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On regime-switching European option pricing
Sebastian Kaweto Kalovwe1*, Joseph Ivivi Mwaniki2 and Richard Onyino Simwa2

Abstract:  The concern of this article is to derive a regime switching model that can 
be utilized to price European call options for a financial market that exhibits 
structural changes with time. The model is formulated based on the fact that the 
underlying asset process is described by a geometric Brownian motion that is 
modulated by a continuous-time Markov chain with two regimes. Moreover, by an 
application of the change of measure technique, an option price is derived under 
the risk neutral valuation and the model parameter estimates is performed by use 
of the maximum likelihood estimation. The model implementation is carried out by 
utilizing the Russell 2000 and Facebook in dices data sets. The model results are 
compared with that of the Black-Scholes model in order to establish the model with 
better results in terms of predicting the European call option prices. In general, the 
data sets have common characteristics of financial time series across the regimes 
and the volatility process spends longer time in regime 2 than it stays in regime 1. 
The predicted call option prices from both models are more or less similar across 
the market indices; however, the results of the Black-Scholes model are a bit closer 
to the market prices than that of the regime-switching model across the two 
markets. Therefore, the Black-Scholes model slightly gives better results for the 
Russell 2000 and Facebook indices data sets as compared with the RS model.
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1 Introduction
The current literature portrays the Black-Scholes formula as the most broadly utilized in option 
pricing. The model utilizes the Geometric Brownian motion in capturing the dynamics of the under
lying asset and it is assumed that the two model parameters, that is, the expected rate of return and 
the volatility, are deterministic, see Yao et al. (2006). Furthermore, the model assumes that volatility 
is steady until the lapse date, however, volatility is known to fluctuate with time, that is, it is a well- 
known fact that the financial market is stochastic in nature, see Mitsui and Satoyoshi (2010). It is thus 
evident that the Black-Scholes model cannot capture both the stochastic variability of the market 
dynamics and the volatility smile (the implied volatility of the underlying security). To address these 
shortfalls of the B-S model in modeling the financial market dynamics, the RS model of Hamilton 
(1989) has received an extensive application in the context of pricing derivatives. This model allows its 
parameters to flexibly change over time in accordance with the underlying state process that follow 
a Markov chain. Furthermore, the model has the ability to reproduce the common stylized facts of 
financial time series such as fat tails, volatility clustering, among others. The models are also utilized 
to price and hedge long-dated options in addition to allowing recovery of volatility smiles exhibited by 
empirical option prices; see Yao et al. (2006) and Godin and Trottier (2021). In support of RS models 
exhibiting autonomous shifts in mean and variances, Bollen et al. (2000) and Hardy (2001), proposed 
a RS log-normal (RSLN) model in which log-returns follow a normal distribution with mean and 
variance that depend on regime variable. In a study to price both American and European options 
using RS model, Bollen (1998) utilizes lattice method and simulation, whereas Buffington and Elliott 
(2002) use risk-neutral pricing and derive a set of partial differential equations for option price.

The evaluation of European options has previously been done using Black and Scholes model. It 
is thus very important to formulate the variation in volatility and evaluate option prices. In an 
effort to understand the variation in volatility, we refer to Engle (1982) who proposed the ARCH 
model that formulates the volatility at each time as the linear function of the square of the past 
unexpected shock. Additionally, Bollerslev (1986), added the past volatility values to the explana
tory variables and extended the GARCH (generalized ARCH) model. Empirical studies of options 
utilizing the GARCH model based on local risk neutrality, which was proposed by Duan (1995), have 
been conducted by Mitsui (2000), Duan and Zhang (2001), Bauwens and Lubrano (1998), Mitsui 
and Watanabe (2003). Incidentally, it is known that in RS model the persistence of shock on 
volatility is extremely high. However, Dieobold (1986) and Lamoureux and Lastrapes (1990) 
reported that such persistence is considered to be caused by the structural volatility change. It 
is therefore based on this fact, Hamilton and Susmel (1994) and Cai (1994) proposed the Markov- 
Switching ARCH (MS-ARCH) model using a state variable that follows the Markov process in the 
formulation of the ARCH model so as to take into account the structural change. Moreover, Gray 
(1996) proposed the Markov Switching GARCH model by taking into account the structural change 
in the GARCH model. Siu et al. (2004) proposed an option pricing model based on GARCH assump
tion for underlying assets in the context of dynamic version of Gerber-Shiu’s option-pricing model 
and utilized conditional Esscher Transforms to develop a martingale measure in the context of an 
incomplete market situation. Their results were consistent with that of Duan (1995) under the 
assumption of conditional normality for the stock innovation they their results are justified based 
on the dynamic framework of utility maximization problems as per the Gerber-Shiu’s option-pricing 
model. Barone-Adesi et al. (2008) in their research proposed option pricing method that was based 
on GARCH models with filtered historical innovations. Their model outperformed other GARCH 
pricing models and Black—Scholes models empirically for S&P 500 index options. The model did 
explain implied volatility smiles by the negative asymmetry of the filtered historical innovations. 
Empirical evidence and the extent of deterioration of the delta hedging in the presence of large 
volatility shock were revealed by the study.

Kalovwe et al., Cogent Economics & Finance (2023), 11: 2203439                                                                                                                                    
https://doi.org/10.1080/23322039.2023.2203439

Page 2 of 19



Recently, studies on option pricing have been carried out, for instance, Biswas et al. (2018) used 
a RS stochastic model with a semi-Markov modulated square root mean reverting process to study 
European option pricing. Their study discovered the local risk-minimizing European-type vanilla 
options price and it was proven that the price function adequately meet a non-local degenerate 
parabolic PDE which is the general case of the Heston PDE model. A study by Deelstra et al. (2020) 
considers risk-neutral pricing of Vanilla, digital and down-and-out call options with the price of the 
underlying asset evolving according to the exponential of a Markov-modulated Brownian motion 
(MMBM) with two-sided phase-type jumps. Further, he documents that such options are closely 
related to the MMBM’s first passage properties which he analyzed by randomizing the time horizon 
using Erlang distribution. Moreover, Nasri et al. (2020) used a RS Copula model to option prices where 
serial independence of error terms for time series is presented which was subjected to several time 
series analysis. Moreover, Kirkby and Nguyen (2020) utilized duality and FFT-based density projection 
implementation to establish a novel and efficient transform approach for pricing Asian options for 
general asset dynamics, such as RS Levy processes and stochastic volatility models with jumps. In his 
research, Lin and He (2020) addressed the problem of pricing the European options using a RS finite 
moment log-stable model. Their model has the ability to represent the key features of asset returns 
as well as the impact of regime transition, and it is compatible with market findings. Furthermore, 
they state that option prices are driven by a coupled FPDE (Fractional Partial Differential Equation) 
system in their model. They note that their model can mimic option prices emanating from other 
existing models with particular parameter settings while also bringing into significance pricing 
differences relative to current models by changing parameter values, indicating that it has the 
potential to be used in practice. 2021) in his study reveals that Esscher transform approach for 
obtaining risk neutrality is famous in pricing options under RS models. However, this approach creates 
path-dependence in the dynamics of option price since under the physical measure; the underlying 
asset is integrated in a Markov process. To address the path-dependence they develop a novel and 
intuitive risk-neutral measures that integrates risk-aversion in regimes and consequently removing 
the path dependence side effects. Later on, the study of 2021) was complimented by Godin and 
Trottier (2019) who developed and utilized extended Girsanov principle which also removes the path- 
dependence effect. This model is easy to interpret in terms of consistence with hedging agents locally 
minimizing their risk-adjusted discounted squared hedging errors.

In view of the available literature, this study is certainly not the first one to deal with RS 
dynamics in financial markets or pricing options under RS. However, in terms of pricing European 
options there seem to be limited evidence that RS model gives better pricing results than the 
famous Black-Scholes models and thus further research in this area of European option pricing 
remains necessary. Therefore, the key objective of this study is to develop a RS model for pricing 
options when the underlying asset dynamics depend on the market regimes. The formulation of 
this model is based on a geometric Brownian motion that is governed by a continuous-time Markov 
chain with two states and applying a change of measure, an option price is derived under the risk- 
neutral valuation. Moreover, the model parameters are estimated using the maximum likelihood 
estimation method and finally, an implementation of the model is done by computing the 
European call option prices for some chosen stock market indices. The results of this model are 
compared with those of the Black-Scholes model with an aim to establish whether the RS model is 
a better and reliable model compared with the Black-Scholes model.

The organization of the rest of the paper is as follows. Section 1 outlines the derivation of the 
European option pricing RS model and estimation of parameters. Section 2 is the empirical analysis 
of the data to implement the model and lastly, section 3 concludes the paper.

2 Methodology

2.1 Regime switching market dynamics
Let ðXtÞt�0 be a stochastic process on a discrete time set T ¼ ft; . . . ; Tg and ðΩ;F ;PÞ be 
a probability space, where P is a physical probability measure. Further let, �ðtÞ be Markov chain 
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with M¼ f1; . . . ; kg states or regimes and transition probability Pi;j . We consider a risk-free asset, 
dS�t ¼ rS�t dt that is assumed to be continuously compounded in value at a constant risk-free rate, 
r; (but not necessarily non-negative) over the trading time interval [t,T]. Taking S�t ¼ 1, the price of 
the asset at time t, is given by S�t ¼ erT . Consider a second market which is risky and whose price is 
defined as 

ST ¼ St expð∑
T

t¼1
XtÞ; t 2 T (1) 

where St is the initial price of the asset. The log-returns for the asset are given by 

Xt ¼ μ�ðtÞ þ σ�ðtÞrt; where rt , i:i:d Nð0;1Þ: (2) 

The constants μ�ðtÞ and σ�ðtÞ represents the mean and standard deviation of log-returns under 
each regime, �ðtÞ ¼ 1;2; . . . ; k and rt is a sequence of i.i.d random variables with zero mean and 
unit variance under measure P and independent from the Markov chain �ðtÞ. The filtration F t on 
the probability space ðΩ;F t;PÞ contains all the information generated by all the underlying asset 
prices and realized regimes upto time T. However, the regimes are latent variables hence this 
filtration characterizes only a partial information to investors. Therefore, we assume that 
for j 2 f1; . . . ; kg;

P½�ðtþ 1Þ ¼ jjF t� ¼ Pi; j (3) 

where Pi;j is the transition probability from state i! j of the Markov chain �ðtÞ

2.2 Regime-switching model
We consider a risk-free asset and a risky asset as discussed earlier. These assets are tradable 
continuously over time in a finite time horizon τ ¼ ½t; T� where T<1. In order to describe uncer
tainty, we consider a complete probability space ðΩ;F ;PÞ where P is a real world probability 
measure. According to Yao et al. (2006), in the RS world, one typically modulates the rate of return 
and the volatility by a finite-state Markov chain f�ðtÞ; t � 0g, which represents the market regime. 
Let f�ðtÞ; t � 0g be continuous, finite-state, Markov process on ðΩ;F ;PÞ with state space M¼
f1;2; . . . ; kg and that St is the stock price at time t satisfying the stochastic differential equation 
defined by 

dSt

St
¼ μ�ðtÞdtþ σ�ðtÞdWt; �ðtÞ ¼ f1;2; . . . ; kg (4) 

where St > 0 is the initial price, Wt is a standard Brownian motion independent of �ðtÞ .

The parameters μ�ðtÞ and σ�ðtÞ denote the expected rate of return on the asset and volatility of 
the asset price, respectively, and are assumed to be constant and distinct for each regime. In this 
way, �ðtÞ is regarded as a variable that chooses one of the states in M at time t of the market. 
Equation (4) is solved using Itô lemma to give 

ST ¼ Steðμ�ðtÞ�
1
2σ2

�ðtÞÞτþσ�ðtÞWτ ; for �ðtÞ ¼ f1;2; . . . ; kg (5) 

The stock price process in Equation (5) is assumed to exhibit regime switches. Let the price process 
undergo discrete shifts between regimes �ðtÞ and that it follows a first-order Markov chain, then 
the transition probability Pij from state i at time tþ 1 to state j at time t is denoted by 
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Pij ¼ Pf�ðtþ 1Þ ¼ jj�ðtÞ ¼ ig for all i; j ¼ f1;2; . . . ; kg (6) 

where 0 � Pij � 1 and ∑k
j¼1Pij ¼ 1 . The transition matrix Pij of the Markov chain is given by 

Pij ¼

p11 p12 . . . p1k
p21 p22 . . . p2k
: : . . . :

: : . . . :

: : . . . :

pk1 : . . . pkk

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

In particular, for a very small time interval δ > 0, 

PðT < δÞ ¼ 1 � e� λiδ ¼ 1 � ð1 � λiδÞ ¼ λiδ (7) 

That is, in a short interval of time δ>0, the probability of leaving state i is approximately λiδ. This 
means, λi is the transition rate out of state i and can formally be expressed as 

λi ¼ lim
δ!0þ

Pð�ðTÞ ¼ jj�ðtÞ ¼ i
δ

� �

(8) 

Since Pij is the probability to move from state i to state j, the quantity gij ¼ λiPij is the transition rate 
from state i to state j.

Definition 2.1 (Generator matrix) Define a generator matrix, G for a continuous-time Markov 
chain. The ði; jÞth element of the transition matrix is given by  

gij ¼
λiPij; i�j
� λi; i ¼ j ; Also gii ¼ � ∑

i�j
gij

(

(9) 

The generator matrix of the Markov chain is thus given by 

G ¼

λ11 λ12 . . . λ1k
λ21 λ22 . . . λ2k
: : . . . :

: : . . . :

: : . . . :

λk1 λ22 . . . λkk

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

and, for each state, the elements of the generator matrix satisfy the equation λjj þ∑k
i¼1;i�jλij ¼ 0 . 

For small time interval δ>0 and i the probability to be in state j at time tþ δ given that the random 
variable was in state i at time t is given by 

PðXðtþ δÞ ¼ jjXðtÞ ¼ iÞ ¼ gij:δþ OðδÞ (10) 

where OðδÞ is the probability from state i to state j in more than one step but limδ!0
OðδÞ

δ

h i
¼ 0 .

The model developed here postulates that the regimes are unobservable and thus state transi
tions until maturity are considered. Denote by �ðtÞ , the variable representing the regime in which 
the process was at time t. When the change in log price Xt is in regime j, it is presumed to have 
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been drawn from a normal distribution with mean, μj and variance, σ2
j . Hence, the probability 

density function of Xt conditional on �ðtÞ taking on the value j is given by 

fðXtj�ðtÞ ¼ j; θÞ ¼
1

σj
ffiffiffiffiffiffi
2π
p exp �

ðXt � μjÞ
2

2σ2
j

( )

(11) 

for j ¼ f1;2; . . . ; kg and θ is a vector of parameters μj; σj for j ¼ 1;2; . . . ; k , that is, θ ¼ fμj; σj g
0

Furthermore, it is presumed that the unobserved regime �ðtÞ have been generated by 
a probability distribution for which the conditional probability that �ðtÞ ¼ j given the information 
up to time t is denoted by πj , that is 

Pf�ðtÞ ¼ jjF t; θg ¼ πj for j ¼ f1;2; . . . ; kg (12) 

Thus, the vector θ also includes πj for j ¼ 1;2; . . . ; k, that is, θ ¼ fμj; σj; πjg
0

. Next is to find the 
probability of the joint event that �ðtÞ ¼ j and Xt falls within some time interval [t,T]. This is 
determined by integrating 

pðXt; �ðtÞ ¼ j; θÞ ¼ fðXtj�ðtÞ ¼ j; θÞPð�ðtÞ ¼ jjF t; θÞ (13) 

over all values of Xt between t and t. The Equation (13) is the joint probability density function of 
�ðtÞ and Xt and by utilizing Equations (11) and (12), it is expressed as 

pðXt; �ðtÞ ¼ j; θÞ ¼
πj

σj
ffiffiffiffiffiffi
2π
p exp �

ðXt � μjÞ
2

2σ2
j

( )

for j ¼ f1;2; . . . ; kg (14) 

The unconditional probability density function of Xt is determined by summing Equation (14) over 
all values for j: 

fðXt; θÞ ¼ ∑
k

j¼1
pðXt; �ðtÞ ¼ j; θÞ

¼ π1ffiffiffiffi
2π
p

σ1
exp � ðXt � μ1Þ

2

2σ2
1

n o
þ . . . þ

πjffiffiffiffi
2π
p

σj
exp � ðXt � μjÞ

2

2σ2
j

� � (15) 

Again, based on the definition of conditional probability, 

P½�ðtÞ ¼ jjXt; θ� ¼
pðXt; �ðtÞ ¼ j; θÞ

fðXt; θÞ
¼

πjfðXtj�ðtÞ ¼ j; θÞ
fðXt; θÞ

(16) 

Note that the magnitude in Equation (16) for each observation Xt in the sample can be calculated if 
the knowledge of the parameters θ is known by use of Equations (11-14). Equation (16) represent 
probability, given the observed data, that the unobserved regime responsible for observation t was 
regime j. The probability of �ðtÞ ¼ j given the information Ft up to time t, that is, P½�ðtÞ ¼ jjFt� can 
be calculated by first calculating 

P½�ðt � 1Þ ¼ ijF t� 1� from P½�ðtÞ ¼ jjF t� 1� (17) 

with the following equation 
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P½�ðtÞ ¼ jjF t� 1� ¼ ∑
k

j¼1
P½�ðtÞ ¼ j; �ðt � 1Þ ¼ ijF t� 1�

¼ ∑
k

j¼1
P½�ðtÞ ¼ jj�ðt � 1Þ ¼ i�P½�ðt � 1Þ ¼ ijF t� 1�

(18) 

where P½�ðtÞ ¼ jj�ðt � 1Þ ¼ i� is the transition probability as earlier defined. Next, adding the data Xt 

at the time t leads to the equation 

P½�ðtÞ ¼ jjF t� 1; Xt� ¼
fð�ðtÞ¼ j; Xt jF t� 1Þ

fðXt jF t� 1Þ

¼
fðXtj�ðtÞ ¼ j; F t� 1ÞP½�ðtÞ ¼ j jF t� 1�

∑2
j¼1fðXtj�ðtÞ ¼ j; F t� 1ÞP½�ðtÞ ¼ j jF t� 1�

(19) 

Note that the probability, P½�ðtÞ ¼ jjF t� 1� for t ¼ 1;2; . . . ; T can be obtained by repeating the 
calculations of Equations (18,19), and the results substituted into Equation (14).

In order to price options, it is key to derive a pricing model that produces no arbitrage 
(a situation where investors can make a guaranteed profit without incurring risk). To avoid 
arbitrage, the options are priced under risk neutral measure or martingale measure. Under the 
physical probability measure P, we wish to have e� ò

T
t rdsSt to be a martingale. Here, r is the risk-free 

interest rate and it is assumed to be constant across the regimes. Since St denotes the price of 
a stock at time t which satisfies Equation (4), we assume that �ðtÞ;and Wt are mutually indepen
dent; and σ2

�ðtÞ > 0 , for all �ðtÞ 2 M. Suppose that f�ðuÞ;WðuÞ : 0 � u � tg denote the sigma field 
generated by F t. We note that all(local) martingales concerned are with respect to the filtration. It 
is clear that fWtg and fW2

t � tg, are both martingales. Define an equivalent measure Q under 
which the discounted stock process is a martingale. Let the risk-free rate be denoted by r>0. Then 
for 0 � t � T, let 

Zt ¼ exp
ðT

t
βsdWs �

1
2

ðT

t
β2

s ds

 !

(20) 

where βs ¼
μð�ðuÞÞ� r

σð�ðuÞÞ . By Girsanov’s theorem, the process 

~Wt ¼ Wt �

ðT

t
βsds) d ~Wt ¼ dWt � βtdt (21) 

is a Q -Brownian motion. Moreover, applying Ito’s rule results to dZt
Zt
¼ βtdWt where Zt is a local 

martingale, with E½Zt� ¼ 1; 0 � t � T. An equivalent measure Q is defined via the Radon-Nikodym 
derivative, dQ

dP
¼ ZT. Combining Equations (4) and(21) gives 

dSt

St
¼ rdtþ σ�ðtÞd ~Wt whose solution is ST ¼ St exp ðr �

1
2

σ2
�ðtÞÞτþ σ�ðtÞ ~Wτ

� �

(22) 

This model has two types of random sources, Wt and �ðtÞ and the inclusion of �ðtÞ makes the 
underlying market incomplete.

Let R denote the total time spent in regime �ðtÞ ¼ j for j ¼ 1;2; . . . ; k in the interval ½t; T� in n 
trials, given that at time t, the state is k. Denote the probability PrðR ¼ αjÞ by p for 
j ¼ 1;2; . . . ; k � 1 . For simplicity, we restrict ourselves to two regimes, i.e, k ¼ 2 , hence the transi
tion matrix, discussed earlier, reduces to 
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Pij ¼
p11 p12
p21 p22

� �

The fraction of times spent by the Markov chain in each regime, as the numbers of transitions n 
become large, can be calculated using a time-average (invariant) distribution of the Markov chain, 
that is βP ¼ β , where P is the transition matrix and β is the average fraction of the time spent in 
state �ðtÞ ¼ j over n steps as n approaches infinity. Let β ¼ ½β1 β2 �, then 

½βP� ¼ ½β1 β2�
p11 p12
p21 p22

� �

¼ ½β1 β2� (23) 

This results into two equations as β1P11 þ β2P21 ¼ β1 and β1P12 þ β2P22 ¼ β2 both of which sim
plify to β1P12 ¼ β2P21ð since P11 þ P12 ¼ 1 and P21 þ P22 ¼ 1 Þ. Again, since β is a valid probability 
distribution, β1 þ β2 ¼ 1 and solving we get 

β1 ¼
P21

P12 þ P21
and β2 ¼

P12

P12 þ P21
(24) 

Since, τ ¼ T � t is the trading period, the total time spent in regimes 1 and 2 can now be calculated 
as R ¼ β1τ and τ � R ¼ τ � β1τ, respectively. In view of the research by Duan et al. (2002) and 
Hardy (2001) the distribution of log returns, Xt ¼ logðST

St
Þ , conditional on the total time spent in 

regime �ðtÞ ¼ j; for j ¼ 1;2 , k can be developed such that there exist a normal density function 
with mean μ� and variance σ�2 , that is, 

XtjR, Nðμ�; σ�2
Þ (25) 

where μ� ¼ Rτ μ1 þ ð
τ� R

τ Þμ2 and σ�2 ¼ Rτ σ2
1 þ ð

τ� R
τ Þσ

2
2. Since p is the probability function for R , 

FXt ¼ Pr½Xt � x� ¼ ∑
k� 1

j¼1
Pr½XtjR ¼ αj�p

¼ ∑
k� 1

j¼1
ϕ x� μ�

σ�

� �
p

(26) 

where ϕðÞ is the standard normal probability distribution function. This implies that the probability 
density function for Xt is 

fXt ¼ ∑
k� 1

j¼1
ϕð

x � μ�
σ�
Þp (27) 

where ϕðÞ is the standard normal density function.

Now, define CðK; TÞ , the European call option (under RS world) with strike price K that matures 
after time T , and is valued at St at an initial time t. Since in a RS market, the parameter σ2 

switches regimes, we can define a parameter σ�2 conditional on knowing R , the total time spent 
in regime �ðtÞ ¼ j for j ¼ 1;2 . This implies that, the asset price StjR has a log normal distribution 
with parameters that depend on R , that is, the parameters are μ � and σ�2 as defined earlier. Now, 
to derive a RS option pricing model, the Black-Scholes formula is considered, where the parameter 
σ2 is replaced with σ�2 to give the desired model as below; 
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CðK; TÞ ¼ EQ ½maxðXT � KÞjR� ¼ Stϕðd1Þ � e� rτK ϕ ðd2Þ where (28)   

d1 ¼
lnðSt

KÞ þ rτ þ 1
2 ½Rσ2

1 þ ðτ � RÞσ
2
2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rσ2
1 þ ðτ � RÞσ

2
2

q

d2 ¼ d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rσ2
1 þ ðτ � RÞσ

2
2

q

2.2.1 Model parameter estimates
Equation (15) best describes the actually observed data Xt since the regime �ðtÞ is unobserved. If 
the regime variable �ðtÞ is i.i.d across different dates, t, then the log likelihood for the observed 
data can be calculated from Equation (15) as 

LðθÞ ¼ ∑
T

t¼1
log fðXt; θÞ (29) 

The maximum likelihood of θ is obtained by maximizing Equation (29) subject to the constraints 
that π1 þ π2 ¼ 1 and πj � 0 for j ¼ 1;2 . To obtain the maximum likelihood estimates(MLEs) of 
Equation (29) we form the Lagrangian 

JðθÞ ¼ LðθÞ þ λð1 � π1 � π2Þ (30) 

and set the derivative w.r.t θ equal to zero. From Equation (29), the derivative of the log likelihood 
is given by 

@LðθÞ
@θ
¼ ∑

T

t¼1

1
fðXt; θÞ

@fðXt; θÞ
@θ

(31) 

Note that from Equation (15) 

@fðXt; θÞ
@πj

¼
1
ffiffiffiffiffiffiffiffiffiffi
2πσ2

j

q exp �
ðXt � μjÞ

2

2σ2
j

( )

¼ fðXtj�ðtÞ ¼ j; θÞ (32) 

Thus 

@LðθÞ
@πj

¼ ∑
T

t¼1

1
fðXt; θÞ

fðXtj�ðtÞ ¼ j; θÞ (33) 

Recalling Equation (16) the derivative in Equation (33) can be written as 

@LðθÞ
@πj

¼ π� 1
j ∑

T

t¼1
Pf�ðtÞ ¼ jjXt; θg (34) 

From Equation (33) the derivative of Equation (30) with respect to (w.r.t) πj is given by 

@JðθÞ
@πj

¼ π� 1
j ∑

T

t¼1
Pf�ðtÞ ¼ jjXt; θg � λ ¼ 0 (35) 
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This implies that 

∑
T

t¼1
Pf�ðtÞ ¼ jjXt; θg ¼ λπj (36) 

Summing Equation (36) over j ¼ 1;2 produces 

∑
T

t¼1
Pf�ðtÞ ¼ jjXt; θg þ Pf�ðtÞ ¼ 2jXt; θg½ � ¼ λðπ1 þ π2Þ (37) 

or ∑T
t¼1½1� ¼ λð1Þ ) T ¼ λ. Replacing λ with T in Equation (36) produces 

~πj ¼ T� 1 ∑
T

t¼1
Pf�ðtÞ ¼ jjXt; ~θg for j ¼ 1;2 (38) 

Next is to find the MLE of μj . From Equation (15) it follows that 

@fðXt; θÞ
@μj

¼
ðXt � μjÞ

σ2
j

pðXt; �ðtÞ ¼ j; θÞ (39) 

hence 

@LðθÞ
@μj

¼ ∑
T

t¼1

1
fðXt; θÞ

ðXt � μjÞ

σ2
j

pðXt; �ðtÞ ¼ j; θÞ (40) 

Applying Equation (16) we have 

@LðθÞ
@μj

¼ ∑
T

t¼1

ðXt � μjÞ

σ2
j

( )

Pf�ðtÞ ¼ jjXt; θg (41) 

Setting the derivative of Equation (30) w.r.t μj equal to zero implies that 

∑
T

t¼1
XtPf�ðtÞ ¼ jjXt; θg ¼ μj ∑

T

t¼1
Pf�ðtÞ ¼ jjXt; θg (42) 

Hence 

~μj ¼
∑T

t¼1XtPf�ðtÞ ¼ jjXt; ~θg
∑T

t¼1Pf�ðtÞ ¼ jjXt; ~θg
for j ¼ 1;2 (43) 

The estimate of σ2
j follows as below. From Equation (15) we have 

@fðXt; θ
@σ2

j
Þ ¼ �

1
2

σ� 2
j þ

ðXt � μjÞ
2

2σ4
j

( )

pðXt; �ðtÞ ¼ j; θÞ (44) 

hence 

@LðθÞ
@σ2

j
¼ ∑

T

t¼1

1
fðXt; θÞ

�
1
2

σ� 2
j þ

ðXt � μjÞ
2

2σ4
j

( )

Pð�ðtÞ ¼ jjXt; θÞ (45) 
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Equating Equation (45) to zero leads us to finding the MLE of σ2
j ,that is, 

∑
T

t¼1
f� σ2

j þ ðXt � μjÞ
2
gPf�ðtÞ ¼ jjXt; θg ¼ 0 (46) 

This implies that 

~σ2
j ¼

∑T
t¼1ðXt � μjÞ

2Pf�ðtÞ ¼ jjXt; ~θg

∑T
t¼1Pf�ðtÞ ¼ jjXt; ~θg

for j ¼ 1;2 (47) 

If we restrict the transition probability only by the conditions Pij > 0 and ðPi1 þ Pi2Þ ¼ 1 for all i and 
j, then Hamilton (1990) showed that the MLEs for the transition probability is given by 

~Pij ¼
∑T

t¼2Pf�ðtÞ ¼ j; �ðt � 1Þ ¼ jjXt; ~θg
∑T

t¼2Pf�ðt � 1Þ ¼ ijXt; ~θg
for j ¼ 1;2 (48) 

This implies that the estimated Pij is essentially the number of times state i seems to have been 
followed by state j divided by the number of times the process was in state i.

2.3 Root Mean Square Error(RMSE)
A Root Mean Square Error (RMSE) is computed in order to compare the two models in terms of 
prediction of the option prices. It is computed by utilizing the model predicted option prices and 
the observed option prices. That is, the RMSE of a prediction model with respect to the observed 
option prices is defined as the square root of the mean squared error. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1ðPi � OiÞ

2

n

s

(49) 

where Pi is the predicted option prices, Oi the observed option prices and n is the total number of 
the observations. Note that, lower values of the RMSE is an indication of a model with a better 
prediction.

3 Results and discussion

3.1 Empirical data
This study utilized the daily closing prices data as reported in the Russell 2000 (RUT) and Facebook 
(FB) indices for the period 4 January 2016 to 29 October 2021. The daily indices returns, Rt, are 
continuously compounded as Rt ¼ ln St � ln St� 1 where St and St� 1 are the daily closing indices 
prices at day t and t � 1, respectively. Also, the call options data from the two markets expiring in 
34 and 60 days for RUT and FB indices, respectively, is utilized in pricing the European options.

3.2 Descriptive statistics
Table 1 presents the basic statistics for daily RUT and FB indices returns. The mean daily returns 
are 0.000497 & 0.000785 for the Russell 2000 and Facebook indices, respectively, whereas the 
standard deviations are 0.015011 and 0.020547 for RUT and FB indices, respectively. The positive 

Table 1. Basic statistics
Index Obs Mean Var Std dev. Skew Ex.Kurt
RUT 1467 0.000497 0.000225 0.015011 −1.362943 13.397630

FB 1467 0.000785 0.000422 0.020547 −0.742770 10.524897
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mean is an indication that investors in these markets have realized positive returns on the 
investment. Both indices have negative skewness and an excess kurtosis greater than 3, the 
value for normal distribution. This is an indication that the distribution of the indices returns has 
a thicker tail and is left skewed as compared with the normal distribution and that this tail 
thickness may be as a result of the temporal fluctuations in volatility. According to Jarque and 
Bera (1980) if a sample data is drawn from a normal distribution, then its expected skewness and 
excess kurtosis are zero. It is thus clear that this data is not drawn from a normal distribution as it 
can be inferred from the descriptive statistics and which is further confirmed by the Jarque-Bera 
(JB) test statistics in Table 2 which are significant at 1% level of significance. That is, the Jarque- 
Bera(JB) test statistics rejects the null hypothesis of normality for both indices returns. Moreover, 
the correlation coefficient for the two indices return series is 0.4845 which is an indication of 
a moderate positive relationship between the two series and this means that results emanating 
from an analysis of the two return series can be compared.

The time series data is further described by plotting the empirical density versus the normal 
distribution as well as the quantile-quantile(qq) plots for the two indices returns as shown in 
Figures 1 and 2 Clearly, the plots show that the empirical densities are sharp peaked and are left 
skewed, that is, they are different from the normal distribution and hence it can be concluded that 
the data are not normally distributed. This finding is in an agreement with the report by the values 
of skewness and excess kurtosis from Table 1 which are significantly not equal to those of normal 
distribution of zero and three.

Table 2. Statistical tests
Index Ljung Test ADF Test LM test JB test
RUT 207.05*** � 11.0155** 670.76*** 16943.6543***

FB 44.943*** � 11.5801** 38.241*** 115353.6451***

Note: The asterisks ** & *** implies that the statistics are significant at 5% and 1% level of significance, respectively. 
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3.3 Empirical findings and discussion
The plots for the RUT and FB stock indices prices and indices returns are presented in Figures 3 and 
4, respectively. It is evidenced by Figure 3 that the stock price series have trend implying that the 
mean and variances of the data are non-constant and as a consequence the data is not stationary.

The returns series plots on Figure 4 show the common properties of time series data such as 
the volatility clustering, leverage effects, leptokurtic distribution and heavy tails. In this connec
tion, the Facebook index returns are characterized by pronounced alternating long spikes com
pared to the Russell 2000 index returns and these alternating long and short spikes is evidence of 
volatility clustering in the underlying assets. The non-stationarity of the data calls for the series 
differencing in order to remove the series dependence before further analysis of the data. The 
data are therefore differenced once and subjected to statistical tests among them the Ljung-Box, 
Langrange Multiplier, ARCH effects, Jarque-Bera(JB) and ADF tests in order to confirm that it is 
stationary and to attain desirable results. The results of these Tests are presented in Table 2. The 
Ljung-Box test value is significant at 1% significance level for both series which implies that the 
null hypothesis that the series are not stationary is rejected and hence concludes that the return 
series are stationary. Moreover, the Ljung-Box and ADF tests imply that the return series have no 
auto correlations and ARCH effects as well as no unit roots.

Table 3 reports the maximum likelihood parameter estimates for the two indices which are 
computed according to Equation 28 and it is clear that the parameters are more or less similar 
across the two return series. The mean and standard deviations are different across the regimes 
for the two indices, for instance, the mean in regime 1 is 0.00104 and 0.00163 for Russell 2000 and 
Facebook indices, respectively. Moreover, the mean μ2 in high-volatility regime is negative for both 
indices whereas it is positive in the low-volatility regime, that is μ1 is positive. It is evident that in 
regime 1, the assets has higher returns and low risk compared to lower returns and high risk in 
regime 2. On the other hand, the probability of switching from the low-volatility regime to the 
high-volatility regime, estimated at 0.0651 for Russell 2000 and at 0.2087 for Facebook, is 
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significantly different for the two indices. Furthermore, the estimates indicate that the volatility 
persistence in the low-volatility regime is less in Facebook index than in Russell 2000 index. That is, 
the probability of switching regime from low-volatility to high-volatility regime is high in Facebook 
index as compared to Russell 2000 index. In fact, the duration of stay in each regime is computed 
using the expression 1

ð1� PiiÞ
for i ¼ 1;2 and thus once in regime 1, the process stays there for 

approximately 15.35 days for Russell 2000 index compared to 4.79 days for Facebook index. In 
both indices, the process has the tendency of staying in high-volatility regime longer than in low- 
volatility regime, that is, the process approximately stays in high volatility regime for 58.43 and 
16.83 days for Russell 2000 and Facebook indices, respectively.

The model log likelihood is higher for Russell 2000 index returns than that of Facebook index 
returns (estimated at 4404.76 and 3862.082 for RUT and FB returns, respectively), whereas the 
model AIC and BIC are small for RUT and FB indices returns, respectively. This implies that the RS) 
model provides a reasonable fit to the Russell 2000 index returns compared with the Facebook 
index returns. Moreover, Figures 5 and 6 show the smoothed probabilities for the Russell 2000 and 
Facebook indices returns and clearly the volatility process stays in regime 2 longer most of the 
periods than in regime 1. That is, although the two regimes are highly persistent, regime two is 
more persistent than regime one in the two market indices and is expected to continue for 
approximately 58 and 17 days for RUT and FB indices, respectively, before exiting to regime 1. 
Furthermore, a comparison of the two markets shows that the regimes dynamics in RUT and FB 
indices appears rather different.

The results presented in Table 3 for the parameter estimates of the Facebook and Russell 2000 
indices returns are implemented in Equation 28 to calculate the European call option prices for 
some strike prices obtained from the Facebook and Russell 2000 stock indices. Table 4 presents the 
calculated option prices for 34 and 60 days call options for Russell 2000 and Facebook indices, 
respectively. This research assumes a risk free-free interest rate of 6% per annum and the initial 
stock price is 2277.1 and 330.64 for Russell 2000 and Facebook indices, respectively. The calcu
lated call option prices from both the Black-Scholes and RS models are more or less similar for the 
two market indices. However, the calculated prices from the Black-Scholes (BS) model are slightly 
closest to the market prices across the two markets. This implies that the BS model gives better 
results for the Russell 2000 and Facebook indices data sets as compared with the RS model. In 

Figure 5. Smoothed probability 
for Russell 2000 index.

Figure 6. Smoothed probability 
for Facebook index.
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addition, the plot of the strike prices versus the estimated call options and the observed option 
prices in the market indices is presented in Figure 7. The plots indicates similar curve patterns for 
the two stock indices with the estimated price curve from Black-Scholes model being closer to the 
observed market price curve than the curve for the RS model. This may imply that the Black- 
Scholes model gives a better estimated European call options than the RS model for the utilized 
data sets.

Furthermore, the estimated European call option prices from the Black-Scholes and RS models 
and the observed market option prices are used to compute the Root Mean Square Error (RMSE) in 
order to establish which model gives better results for pricing the European options. The results of 
the Root Mean Square Error (RMSE) are presented in Table 5 and it can be seen that the Black- 
Scholes model has smaller values than the RS model across the two data sets. It is thus implied 
that the Black-Scholes model gives a better option price prediction than the RS model.

4 Conclusion
A RS model for pricing European call options in a financial market that exhibits structural changes 
with time is derived in this paper. The model is formulated based on the basis that the underlying 
asset dynamics are described by a geometric Brownian motion that is modulated by a continuous- 
time Markov chain with switching regimes. That is, this model allows the volatility to follow a RS 
process that is governed by a Markov chain process and it is implemented by considering two 
regimes, that is, the low and high volatility regimes. The model parameters are estimated by 
utilizing data from the Russell 2000 and Facebook indices and these model parameter estimates 
are then utilized to compute the European call option prices. The European call option prices 
reported by the RS model are compared with those that are reported by the Black-Scholes model. 
Moreover, a comparison of the two models is done in order to establish the model that gives better 
results in terms of predicting the European call option prices by computing a Root Mean Square 
Error for each model. This study finds out that across the two market indices, regime 1 is 

Figure 7. Options.

Table 5. RMSE for the black-Scholes and regime-switching models
RUSSELL 2000 index FACEBOOK index

B-S RS B-S RS

2.3637 8.9161 11.6971 51.4931
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characterized by low risk and high returns whereas regime 2 is characterized by high risk and low 
returns. The transition probabilities imply that the probability of switching from the low-volatility 
regime to the high-volatility regime is significantly different across the two market indices and it is 
higher than the probability of reverting back. That is, the volatility process has the tendency of 
staying in high-volatility regime longer than it stays in low-volatility regime across the two 
markets. However, the volatility persistence in the low-volatility regime is less in Facebook index 
than in Russell 2000 index, that is, the probability of switching regimes from low-volatility to high- 
volatility regime and vice versa is high in Facebook index as compared to Russell 2000 index. The 
calculated European call option prices from both the Black-Scholes and RS models are more or less 
similar for the two market indices. However, the price values reported by the Black-Scholes (BS) 
model are a bit closer to the market price than that of RS model across the two markets. This 
implies that the BS model slightly gives better results for the Russell 2000 and Facebook indices 
data sets as compared with the RS model.

This study focused on developing a RS model for pricing options when the underlying asset 
dynamics depend on the market regimes. The model formulation is based on a geometric 
Brownian motion that is governed by a continuous-time Markov chain with two states, and the 
implementation of the model is done by computing the European call option prices for some 
chosen stock market indices. Future studies can focus on implementing this model for a case of 
more than two regimes. Moreover, future studies can consider the application of this model in the 
American options pricing and draw its performance comparison with that of the Black-Scholes 
model for both long and short-dated data.
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