number of plots are 

probably the most frequently applied LF measures (Latruffe and Piet, 2014) but many studies fail 

to capture the spatial dimension of LF (e.g., Kawasaki, 2010; Deininger et al., 2012; Orea et al., 

2015; Looga et al., 2018). To disentangle the potentially diverging effects of different dimensions 

of LF on farm performance, we simultaneously control for multiple dimensions of LF, including 

average distance among parcels and between farmstead and parcels, in our regression models. 

The remainder of this paper is organized as follows: Section 2 provides background about the 

potential mechanisms behind the effects of LF on farm performance and a brief literature review; 

the methods, data, and results are described in Sections 3, 4, and 5, respectively; and Section 6 

provides concluding remarks. 

 

2 BACKGROUND 

2.1 Land fragmentation and productivity 

Low plot size or a high number of plots increase organizing and monitoring costs of production 

processes (Di Falco et al., 2010) and impede mechanization and exploitation of economics of scale 

(Latruffe and Piet, 2014). Smaller and shorter plots increase turning maneuvers on the field and 

increase working time, fuel consumption, and variable machinery cost (Neubauer, 2012). Smaller 

average plot size, congruent with a higher number of plots for a fixed farm area, is associated with 

a larger share of area dedicated to field boundaries and headlands per hectare. Numerous studies 

stress the lower yield potential at plot peripheries (e.g., Kapfer, 2007): More frequent turning 

maneuvers at head lands accelerate soil compaction with the latter harming yields (Shaheb, 2021). 

Lower yields at field boundaries can be caused by higher weed pressure, shading from trees and 

hedgerows, and patchy application of seed, pesticide, and fertilizer. However, yield may be higher 

near the edge of the field if boundaries provide helpful ecosystem services (Duelli and Obrist, 

2003), such as pollination services from bees (Garibaldi et al., 2011) or wind protection from tree 

lines (de Jong and Kowalchuk, 1995). Seed, pesticide, and fertilizer consumption is likely to be 

higher at field peripheries because it is unavoidable to cross these areas multiple times with certain 

equipment (Kapfer, 2007; Klare et al., 2005). Evidence that smaller plots are associated with higher 

pesticide and chemical fertilizer expenditure per hectare is shown in Hou et al. (2020) and Abay et 

al. (2022). The amount of time dedicated to setting-up machinery increases with the number of 

plots (Neubauer, 2012). The literature suggests smaller and irregularly shaped plots can hinder 

adoption of innovations and appliance of modern technologies and soil investments (Nguyen et al., 

1996; Niroula and Thapa, 2005; Hung et al., 2007; Tan et al., 2008; Rahman and Rahman, 2008). 

The discussion suggests that a high number of plots or low average plot size tends to increase input 

requirements per hectare and reduce yields. We hypothesize a negative effect of both measures on 

the production efficiency of crop farms. 

 

Large distances, both between farmstead and plots and among plots, increase the time, fuel, and 

variable machinery cost for transporting inputs (seeds, fertilizer, and pesticides), outputs (harvest), 

workers, and equipment (Latruffe and Piet, 2014). Larger distances can incur higher costs for 

agricultural infrastructure development, such as irrigation/drainage canals and farm roads (Niroula 

and Thapa, 2005) or even prevent such investments. Not only do the costs of water transportation 

increase with distance, but also maintenance and monitoring costs of irrigation systems and perhaps 

water leakage. Tang et al. (2015) find that LF decreases allocative efficiency of irrigation water 

use in China’s Guanzhong plain and Penov (2004) shows that LF has contributed to the

https://www.sciencedirect.com/science/article/pii/S0167880922001050#bib15
https://www.sciencedirect.com/science/article/pii/S0167880922001050#bib15
https://www.sciencedirect.com/science/article/pii/S0167880922001050#bib21
https://www.sciencedirect.com/science/article/pii/S0167880922001050#bib27
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Table 1     

Potential effects of different dimensions of land fragmentation on farm performance     

Land 

fragmentation 

dimension 

Description of mechanism Effect on 

technical 

efficiency 

Effect on 

production and 

price risk 

High number of 

plots/ Low plot 

size 

High number of turning maneuvers increases working time, fuel consumption, and 

variable machinery cost 

−  

Larger area of field boundaries and headlands increases harvest loss and pesticide 

and fertilizer consumption 

−  

Increased set-up time for machinery −  

Limited uptake of investment and innovation (e.g., machinery, drainage, and 

irrigation) 

−  

 Easier detection of diseases, pests, and water stress  − 

    

Large 

farmstead-plot 

distance 

Increases travel time, fuel consumption, and variable machinery cost for 

transportation of inputs, workers, outputs, and equipment 

−  

Difficult water management − + 

Delayed detection of diseases, pests, and water stress − + 

    

Large distances 

between plots 

Increases travel time, fuel consumption, and variable machinery costs for 

transportation of inputs, workers, outputs, and equipment 

−  

Difficult water management − + 

Heterogeneous agro-ecological conditions facilitate risk spreading, crop 

diversification, and labor synchronization 

± − 

Reduced production risk from adverse growing conditions, such as diseases, pests, 

hail, storm, frost, drought, and flooding 

 − 

Source: Based on Hung et al. (2007), Neubauer (2012), Latruffe and Piet (2014), and Olsen et al. (2017).   
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abandonment and decline of Bulgaria’s irrigation system. If large distances between plots translate 

into diverse microclimates across plots (e.g., due to variety in soil type, wind, insulation, moisture, 

slope, and altitude) this might encourage farmers to diversify their crop portfolio. Multiple studies 

find that crop diversification enhances yields, productivity, and technical efficiency (cf. Di Falco, 

2012 and Bareille and Lagier, 2023), while others find a negative effect (Mzyece and Ng’ombe, 

2020). Crop diversification and cultivation of the same crop in diverse microclimates can reduce 

production risk, avoid household labor bottlenecks, and minimize the use of hired labor (Bentley, 

1987). 

 

Research on the effects of LF on agricultural productivity in developing and transition 

economies abounds. Most of these studies find that LF, most frequently measured as the number 

of plots and average plot size, is associated with lower agricultural output, higher costs, or reduced 

productivity/efficiency in settings as diverse as rural China (Nguyen et al., 1996; Wan and Cheng, 

2001; Tan et al., 2008; Lu et al., 2018), India (Jha et al., 2005; Manjunatha et al., 2013, Deininger 

et al., 2016), Bangladesh (Rahman and Rahman, 2009), Vietnam (Hung et al., 2007), Rwanda (Ali 

et al., 2018), and Bolivia (Larochelle and Alwang, 2013). Others, like Rao (2019) in the case of 

Tanzania or Ciaian et al. (2018) and Deininger et al. (2012) for Albania, find that LF is positively 

associated with technical efficiency.4 This suggests that agro-ecological and institutional context 

matters. How LF is measured and if multiple dimensions of LF are considered also play a role: 

Monchuk et al. (2010) find that the number of plots have a negative impact on productivity of 

Indian farms, but spatial separation of plots and variability in plot size do not significantly impact 

productivity when controlling for the number of plots. 

 

Regarding Europe, most studies on the effects of LF on farm performance focus either on 

transition economies (for Macedonian vegetable farms see Hristov et al., 2009; for Bulgaria Di 

Falco et al., 2010 and Boliari, 2013; for Czechia Zenka et al., 2016; and for Estonia Looga et al., 

2018) or dairy farms (for Spain see del Corral et al., 2011 and Orea et al., 2015; for Finland 

Niskanen and Heikkilä, 2015; and for Ireland Bradfield et al., 2021). There are two exceptions – 

one study focusing on the French region Brittany (Latruffe and Piet, 2014)5 and the other on 

Denmark (Olsen et al., 2017) – although these studies pool farms with very different production 

specializations and report average effects across all farm types. 

 

2.2 Land fragmentation and risk 

The spatial dispersion of plots, i.e., scattered plots or large distances between plots, can reduce 

production risk for farmers from adverse weather conditions, such as hail, flooding, frost, and 

storms, and from crop pests and diseases spread. Veljanoska (2018) finds for farms in Uganda that 

higher fragmentation decreases loss of crop yield when households experience rainfall anomalies, 

but that fragmentation remains harmful for farms not experiencing such a shock. Knippenberg et 

al. (2020) report that LF in Ethiopia mitigates the adverse effect of low rainfall on food security 

because households with diverse plot characteristics grow a greater variety of crop types. Similarly, 

Rao (2019) finds that LF being “concurrent with crop diversification” allowed farmers in Tanzania 

to mitigate production risk by diversifying production among separate land plots with 

heterogeneous agronomic conditions. For a sample of Bulgarian farms, Di Falco et al. (2010) find 

                                                           
4 Cholo et al. (2019) and Knippenberg et al. (2020) focus on food security as an outcome variable and find that LF 

reduces food insecurity in Ethiopia. 
5 Due to data limitations, Latruffe and Piet (2014) relate measures of farm performance to land fragmentation indices 

measured at the municipality-level. 
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that LF fosters crop diversification and reduces profitability, but they do not study the effect of LF 

on risk. Ciaian et al. (2018) document that LF is an important driver of production diversification 

in rural Albania. The risk reducing effect of crop diversification is documented in multiple studies 

(cf. Di Falco and Perrings, 2005; Chavas and Di Falco, 2012; Bangwayo-Skeete et al., 2012; 

Bozzola and Smale, 2020; Antonelli et al., 2022). 
 

Irrigation can be considered as a tool to reduce production risk, especially the risk of drought. 

If large distances limit the adoption of irrigation, the variability of yields can be expected to 

increase. Foudi and Erdlenbruch (2012) show that irrigation technology serves as a form of self-

insurance for French farmers and that irrigating farmers have higher means and lower variance of 

profits than non-irrigating farmers. Early detection of pests and diseases can significantly increase 

crop yield. Farmers might monitor remote plots less frequently for pests and diseases, suggesting 

an increased production risk for farms with larger farmstead-plot distances. Large sized plots might 

hamper the visual detection of pests and diseases because part of the fields may not be easily 

reached by humans (Kiraga et al., 2022). 
 

Only a few studies assess the effect of LF on the risk of farms (Blarel, 1992; Goland, 1993; 

Kawasaki, 2010; Rao, 2019). Most use the Simpson index as a measure of LF (Blarel, 1992 for 

Rwanda; Kawasaki, 2010 for Japan; Rao, 2019 for Tanzania), an indicator which ignores the spatial 

aspects of LF. Furthermore, the Simpson index combines multiple fragmentation dimensions, 

which does not allow one to disentangle the potentially contrary effects of various dimensions of 

LF on farm performance. All of these previous studies find that an increase in LF in terms of the 

Simpson index is associated with a decline in output (per hectare) variability. Kawasaki (2010) 

finds that yield variability of rice farms in Japan declines as the number of parcels increases and 

Goland (1993) proves the effectiveness of field scattering as a risk buffering activity for Cuyo Cuyo 

farmers in Peruvian highlands. 

 

3 METHODS 

3.1 Measuring land fragmentation 

In this subsection, we describe how LF is measured. Each farm i  consists of itK  ( 1,..., )itk K  

plots in year t . The area of plot k  and of farm i  are denoted as ka  and itA , respectively. The first 

LF measure informs the number of plots on the farm – the more plots the higher the degree of 

fragmentation: 
 

it itnplots K . (1) 

 

The above measure is likely the most frequently applied LF measure (Latruffe and Piet, 2014).6 

However, it fails to capture the spatial dimension of LF (Bentley, 1987). Therefore, and similar to 

Latruffe and Piet (2014), we apply two distance-based measures of LF. The first describes the 

average distance between the farmstead and the plots in kilometers, namely: 

 

                                                           
6 The Simpson index (SI) is another common measure of LF. A higher value of the Simpson index (SI) is usually 

associated with a higher degree of fragmentation. However, the SI is an increasing function in the number of plots and 

a decreasing function in plot size variability (Monchuk and Deininger, 2010; Knippenberg et al., 2020). An increase 

in plot size variability is considered to reflect an increase in LF rather than a decrease (King and Burton, 1982). In 

addition, the SI is a decreasing function in average plot size (Knippenberg et al., 2020). 
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2 2

1

1
( ) ( )

itK

it k k i k i

kit

avfpd a w w z z
A 

    , (2) 

 

where 
2 2( ) ( )k i k iw w z z    is the Euclidean distance between the farmstead of farm i  and its k

-th plot and ( kw , kz ) and ( iw , iz ) are the coordinates of the k -th plot and the farmstead, 

respectively. We weigh each farmstead-plot distance with the area of the plot to give more weight 

to distances travelled to larger plots and calculate an average by dividing by farm area. 

 

The second distance-based measure relates to the scattering of plots across the farm or the 

distance between plots. We calculate the average nearest neighbor distance as follows: 

 

 2 2

1

1
arg min ( ) ( )

it

it

K
K

it l k k l k l

kit

avnnd w w z z
K





    , (3) 

 

where  2 2arg min ( ) ( )itK

l k k l k lw w z z     is the distance of plot k  to its next closest (neighboring) 

plot in kilometers and ( kw , kz ) and ( lw , lz ) are the coordinates of plot k  and of plot l k , 

respectively. Summing up the nearest neighbor distances for each plot and dividing by the number 

of plots, itK , provides an average of the nearest neighbor distance across all plots on farm i . 

 

3.2 Measuring and decomposing technical efficiency 

Consider n  farms each using m  inputs to produce s  outputs. For each farm i ,  1,...,i n  input 

and output vectors in period t , (1,..., )t T  are denoted as  1 ,..., m

it it mitx x 
 x  and 

 1 ,..., s

it it sity y 
 y , respectively. The matrix 

1( ,..., ) m n

t t nt



 X x x  denotes the matrix of 

inputs in period t  and the matrix 
1( ,..., ) s n

t t nt



 Y y y  denotes the matrix of outputs. The radial 

technical efficiency of farm i in period t  is obtained by solving the following linear program (LP), 

which is the first phase of the well-known input-oriented CCR model (Charnes et al., 1978). We 

chose an input-orientation because agricultural inputs are more controllable by farmers than 

outputs. 

 

,
[CCR I] min subject to

0, 0, 0

it

it t

itit

it

CCR

CCR
it t it

t it it

it

Y















 

 

  

λ

s x X λ

s λ y

λ s s

, (4) 

 

where 
nit
λ  is the intensity vector and 

it



s and 
it

s  are the vectors of input slacks (input excesses) 

and output slacks (output shortfalls), respectively. The optimal vectors of slacks, * * *

1( ,..., )it it mits s
  s

and 
* * *

1( ,..., )it it sits s
  s , are obtained in the second phase, where we maximize the objective function 
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it it

 es es  subject to the constraints in Eq. (4) with it

CCR  fixed at its optimum found in the first 

phase, i.e., 
* (0,1]it

CCR  . 
*

it

CCR indicates the maximal radial reduction potential of all inputs that 

is feasible under the given constant returns to scale (CRS) technology in period t . We allow for 

technological change by estimating a separate production frontier for each year. Farms for which 
*

it

CCR  is equal to one are Farrell-efficient (Farrell, 1957). 

 

A well-known shortcoming of such radial measures of efficiency is that they ignore non-radial 

input reduction potentials given by *

it



s and 
*

it



s . In the case of nonzero slacks, a Farrell-efficient 

farm is not Pareto-Koopmans efficient (Koopmans, 1951). While Farrell technical efficiency can 

be achieved without altering the input-mix (the proportions in which inputs are used), additional 

reduction potentials in some inputs – indicated by nonzero input-slacks – can only be attained by 

changing the input proportions. Hence, the inefficiency associated with any nonzero input-slacks 

in the above two-phase procedure is referred to as input-mix inefficiency. 

 

Non-radial measures of efficiency (e.g., Färe and Lovell, 1978; Tone, 2001) provide one solution 

among others (Portela and Thanassoulis, 2006) to the problem of nonzero slacks DEA. Tone (1998) 

and Asbullah and Jaafar (2010) introduce non-radial measures of technical efficiency that can be 

separated into Farrell (radial) and mix efficiency. Using a simple numerical example, Mendelová 

(2022) shows that both approaches, for different reasons, may overestimate mix inefficiency and 

suggests a new measure and decomposition of technical efficiency that overcomes these 

shortcomings. 

 

Following Mendelová (2022), we apply the following comprehensive measure of technical 

efficiency )( itTE  that can be divided into radial efficiency and input-mix efficiency ( )itIME : 

 
* *

1 1

*

*1 1it

it

m m
rit rit rit

it

r rrit rit

CCR

CCR
x s s

m x m x
TE




 

 


    . (5) 

 

The ratio 

**
it rit rit

rit

CCR x s

x

 
 provides a measure of the efficient use of input 𝑟. Hence, itTE  indicates 

the mean maximal reduction potential over all inputs or the mean input efficiency. We observe that 
*

itit

CCRTE   and 
*

itit

CCRTE   if and only if all input slacks are zero, i.e., there is no input-mix 

inefficiency. The input-mix efficiency measure (0,1]itIME   is calculated as the ratio of itTE  over 

*
it

CCR , i.e., 
*

it

it
it CCR

IME
TE


 , which leads to the following separation of technical efficiency into the 

Farrell (radial) efficiency and input-mix efficiency: * *

*it it

it

it
it it

CCR CCR

CCR
IME

TE
TE  


    . 

 

Following Banker et al. (1984), we further divide the Farrell-type technical efficiency, i.e., 
*

it

CCR , into scale ( itSE ) and pure technical efficiency ( itPTE ). Pure technical efficiency evaluates 

the efficiency of a farm net of any impact of scale size. Estimating itPTE  requires solving Eq. (4) 
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by adding the convexity constraint 1it eλ , which allows for variable returns to scale (VRS) of the 

production technology (Afriat, 1972). The scale efficiency of farm i  in period t  is calculated at its 

observed constant mix of inputs and outputs as the ratio of the Farrell-type technical efficiency 

(CRS) over the pure technical efficiency (VRS), i.e., 
*

it

it

it

CCR

SE
PTE


 (0,1] , which leads us to the 

following final equation of overall technical efficiency: 

 
*

* it

itit it it it it it it

it

CCR

CCR IME PTE IME SE PTE IME
PTE

TE


        . (6) 

 

Scale efficiency can be interpreted as a measure of how far the scale size of a farm is away from 

its socially optimal size (Sickles and Zelenyuk, 2019). The (observed) socially optimal scale size 

(or most productive scale size) is achieved when the average product (i.e., the output to input ratio) 

reaches its maximum. In other words, the amount of inputs required to produce one unit of output 

is minimized. The average product is maximized if farms operate under constant returns to scale 

(i.e., farms that are on the CRS production frontier have a scale efficiency score of one). Farms 

operating under decreasing returns to scale (DRS) or increasing returns to scale (IRS) can increase 

the average product by decreasing or increasing the size of operation, respectively. 

 

3.3 Measuring (downside) risk efficiency 

Now, we consider the primal (i.e., the multiplier model) of the LP shown in Eq. (4) (i.e., the 

envelopment model). Next, we substitute the output vector ity and the input vector itx , as well as 

the corresponding matrices tY  and tX , with the mean (
,i b c 

) and standard deviation (
,i b c 

) of 

aggregate farm output over the period b  to c , respectively: 

 

,

, ,

,

,

[ ] max

1 ( 1,..., )

0, 0

i b c

i
v u i b c

i b c

i b c

u
MYP RE subject to

v

u
i N

v

u v



















  

 

. (7) 

 

The fractional program in Eq. (7) resembles the DEA-model for the assessment of portfolio 

performance in Murthi et al. (1997).7 In a similar vein, Tiedemann and Latacz-Lohmann (2011) 

apply this concept in the context of farm performance assessment. They integrate the standard 

deviation of aggregate farm output into DEA-models together with conventional inputs (i.e., land, 

                                                           
7 They consider the risk-free return of a portfolio as the output and a measure of risk (i.e., the standard deviation of the 

portfolio returns) and transactions costs as inputs. The idea of such a DEA-model is to construct a portfolio frontier or 

a mean-variance efficient frontier in the spirit of Markowitz (1952). This frontier is spanned by efficient combinations 

of expected portfolio returns and portfolio risk, i.e., risk-return combinations that minimize the risk of a portfolio for 

a given level of expected return (or maximize the expected return for a given level of risk). 
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labor, and capital deprecation) and output and derive a measure of risk-adjusted (technical) 

efficiency.8 

 

Since Eq. (7) represents a DEA-model with one input (standard deviation), one output (mean), 

and CRS, we do not need to solve this fractional program and can simplify the measurement of risk 

efficiency as follows: 

 

   

1

, , ,

1

, , ,
(1,.., ) (1,.., )

/ ( )

max / max ( )

i b c i b c i b c

i

i b c i b c i b c
i N i N

CV
RE

CV

 

 



  



  
 

   (8) 

 

Risk efficiency, iRE , is the ratio of the inverse of the coefficient of variation of aggregate farm 

output, denoted as 1

,i b cCV 


 (

, ,/i b c i b c   ), over the maximal observed 1

,i b cCV 


across the sample. 

The coefficient of variation measures the dispersion of farm output around its mean (relative 

dispersion) and is considered as a measure of (relative) risk (Miller and Karson, 1977; 

Mahmoudvand and Oliveira, 2018) in the finance literature. El Benni et al. (2012) use the 

coefficient of variation of gross farm revenues and total household income to study revenue and 

income risk in Swiss agriculture. A farm is risk efficient ( 1iRE  ) if it has the lowest coefficient 

of variation of farm output in the sample. Risk efficiency decreases with increasing (relative) 

dispersion of farm output and takes on values between zero and one, i.e., (0,1]iRE  . To put it 

differently, iRE  measures the distance between the i -th farm’s (relative) output dispersion and the 

lowest (relative) output dispersion observed in the sample. 

 

By using the standard deviation of output in Eq. (8), the risk efficiency measure takes into 

account positive and negative fluctuations around the mean. While positive deviations are 

acceptable by farmers, avoiding negative fluctuations of output might be more important to them. 

Therefore, we calculate downside risk efficiency ( iDRE ) by substituting the standard deviation in 

Eq. (8) with the negative semi-deviation of output (Markowitz, 1959), a measure that only 

considers below-mean output fluctuations. 

 

3.4 Explaining variations in technical efficiency and risk efficiency 

In the 2nd-stage of our analysis, we explore how LF and other factors affect the various measures 

of efficiency. For this purpose, we consider the following two models: 

 

 max 1, 1,..., 1,....,it it it i itE i n t T            tZ F D ; and (9) 

 

 , , , ,max 1,i b c i b c i b c i b cE          W F 1,..., ... ...i n b base year c current year , (10) 

 

                                                           
8 Our model departs from the DEA-model in Tiedemann and Latacz-Lohmann (2011). While they derive a risk-

adjusted measure of technical efficiency that also includes conventional inputs in the DEA-model, we want to assess 

(pure) risk efficiency of farms in the spirit of Modern Portfolio Theory or mean-variance analysis (Markowitz, 1952), 

and therefore exclude conventional inputs in the DEA-model. Another DEA-approach that incorporates risk into the 

measurement of technical efficiencies (of financial intermediaries in rural Taiwan) is that of Chang (1999). He 

considers some risk indicators as undesirable (weakly disposable) outputs in the DEA-model to derive risk-adjusted 

(technical) efficiency measures. 
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where itE  in Eq. (9) is either the technical, scale, pure technical, or input-mix efficiency index for 

the i -th farm in period t  and 
,i b cE 

 in Eq. (10) is the (downside) risk efficiency index measured 

over the period b  to c for the i -th farm. We calculate temporal means of variables for each farm 

over period b  to c  and collect them in vectors denoted with an overbar. itF  and ,i b cF  are vectors 

of LF indices and vectors of time means of LF indices over the period b  to c , respectively.   and

  are the parameters of primary interest. 

 

We investigate the following specification regarding itF  and ,i b cF  for each efficiency index:

[ , , ]it it it itnplot avfpd avnndF  and , , , ,[ , , ]i b c i b c i b c i b cnplot avfpd avnnd   F .9 Using multiple LF 

indices in one model allows us to disentangle the (potentially diverging) effects associated with 

different dimensions of LF.10 No single indicator exists that could capture all of these dimensions 

(Bentley, 1987). itF  and ,i b cF  cover the number of plots, the average farmstead-plot distance, and 

the average nearest distance between plots. 

 

itZ  and 
,i b cW  are vectors of control variables and   and   are the corresponding parameters 

to be estimated. In all estimated specifications, itZ  and 
,i b cW  include a control for farm area 

measured as utilized agricultural area (UAA) in hectares. Regarding the ceteris paribus assumption 

in regression models, an increase in the number of plots while holding farm area constant would 

imply a decrease in average plot size. Hence, average plot size as one dimension of LF is not an 

explicit variable in our model. Instead, it is implicitly considered by simultaneously controlling for 

the number of plots and the UAA. In addition to farm size and based on findings in previous studies 

on the determinants of farm efficiency (cf. Latruffe, 2010; Latruffe and Piet, 2014) and risk (cf. El 

Benni et al., 2012; Rao, 2019), we decide to include in both itZ  and 
,i b cW  variables that control 

for farm specialization (Herfindahl index), off-farm income (proxied by the share of mangers’ off-

farm labor), and subsidies (subsidies per hectare). In addition, itZ  includes controls for the share 

of rented land, share of family labor, average soil quality, average slope of plots, farm mangers’ 

age, gender, and education, as well as a dummy for organic farming. 
,i b cW  additionally controls 

for plot heterogeneity (CV of soil quality of plots and CV of the slope of plots), crop diversification 

(Shannon crop diversification index), and pesticide expenditures per hectare. 

 

Eq. (9) accounts for unobserved common year-specific effects across farms by a set of T –1 time 

dummy variables collected in the vector t
D  and for unobserved time-invariant farm-specific 

(random) effects i  independent and identically distributed (i.i.d) 2(0, )N  . it  is the idiosyncratic 

error term i.i.d. 2(0, )N   independently of i . Given 1itE  , Eq. (9) is a censored regression model 

                                                           
9 We also estimate models i) where we substitute the number of plots with average plot size (results are available in 

Table C1 and Table C2 in the supplementary material) and ii) where we add quadratic terms of LF indices to investigate 

potential non-linear effects (results are available in Table D1 and Table D2 in the supplementary material). 
10 A correlation matrix for farm size (UAA in hectares) and LF indices (available in Table A1 in the supplementary 

material) and OLS-model diagnostics based on variance inflation factors (VIF) suggest that multicollinearity is of little 

concern in our specifications. All VIFs are below 3.63. 
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applied to panel data with random effects. Therefore, we apply the random-effects11 Tobit model 

that accommodates censoring and within-cluster dependence of outcome variables (Greene 2018). 

We estimate Eq. (9) with maximum likelihood (ML) using the xttobit command in Stata 16, 

generating estimates of the parameters 2 2( , , , , , )       .12 Regarding Eq. (10), 
,i b c 

 is an 

idiosyncratic error term i.i.d. 2(0, )N  . Since 
, 1i b cE   , we apply the Tobit model using the tobit 

command in Stata generating parameter estimates of 2( , , , )    . 

 

4 DATA 

We use different sources to construct the dataset for our analysis: First, we apply plot-level data 

from the Austrian Integrated Administration and Control System (IACS) to construct LF indices. 

Second, for estimating technical and risk efficiencies, economic and physical data on inputs and 

outputs of farm production are extracted from the Austrian section of the Farm Accountancy Data 

Network (FADN). Control variables for the 2nd-stage DEA originate from both sources. 

 

4.1 Sample selection 

The period of investigation is 2009–2012 for the technical efficiency analysis because the 

necessary information for calculating the LF indices in Eq. (1)–Eq. (3) is only available for these 

years. The FADN is a rotating and stratified sample of Austrian farms consisting of about 2,200 

farms per year or ~ 2% of all farms in Austria. We focus on crop farms whose revenues from crops 

account for more than 50% of total farm revenues net of subsidies each year. Farms are excluded 

if the difference between the UAA reported in the FADN and IACS is larger than 10%. We only 

consider farms for which we have information on location and geophysical characteristics for at 

least 85% of their plots. We also exclude farms that farm only one plot. We exclude farms whose 

total area declared by the famer in the IACS was 10% or more different from the area obtained by 

summing up the areas of each individual plot of the farm. Due to the potential sensitivity of DEA 

to outliers (Dyson et al., 2001), we apply the data cloud method (Bogetoft and Otto, 2011: pp. 149–

153) and detect 11 outlying observations which are excluded from the sample. We also remove 

some observations due to missing information for some variables. The final sample is an 

unbalanced panel of 323 farms from 2009 to 2012 with 1,061 observations. 

 

The risk efficiency analysis is based on a balanced panel of 181 farms – a subsample of the 323 

farms considered in the technical efficiency analysis – for which we have data, except for LF 

indices, for all years from 2007 to 2014. Risk efficiency scores refer to the period 2007–2014 and 

are regressed on time means of LF indices calculated over the 2009–2012 period. Since LF is an 

almost time-invariant variable (slowly changing), we expect that including the years 2007–2008 

and 2013–2014 for calculating the time mean of LF indices would not affect our results. 

 

 

                                                           
11 Since we are interested in the effects of slowly changing variables, i.e., LF indices, a fixed-effects estimator is 

inappropriate for short panels due to the high variance of the estimated parameters, i.e., inefficiency (Plümper and 

Troeger, 2007). 
12 The ML estimator of the parameter estimates in Eq. (9) is consistent and asymptotically unbiased (Banker and 

Natarajan, 2008). Another popular approach in the 2nd-stage DEA is to combine truncated regression with bootstrap 

methods (Simar and Wilson, 2007). Although Banker et al. (2019) show that “the effectiveness of the Simar-Wilson 

approach critically depends on the assumptions of the data generating process (DGP).” 
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4.2 Plot-level data from the Integrated Administration and Control System 

The Austrian IACS contains plot-level information for all farms receiving direct payments under 

the Common Agricultural Policy of the EU. Land data in IACS are collected on two levels of 

aggregation: reference parcels (fields) and agricultural parcels (plots). Plots are pieces of land that 

are farmed with a single crop. Fields may contain several plots and thus different crop types. The 

average field of a crop farm consists of 1.17 plots. Hence, plot- and field-level are often identical. 

IACS data provides plot-level information on area (plot size), planted crop, geophysical 

characteristics (slope gradient, altitude, and soil quality), and location allowing for the calculation 

of LF indices and control variables. Basic farm information, e.g., on the location of the farmstead, 

complements the dataset. To calculate the LF indices shown in Eq. (1)–Eq. (3), we only consider 

plots less than 7.49 km13 away from the farmstead. Section B of Table 2 indicates that the average 

farm has 41 plots (with an average size of 1.50 ha), the mean average distance between the 

farmstead and the plots is 1.62 kilometers, and the mean average distance of a plot to the next 

closest plot is about 360 meters. Control variables derived from IACS plot-level data include 

average plot characteristics (i.e., average soil quality and average slope gradient of farm plots) and 

their relative dispersion measured by the coefficient of variation (descriptive statistics are available 

in Table B1 and Table B2 in the supplementary material). 

 

4.3 Farm accountancy data 

We measure farm output (gross output or revenues) as the sum of earnings from plant production, 

livestock, forestry, agricultural services, direct marketing, and other activities related to farming, 

net of subsidies. Labor is measured in annual working units (AWU) including family and hired 

workers, where one AWU is approximately 2,160 working hours per year. Land is measured by 

utilized agricultural area (UAA) in hectares and includes owned and rented land. Capital measures 

the average of a farm’s capital stock at the beginning and end of the year, including farm buildings, 

machinery, equipment, standing timber, livestock, and assets from activities related to farming 

(e.g., agri-tourism, renting out machinery, and providing services to other farms). Materials cover 

expenditures for land use (e.g., seeds, fertilizer, and pesticides), livestock (e.g., fodder and 

veterinary), energy, and expenditures for other activities related to farming. Nominal gross output 

components, capital, and materials values are divided by appropriate price indices from the 

Austrian Statistical Office to derive implicit quantity values that are measured in constant (2009) 

Euros. 

In the risk efficiency analysis, we are not interested in an implicit quantity index as a measure 

of farm output. Instead, we derive a measure of farm output that reflects both fluctuations in prices 

and quantities of farm output, i.e., we want to consider price and production risk in the analysis. 

Therefore, similar to Tiedemann and Latacz-Lohmann (2011) and El Benni et al. (2012), we deflate 

nominal revenues (net of subsidies) from farming activities with the Austrian consumer price index 

from Statistics Austria to make farm revenues comparable across years. Based on inflation-adjusted 

farm revenues, we calculate average revenues, the standard deviation, and negative semi-deviation 

of revenues over the period 2007 to 2014 for each farm. 

 

 

 

                                                           
13 Nearly all (97.5%) of the plots of farms participating in the Austrian section of the Farm Accountancy Data Network 

are less than 7.49 km away from the farmstead. Larger farmstead-plot distances probably indicate that the 

corresponding plot is not accessed from the farm building for which we have the geo-coordinates. Such plots could be 

accessed from a secondary farm building or cultivated by a sub-contractor. 
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Table 2 

Summary statistics of selected variables used in the two-stage Data Envelopment Analysis 

 Arithmetic 

mean 

Standard 

deviation 

5th 

percentile 

95th 

percentile 

A: Variables used in 1st-stage DEA technical efficiency estimation (n = 1,061) 

Inputs     

Labor (AWU) 1.09 0.71 0.25 2.19 

Capital (real, 2009 Euros) 179,169.22 137,003.14 35,607.09 438,750.50 

Utilized agricultural area (hectare) 58.03 38.64 12.95 130.07 

Material (real, 2009 Euros) 34,280.43 25,863.97 8,428.29 8,1510.24 

Output     

Revenue (real, 2009 Euros) 58,736.86 46,926.97 10,702.30 149,433.15 

B: Variables used in the 2nd-stage DEA for explaining variations in technical efficiency (n = 1,061) 

Land fragmentation     

Number of plots 41.45 30.85 13.00 90.00 

Average farmstead-plot distance (kilometer) 1.62 0.85 0.38 3.02 

Average nearest neighbor distance (kilometer) 0.36 0.20 0.14 0.76 

C: Variables used in 1st-stage DEA risk efficiency estimation (n = 181) 

Revenue07-14  (2009 Euros) 80,467.63 62,280.40 19,023.25 175,152.79 

SD07-14 of revenue (2009 Euros) 18,121.92 13,303.86 3,860.62 45,824.80 

Neg. semi-dev07-14 of revenue (2009 Euros) 11,591.25 8,996.24 2,423.52 25,544.80 

Note: Sections A and B show descriptive statistics for an unbalanced panel of 323 farms from 2009 to 2012 with 1,061 

observations. Section C shows descriptive statistics for 181 farms, with farm-year averages reported with an overbar. 

The period over which farm-year averages, standard deviations, and semi-deviations of farm revenue are calculated is 

2007 to 2014 as indicated by the subscript 07-14. AWU is agricultural working unit. Descriptive statistics on the full 

set of variables used in the 2nd-stage DEA to estimate Eq. (9) and Eq. (10) are available in Table B1 and Table B2 in 

the supplementary material, respectively. 

 

 

Sections A and C in Table 2 provide summary statistics on variables used to calculate efficiency 

scores. Mean gross output (in 2009 Euros) in the 2009–2012 panel is 58,736 Euros (net of 

subsidies). For 90% of farms, real revenue ranges between 10,702 Euros and 149,433 Euros. The 

average farm has an UAA of 58 hectares and the 5th and 95th percentile is 13 hectares and 130 

hectares, respectively. Capital and labor vary considerably, with a mean value of 179,169 Euro and 

1.09 AWU, respectively. Mean revenue, standard deviation, and negative semi-deviation (all in 

2009 Euros) over the period 2007 to 2014 for the average farm is 80,467 Euros, 18,121 Euros, and 

11,591 Euros, respectively. Summary statistics on the full set of variables used in the 2nd-stage 

DEA are available in Tables B1 and B2 in the supplementary material. 

 

5 RESULTS 

5.1 Efficiency scores 

Table 3 provides information about the distribution of the efficiency scores. On average, technical 

efficiency (TE), scale efficiency (SE), pure technical efficiency (PTE), input-mix efficiency (IME), 

risk efficiency (RE), and down-side risk efficiency (DRE) is 0.52, 0.84, 0.67, 0.94, 0.45, and 0.39, 

respectively. This indicates that PTE is the main driver of TE, followed by SE. IME plays a minor 

role: 5%, 5%, 11%, and 36% of farm-year observations are technically, scale, pure technically, and 

input-mix efficient, respectively. The average RE and DRE is 0.45 and 0.39, respectively. The 

coefficient of correlation between the two scores is rather high, i.e., 0.94. 
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Table 3 

Descriptive statistics of efficiency scores 

 Geometric 

mean 

Standard 

deviation 

5th 

percentile 

95th 

percentile 

number of 

efficient 

observations 
 

Technical efficiency and components (n = 1,061) 

Technical efficiency (TE) 0.52 0.20 0.26 1.00 55 

= Scale efficiency (SE) 0.84 0.17 0.50 1.00 55 

× Pure technical efficiency (PTE) 0.67 0.18 0.43 1.00 115 

× Input-mix efficiency (IME) 0.94 0.07 0.80 1.00 380 

Risk efficiency (n = 181) 

Risk efficiency (RE) 0.45 0.15 0.21 0.67 1 

Down-side risk efficiency (DRE) 0.39 0.13 0.21 0.62 1 
Note: RE and DRE scores refer to the period 2007–2014. TE, SE, PTE and IME refer to the period 2009-2012. 

 

 

5.2 Effect of land fragmentation on technical efficiency 

Table 4 provides the estimates of Eq. (9) regarding the determinants of TE and its components 

from random effects tobit models. The coefficient estimates and standard errors of LF indices and 

farm size are shown. Efficiency scores are multiplied by 100 and should be interpreted as percent. 

Full regression results are available in Table C1 of the supplementary material. 

 

The panel-level variance ( 2

 ) is high compared to the residual variance ( 2

 ) throughout 

models (1) to (4), indicating that unobserved time-invariant farm specific effects are important. A 

likelihood-ratio test in the last row of Table 4 compares the pooled estimator with the panel 

estimator. We reject the null hypothesis that there are no panel-level effects at the 0.1% significance 

level. Pooled OLS estimates suggest a relatively good fit of the SE-model (R² = 0.47), but a large 

share of variability in PTE (R² = 0.12), the main driver of TE (R² = 0.29) remains unexplained. 

 

Table 4 reports statistically significant and negative relationships between i) the number of 

plots as well as ii) the average farmstead-plot distance and farms’ TE. The coefficient estimate for 

the average nearest neighbor distance is positive, but its high standard deviation does not allow the 

rejection of the null-hypothesis that the scattering of plots has no effect on TE. Our results are in 

line with the findings of Monchuk et al. (2010) for a sample of Indian farms: They report that the 

number of plots have a negative impact on productivity, but that the spatial separation of plots does 

not significantly impact productivity when controlling for the number of plots. 

 

Model (1) in Table 4 shows that, everything else being equal, an increase in the number of plots 

by 10 decreases TE by 1.6 percentage points, on average. This effect is statistically significant at 

the 1% level. Holding farm area constant, increasing the number of plots coincides with decreasing 

average plot size. Hence, our estimates suggest a positive effect of average plot size on technical 

efficiency. Plot number (average plot size) has a statistically significant and negative (positive) 

effect on both SE (significant at the 10% level) and PTE (significant at the 5% level). Our results 

indicate that fewer or larger plots allow for a better exploitation of returns to scale. Farming 

multiple plots could affect PTE via increasing managerial effort (i.e., more time is devoted to 

organizing activities) and resource use per hectare, as well as decreasing yields. 
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Table 4 

Determinants of technical efficiency and its components 

 Dependent variable 

 (1) (2) (3) (4) 

 TE×100 SE×100 PTE×100 IME×100 

 (percent) (percent) (percent) (percent) 

Number of plots -0.157*** 

(0.046) 

-0.066* 

(0.035) 

-0.125** 

(0.053) 

0.023 

(0.022) 

Average farmstead-plot distance (kilometer) -2.992** 

(1.172) 

0.814 

(0.882) 

-4.658*** 

(1.349) 

-0.106 

(0.569) 

Average nearest neighbor distance (kilometer) 3.473 

(3.883) 

-0.903 

(2.773) 

7.812 

(5.430) 

3.227 

(2.023) 

Farm Size, UAA (hectare) 0.144*** 

(0.038) 

0.145*** 

(0.029) 

0.063 

(0.043) 

-0.028 

(0.018) 
2

  13.572*** 

(0.682) 

10.849*** 

(0.530) 

16.426*** 

(0.802) 

5.703*** 

(0.354) 
2

  11.039*** 

(0.299) 

7.375*** 

(0.203) 

10.324*** 

(0.288) 

6.311*** 

(0.214) 

Number of observations 1,061 1,061 1,061 1,061 

Number of right-censored observations 55 55 115 380 

Number of farms 323 323 323 323 

p-value for H0: no panel-level effects 0.000 0.000 0.000 0.000 
Note: Dependent variables are efficiency scores multiplied by 100. TE, SE, PTE, and IME is technical efficiency, scale 

efficiency, pure technical efficiency, and input-mix efficiency, respectively. UAA is utilized agricultural area. 

Significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. Coefficient estimates from 

random effects tobit models are reported with standard errors in parentheses. All models include a constant, time 

dummies, and controls for average soil quality of plots, average slope gradient of plots, and farm manager’s age, 

gender, and education, as well as share of rented land, share of off-farm labor, share of family labor, subsidies per 

hectare, farm specialization (Herfindahl index), and organic farming. Full results are available in Table C1 in the 

supplementary material. 

 

 

Increasing the average farmstead-plot distance by one kilometer reduces TE by ~3.0 percentage 

points, on average (significant at the 5% level). Longer average farmstead-plot distances have no 

significant effect on SE and IME, but affect TE through lowering PTE. Irrespective of farm size, 

the efficient use of resources becomes more difficult as average farmstead-plot distances increase. 

Longer distances increase transportation costs and aggravate water management. In addition, 

results might reflect wasting inputs due to leakage and evaporation during travel. 

 

We find a positive but statistically insignificant relationship between the average nearest 

neighbor distance ( itavnnd ) and TE. This relationship is driven by a positive coefficient estimate 

of itavnnd on PTE. The results are comparable to the findings in Latruffe and Piet (2014): They 

report a positive and statistically significant relationship between the normalized nearest neighbor 

distance and PTE, but no statistically significant effect on TE. Potential negative effects of longer 

distances between plots on TE could be compensated by higher yields through reduced production 

risk and cropping pattern optimization (cf. Latruffe and Piet, 2014). 
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5.3 Effect of land fragmentation on risk efficiency 

Table 5 provides estimation results of Eq. (10) with risk efficiency (RE) and downside risk 

efficiency (DRE), both multiplied by 100, as the dependent variable. Full regression results are 

available in Table C2 in the supplementary material. All coefficients of control variables have the 

expected sign (cf. El Benni et al., 2012; Rao, 2019), except for the CV of slope gradient of plots, 

farm size, and farm specialization (Herfindahl) index. The latter could be due to the high degree of 

specialization of farms in our sample and the low variability of this variable. OLS-estimates of 

models (1) and (2) in Table 5 indicate a R² of 0.17 and 0.15, respectively. Stochastic environmental 

factors seem to be responsible for a great part of variability in (D)RE. 

 

 
Table 5 

Determinants of (downside) risk efficiency 

 Dependent variable 

 (1) (2) 

 RE×100 DRE×100 

 (percent) (percent) 

Number of plots09-12  0.106** 

(0.052) 

0.120** 

(0.047) 

Average farmstead-plot distance09-12  (kilometer) -2.392 

(1.583) 

-2.526* 

(1.454) 

Average nearest neighbor distance09-12  (kilometer) 17.056** 

(6.953) 

10.932* 

(6.380) 

Farm_size07-14 , UAA07-14  (hectare) -0.033 

(0.041) 

-0.039 

(0.037) 

/   
2

  179.56*** 

(18.968) 

151.56*** 

(16.014) 

Number of observations 181 181 

Number of right-censored observations 1 1 
Note: Dependent variables are efficiency scores multiplied by 100. RE is risk efficiency and DRE is downside risk 

efficiency. Significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. Coefficient estimates 

from tobit models are reported with standard errors in parentheses. Variables with an overbar represent time averages. 

The period over which time averages are calculated is denoted by subscripts, i.e., 07-14 and 09-12 for the period 2007–

2014 and 2009-2012, respectively. Risk efficiency scores refer to the period 2007–2014 and are regressed on time 

means of LF indices calculated over the 2009–2012 period. Time means of all other covariates refer to the period 

2007–2014. All models include a constant and controls for pesticide expenditures per hectare, crop diversification 

(Shannon crop diversity index), the share of mangers’ off-farm labor, subsidies per hectare, CV of soil quality of plots, 

CV of slope of plots, and farm specialization (Herfindahl index). Full results are available in Table C2 in the 

supplementary material. 

 

 

Table 5 indicates a positive and statistically significant relationship between LF and risk 

efficiencies, except for the average farmstead-plot distance: On average, increasing the number of 

plots by 10 (which corresponds to a 22% increase for the average farm) lifts DRE and RE by 1.1 

and 1.2 percentage points, respectively. An increase in the average nearest neighbor distance by 

80 meters (a 22% increase for the average farm), suggests an improvement in RE by 1.4 percentage 

points, but a smaller effect on DRE. To put this in some perspective, an increase in pesticide 

expenditures per hectare by 15.20 Euros (a 22% increase for the average farm) tends to increase 

RE by 1.2 percentage points, on average. Increasing the average farmstead-plot distance by 361 



18 

meters (a 22% increase for the average farm) reduces RE by 0.9 percentage points, on average. An 

explanation could be that farmers visit more distant plots less frequently. This delays the detection 

of risks (e.g., pests, diseases, and water stress) and the implementation of countermeasures resulting 

in higher yield variability. Our results confirm the hypothesis that LF can reduce production and 

price risk and are in line with results in previous studies (Blarel, 1992; Goland, 1993; Kawasaki, 

2010; Rao, 2019). We find a risk reducing effect from the number of and scattering of plots. 

 

5.4 Summary of results 

Table 6 shows the difference in the predicted TE and RE between the 95th and 5th percentile of each 

LF index. More plots are associated with lower TE, but provide benefits in terms of improved RE. 

Longer average distance between farmstead and plots is detrimental to both TE and RE. Larger 

distances between plots are associated with higher RE: the difference in predicted efficiency 

between the 95th and 5th percentile of the average nearest neighbor distance is 10.6 percentage 

points. The effect of this dimension of LF on TE is slightly positive, but statistically insignificant. 

 

 
Table 6 

Effect of land fragmentation on technical and risk efficiency measured as the difference in predicted 

efficiency between the 95th and 5th percentile of respective land fragmentation index 

 

Effect on 

TE×100 

Effect on 

RE×100 

Land fragmentation index (percent) (percent) 

Number of plots -12.09 8.16 

Average farmstead-plot distance (kilometer) -7.90 -6.31 

Average nearest neighbor distance (kilometer) 2.15 10.57 

Farm size, UAA (hectare)  16.87 -3.86 

Number of observations  1,061 181 
Note: TE and RE is technical and risk efficiency, respectively. UAA is utilized agricultural area. Effects are reported 

in percentage points. 

 

 

6 CONCLUSION 

Using a panel dataset covering the years 2007–2014, we evaluate the effect of multiple dimensions 

of land fragmentation (LF) on the technical efficiency (TE) and risk efficiency (RE) of Austrian 

crop farms by Data Envelopment Analysis. TE is decomposed into i) scale efficiency, ii) pure 

technical efficiency, and iii) input-mix efficiency. RE, a concept borrowed from modern portfolio 

theory, measures the performance of a farm relative to a mean-variance frontier. 

We find that farms with more plots and a larger average distance from farmstead to plots tend 

to be less technically efficient. The scattering of plots, having no statistically significant effect on 

TE, and a higher number of plots provide benefits in terms of lower agricultural output variability. 

When decreasing the number of plots (or increasing average plot size), farmers face a trade-off 

between higher TE and lower RE. Reducing the average farmstead-plot distance could provide a 

double dividend by raising both TE and RE. 

 

In the Western European context, it is reasonable that from the farmers’ perspective, the costs 

of LF (lower income/profits) outweigh its benefits (lower production and price risk): Labor costs 

are high in Austria, as well as costs for energy due to a high degree of mechanization. The EU’s 
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Common Agricultural Policy provides a basic level of income to farmers in the form of direct 

payments based on area, where the EU average share of direct payments in agricultural factor 

income in the 2017–2021 period stood at 23%. Beyond direct payments, Western European farmers 

have access to a wider array of risk management tools than their peers in developing countries: 

e.g., access to storage, credit, pesticides, fertilizers, subsidized insurance schemes, off-farm 

employment opportunities, and automated pest and disease detection. 

 

LF is an obstacle for resource-sparing crop production in Austria. Reducing the number of plots 

per farm and distances from the farmstead to plots can improve resource-efficiency and 

competitiveness of Austrian crop farms. These benefits might be realized by land consolidation 

schemes as a partially publicly financed task, but also by other voluntary land exchange 

arrangements between farmers. Increasing shares of rental land and ownership fragmentation may 

require reducing disincentives to landowners for participating in land consolidation schemes. 

Functioning land markets can support land consolidation. We suggest increasing land-mobility 

through providing incentives to landowners (tenants) for leasing out (renting in) and selling 

(buying) land. 

 

Land consolidation schemes should not only consider the private costs and benefits to farmers, 

but also public costs and benefits associated with LF, such as increased biodiversity and resilience 

of the agricultural sector, but also higher levels of greenhouse gas emissions and potential road 

safety issues. Future research should quantify and compare the public costs and benefits of LF. 

Evaluating the effect of LF on ecological farm performance could be an interesting avenue of future 

research. 
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