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FINANCIAL ECONOMICS | RESEARCH ARTICLE

Portfolio Optimization at Damascus Securities 
Exchange: A Fractal Analysis Approach
Kinda Dooba1* and Sulaiman Mouselli2

Abstract:  This paper adopts the fractal analysis approach, specifically a Hurst 
exponent index in portfolio optimization at the Damascus Securities Exchange 
(DSE). We construct three portfolios based on the Hurst index from stocks listed on 
the DSE during the period between 2019 and 2021 and find that these portfolios 
outperform the market portfolio in terms of returns, Sharpe ratio, Treynor ratio, and 
alpha. In addition, selecting stocks with high Hurst coefficients further enhances the 
performance of the portfolio. Importantly, even in out-of-sample tests, the three 
fractal portfolios continue to outperform the market portfolio. Furthermore, we find 
that fractal portfolios outperform portfolios formed using the momentum and size 
strategies demonstrating the superiority of the fractal analysis approach. We con
clude that the incorporation of fractal analysis into the portfolio optimization 
problem allows the creation of a more efficient portfolio. Hence, we recommend 
that investors consider the Hurst exponent index in their portfolio optimization for 
better investment decisions.

Subjects: Risk Management; Economics; Finance 

Keywords: market efficiency; Portfolio optimization; fractal analysis; Hurst exponent; 
Long-Memory (LM) effect; Damascus Securities Exchange (DSE)

1. Introduction
At the core of financial decision-making theory, portfolio optimization plays a pivotal role. 
Markowitz (1952) developed the mean-variance analysis, a work that became the center of 
modern portfolio theory (MPT), in which the optimal portfolio choice is presented as the solution 
to a simple-constrained optimization problem (Chaweewanchon & Chaysiri, 2022; Wu et al., 2021). 
Many influential portfolio selection models emerged after Markowitz’s classic

work, such as the capital asset pricing model (CAPM) (Lintner, 1965; Mossin, 1966; Sharpe, 1964), 
and the option pricing model (Black & Scholes, 1973).

The efficient market hypothesis (EMH) implies that movements in stock returns are random 
events independent from historical values and follow the random walk hypothesis. The rationale is 
that prices contain all publicly available information and if patterns do exist, rational agents 
(arbitrageurs) would exploit them, and thereby they are quickly eliminated (Blackledge & 
Lamphiere, 2022; Fama, 1970). Furthermore, the EMH posits that the stock returns exhibit char
acteristics of linearity, continuity, static nature, and independence. These attributes allow for the 
estimation and management of investment risks effectively (Liu et al., 2022).
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The irrationality of investors, market friction, and incomplete arbitrage represent violations of 
the EMH (Daniel & Titman, 1999). In empirical terms, many financial anomalies are evident in 
financial markets such as long-range dependency (Giacalone & Panarello, 2022; Lo, 1991; Urquhart 
& Hudson, 2013), higher peak and fat tail (Enders, 1995; Fama, 1965; Wu et al., 2021), volatility 
clustering (Bae et al., 2020; Peters, 2015), and multifractal (Mandelbrot, 1971; Mandelbrot et al.,  
1997; Zhang & Fang, 2021). This challenges the validity of both the normal distribution assumption 
and the random walk assumption in describing financial returns (Sun et al., 2007).

Financial markets are unstable, complex, and dynamic systems with nonlinear behavior 
(Tebyaniyan et al., 2020; Wu et al., 2021). Financial time series appear to exhibit fractal properties, 
with their patterns becoming increasingly complex when enlargement. These patterns repeat 
themselves, showing a qualitative similarity to the overall structure of the market (Anderson & 
Noss, 2013; Blackledge & Lamphiere, 2022). Also, there is a certain long memory in prices as 
opposed to the memory-free according to the EMH (Chen et al., 2019). That is, prices may rise or 
fall substantially to a certain degree (Deboeck, 1994; Giacalone & Panarello, 2022; Mandelbrot,  
1971). Consequently, the assumptions of classical finance are insufficient in explaining the beha
vior and characteristics observed in financial markets (Anderson & Noss, 2013; Mandelbrot et al.,  
1997; Peters, 1991). To address this, Peters (1991) proposed the fractal market hypothesis (FMH) as 
an alternative to the EMH.

According to the FMH, financial market time series are primarily influenced by the long memory 
(LM) Effect. That is, the evolution of a time series in the future is influenced by past events 
(Giacalone & Panarello, 2022; Peters, 1994).

The FMH mainly focuses on two aspects: studying the fractal characteristics of the stock market 
and building various models to try to predict market trends. In addition, it seeks to introduce new 
perspectives and approaches for enhancing portfolio optimization according to several alternative 
criteria. These approaches include fractal theory, chaos theory, artificial neural network, artificial 
intelligence theory, and so on (Deboeck, 1994).

The Damascus Securities Exchange (DSE) is a relatively new stock exchange in the Middle East 
and North African (MENA) region, as it started trading in 2009. The efficiency of this market has 
been tested by most traditional parametric and non-parametric tests, most of which have rejected 
the weak form of the EMH. Abbas (2014) rejected the random walk hypothesis at the DSE using the 
daily returns of the index DWX between 2009 and 2014. Likewise, Mouselli and Al-Samman (2016) 
found evidence in favor of the month-of-the-year effect in the DSE between 2010 and 2015. 
Mahmoud and Wardeh (2018) also provided evidence in favor of the momentum effect in the 
DSE market during the period (2010–2016) suggesting that the weak form of the EMH does not 
hold at the DSE. On the contrary, Ismaiel (2017) found that the weak form of the EMH holds at the 
DSE during the period between 2010 and 2017, using tests that account for endogenously 
capturing structural breaks in the time series.

The main objective of this study is to develop a portfolio optimization approach for investors at 
the DSE. This approach utilizes the estimation of the Hurst exponent to identify the long memory 
property in stock returns, which is then combined with the Markowitz (mean-variance) model to 
form optimal portfolios.

This study has three main contributions. First, this study proposes a novel approach for portfolio 
formation that combines the Hurst exponent estimation with the Markowitz (mean-variance) 
model. The Hurst exponent measures the long memory of a time series, indicating the persistence 
of trends. In portfolio construction, this is valuable information as it helps identify stocks that 
exhibit strong trends and are likely to continue performing well. Hence, if high H-index stocks 
performed well in the past, they are expected to continue this performance in the future. Second, 
our method includes a stock selection process that ensures the trend-reinforcing behavior of stock 
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inputs, in which stocks with higher Hurst exponents are selected for optimal portfolio construction. 
Third, this study contributes to the empirical literature on portfolio optimization at the DSE by 
examining the FMH by investigating the existence of the long memory property and utilizing fractal 
analysis in portfolio construction.

Our findings reveal strong evidence of a fractal structure with a long memory effect at the DSE, 
consistent with (Giacalone & Panarello, 2022; Tebyaniyan et al., 2020). Furthermore, portfolios 
constructed using fractal analysis outperform the market portfolio, corresponding to the findings 
of Wu et al. (2021) and Chun et al. (2020), and also outperform portfolios formed using the 
momentum and size strategies, providing supporting evidence for the effectiveness of portfolios 
that rely on fractal statistical measures in their creation.

The rest of this paper is structured as follows: Section 2 reviews the literature on the LM 
processes in capital markets. Section 3 illustrates our research methodology. Section 4 describes 
the sample and data collection, and Section 5 presents the empirical results. Section 6 concludes 
and provides recommendations.

2. Literature review
The analysis of the long-memory property in financial returns is one of the attractive topics in 
finance (Mensi et al., 2019). It presents a challenge to the EMH, as it suggests that random shocks 
can have long-term effects on future returns (Blackledge & Lamphiere, 2022). From a statistical 
perspective, the long memory process is characterized by the persistence of the autocorrelation 
function (Giacalone & Panarello, 2022). In other words, it refers to the strength of statistical 
dependence between lagged observations in a time series, and how the lagged autocorrelation 
functions decrease slower than exponential decay in more persistent time series (Ding et al., 2021; 
Peters et al., 2021). This concept is important in understanding market behavior and trends and it 
can also be the basis of portfolio construction.

The empirical evidence regarding the presence of the LM effect in stock returns is indeed mixed. 
Several studies have provided evidence supporting the existence of the LM effect, while others 
have found no such evidence. For example, Greene and Fielitz (1977) found evidence of persistence 
in most stock returns listed on the NYSE (Peters, 1992). also found evidence in favor of the LM in 
the S&P 500 Index. Similar conclusions were reached in many developed and emerging markets 
such as the German Equity Market (Sun et al., 2007), London Stock Exchange (Lillo et al., 2004), 
Indian Stock Market (Mishra et al., 2011), and several other stock markets (Taiwanese, Japanese, 
South Korean and German) (Henry, 2002). Contrary to previous studies (Lo, 1991), found no 
evidence of the LM in U.S. stock returns (Bhattacharya et al., 2018) also provided empirical 
evidence against the presence of the LM in 10 indices of certain emerging and developed markets. 
Similarly (Mensi et al., 2019), failed to find any evidence of the LM in European stock markets. The 
mixed empirical evidence suggests that the presence of the LM in stock returns may depend on 
factors related to the dataset and market (Saha et al., 2020)

Despite the existence of little evidence of the LM in the MENA markets, there is evidence of the 
long-memory effect in many Arabic stock markets. For example (Aloui & Hamida, 2014), examined 
the existence of long memory, structural breaks, asymmetry, and fat-tails in Gulf Cooperation 
Council (GCC) markets for the period between 2003 and 2013. They found that only two markets, 
namely Saudi Arabia and Oman exhibit the LM effect. Hoyfi (2021) also found similar results in the 
Tunisian stock market (Boubaker et al., 2022). Also found evidence in favor of the LM effect in the 
GCC equity markets over the recent period including the global financial crisis of 2007-2009 using 
the ARFIMA-Hyperbolic Asymmetric Power ARCH modeling process. Assaf (2016) investigated the 
LM effect in a group of the MENA equity markets using the Hurst exponent. The results suggested 
that there was evidence of weakening in the LM effect. Similar results were found in the MENA 
stock markets regarding returns volatility using FIABARCH models (Boubaker & Sghaier, 2015). In 
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addition, Al-Hajieh (2017) provided strong evidence of the long memory of returns volatility for 12 
Arabic stock markets. However, no such tests were performed on the DSE.

3. Research methodology
The long-memory property in time series can be analyzed through the Hurst exponent index (H) 
proposed by the English hydrologist Hurst (1951) (Bui & Ślepaczuk, 2022). It is considered suitable 
for distinguishing a non-random time series from a random one, regardless of its distribution type. 
This tool is suitable for a phenomenon that appears to be random but may have a regular pattern.

The rescaled range estimation (R/S) is commonly used to calculate the Hurst exponent and the 
fractal properties of the time series (Sánchez Granero et al., 2008). Mandelbrot and Wallis (1969) 
introduced this analysis based on the earlier work of Hurst (1951). The R/S analysis is a robust 
nonlinear method as it allows for comparison across different time intervals by rescaling the data. 
This rescaling process helps capture the fractal properties of the time series. In addition, this 
analysis is superior to the autocorrelation and variance analysis (Sánchez Granero et al., 2008).

The Hurst exponent has been widely applied in analyzing various financial assets, including 
stocks and indices (Assaf, 2016; Matos et al., 2008; Tebyaniyan et al., 2020), commodities (Alvarez- 
Ramirez et al., 2008; Tiwari et al., 2021), cryptocurrencies (Kristoufek & Vosvrda, 2019), and 
currencies (Shahzad et al., 2018). It helps in assessing the presence of the LM effect, which has 
many implications for market efficiency and return predictability. The R/S Hurst method is parti
cularly suitable for studying returns at the DSE because it has been greatly affected by many 
crises, starting from the Syrian crisis in 2011, and the recent COVID-19 pandemic. This method is 
invaluable for understanding the long-term impact of these events on the exchange’s 
performance.

In line with (Peters, 1994; Sánchez Granero et al., 2008), the procedure for calculating the Hurst 
exponent using the R/S analysis method is as follows:

We divide the return time series, which has a length of N, into d sub-series (Zi;m) of length n, so 
that d *n = N where n is an integral divisor of N.

Then, we calculate the mean (Em) and the standard deviation (Sm) for each sub-series 
(Zi;mÞwhere m = 1, 2, 3. . ., d.

Next, we calculate the demeaned return of the sub-series (Zi;m) by subtracting the sub-sample 
mean: 

After that, we create a cumulative time series by summing up the demeaned sub-series: 

We calculate the range for each sub-series: 

For each sup-series, we obtain the rescaled rangeðRm=Sm) by dividing the range (Rm) by the 
standard deviation (Sm) that corresponds to it. We then calculate the mean value (R/S)n of the 
rescaled range for all sub-series of length n: 
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Taking into account that the R/S statistic follows ðR=SÞn,cnH; we can estimate the index- H by 
running a simple linear regression: 

For a small value of time series n, there is a deviation from the 0.5 slope. Annis and Lloyd (1976) 
introduced the theoretical value of the R/S statistics to be as follows (Weron, 2002): 

Where Γ is the Euler Gamma Function.

Finally, the Hurst exponent is calculated as 0.5 + Hn where Hn is the slope obtained by running 
a simple linear regression of log n as independent variable on log ðR=SÞn

� �
� logEðR=SÞnas depen

dent variable.

Hence, we have the following cases:

0 ≤ H < 0.5: The process exhibits fractional Brownian motion and confirms the FMH. The time 
series is characterized by anti-persistent, meaning that trends revert to the mean.

H = 0.5: The process is standard Brownian motion. This confirms the EMH and suggests that the 
time series is random.

0.5 <H ≤ 1: The process exhibits fractional Brownian motion and confirms the FMH. The time 
series has a long memory meaning that it is characterized by persistence. The higher Hurst 
coefficient values indicate a greater level of persistence in the time series.

In this study, we will use the Hurst exponent coefficient as a filter to select stocks with a long 
memory characteristic for inclusion in the portfolio. By doing so, we aim to construct an optimized 
portfolio that outperforms the benchmark portfolio. Moreover, we will demonstrate the benefits of 
selecting stocks with high Hurst coefficients in comparison to stocks with Hurst values close to 0.5. 
The following steps will be performed:

(1) Find the Hurst exponent of each stock over the period between 7/1/2019 and 30/12/2021.

(2) Filter the stocks that have a Hurst exponent greater than 0.5 and a positive daily average 
return.

(3) Rank the filtered stocks based on their Hurst exponent values and divide them into two 
groups: the top 50% and the bottom 50%.

(4) Construct three equally weighted portfolios: The first portfolio includes all stocks and is 
named as the “All stocks” portfolio. The second portfolio, referred to as the “High H-Value” 
portfolio, includes stocks with the highest Hurst exponent value, which make up the top 
50%. The third portfolio, referred to as the “Low H-Value” portfolio, includes stocks with the 
lowest Hurst exponent value, which make up the bottom 50%.

(5) Compute the mean, variance, Sharpe ratio, Treynor ratio, alpha, and the Hurst exponent 
coefficient for each portfolio’s annual returns, and compare its performances with the 
market portfolio, for the same period.
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Finally, we hold each portfolio for different holding periods, also referred to as investment or buy- 
and-hold periods, ranging from 3 January 2022 to 22 December 2022. These (out of sample) 
periods spanned 3, 6, 9, and 12 months. Subsequently, we calculate the mean, variance, Sharpe 
ratio, Treynor ratio, and alpha for each portfolio’s returns.

4. Data sample and descriptive statistics
The dataset consists of all stocks listed on the DSE and the overall index (DWX) as a benchmark 
(market portfolio). The full data was compiled from the DSE official website over the period from 
7 January 2019 until 22 December 2022, which makes a total of 894 trading days. The selected 
sample period was deliberately chosen to avoid the impact the of Syrian crisis on stock perfor
mance which started in 2011. To construct investable portfolios based on the Hurst exponent 
index, it is necessary to include only liquid stocks. Therefore, the time period was selected to 
maximize the number of stocks with at least 25 percent of trading days during the sampling 
period. This criterion ensures that a sufficient sample size is available for analysis. As a result, our 
sample consisted of only 19 out of 27 listed stocks. To overcome the non-stationary problem 
arising from using row daily prices data, the daily returns were computed as the natural logarithm 
of the difference in daily closing prices after taking into account both stock and cash dividends.

The descriptive statistics for daily returns are summarized in Table 1. All stocks (except BSO) demon
strate positive but close to zero mean returns which are considered minor when compared to standard 
deviation. ATI and AVOC stocks have the highest daily mean returns of 0.0034 and 0.0027 respectively, 
whereas BSO has the lowest daily mean returns (−0.0001). SIIB shows the highest standard deviation of 
0.0206, whereas BOJS has the lowest standard deviation of 0.0066. The overall positive average daily 
returns reflect the recovery period at the DSE where the exchange is bouncing back after a long period of 
decline due to the Syrian crisis. The distribution of returns departs markedly from normality given the 
observed skewness and excess kurtosis statistics. Consequently, based on the Jarque-Bera test, the null 
hypothesis of normality for the daily returns is rejected at the 1% significance level. Furthermore, the 
stock returns are skewed to the right suggesting a greater probability of large increases in returns than 
falls. All stock returns show high levels of kurtosis indicating that these distributions have thicker tails 
than the normal distribution (UIC has the highest skewness value of 6.5049 and the highest level of 
kurtosis of 60.0286). The descriptive statistics of the DWX show that it achieves daily returns of 0.0016 at 
a risk level of 0.0069, which is considered a relatively low return with a high level of risk. A Kurtosis statistic 
of 4.9559 points out that returns are leptokurtic distributed, and indicate higher peaks than expected 
from a normal distribution. Jarque-Bera statistics and their corresponding p-values suggest that the 
hypothesis of the normal distribution of DWX returns can be rejected. Hence, based on the descriptive 
analysis, it can be concluded that the daily returns of the 19 selected stocks and the market index are not 
well approximated by the normal distribution, and there is strong ground for rejecting the random walk 
characteristic. Additionally, the utilization of the Dickey-Fuller unit root test within the period of 2019– 
2021 reveals that the time series of returns for both individual stocks and the market index (DWX) exhibit 
stability, signifying their predictability.

Table 1 also presents the Ljung-Box test statistics (Q (20)) for the returns. The test reveals that most 
stock returns, with the exception of SIIB, exhibit significant autocorrelations. This indicates that there 
is a relationship between past and current stock returns for the majority of the stocks in the sample. 
Additionally, when examining the rate at which the autocorrelation function of stock return time 
series decays over time, it is observed that SYTEL, SKIC, AVOC, and ATI exhibit slower decay up to lag 
20. This suggests that these stocks are influenced by their past returns for a longer period. On the 
other hand, FSBS, CHB, and BJOS show faster decay at the initial lags, indicating that they quickly 
forget their history. The market index also displays slower decay up to lag12. These results may 
suggest the presence of varying degrees of long memory in the listed stocks at the DSE.

5. Empirical results and discussion
We initially calculate the Hurst exponent coefficient for the daily returns of 19 stocks and the 
benchmark portfolio (DWX). Table 2 illustrates that all stock returns exhibit a Hurst coefficient 
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above 0.50, indicating a fractal structure, with different degrees of long memory. Notably, SYTEL, 
AVOC, and ATI exhibit the highest H-values (0.76, 0.75, 0.73, respectively) signifying trend- 
reinforcing behavior. Conversely, SIIB, CHB, and FSBS have the lowest H-values (0.54, 0.54, 0.53, 
respectively), with values close to 0.50 indicating weaker trends. The market index also displays 
long memory with an H-value of 0.68 implying fractal and non-random structure, which confirms 
the hypothesis of a fractal market and rejects the hypothesis that the DSE is efficient in the weak 
form. This result is consistent with the findings of (Abbas, 2014; Mahmoud & Wardeh, 2018; 
Mouselli & Al-Samman, 2016) indicating that the DSE is not weak-form efficient, and with the 
findings of (Al-Hajieh, 2017; Assaf, 2016; Boubaker et al., 2022) suggesting the existence of the 
long memory in Middle Eastern markets. Based on these findings, we anticipate that we can 
leverage stocks that exhibit long memory and trending behavior to construct a robust portfolio 
that can outperform the benchmark portfolio. Furthermore, we expect the portfolio with high 
H-value stocks to outperform other portfolios.

Based on steps (2,3, and 4) explained in section 3, and considering the outcomes of the Hurst 
estimation presented in Table 2, three portfolios are constructed, with 18 stocks being included in the 
first portfolio (All stocks), 9 stocks in the second portfolio (High H-value), and 9 stocks in the third portfolio 
(Low H-value). BSO is excluded from the portfolios due to its negative returns during the ranking period. 
Table 3 summarizes the descriptive statistics of the daily returns of the three constructed portfolios.

The High H-value portfolio in Table 3 achieves the highest daily returns of 0.0018 and the lowest 
standard deviation of 0.0060. The return distributions for the three portfolios are skewed to the 
right, indicating a greater likelihood of large increases in returns than decreases. Additionally, the 
kurtosis values for these distributions are high, indicating thicker tails than those of the normal 
distribution. Specifically, the (All stocks) portfolio has the highest skewness value of 2.18, whereas 
the High H-value portfolio has the highest level of kurtosis (10.40). The test of Jarque-Bera confirms 
that the return distributions of the three portfolios deviate from normality, indicating a higher 
probability of observing extremely positive returns than a normal distribution.

Table 3 also reveals that the formed portfolios have a Hurst coefficient higher than 0.50, 
implying a fractal structure with long memory characteristics and predictive ability regarding the 
continuity of portfolios’ superiority in the future. The (High H-value) portfolio has an H-value of 0.76 
compared to H-values for the (All stocks) portfolio, (Low H-value) portfolio, and the benchmark 
portfolio of 0.68, 0.65, and 0.68 respectively indicating that they are trend-reinforcing portfolios.

To examine the effectiveness of the portfolio selection strategy under the combination of the 
Hurst exponent analysis and Markowitz (mean-variance) model, we calculate the annual returns, 

Table 2. H -index estimation for daily returns of the examined stocks
STOCKS HURST STOCKS HURST
SYTEL 0.76 BBSF 0.60

AVOC 0.75 ARBS 0.60

ATI 0.73 BOJS 0.59

IBTF 0.67 BBSY 0.57

UIC 0.66 BASY 0.56

SHRQ 0.66 BSO 0.56

SKIC 0.65 SIIB 0.54

SGB 0.63 CHB 0.54

BBS 0.63 FSBS 0.53

QNBS 0.61 DWX 0.68

Note: the sample spans the period from 7 January 2019 to 30 December 2021. 
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variance, betas, Sharpe ratio, Treynor ratio, and alpha for all portfolios over the same period. 
Table 4 compares the annual performance of the (All stocks), High and Low-H-value portfolios to 
the benchmark portfolio (DWX).

In Table 4, the (High H-value) portfolio exhibits the most efficient performance, with the highest 
annual returns of 0.539, the highest Sharpe ratio of 20.95, the highest Treynor ratio of 1.83, and 
the highest alpha of 0.36, whereas the (All stocks) portfolio has the lowest variance of 0.017. On 
the other hand, although the (Low H-value) portfolio has lower returns of 0.308 compared to the 
benchmark portfolio, it still outperforms the benchmark portfolio in terms of ratios with a Sharpe 
ratio of 8.12, Treynor ratio of 0.96, and alpha of 0.14. The three portfolios are considered con
servative, with a beta of less than 1, but the (High H-value) portfolio is slightly more sensitive to 
market changes than the (Low H-value) portfolio.

One of the most interesting findings is that the (High H-value) portfolio outperforms the (All 
stocks) and (Low H-value) portfolios, thereby indicating a higher degree of persistence exhibited by 
the high Hurst value series. Hence, to further evaluate the trend-reinforcing behavior of the three 
formed portfolios, we use different holding (out of sample) periods spanned 3, 6, 9, and 12 months 
from 3 January 2022 to 22 December 2022. We report the performance of the three formed 
portfolios and the benchmark portfolio in the four holding periods in Table 5 below.

Table 5 shows that the three portfolios selected based on the Hurst coefficient still outperform 
the benchmark portfolio (DWX), indicating the effectiveness of the fractal portfolio strategy. The 
(High H-value) portfolio outperforms the (All stocks) portfolio, the (Low H-value) portfolio, and the 
benchmark Portfolio in terms of returns. It achieves the highest returns in three out of the four 
holding periods (3-9-12) months, with returns of 0.318, 0.539, and 1.151 respectively. Furthermore, 
the (High H-value) portfolio exhibits the most efficient performance across all four holding periods 
(3-6-9-12) months, characterized by the lowest variance (0.004, 0.013, 0.015, and 0.022 respec
tively), the highest Sharpe ratio (68.91, 22.90, 31.56, and 49.12 respectively), the highest Treynor 
ratio (18.57, 27.26, 17.97, and 9.67 respectively). It also achieves the highest alpha in three of the 
four holding periods (3-9-12) months (0.29, 0.47, and 1.00 respectively). Furthermore, Table 5 
demonstrates that the longer the holding periods, the higher the

Table 3. Descriptive statistics of the daily returns of the three formed portfolios

Portfolio Mean Std. Dev Skewness Kurtosis
Jarque- 

Bera p-value Hurst
All stocks 0.0014 0.0061 2.18 9.89 1863.03 0.000 0.68

High  
H- Value

0.0018 0.0060 2.17 10.40 2054.25 0.000 0.76

Low  
H- Value

0.0011 0.0084 1.62 7.01 741.15 0.000 0.65

Note: the sample spans the period from 7 January 2019 to 30 December 2021. 

Table 4. The annual performance of the three constructed portfolios compared to the bench
mark portfolio
Portfolio Mean Variance Beta Sharpe Treynor Alpha
All stocks 0.424 0.017 0.24 19.65 1.41 0.25

High H- value 0.539 0.021 0.25 20.95 1.83 0.36

Low H- value 0.308 0.027 0.23 8.12 0.96 0.14

DWX 0.441 0.104 1.00 3.36 0.35 0.00

Note: The sample spans the period from 7 January 2019 to 30 December 2021. 
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portfolio returns. This can be explained by the continuous improvement of the DSE performance 
due to its recovery from the war period.

It is worth noting also that the (Low H-value) portfolio underperforms both the (All stocks) 
portfolio and the (High H-value) portfolio in terms of returns during three of the four holding 
periods. This trend is also evident in the Sharpe ratio, Treynor ratio, and alpha across all holding 
periods, indicating that lower H values correspond to weaker trends. These results align with the 
research conducted by (Chun et al., 2020), which supports the effectiveness of integrating fractal 
correlation into the Markowitz (mean-variance) model. Moreover, the findings of Wu et al. (2021) 
provide further validation for the effectiveness of incorporating fractal expectation and fractal 
variance into the return-risk criterion.

To sum up, our results emphasize the importance of considering the fractal nature of financial 
time series data when managing portfolio risk, as it allows for a more accurate representation of 
the complex dynamics of financial markets and ultimately improves portfolio performance.

5.1. Robustness tests: extended sample period
To further investigate the robustness of our fractal portfolio strategy and to enhance the accuracy 
of measuring the Hurst coefficient, we expand the sample period to span six years from 2017 to 
2022. The period for estimating the Hurst coefficient (H) as well as forming fractal portfolios based 
on H is 2017–2021 while 2022 is the one-year holding period (out-of-sample period). We apply the 
same inclusion criteria for stock selection. That is, only liquid stocks are included. As a result, our 
sample consists of only 10 out of the 27 listed stocks. This implies that the size of both the High 

Table 5. The performance of the three constructed portfolios and the benchmark portfolio
Holding 
Period Portfolio Mean Variance Beta Sharpe Treynor Alpha
3 All stocks 0.297 0.022 0.05 12.65 5.85 0.27

High  
H- value

0.318 0.004 0.02 68.91 18.57 0.29

Low  
H- value

0.276 0.036 0.08 7.05 3.25 0.25

DWX 0.106 0.076 1.00 1.10 0.08 0.00

6 All stocks 0.369 0.023 0.07 14.08 4.41 0.31

High  
H- value

0.348 0.013 0.01 22.90 27.26 0.30

Low  
H- value

0.391 0.039 0.14 8.96 2.55 0.33

DWX 0.196 0.085 1.00 1.79 0.15 0.00

9 All stocks 0.523 0.025 0.09 18.45 5.12 0.44

High  
H- value

0.539 0.015 0.03 31.56 17.97 0.47

Low  
H- value

0.507 0.041 0.15 10.64 2.90 0.41

DWX 0.289 0.093 1.00 2.39 0.22 0.00

12 All stocks 1.149 0.026 0.14 41.35 7.55 0.98

High  
H- value

1.151 0.022 0.11 49.12 9.67 1.00

Low H- 
value

1.147 0.044 0.17 24.20 6.18 0.96

DWX 0.654 0.116 1.00 4.86 0.56 0.00

Note: The sample spans the period from 3 January 2022 to 22 December 2022. 
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and Low-H-value portfolios is diminished to only five stocks. Table 6 illustrates the mean, standard 
deviation, and Hurst coefficient for the daily return of the 10 examined stocks

Table 6 shows that all stocks demonstrate positive mean returns. ATI and BBSY stocks have the 
highest daily mean returns of 0.0033 and 0.0027 respectively, whereas SIIB and FSBS have the 
lowest daily mean returns of 0.0017. SIIB has the highest standard deviation of 0.0242, whereas 
ARABS has the lowest standard deviation of 0.0104. Also, Table 6 shows that when we expand the 
sample period all stocks remain exhibit a Hurst coefficient above 0.50, indicating a strong fractal 
structure at the DSE. Notably, AVOC and ATI still exhibit the highest H-values of 0.72, whereas SIIB 
and CHB still exhibit the lowest H-values of 0.61 and 0.59 respectively.

Following the same methodology explained in section 3. three portfolios are constructed, with 
10 stocks being included in the first portfolio (All stocks), 5 stocks in the second portfolio (High 
H-value), and 5 stocks in the third portfolio (Low H-value). Table 7 displays the returns, risk, and 
Hurst coefficient for the three constructed portfolios for the period from 2017 to 2021.

It can be clearly seen from Table 7 that despite the decline in the number of stocks in the 
constructed portfolios, the (High H-value) portfolio and the (All stocks) portfolio outperform the 
benchmark portfolio. Moreover, the (High H-value) portfolio has the highest annual returns of 0.650 
and the highest Hurst coefficient of 0.74, whereas the (Low H-value) portfolio has the lowest 
returns of 0.597 and the lowest Hurst coefficient of 0.66. These findings suggest that the three 
fractal portfolios serve as portfolios that reinforce trends, with the (High H-value) portfolio antici
pated to demonstrate the most substantial returns during the investment duration. An evaluation 
of the annual performance of the three portfolios created, in addition to the benchmark portfolio, 
during a one-year investment period (out of sample period), is presented in the following table.

Table 8 reveals that the (High H-value) portfolio continues to exhibit superior returns throughout 
the investment period, displaying a robust return of 1.072, while the (Low H-value) portfolio 

Table 6. Mean, standard deviation, and H-index of the examined stocks
Stocks Mean Std. Dev Hurst
AVOC 0.0018 0.0148 0.72

ATI 0.0033 0.0202 0.72

IBTF 0.0020 0.0161 0.69

SGB 0.0021 0.0180 0.68

ARBS 0.0012 0.0104 0.66

FSBS 0.0017 0.0169 0.65

BBSY 0.0027 0.0192 0.63

QNBS 0.0019 0.0200 0.62

SIIB 0.0017 0.0242 0.61

CHB 0.0019 0.0194 0.59

Note: The sample spans the period from 3 January 2017 to 30 December 2021. 

Table 7. Mean, variance, and H-index for the three constructed portfolios
Portfolio Mean Variance Hurst
All stocks 0.623 0.028 0.72

High H- value 0.650 0.043 0.74

Low H- value 0.597 0.081 0.66

DWX 0.610 0.123 0.72

Note: The sample spans the period from 3 January 2017 to 30 December 2021. 
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maintains its lowest returns of 1.020 compared to the (High H-value) portfolio and the (All stocks) 
portfolio. These results support the robustness of the Hurst-based selection strategy.

It is worth noting that although the benchmark portfolio had a high Hurst coefficient value of 
0.72 during the ranking period, it surprisingly achieved the lowest returns in the holding period. 
This can be attributed to the inclusion of illiquid stocks in the market index.

5.2. Robustness tests: the performance of fractal strategy in comparison to alternative 
investment strategies
Momentum and size-based strategies may be proposed as alternative profitable investment strategies 
for portfolio sorting. In this paper, we compare the performance of fractal portfolios to momentum and 
size-based portfolios. To achieve this objective, we use the same data sample consisting of 19 listed 
stocks for the period between 2019 and 2022. Moreover, all portfolios are constructed based on equal 
weighting and we use standard deviation as a measure of portfolio risk.

5.2.1. Momentum strategy vs. fractal strategy
Following Jegadeesh and Titman (1993), at the end of each year, all stocks are ranked in descend
ing order based on their past 12-month cumulative returns (ranking period). Subsequently, the 
stocks are categorized into three portfolios with equal weighting, where the top 30 percent of 
these portfolios are considered winners, whereas the bottom 30 percent are labeled losers. These 
portfolios are then held for a period of 12 months (holding period). The complete rebalancing 
approach is utilized to construct portfolios for both the winners and losers annually. After that, we 
compute average returns and standard deviations for winners portfolios and losers portfolios over 
the three years spanning from 2020 to 2022. Table 9 compares the annual performance of winners 
and losers to the fractal portfolios.

Table 9 shows that winners portfolios outperform losers portfolios. When compared to portfolios 
based on the Hurst criterion, both the winners and losers underperform fractal strategy portfolios. 
However, the momentum strategy (taking a long position in past winners and a short position in 
past losers) seems nonprofitable at the DSE, with a negative Sharpe ratio.

Table 8. The performance of the three constructed portfolios and the benchmark portfolio
Portfolio Mean Variance Beta Sharpe Treynor Alpha
All stocks 1.046 0.044 0.23 21.79 4.15 0.83

High H- value 1.072 0.076 0.27 12.89 3.65 0.83

Low H- value 1.020 0.095 0.19 9.75 4.88 0.82

DWX 0.654 0.116 1.00 4.86 0.56 0.00

Note: The sample spans the period from 3 January 2022 to 22 December 2022. 

Table 9. The profitability of momentum strategy vs. fractal strategy in Damascus security 
exchange

Portfolio Mean Std. Dev Sharpe Ratio
Momentum 
strategy

Winners 0.593 0.464 1.35

Losers 0.552 0.273 1.88

Winners-Losers 0.041 0.597 −0.08

Fractal 
strategy

All stocks 1.149 0.847 1.25

High H- value 1.151 1.055 1.01

Low H- value 1.147 0.640 1.65

Note: The sample spans the period from 7 January 2019 to 22 December 2022. 
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5.2.2. Size investment strategy vs. fractal strategy
Following Fama and French (2012), all stocks are classified according to their market capitalization 
in the last year (2019). Subsequently, stocks are ranked in descending order and categorized into 
three portfolios. The bottom 30 percent of these portfolios are considered: small portfolios, 
whereas the top 30 percent are considered: big portfolios. This process is carried out annually, 
and the small and big portfolios are held for a year. Following this, the average returns and 
standard deviations for both small and big portfolios over the three years (holding periods) 
spanning from 2020 to 2022 are computed. Table 10 compares the annual performance of small 
and big portfolios to the performance of the fractal portfolios.

Table 10 illustrates small portfolios outperform big portfolios by 0.048 annually. However, when 
compared to portfolios based on the Hurst criterion, both small and big portfolios underperform. In 
addition, implementing the Size strategy by taking a long position in small portfolios and a short 
position in big portfolios fails to generate a positive Sharpe ratio, indicating poor risk-adjusted 
performance.

6. Conclusions and recommendations
To enhance portfolio performance in non-linear financial markets with non-normally distributed 
returns and fat tails, the utilization of High-H portfolios has shown great promise. In this study, we 
apply the Hurst exponent coefficient to filter assets based on their long memory and construct 
three optimized portfolios. Our findings reveal the presence of a fractal structure with long 
memory at the DSE, allowing traders to make more informed investment portfolio selection 
decisions by incorporating fractal analysis. These results are consistent with the existing literature 
(Chun et al., 2020; Wu et al., 2021), providing evidence for the effectiveness of portfolios that rely 
on fractal statistical measures in their development. Additionally, the findings demonstrate that 
leveraging stocks with high Hurst coefficients can significantly enhance the performance of the 
fractal portfolio strategy, as higher Hurst coefficient values indicate a greater level of persistence.

Furthermore, to ensure the reliability of our findings, we expand the estimation period for the 
Hurst exponent to span five years, from 2017 to 2021. The results reaffirmed the superiority of 
fractal portfolios over the market portfolio, despite the reduced number of stocks. Moreover, 
portfolios with high Hurst coefficients consistently achieved the highest returns among all 
portfolios.

The empirical literature offers several active strategies for selecting and classifying stocks in 
a portfolio. In this study, we conducted a comparison between portfolios formed through fractal 
analysis and portfolios formed using the momentum and size strategies. However, our findings 
demonstrated the superiority of the fractal portfolio over both the momentum and size-based 
portfolios. This highlights the effectiveness of fractal analysis in achieving superior portfolio 
performance.

Table 10. The profitability of size strategy vs. fractal strategy in Damascus security exchange
Portfolio Mean Std. Dev Sharpe Ratio

Size-based strategy Small 0.594 0.450 1.12

Big 0.546 0.410 1.11

Small-Big 0.048 0.550 −0.08

Fractal 
strategy

All stocks 1.149 0.847 1.25

High H- value 1.151 1.055 1.01

Low H- value 1.147 0.640 1.65

Note: The sample spans the period from 7 January 2019 to 22 December 2022. 
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The DSE is a relatively new stock exchange, that faced many challenges due to the impact of the 
Syrian crisis and had a limited number of listed companies. This reality resulted in a small number 
of liquid stocks for portfolio construction and for the estimation of the Hurst exponent coefficient 
especially before 2019. In addition, this represents a challenge in evaluating the effectiveness of 
a contrarian strategy compared to a fractal strategy. Hence, future studies could consider extend
ing the estimation period for the Hurst exponent beyond 2022 as well as examine the performance 
of contrarian strategy and other strategies once additional data become available. Moreover, 
future studies could explore the integration of fractal statistical measures like fractal expectation, 
fractal variance, fractal correlation analysis, and the Hurst exponent into alternative portfolio 
optimization techniques. This inclusion would enhance diversification and risk management stra
tegies, ultimately leading to improved portfolio performance and the achievement of desired 
investment outcomes.

Finally, based on our empirical results we recommend that financial market participants lever
age the fractal properties of the DSE to develop strategies that offer improved portfolio diversifica
tion benefits. Furthermore, investors and portfolio managers should consider stocks’ long memory 
in their portfolio construction and utilize the Hurst exponent index in their portfolio selection.
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