
Terregrossa, Salvatore Joseph; Şener, Uğur

Article
Employing a generalized reduced gradient algorithm method to form
combinations of steel price forecasts generated separately by ARIMA-
TF and ANN models

Cogent Economics & Finance

Provided in Cooperation with:
Taylor & Francis Group

Suggested Citation: Terregrossa, Salvatore Joseph; Şener, Uğur (2023) : Employing a generalized
reduced gradient algorithm method to form combinations of steel price forecasts generated
separately by ARIMA-TF and ANN models, Cogent Economics & Finance, ISSN 2332-2039, Taylor &
Francis, Abingdon, Vol. 11, Iss. 1, pp. 1-25,
https://doi.org/10.1080/23322039.2023.2169997

This Version is available at:
https://hdl.handle.net/10419/303954

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1080/23322039.2023.2169997%0A
https://hdl.handle.net/10419/303954
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Cogent Economics & Finance

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/oaef20

Employing a generalized reduced gradient algorithm
method to form combinations of steel price
forecasts generated separately by ARIMA-TF and
ANN models

Salvatore Joseph Terregrossa & Uğur Şener

To cite this article: Salvatore Joseph Terregrossa & Uğur Şener (2023) Employing a generalized
reduced gradient algorithm method to form combinations of steel price forecasts generated
separately by ARIMA-TF and ANN models, Cogent Economics & Finance, 11:1, 2169997, DOI:
10.1080/23322039.2023.2169997

To link to this article:  https://doi.org/10.1080/23322039.2023.2169997

© 2023 The Author(s). This open access
article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license.

Published online: 12 Feb 2023.

Submit your article to this journal 

Article views: 1161

View related articles 

View Crossmark data

Citing articles: 7 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=oaef20

https://www.tandfonline.com/journals/oaef20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23322039.2023.2169997
https://doi.org/10.1080/23322039.2023.2169997
https://www.tandfonline.com/action/authorSubmission?journalCode=oaef20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=oaef20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23322039.2023.2169997?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23322039.2023.2169997?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2023.2169997&domain=pdf&date_stamp=12%20Feb%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2023.2169997&domain=pdf&date_stamp=12%20Feb%202023
https://www.tandfonline.com/doi/citedby/10.1080/23322039.2023.2169997?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/23322039.2023.2169997?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=oaef20


GENERAL & APPLIED ECONOMICS | RESEARCH ARTICLE

Employing a generalized reduced gradient 
algorithm method to form combinations of steel 
price forecasts generated separately by 
ARIMA-TF and ANN models
Salvatore Joseph Terregrossa1* and Uğur Şener1

Abstract:  The research objective of the present study is the development of a model 
for increased accuracy of steel-price forecasts, which is of paramount importance 
for firms who use steel as an input and thus need to make informed decisions with 
regard to an optimal amount and type of hedge against unfavourable steel-price 
movement. To achieve its aim, the study forms weighted average combinations of 
steel price forecasts generated separately by a transfer function ARIMA model 
(ARIMA-TF) and an artificial neural network model (ANN), as both models are shown 
to contribute independent information with regard to target variable (steel price) 
movement. A generalized reduced gradient algorithm (GRG) method is employed to 
estimate the component model forecast weights, which is a novel approach intro
duced by this study. The data set employed includes a time series of monthly steel 
prices (cold rolled flat steel) from February, 2012 to November, 2020. Explanatory 
variables include iron ore price, coking coal price, capacity utilization, GDP and 
industrial production. With regard to the out of sample forecasts of all models 
(component and combining), mean absolute percentage forecast errors (MAPE) are 
calculated and model comparisons are made. The study finds that the combining 
model formed with the gradient algorithm approach in which the weights are 
constrained to be nonnegative and sum to one has the lowest MAPE of all models 
tested, and overall is found to be very competitive with other models tested in the 
study. The policy implication for firms that use steel as a major input is to base their 
hedging decisions on a combination of forecasts generated by ARIMA-TF and ANN 
models, with the forecast weights generated by a constrained generalized reduced 
gradient algorithm (GRG) method.

Subjects: Economics; Econometrics; Economic Forecasting 

Keywords: steel price forecasts; ARIMA transfer function; Artificial Neural Network (ANN); 
Gradient Algorithm constrained optimization; Constrained weighted least squares (WLS) 
regression analysis; combination forecasting

JEL code: C53 Forecasting and Prediction Methods; Simulation Methods

1. Introduction
The central aim of this study is to implement constrained optimization methods in forming an 
optimal combining model, with regard to steel-price forecasts. The component forecasting models 
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employed are a transfer function ARIMA (ARIMA-TF) model, and an artificial neural network (ANN) 
model. The research problem that this paper addresses is increased accuracy of steel-price fore
casts. There is one obvious group for whom forecast accuracy of steel prices is critical: Firms who 
use steel as an input and thus need to make informed decisions with regard to hedging against 
unfavorable steel-price movement, either with futures or options contracts; and/or by steel-input 
inventory stockpiling. In a survey of large U.S. nonfinancial firms, Bodnar et al. (1995) find that 
about 40% (of respondents) use derivatives to hedge against operating risk, including commodity- 
input price risk. In a more recent paper, Ajupov et al. (2015) indicate that hedging with derivatives 
appears to be the most common or preferred strategy in the automotive sector (for whom steel is 
a major input); and could involve the purchase of call options contracts, or the purchase of 
a forward contract; depending in part on bullish or bearish forecasts of steel input prices. 
Derivative hedging may be preferable to steel-input stock piling, for a number of reasons. For 
example, if demand were to drop off for such steel-products as cars or consumer durables, 
manufacturers could be saddled with excess steel-input inventory. Additionally, input stock piling 
could exacerbate the problem with the resultant artificial demand fueling greater steel input prices 
(Mathews, 2011). There is also the issue of the cost of stock piling to consider, including the 
construction and maintenance of warehouses. However, for firms such as auto makers that 
typically use a just in time production system (in which costs are controlled by keeping excess 
input supply to a minimum), a cut-off from a steel supplier based on a contract dispute over 
increased steel prices could significantly interrupt production operations (Hakim, 2003). Such firms 
are likely to consider at least a partial hedge with inventory stock piling. Turcic, (2014) address the 
issue of such non-cooperative behavior in a supply chain in which manufacturers purchase steel 
from suppliers that buy steel directly from steelmakers, and then process that steel (stamp, bend, 
coat and cut) for auto and consumer durable makers. They provide a rationale and offer strategies 
for hedging with derivatives for manufacturing firms using steel as an input, and operating in such 
a supply chain. Clearly, accuracy of steel-price forecasts is paramount for firms who utilize use 
steel as an input, with regard to the firm’s decision of the optimal amount and type of hedge.

This paper undertakes the research problem of developing a model with the objective of 
improved steel-price forecast accuracy. It stands to reason that the greater the information set 
on which price-forecasts are based, the greater the potential for enhanced forecast accuracy (Liu,  
2020). One established method to achieve a greater information set is to form combinations of 
forecasts generated by two or more different component models that each contribute indepen
dent-information content, with regard to target-variable movement (Bates & Granger, 1969; 
Bischoff, 1989; Fair & Shiller, 1990). Additionally, combining forecasts of different forecasting 
models may capture different aspects of the information set available for prediction, without 
having to identify the underlying process behind a singular model forecast (Clemen, 1989). One 
or more models may contribute independent-information by either employing different data, or by 
processing the same data differently (Bates & Granger, 1969). Each of the two component models 
in the present study (ARIMA-TF and ANN) employs a different data set; and each model processes 
a common data set differently. Thus each model is likely to contribute independent information 
with regard to movement of the steel price forecast variable; which makes both models suitable 
candidates in forming a combining model. Specifically, with regard to processing same data 
differently, an ARIMA model can be used to analyze any linear functional relations inherent in 
the data, but not nonlinear; whilst an ANN model does have nonlinear modelling capability, 
adaptively formed based on any functional relations inherent in the data (Zhang, 2003; Kim et 
al., 2022). However, as Zhang points out, in practice there may be difficulty in ascertaining whether 
a particular time-series is generated from a linear or nonlinear underlying set of functional 
relations; or in fact may be inclusive of both linear and nonlinear functional relations. Echoing 
the above assertion stated by Clemen (1989), both the Zhang and Kim et al. studies suggest that 
one way to overcome these issues is to model linear and nonlinear functional relations separately 
with an employment of ARIMA and ANN models, respectively; and then form a combination of the 
component model forecasts. In this way, a combining method is able harness both the ARIMA and 
ANN models in discerning different functional relations inherent in the data, thereby leading to 
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a provision of independent information content by each model. And in fact, in the present study, 
a test of independent information with an in sample regression analysis (Cooper & Nelson, 1975; 
Fair & Shiller, 1990; Nelson, 1972) finds the existence of an independent information content in the 
component model forecasts (ARIMA and ANN) to be the case. As Kim et al., (2022) note, an 
additional benefit in forming a combination of ARIMA and ANN forecasts lies in utilizing the 
distinctive strengths of each model to alleviate the limitations of each model: The inclusion of 
an ARIMA model forecast in the combining model can mitigate the overfitting problems of the 
ANN; while the inclusion of the ANN forecast can capture the nonlinear dynamics of the time series 
that the that the ARIMA model is unable to. As a result, the combining model can reduce the 
forecasting errors stemming from both the overfitting problems of the ANN and the inability of the 
ARIMA model to capture nonlinear functions in the time series.

With regard to forming a combining model, both the Zhang (2003) and Kim et al., (2022) studies 
successfully experiment with a two-stage hybrid method, in which an ARIMA model is used to 
analyze any linear functional relation inherent in the data; and an ANN model is developed to 
model the residuals from the ARIMA model, which will contain information about any nonlinear 
functional relations. Both studies find that the resultant combining model consistently outper
forms both ARIMA and ANN models, in terms of lower forecast error.The present study takes 
a different approach in forming a combining model, with the utilization of two different con
strained optimization methods: (1) A novel approach in which a generalized reduced gradient 
algorithm [GRG] technique (L. L. Lasdon et al., 1974; L. S. L. S. Lasdon et al., 1978) is employed to 
estimate the component model forecast weights. GRG algorithm maximizes or minimizes an 
objective function with respect to given constraints (such as constraining the combining model 
forecast weights to be nonnegative and sum to one); which makes GRG algorithm perfectly suitable 
for error minimization optimizations, including the estimation of combination forecast weights 
such that forecast error is minimized. (2) A combining model is also formed with the more 
conventional approach of using estimated regression [in sample] coefficients as forecast weights 
for the combining model [out of sample]. Pioneers of this latter approach include Nelson (1972), 
Cooper and Nelson (1975), and Fair and Shiller (1990), who each employed ordinary least squares 
(OLS) regressions [in sample] of realized values of the target variable against predicted values 
made by component models, to generate the weights for the combining model [out of sample]. 
(The method of weighted least squares [WLS] regression analysis is utilized instead of OLS in the 
present analysis to overcome the problem of heteroscedasticity.) One advantage to using the GRG 
method to estimate the forecast weights for the combining model is the flexibility to minimize any 
selected error statistic; whilst the WLS approach is limited to minimizing sum of squared error (SSE), 
like all other regression-based approaches.

There are two aspects of the research gap that the present study addresses: One, there is 
a dearth of studies in which the method of combination forecasting is employed to forecast steel- 
prices. In fact, the present analysis appears to be the initial study to do so. Second, the method of 
using a generalized reduced gradient algorithm (GRG) technique to estimate the component model 
forecast weights appears to be a novel approach that is being introduced in this study.

Using only data available prior to an out of sample forecast horizon, the present study generates 
simulated, ex ante out of sample component model forecasts (ARIMA-TF and ANN) and combining 
model forecasts of steel prices (employing in turn both the WLS and GRG methods of generating 
component forecast weights for the combining model). In terms of forecast accuracy as measured 
by mean absolute percentage error (MAPE), the study finds that both combining model techniques 
(WLS and GRG) outperform both component models (ARIMA-TF) and ANN); and the combining 
model formed with the generalized reduced gradient algorithm (GRG) technique outperforms the 
combining model formed with WLS estimated regression coefficients. However, the results are 
mixed (to some extent) when another measure of forecast accuracy is considered (root mean 
square error [RMSE]); and when the differences in forecast error between two models are tested for 
statistical significance. These findings are discussed in more detail below, in section 4.

Terregrossa & Şener, Cogent Economics & Finance (2023), 11: 2169997                                                                                                                            
https://doi.org/10.1080/23322039.2023.2169997                                                                                                                                                       

Page 3 of 25



The paper is organized as follows: Following the section 1 introduction above, section 2 presents 
a review of relevant studies to provide context, further indicate research gaps and provide 
a broader, deeper and more detailed theoretical foundation from which the empirical analysis 
emanates. Section 3 indicates the data and presents the different methodologies employed in the 
analysis to generate the different models’ forecasts and to test the results. Section 4 presents and 
discusses the empirical findings. The paper concludes with summary remarks and conclusions in 
Section 5.

2. Background

2.1. Steel-price forecasting
With regard to steel price forecasting, there appears to be a research gap in the form of a dearth of 
studies that endeavour to improve forecast accuracy by combining forecasts of different models. 
In fact, the present study appears to be the initial attempt. Instead, researchers have tended to 
employ a singular-model approach, over a range of forecast models of three main types: Multiple 
regression functions; time-series models; and multivariate Artificial Neural Network (ANN) models.

For example, Mancke (1968), Liebman (2006), Yuzefovych (2006), and Malanichev and Vorobyev 
(2011) each forecast steel prices with a multiple regression function, with variety of explanatory 
variables. The factors of demand, supply and market structure are found to significantly affect steel 
prices in the model employed by Mancke. Safeguard tariffs and antidumping duties, along with 
other variables (including industrial production; ore price; coal price) are found to have a significant 
impact on US steel prices in the Liebman study. In a simultaneous equation system for steel price 
and demand of Eastern Europe (EU), the Yuzefovych study finds that explanatory variables in the 
form of production indices of US, EU and China are significantly related to steel price. Among 
explanatory variables including time and raw material price (a weighted average of iron ore and 
coking coal prices), capacity utilization is found to be the major determinant of steel price in the 
Malanichev and Vorobyev study.

Chou (2013), Kapl and Müller (2010), and Adli and Sener (2021) each experiment with a different 
form of time-series modelling to forecast steel prices. Chou employed a fuzzy time series model for 
long term forecasting of an annual global steel price index, and presented results with a 4.4% 
mean absolute percentage forecast error (MAPE). Kapl and Muller forecasted quarterly steel price 
series with a multi-channel singular spectrum analysis (MSSA) and ARIMA models. Both types of 
time-series models presented similar forecasting precision, according to their results. Adli and 
Sener (2021) forecasted U.S. steel prices with vector auto regression in levels (LVAR) and vector 
error correction (VEC) models. Their findings indicate that whilst LVAR produces successful results 
for short term forecasting, the VEC model can relied upon for both short- and long-term forecast
ing. The LVAR model produced the greatest forecast accuracy in their research.

Liu et al. (2015) and Mir et al. (2021) each employ a multivariate Artificial Neural Network (ANN) 
model to forecast steel prices. Using explanatory variables including an iron ore price index, a rebar 
[reinforcement steel bars] price index and a rebar trading volume, the Liu et al. study forecasts 
a Chinese steel price index with a 6.8% MAPE. In the Mir et al. study, the most significant variables 
affecting steel prices in their multivariate ANN model are an iron ore price index, a consumer price 
index and housing starts.

The current study, then, attempts to fill this research gap and contribute to the literature with 
regard to steel-price forecasting, by forming a combining model in which forecasts generated 
independently by a transfer function ARIMA model (ARIMA-TF) and a multivariate Artificial Neural 
Network (ANN) model are formed into a weighted average; with the component model forecast 
weights estimated alternately by a generalized reduced gradient algorithm (GRG) method, and by 
a weighted least squares (WLS) regression analysis.
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2.2. Combination forecasting
The concept of combination forecasting appears to have originated with Bates and Granger (1969). 
The underlying theory introduced in their study is that improved forecast accuracy may be 
achieved by combining forecasts of two (or more) component models, given that each provides 
independent information regarding the sources of movement of the forecast variable. The Bischoff 
(1989) combination forecast study provides an investment portfolio approach analogy to help 
explain this combining model theory: A portfolio composed of two or more securities may have 
a lower variance than any individual security if the returns from the securities are not perfectly 
correlated. Likewise, combining individual forecasts that embody different, independent informa
tion may lead to a composite forecast superior to either individual forecast. Put another way, as 
noted by Rapach and Strauss (2009), much like diversification across individual assets reduces 
a portfolio’s variance, combining singular model forecasts lowers the forecast variance relative to 
any of the individual predictive model forecasts. In other words, forecasts can always be combined 
in such a way that the composite forecast has variance less than or equal to any of the competing 
forecasts (Diebold & Pauly, 1987). As Bischoff (1989) notes, Nelson (1972) and C. Granger and 
Newbold (1975) find that combination forecasts have smaller root-mean-square-errors than the 
individual component model forecasts. As put forth by Bates and Granger (1969)1969, two or more 
models may contribute independent-information content by either employing different data, or by 
processing the same data differently. Testing for the existence of independent-information content 
in two or more candidate models can be achieved with a regression analysis in which realized 
values of the target variable are regressed against in-sample forecasts made by the two (or more) 
different component models (Bischoff, 1989; Cooper & Nelson, 1975; Nelson, 1972). If the esti
mated regression coefficients are nonzero and separately identified, then the existence of inde
pendent-information content is confirmed; and forming combinations of those respective 
component models’ forecasts may achieve superior forecast accuracy (C. Bischoff, 1989; Fair & 
Shiller, 1990; C. Granger & Newbold, 1975). In addition to testing for the existence of independent 
information, the estimated in-sample regression coefficients serve another purpose. The coeffi
cients, if found to be nonzero and separately identified, give indication as to the appropriate 
proportional values of the weights to assign to each component forecast in the out-of-sample 
combination model (Nelson, 1972); Cooper and Nelson (1975); Fair & Shiller, 1990).

There have been other different approaches with regard to combining methods with varying 
degrees of success. Drought and McDonald (2011) performed a controlled experiment in which 
different, known techniques were employed to form out of sample combinations of asset prices 
(housing), generated from a wide range of prediction models, including both structural and time- 
series. The combining methods ranged from forming simple equally-weighted averages (Clemen,  
1989; Stock & Watson, 2004) to estimating component-forecast weights based on the inverse of 
component-forecast error (Nowotarski et al., 2014; Rapach & Strauss, 2009; Stock & Watson, 2004), 
to employing estimated in-sample OLS regression coefficients (unrestricted) as component- 
forecast weights (C. W. J. C. W. J. Granger & Ramanathan, 1984). While all these combining 
techniques proved successful, the latter method (employing estimated unrestricted-OLS regression 
coefficients as forecast weights) achieved the greatest superiority over the component-model 
forecast accuracy. With regard to this latter method, other studies have made a comparison of 
the employment of unrestricted versus restricted OLS estimated in-sample regression coefficients 
as weights for the out-of-sample combining model, and there has been some debate in the 
literature as to the better approach. C. W. J. C. W. J. Granger and Ramanathan (1984), Guerard 
(1987), and Lobo (1991) have found in favor of the unrestricted method. Whereas Clemen (1986), 
Gunter (1992), Aksu and Gunter (1992), Gunter and Aksu (1997), Terregrossa (2005), Nowotarski 
et al. (2014), and Terregrossa and Ibadi (2021) have independently found that using restricted OLS 
estimated regression (in sample) coefficients as forecast weights for the combining model (out of 
sample) proved superior to forming combinations with unrestricted OLS estimated coefficients. 
Restricted OLS refers to suppressing the constant term and constraining the estimated regression 
coefficients to be nonnegative and sum to one. Each of this latter set of studies independently 
show that applying these constraints to the combining model leads to more efficiency of the in- 
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sample estimated regression coefficients, resulting in greater accuracy of the out-of-sample com
bination forecasts (which are weighted by the estimated coefficients). The theoretical explanation 
for the better performance of the constrained model may be summarized as follows: Whilst the 
method of unconstrained ordinary least squares (OLS) results in unbiased estimators and minimum 
sum-of-squared errors (SSE) for the data employed to fit the regression (as demonstrated by 
C. W. J. C. W. J. Granger & Ramanathan, 1984), the objective is not to minimize the squared errors 
within the in-sample fitting data, but to enhance the accuracy of the out-of-sample forecasts (as 
postulated by both Makridakis et al., 1984; Clemen, 1986). Thus, if the process of constraining the 
linear combination leads to somewhat biased estimators, it may be worthwhile to trade off some 
incurred bias for more efficient estimators to enhance the accuracy of the out-of-sample forecasts 
(as shown by Clemen, 1986) and Gunter, 1992): An estimator with lower dispersion about the 
mean (more efficient) and some bias will more closely approximate the true parameter than will 
an unbiased estimator with a larger dispersion about the mean.

The present study, in forming combinations of steel price forecasts generated separately by 
a transfer function ARIMA model and by an artificial neural network (ANN) model, experiments with 
both unrestricted and restricted combining methods, respectively; in which the estimated forecast 
weights are constrained to be nonnegative and to sum to one, for both the restricted GRG and WLS 
combining techniques; and also with the constant suppressed, with regard to the restricted WLS 
technique.

The present analysis differs from previous combining model studies in that a novel combining 
method is proposed with the employment of the GRG algorithm approach; which generates results 
that are competitive with those of the more conventional, regression-based approach employed in 
the current study. The current study also differs from other steel-price forecasting studies by forming 
combinations of singular model (ARIMA-TF and ANNN) forecasts of steel-prices, as noted above.

3. Methodology

3.1. Data
In the present study, the main determinants of the cold rolled (CR) average flat steel price series of 
Turkey are selected as: 62% Fe CFR North China iron ore price series; HCC 64 Mid Vol FOB Australia 
coking coal price series; CU (capacity utilization) of Turkish main metal industry series; CPI (consumer 
price index) series of Turkey; GDP of OECD; IPI (industrial production index) series of Turkey See 
Figure 1.

Steel, iron ore and coking coal price series are obtained from industrial resources. Consumer 
price index (CPI) and producer price index (PPI) of Türkiye are selected as inflation indicators. For 
capacity utilization (CU) and industrial production index (IPI); steel, automotive, main steel and 
similar industrial aggregated indexes are taken into account. Europe, OECD and USA GDP and GDP 
per capita series are taken into consideration. Backward elimination approach is employed to 
reduce the number of candidate explanatory variables (Makridakis & Wheelwright SC, 1997). See 
Table 1 and 2.

The analysis employs monthly data from February 2012 to November 2020. The justification/ 
explanation of the choice of the study period: The original choice of study period was 
February 2012 to November 2021, to have the most recent, up-to-date data with which to analyze. 
However, the periods of the pandemic are removed after structural breaks are determined with 
unit root testing.

3.1.1. Unit root and breakpoint unit root tests
The unit root test results of both Dickey–Fuller and Philips–Perron suggest that a trend pattern 
exists in the steel price and iron ore price series; and that first order differencing should be done 
to remove this trend. There is a breakpoint in the steel price series at period 107, which is at the 
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beginning of the Covid-19 pandemic. Accordingly, the first 105 monthly data points are used in 
the present analysis; and pandemic period monthly data, which contains the breakpoint, are 
removed. See Table 1.

3.2. The ARIMA model
An autoregressive moving average (ARMA [p,q]) process includes both an autoregressive function (AR) 
and a finite moving average (MA) process, where p is the order of autoregressive, q is the order of 
moving average. Y. Chen et al. (2010) point out that ARMA modelling provides high precision for short- 
term forecasting, and can be used to reveal the characteristics and dynamic behavior of a time-series. 
The underlying characteristics of the time-series determine the appropriate model, and can be 
revealed with an evaluation of the autocorrelation and partial autocorrelation functions; which is 
a process proposed by Box and Jenkins (1970) to identify the order (d) of an autoregressive integrated 
moving average [ARIMA (p,d,q)] process, in the case of a non-stationary time-series. In terms of ARIMA 
model derivation, an autoregressive moving average (ARMA [p,q]) model (equation 3) is constructed 
from an autoregressive function (AR) and a finite moving average process (MA). The autoregressive 
process employs lagged predicted variables as explanatory variables (equation 1); and in a finite 
moving average process, current and lagged residual series serve as explanatory variables of the 
model (equation 2). When differencing is employed an autoregressive integrated moving average 
[ARIMA (p,d,q)] process is achieved (equation 4) in which p indicates the number of lagged periods 
of predicted variables; and q indicates the amount of residuals included to the model, respectively; and 
d shows the differencing level of predicted variable (Box & Jenkins, 1970; Box et al., 2016). 

Table 1. Unit root test

Unit root 
test Level

Steel (predicted variable) Iron ore (explanatory v)

t p Break t p Break
Augmented 
Dickey–Fuller

0 −2.06 0.3 −2.4 0.2

Augmented 
Dickey–Fuller

1 −5.37 0 −8.4 0

Philips– 
Perron

0 −1.6 0.5 −1.9 0.3

Philips– 
Perron

1 −6.75 0 −8.3 0

Breakpoint 0 −7.82 .01 2020/10 −3.1 0.6 2020/04

Breakpoint 1 −9.9 <.01 2021/07

Table 2. Data Set
Variable Explanation Source
Steel price Cold Rolled flat steel Industrial

Iron ore price IODEX 62 Fe CFR China Industrial

Coking coal price HCC 64 Mid Vol FOB Australia Industrial

Inflation Consumer Price Index (CPI) TCMB

Capacity Utilization (CU) CU of main metal industry TUIK

GDP GDP of OECD FRED

Industrial Production Industrial Production Index (IPI) TUIK

FRED: Federal Reserve Economic Data 
TCMB: Central Bank of the Republic of Türkiye 
TUIK: Turkish Statistical Institute 
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~Yt ¼ ϕ1
~Yt� 1 þ ϕ2

~Yt� 2 þ . . .þ ϕp
~Yt� p þ εt (1)  

~Yt ¼ εt � θ1εt� 1 � θ2εt� 2 � . . . � θqεt� q (2)  

~Yt ¼ ϕ1
~Yt� 1 þ ϕ2

~Yt� 2 þ . . .þ ϕp
~Yt� p þ εt � θ1εt� 1 � θ2εt� 2 � . . . � θqεt� q 

or ϕ Bð Þ~Yt ¼ θ Bð Þεt (3) 

If the input of the given process is the differenced series, ARIMA (p,d,q) equation is achieved: 

ωt ¼ ϕ1ωt� 1 þ ϕ2ωt� 2 þ . . . ϕpωt� p þ εt � θ1εt� 1 � θ2εt� 2 � . . . � θqεt� q (4) 

where Yt is the actual value of predicted variable at period t, εt is the residual, μ is the level.

BmYt ¼ Yt� m represents the lagged terms of predicted series,

ÑYt ¼ Yt � Yt� 1 ¼ 1 � Bð ÞYt is the differenced values,

~Yt ¼ Yt � μ is the differences level,

ϕ Bð Þ ¼ 1 � ϕ1B � ϕ2B2 � . . . � ϕpBp is the autoregressive component,

ϕ1;ϕ2; . . . ;ϕp, and θ1; θ2; . . . ; θq are coefficients of ARIMA model for autoregressive and residual 
terms, respectively (Hanke & Wichern, 2014; Kim et al., 2022).

The ARIMA model parameters (p,d,q) are estimated with an error minimizing process. As D. Chen 
(2011) notes, ARIMA (p,d,q) model building is an empirically driven methodology of systematically 
identifying, estimating, diagnosing, and forecasting time-series. In other words, the Box–Jenkins 
ARIMA model estimation approach constitutes a trial-and-error process until obtaining a suitable 
model and sufficient error reduction.

3.3. The artificial neural network (ANN) model
ANN models have powerful pattern recognition and classification capabilities which make them 
a powerful tool for forecasting. Multilayer perceptron (MLP) is the main structure used for business 
forecasting, which has the capability of input-output mapping. MLP may contain several layers of 
nodes, but three layers is the most common for forecasting. The first layer represent explanatory 
variables, the second layer is the hidden one and the third layer consists of predicted variable (s; 
G. Torres-Pruñonosa et al., 2022; Zhang et al., 1998). ANN offers both univariate time-series and 

-Steel -Iron ore -Coal -CU -GDP -IPI

Figure 1. Times series observa
tions trends.
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multivariate models for forecasting purposes. Armstrong suggests in his forecasting method 
selection tree that when reliable data exists, multivariate econometric forecasting models should 
be employed (Armstrong, 2001; Şener, 2015).

In the present study, a feedforward multilayer perceptron network structure is selected for ANN 
model. The predicted variable and the explanatory variables are standardized or normalized before 
processing. The predicted variable is employed in third level node and the explanatory variables are 
entered into the network at first level nodes. The second layer of the network is the hidden one in which 
the activation function is used. Previous literature mentions that both hyperbolic tangent function and 
sigmoid function can be used as an activation function in the hidden layer node (M. Zhang, 2008). 
Weights of the nodes are determined in order to minimize SSE, or MSE in general. Pre-processing of 
variables and activation function is selected in order to minimize SSE, in the present study.

3.4. Generalized reduced gradient (GRG) algorithms
Generalized reduced gradient (GRG) algorithms (L. L. Lasdon et al., 1974) are utilized to solve 
nonlinear mathematical models with an objective function to be maximized or minimized, subject 
to given constraints. It is a gradient based algorithm in which the objective function and constraints 
can have a nonlinear nature. An objective function value is optimized by searching the steepest 
descent to the best solution by using a quasi-Newton method for the determination of the 
minimum gradient. When finding an optimum solution is not allowed by the sophistication of 
a particular optimization model, a good solution in the feasible region, close to an optimum one, 
can be determined by GRG algorithm. GRG is mainly used for modelling and solving multivariable 
models along with successive linear programming, under the operations research discipline. With 
regard to exponential smoothing methods, GRG algorithm optimizes alpha, beta and gamma 
weights for level, trend and seasonality estimation functions, respectfully (L. S. L. S. Lasdon 
et al., 1978). The GRG algorithm technique has been applied in different arenas, such as water 
resource engineering, load forecasting and fall velocity, for optimizing forecast error parameters 
mean absolute percentage error (MAPE), sum of squared estimate of errors (SSE) and root mean 
squared error (RMSE; Shivashankar et al., 2022).

The general form nonlinear model which can be solved by GRG is presented below:

Minimize ormaximiseð Þf Xð Þ subject to gi Xð Þ ¼ 0i ¼ 1;2; . . . ;m li � Xi � uii ¼ 1;2; . . . ;n where Xi  

an n dimensional vector:

GRG algorithm can be used for minimizing model fit statistics, such as MAPE and RMSE, in the 
determination of the component model forecast weights of the combination forecast, as in the 
present analysis. Using exclusively in sample data (which is prior to the out of sample forecast 
period), the present study minimizes MAPE with the GRG algorithm to determine the weights of the 
out of sample component model forecasts to form an out of sample combination forecast (with the 
constraint of the weights summing to one, and nonnegative, in the restricted model case: 

Minimize MAPE Xið Þ where Xi are weights of forecasts 

subject to ∑ Xi ¼ 1; and Xi are nonnegative; in the constrained model caseð Þ:

3.5. Combining methods

3.5.1. Tests of independent information
In the present study, a combining model is formulated in two alternate ways, as indicated above: 
(1) Using weighted least squares (WLS) estimated regression coefficients (in sample) as forecast 
weights for the combining model (out of sample). The regressions are alternately run unrestricted 
and restricted (in which the constant is suppressed and the estimated coefficients are restricted to 
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be nonnegative and to sum to one; (2) Employing a generalized reduced gradient algorithm (GRG) 
technique (in sample) to estimate the component model forecast weights for the out of sample 
combination forecasts; with the GRG model alternately run unrestricted and restricted (such that 
weights are restricted to be nonnegative and to sum to one.)

To begin, following Bates and Granger (1969), C. Granger and Newbold (1975), and Fair and 
Shiller (1990), the procedure we are proposing in this paper is to run an in-sample regression for 
the two forecast sources and test the hypothesis that the model 1 (ARIMA-TF) estimated- 
coefficient = 0; and the hypothesis that model 2 (ANN) estimated-coefficient = 0. The former 
hypothesis is that model l’s (ARIMA-TF) forecasts contain no information, relevant to forecasting, 
not in the constant term and in model 2 (ANN). The latter hypothesis is that model 2ʹs forecasts 
(ANN) contain no information not in the constant term and in model 1 (ARIMA-TF). Paraphrasing 
Fair and Shiller, and for the case of two component forecasting models (as in the present analysis), 
if the estimated in-sample regression coefficients are both zero then neither model contains any 
information useful for out-of-sample forecasting. If both estimated coefficients are nonzero, then it 
would appear that both models contain independent information useful for out-of-sample fore
casting. If both models contain information, but the information in, say, model 1 is completely 
contained in model 2, and model 2 contains further relevant information as well, then the model 2 
estimated coefficient should be nonzero but not the model 1 estimated coefficient. If both models 
contain the same information, then the forecasts are perfectly correlated and both estimated 
coefficients are not separately identified.

In the present study, a weighted least squares (WLS) regression of actual (realized) steel prices (in 
sample values [80%]) against the in sample steel price forecasts generated separately by the ARIMA- 
TF and the ANN models (employing in sample data), is implemented in the following fashion: 

Yt ¼ B0 þ B1 Ŷt ARIMA� TF½ �

� �
þ B2 Ŷt ANN½ �

� �
þ εt (5) 

Where,

Yt = the actual (realized) steel price for period t from the in sample data set;

Ŷt ARIMA� TF½ � = the in sample forecasts generated by the ARIMA-TF model using in sample data;

Ŷt ANN½ � = the in sample forecasts generated by the ANN model using in sample data;

parameters B0;B1 and B2 are fixed; εt= error term; E [εt] = 0.

As noted above, the in-sample regression is alternately run with unrestricted WLS and restricted 
WLS (in which the constant is suppressed and the estimated regression coefficients are con
strained to be nonnegative, and to sum to one).

If the estimated regression coefficients B1 and B2 are nonzero and separately identified, then 
this would indicate that both models contain independent information content and are thus useful 
in forming a combining model (Bates & Granger, 1969; C. C. Granger & Newbold, 1975; Fair & 
Shiller, 1990). As our empirical analysis indicates, this is the case in the present analysis. (See, 
Table 3 and 5 below.) Subsequently, the in sample estimated regression coefficients ðB1 and B2) are 
used as weights for the out of sample component model (ARIMA-TF and ANN) forecasts to 
generate out of sample combination forecasts of steel prices.

3.5.2. Combination forecasts
Following Bischoff (1989), a combination forecast (Ŷc) may be expressed as a linear combination of 
individual model forecasts as follows:
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Ŷc ¼ w0 þ∑k
i¼1wi Ŷi t

� �
(6) 

where there are k component forecasting models;

And where w0 is set to zero and the weights are constrained to be nonnegative and sum to one 
in the restricted model case.

In the present study, the WLS combining model is constructed by forming a weighted average of 
both ARIMA-TF and ANN model forecasts (out of sample) as follows: 

Ŷct WLS½ � ¼ w0 þw1 Ŷt ARIMA� TF½ �

� �
þw2 Ŷt ANN½ �

� �
(7) 

Ŷct WLS½ � stands for the out of sample combination forecast formed with estimated regression 
coefficients from the weighted least squares [WLS] regression (in sample); ARIMA-TF refers to the 
out of sample forecast made by the transfer function ARIMA model; ANN refers to the out of sample 
forecast from artificial neural network (ANN) model; w1,w2 are the proportional weights, which are 
the estimated regression coefficients B1 and B2 from the in sample WLS regressions of Eq. 1. Note 
that WLS combinations are formed alternately using unrestricted and restricted estimated regres
sion coefficients (in sample) as component forecast weights for the out of sample combination 
forecast, as indicated above.

The GRG combining model is constructed by forming a weighted average of both ARIMA-TF and 
ANN model forecasts (out of sample) using a generalized reduced gradient algorithm (GRG) tech
nique (in sample) to estimate the component model forecast weights (with the forecast weights 
also constrained to be nonnegative and to sum to one, in the restricted case): 

Ŷct GRG½ � ¼ w1 Ŷt ARIMA� TF½ �

� �
þw2 Ŷt ANN½ �

� �
(8) 

Where,

Ŷct GRG½ � stands for the out of sample combination forecast made with component model forecast 
weights generated by the generalized reduced gradient algorithm (GRG) technique (in sample); 
ARIMA-TF refers to the out of sample forecast made by the transfer function ARIMA model; ANN 
refers to the out of sample forecast generated by the artificial neural network (ANN) model; w1,w2 

are the proportional weights which are estimated by the generalized reduced gradient algorithm 
(GRG) technique (in sample). Note that the GRG combinations are formed alternately using unrest
ricted and restricted weights for the out of sample combination forecast, as indicated above.

To summarize, the present study calculates the combination-forecast weights using WLS and 
applies in turn each of two variations regarding the regression restrictions: (1) WLS with a constant 
term and the coefficients unrestricted; (2) WLS with the constant term suppressed and the 
coefficients constrained to be nonnegative and sum to one.

Each set of estimated coefficients is then alternately employed as forecast weights to form 
simulated, ex-ante out-of-sample combination forecasts of steel price.

The present study also calculates the combination-forecast weights using the GRG method and 
applies in turn each of two variations regarding the forecast weights: (1) unrestricted; (2) con
strained to be nonnegative and sum to one.
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Each set of estimated weights is then alternately employed to form simulated, ex-ante out-of- 
sample combination forecasts of steel price.

These two different combining models’ (WLS and GRG) forecasts are generated and compared to 
each other (and to the component model forecasts) to determine if there is a superior method.

3.5.3. Significance tests of differences in forecast error
While forecast accuracy measures such as root mean square error (RMSE) or mean absolute 
percentage error (MAPE) can be used to rank or order forecasting models in terms forecast 
accuracy, the statistical significance of the differences in forecast error between forecast models 
should also be taken into account. The present analysis utilizes three such tests: The Diebold– 
Mariano (DM) test, the Harvey–Leybourne–Newbold (HLN) test and the Wilcoxon signed rank test 
are each employed for testing the null hypothesis that there is no statistically significant difference 
between an error series of two forecasts. The DM test, initially published in 1995, names the 
squared differences of error terms as a loss differential and requires it to be covariance stationary 
(Diebold, 2015; Diebold & Mariano, 1995). The HLN statistic is an adaptation of the DM test (Harvey 
et al., 1997). Both the DM and HLN statistics provide similar information regarding differences in 
forecast error between two forecasting models. The nonparametric Wilcoxon signed rank test also 
compares the absolute error terms of two forecast models (Wilcoxon, 1945) by calculating the 
differences in each row and ranking them according to magnitude.

3.5.4. Objectives and Statement of Hypotheses
The first objective is to determine whether the employment of the ARIMA-TF model of the present 
study leads to enhanced forecast accuracy over the employed ANN model. Thus, the first null 
hypothesis (H0) to be tested, H01: There is no statistically significant difference between ARIMA-TF 
and ANN, in forecasting steel price.

The second objective is to determine whether the employment of the ARIMA-TF model of the 
present study leads to enhanced forecast-accuracy over the GRG combining model (unrestricted). 
Thus, the second null hypothesis to be tested, H02: There is no statistically significant difference 
between ARIMA-TF and GRG (unrestricted), in forecasting steel price.

The third objective is to determine whether the employment of the ARIMA-TF model of the 
present study leads to enhanced forecast-accuracy over the WLS combining model (unrestricted). 
Thus, the third null hypothesis to be tested, H03: There is no statistically significant difference 
between ARIMA-TF and WLS (unrestricted), in forecasting steel price.

The fourth objective is to determine whether the employment of the ARIMA-TF model of the 
present study leads to enhanced forecast-accuracy over the GRG combining model (constrained). 
Thus, the fourth null hypothesis to be tested, H04: There is no statistically significant difference 
between ARIMA-TF and GRG (constrained), in forecasting steel price.

The fifth objective is to determine whether the employment of the ARIMA-TF model of the 
present study leads to enhanced forecast-accuracy over the WLS combining model (constrained). 
Thus, the fifth null hypothesis to be tested, H05: There is no statistically significant difference 
between ARIMA-TF and WLS (constrained), in forecasting steel price.

The sixth objective is to determine whether the ANN model of the present study leads to 
enhanced forecast-accuracy over the GRG combining model (unrestricted). Thus, the sixth null 
hypothesis to be tested, H06: There is no statistically significant difference between ANN and GRG 
(unrestricted), in forecasting steel price.

The seventh objective is to determine whether the ANN model of the present study leads to 
enhanced forecast-accuracy over the WLS combining model (unrestricted). Thus, the seventh null 
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hypothesis to be tested, H07: There is no statistically significant difference between ANN and WLS 
(unrestricted), in forecasting steel price.

The eighth objective is to determine whether the ANN model of the present study leads to 
enhanced forecast-accuracy over the GRG combining model (constrained). Thus, the eighth null 
hypothesis to be tested, H08: There is no statistically significant difference between ANN and GRG 
constrained, in forecasting steel price.

The ninth objective is to determine whether the ANN model of the present study leads to 
enhanced forecast-accuracy over the WLS combining model (constrained). Thus, the ninth null 
hypothesis to be tested, H09: There is no statistically significant difference between ANN and WLS 
constrained, in forecasting steel price.

The tenth objective is to determine whether the unrestricted GRG combining model outperforms 
the unrestricted WLS combining model of the present study. Thus, the tenth null hypothesis to be 
tested, H010: There is no statistically significant difference between GRG (unrestricted) and WLS 
(unrestricted), in forecasting steel price.

The eleventh objective is to determine whether the unrestricted GRG combining model outper
forms the constrained GRG combining model of the present study. Thus, the eleventh null hypoth
esis to be tested, H011: There is no statistically significant difference between GRG (unrestricted) 
and GRG constrained, in forecasting steel price.

The twelfth objective is to determine whether the unrestricted GRG combining model outper
forms the constrained WLS combining model of the present study. Thus, the twelfth null hypoth
esis to be tested, H012: There is no statistically significant difference between GRG (unrestricted) 
and WLS constrained, in forecasting steel price.

The thirteenth objective of the present analysis is to determine whether the unrestricted WLS 
combining model outperforms the constrained GRG combining model of the present study. Thus, 
the thirteenth null hypothesis to be tested, H013: There is no statistically significant difference 
between WLS (unrestricted) and GRG constrained, in forecasting steel price.

The fourteenth objective of the present analysis is to determine whether the unrestricted WLS 
combining model outperforms the constrained WLS combining model of the present study. Thus, 
the fourteenth null hypothesis to be tested, H014: There is no statistically significant difference 
between WLS (unrestricted) and WLS constrained, in forecasting steel price.

Lastly, the fifteenth objective of the present analysis is to determine whether the constrained 
GRG combining model outperforms the constrained WLS combining model of the present study. 
Thus, the fifteenth null hypothesis to be tested, H015: There is no statistically significant difference 
between GRG constrained and WLS constrained, in forecasting steel price.

4. Empirical results and discussion

4.1. Empirical results
To begin, for the analysis of the full data set, which includes monthly data from February, 2012 to 
November, 2020, divided into 88 in sample periods and 17 out of sample periods: For each 
component forecasting model (ARIMA-TF and ANN) the present study generates both in sample 
steel-price forecasts and out of sample steel-price forecasts. (See, Tables 3 and 4 below; no 
separate tables are presented for the out of sample forecasts, as they are the same.)

With regard to the analysis of the full data set: Regarding the in sample WLS regressions of realized 
values (monthly price) against predicted values of the two component models (ARIMA-TF and ANN): The 
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estimated regression coefficients are positive and significant with regard to the unrestricted model case. 
In the restricted model case, the estimated regression coefficients are constrained to be nonnegative and 
sum to one.1 The values for these estimated regression coefficients are presented in Table 5 below.

The in sample estimated regression coefficients from both the unrestricted and restricted 
regressions are then alternately employed as weights to form a weighted average of the out of 
sample component model steel-price forecasts (ARIMA-TF and ANN).

With regard to the full data set (monthly data from February, 2012 to November, 2020), 
a combining model is also formed using in sample generated weights that are estimated by the 
generalized reduced gradient (GRG) algorithm method. This optimization (in-sample forecast-error 
minimizing [MAPE]) component-forecast weight-determination method is also implemented unrest
ricted and restricted (with the weights constrained to be nonnegative and sum-to-one in the 
restricted case.) The estimated values for these weights are presented in Table 7 below.

The in sample estimated weights generated from both the unrestricted and restricted GRG 
algorithm method are then alternately employed to form a weighted average of the out of sample 
component model steel-price forecasts (ARIMA-TF and ANN).

(Note: The present analysis does the same above analysis for the two sub segments of the data 
set. See below.)

For each set of in sample and out of sample forecasts generated by a given model, the current 
study calculates the mean absolute percentage error (MAPE) and the root mean square error (RMSE) 
(See, Tables 6 and 7 below).

Table 3. ARIMA-TF (1, 1, 0) forecast of in sample (out of sample) data
ARIMA(1,1,0) Model Coefficient SE t-stat Sig.
Steel price AR Lag 1 0.247 0.105 2.348 0.021

Iron ore Numerator Lag 0 1341 0.308 4.360 0.000

Table 4. ANN forecast of in sample (out of sample) data
Explanatory Variable Weight
Iron ore 0.511

Coal 0.018

Inflation 0.048

CU 0.260

GDP 0.153

IPI 0.010

Table 5. WLS regressions of in sample data: Yt ¼ B0 þ B1 Ŷt ARIMA� TF½ �

� �
þ B2 Ŷt ANN½ �

� �
þ εt

Model Coefficient Std. Error t-stat Sig.
Unconstrained (Constant) −4839 12,669 − .382 0.703

ARIMA-TF 
forecasts

0.365 0.054 6.785 0.000

ANN forecasts 0.642 0.056 11.543 0.000

Constrained ARIMA-TF 
forecasts

0.375 N/A N/A N/A

ANN forecasts 0.625 N/A N/A N/A
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The predicted variable steel price and explanatory variable iron ore price are first order differ
enced according to unit root test results. Six explanatory variables are fit into the ARIMA model, 
but iron ore price is the only significant one. The ARIMA-TF (1,1,0) with explanatory variable iron ore 
price produced the best error measures among all other univariate, multivariate and seasonal 
ARIMA models (see, Table 3). (Note: Once explanatory variables are fit into the ARIMA model it 
becomes an ARIMA-TF model.)

As mentioned above in section 3 in more detail, all ANN models are constituted with a three- 
layer perceptron. The first layer is for explanatory variables, the second layer is the hidden one and 
the third layer employs the dependent variable (steel price). Considering SSE measures from in 
sample data, standardized, normalized and adjusted normalized data sets are used. Interval offset 
is selected as 0.1, 0.15 or 0.20.

Both ARIMA-TF and ANN models reveal that iron ore price is the most significant determinant of 
steel price in the given period (See, Tables 3 and 4, respectively).

In the Table 5, the former model is estimated without constraints; in the latter model however, 
the constant is suppressed and the coefficients are constrained to be nonnegative and sum to one.

Table 6 indicates that the ANN model outperforms the ARIMA-TF model, by both the MAPE and 
RMSE measures, with regard to the in sample period.

In contrast to the results presented in Table 6, Table 7 indicates that the ARIMA-TF model 
outperforms the ANN model, with regard to the out of sample period. However, the out of sample 
combination forecasts formed with both the WLS and GRG approaches produced remarkably better 
forecasting performance than the ANN model, and slightly better than ARIMA-TF model, according 
to the MAPE results.

Table 6. Residual measures of in sample forecasts

Type Model MAPE RMSE
Explanatory 

Variables
Component 
Forecasts

ARIMA TF 2.88% 26.20 (1,1,0) Iron ore 
Lag0

ANN 2.57% 19.82 Iron ore, Coal, CU, 
CPI, IPI, GDP

Table 7. Residual measures of out of sample forecasts

Type Model MAPE %
RMSE Weights

ARIMA ANN
Component 
Forecasts

ARIMA TF 6.68 42.68

ANN 10.67 68.19

Combination 
Forecasts

GRG 
unconstrained

6.32 45.38 0.383 0.616

GRG 
constrained

6.13 43.66 0.429 0.571

WLS 
unconstrained

6.39 46.01 0.370 0.629

WLS 
constrained

6.52 46.97 0.357 0.643
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Table 7 also indicates that the ANN model has the greater weight in all out of sample combina
tion models. There are two possible explanations for the greater weight of the ANN model: One, is 
that the ANN model produced lower forecast errors (with regard to both MAPE and RMSE mea
sures) for the in sample period, during which the forecast weights are generated; and this 
information was somehow processed by the study’s weight generating mechanisms (WLS and 
GRG). Two, the second explanation is that the ANN model contains six explanatory variables, 
compared to one for the ARIMA-TF model; and thus may have contributed a greater depth of 
independent information to the combining model.

Marked comparison values in Table 8 represent the existence of significant differences between 
given forecasts, according to the nonparametric Wilcoxon signed rank test.

The test results which report significant differences in the compared forecasts are marked in 
Table 9. The DM and HLN tests presented same results for all comparisons except the WLS 
constrained and WLS unconstrained combining models. According to the HLN test, there is 
a difference between them; however, the DM test indicates no significant difference between 
those given forecasts. Considering the fact that significances of both WLS constrained and uncon
strained model are close to the decision threshold, the present study concludes that DM and HLN 
produced consistent results for the given data set.

The Wilcoxon, DM and HLN tests all indicate that ANN model forecasts are significantly different 
from other models’ forecasts; and that the ARIMA-TF model produced similar results as other 
models.

The below results reported in Table 10 indicate that, in general, the accuracy of the ARIMA-TF 
model forecasts is not significantly different than that of the combining model forecasts of the 
present study; with the combining models performing slightly better than the ARIMA-TF model 
(see the MAPE results reported in Table 7 above). However, the results reported in Table 10 indicate 
that the accuracy of the ANN model forecasts is significantly different than that of the combining 
model forecasts; with the combining models performing much better than the ANN model (see the 
MAPE results reported in Table 7 above). Thus, the results reported in Table 10 are consistent with 
the forecast accuracy measures reported in Table 7, which indicate that the accuracy of the 
different combination models is slightly better that of the ARIMA-TF model forecasts, but far 
more precise than that of the ANN model, according to MAPE scores. The above results reported 
in Table 10 also indicate that the differences in forecast accuracy between the various pairs of 
combination models can be viewed as slight; which is also consistent with the respective MAPE 
scores reported in Table 7.

Table 8. Wilcoxon signed-rank test for out of sample forecasts

ARIMA ANN GRG WLS
GRG 

constrained
ANN −2.059b

0.039

GRG −0.071b −3.574c

0.943 0.000

WLS −0.071b −3.574c −1.633b

0.943 0.000 0.102

GRG 
constrained

−0.071c −3.479c −1.349b −1.444b

0.943 0.001 0.177 0.149

WLS 
constrained

−0.213b −3.574c −2.438b −3.101c −1.728b

0.831 0.000 0.015 0.002 0.084
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Table 10. Hypotheses of testing summary
H0i Null Hypothesis DM HLN Wilcoxon
H01 There is no 

statistically 
significant 
difference between 
ARIMA-TF and ANN

accept accept reject

H02 There is no 
statistically 
significant 
difference between 
ARIMA-TF and GRG 
(unrestricted)

accept accept accept

H03 There is no 
statistically 
significant 
difference between 
ARIMA-TF and WLS 
(unrestricted)

accept accept accept

H04 There is no 
statistically 
significant 
difference between 
ARIMA-TF and GRG 
constrained

accept accept accept

H05 There is no 
statistically 
significant 
difference between 
ARIMA-TF and WLS 
constrained

accept accept accept

H06 There is no 
statistically 
significant 
difference between 
ANN and GRG 
(unrestricted)

reject reject reject

H07 There is no 
statistically 
significant 
difference between 
ANN and WLS 
(unrestricted)

reject reject reject

H08 There is no 
statistically 
significant 
difference between 
ANN and GRG 
constrained

reject reject reject

H09 There is no 
statistically 
significant 
difference between 
ANN and WLS 
constrained

reject reject reject

H010 There is no 
statistically 
significant 
difference between 
GRG (unrestricted) 
and WLS 
(unrestricted)

reject reject accept

(Continued)
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A comparison of the DM, HLN, and Wilcoxon tests, suggests that the DM and HLN tests are more 
sensitive to slight differences in forecast error than the Wilcoxon test. The DM and HLN tests 
produced results similar to each other.

4.1.1. Sub segment empirical results
As mentioned above, the total data set is divided into two, approximately equal sub segments (the 
first with 40 in sample and 9 out of sample periods; the second with 43 in sample and 8 out of 
sample periods). Weighted least squares (WLS) regressions are run over the in-sample data set, for 
each of the two sub segments of the data set. The results of these regressions are reported in 
Table 11 below, which indicate that the estimated model coefficients are significantly positive in 
the unrestricted case; and constrained to be nonnegative and sum to one in the restricted case.2

These in sample estimated regression coefficients, for each of the two in sample sub sets, are 
then employed as weights to form a weighted average of the out-of-sample component model 
steel-price forecasts (ARIMA-TF and ANN), for each of the two subsets of data. (See, Table 11 below 
for the sub sample forecasting results.)

The present study also forms a combining model by the generalized reduced gradient algorithm 
(GRG) method for each of the two sub segments of the data set. The estimated values for these 
sub-segment in- sample determined weights are presented in Table 11 below.

H0i Null Hypothesis DM HLN Wilcoxon
H011 There is no 

statistically 
significant 
difference between 
GRG (unrestricted) 
and GRG 
constrained

reject reject accept

H012 There is no 
statistically 
significant 
difference between 
GRG (unrestricted) 
and WLS 
constrained

reject reject reject

H013 There is no 
statistically 
significant 
difference between 
WLS (unrestricted) 
and GRG 
constrained

reject reject accept

H014 There is no 
statistically 
significant 
difference between 
WLS (unrestricted) 
and WLS 
constrained

accept reject reject

H015 There is no 
statistically 
significant 
difference between 
GRG constrained 
and WLS 
constrained

reject reject reject
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Considering the in sample results for sub segments data sets presented in Table 12, the first 
segment’s error measures are lower, and the second segment’s error measures are higher than the 
respective results of main, full data set. Note that the ARIMA-TF model outperforms the ANN model in 
the first sub segment; and the ANN model outperforms the ARIMA-TF model in the second sub 
segment. Iron ore remains the most important explanatory variable in the sub segment data sets.

4.2. Discussion
With regard to the weighted least squares (WLS) in sample regression tests of independent informa
tion (equation 1), by dint of the unrestricted regression model, both the ARIMA-TF and ANN compo
nent model in sample forecasts are found to contain independent information, as indicated by the 
significantly positive estimated regression coefficients, respectively (See, Table 5 for the full data set 
regression results; and Table 11 for the regression results of the sub segment data sets). Thus, the 
present study rejects the null hypothesis that the ARIMA-TF model estimated in sample regression 
coefficient = 0; and the null hypothesis that the ANN model estimated in sample regression coeffi
cient = 0 (as stated in the section 3 Methodology). As noted above (in section 3), if the estimated 
regression coefficients are nonzero and separately identified, then this would indicate that both 
models contain independent information content and are thus useful in forming a combining model 
(Bates & Granger, 1969; Fair & Shiller, 1990; C. Granger & Newbold, 1975). Subsequently, the in sample 
estimated regression coefficients are used as weights for the out of sample component ARIMA-TF and 
ANN model forecasts to generate out of sample combination forecasts of steel prices. The present 
study employed both unrestricted and restricted regression coefficients to form an out of sample 
combining model (with the coefficients constrained to be nonnegative and to sum to one, and the 
constant suppressed, in the restricted model) as detailed above in section 3.

Table 11. WLS regression results for in sample data of sub segments 
Yt ¼ B0 þ B1 Ŷt ARIMA� TF½ �

� �
þ B2 Ŷt ANN½ �

� �
þ εt

Data Model Variable Coefficient Std. Error t-stat Sig.
First half of data Unconstrained (Constant) −34,101 13,771 −2.476 0.018

ARIMA-TF 
forecasts

0.265 0.096 2.750 0.009

ANN forecasts 0.785 0.093 8.464 0.000

Constrained ARIMA-TF 
forecasts

0.072 N/A N/A N/A

ANN forecasts 0.928 N/A N/A N/A

Second half of 
data

Unconstrained (Constant) −3.169 55.685 −.057 0.955

ARIMA-TF 
forecasts

0.704 0.098 7.170 0.000

ANN forecasts 0.304 0.133 2.289 0.028

Constrained ARIMA-TF 
forecasts

0.434 N/A N/A N/A

ANN forecasts 0.566 N/A N/A N/A

Table 12. Residual measures of in sample data for sub segments

Data Model MAPE RMSE
Explanatory 

Variables
First half of the data ARIMA-TF 2.15% 20.24 (0,1,0) Iron ore

ANN 1.63% 13.88 Iron ore, Coal, CU, 
CPI, IPI, GDP

Second half of the 
data

ARIMA TF 3.70% 30.32 (0,1,0) Iron ore

ANN 4.54% 36.08 Iron ore, Coal, CU, 
CPI, IPI, GDP
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The present study also utilized both an unrestricted and restricted GRG algorithm method for 
determining combination forecast weights. As indicated above, with the restricted GRG method the 
weights are constrained to be nonnegative and to sum to one.

As reported above, the accuracy of the different combination models (unrestricted and con
strained WLS; unrestricted and constrained GRG) is slightly better that of the ARIMA-TF model 
forecasts, but far more precise than that of the ANN model, according to the forecast accuracy 
measures (MAPE) scores reported in Table 7.

In the present study, the constrained GRG combining model provided lower error measures than 
the unconstrained GRG combining model, in general. (See, Tables 6 and 9 for the full data set 
outcomes; and Table 12 for the outcomes of the sub segment out-of-sample data sets.) The GRG 
combining model also produced competitive results with the more conventional WLS combining 
model approach for combination forecasts. (Again, see, Tables 7 and 10 for the full data set 
outcomes; and Table 13 for the outcomes of the sub segment out-of-sample data sets.) The 
findings of the present analysis suggest that the GRG combining method is a successful, alternative 
technique to the WLS combining method, and can also be utilized to improve forecast precision.

The present study also finds that the WLS combining model approach is more successful when the 
estimated in sample regression coefficients are constrained to be nonnegative and sum to one, in 
comparison with the unrestricted WLS combining model approach. See Figure 2. These results are 
supportive of the previous studies indicated above in section 2 [Clemen (1986), Gunter (1992), Aksu 
and Gunter (1992), Gunter and Aksu (1997), and Terregrossa (2005), Nowotarski et al. (2014), Terregrossa 

Table 13. Residual measures of out of sample data for sub-segments

Data Model MAPE % RMSE
Weights

ARIMA ANN
First half of data ARIMA TF 11.51% 56.61

ANN 11.79% 55.99

GRG 
unconstrained

11.19% 54.00 0.388 0.610

GRG 
constrained

11.46% 54.96 0.345 0.655

WLS 
unconstrained

17.13% 79.17 0.265 0.785

WLS 
constrained

11.72% 55.67 0.072 0.928

Second half of 
data

ARIMA TF 4.57% 26.68

ANN 5.08% 30.74

GRG 
unconstrained

4.55% 27.22 0.631 0.363

GRG 
constrained

4.35% 25.84 0.659 0.341

WLS 
unconstrained

4.85% 30.40 0.704 0.304

WLS 
constrained

4.54% 26.62 0.434 0.566

Note that for the out of sample period of the second sub segment data set, Table 13 indicates significantly lower forecast error 
measures for all respective models, compared to those reported for the first sub segment; with the unrestricted GRG model 
performing best in the first sub segment; and the constrained GRG model performing best in the second sub segment. Note 
that the weight of the ARIMA-TF forecast is higher than the weight of the ANN forecast in the first three out of four cases in 
the second sub set; whereas in the first sub segment the ANN model forecast has higher weights in all four cases. 
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and Ibadi (2021)], which all found that a constrained regression combining model outperformed the 
unrestricted regression combining model counterpart.

Figure 2 illustrates that constraining the forecast weights in the combining model to be non
negative and sum to one leads to minimum forecast error, as indicated by the vertex line.

The present study finds that the ANN model produced lower error measures compared to the 
ARIMA-TF model for in sample periods; whilst the ARIMA-TF model produced better results for out 
of sample periods.

The present study fills a research gap and breaks new ground with the introduction of the GRG 
algorithm approach to forming a combining model. The GRG combining method produced slightly 
more precise forecasting results than WLS method, according to MAPE and RMSE forecast accuracy 
measures. However, according to Wilcoxon signed rank, DM, and HLN tests, there is no significant 
difference between the WLS and GRG combining model results. Therefore, the empirical results of 
the present analysis cannot unequivocally determine which technique is the better combining 
model approach. Nevertheless, the present study finds that both combining model techniques 
(GRG and WLS) produced successful (and similar) combination forecast accuracy. Further research 
is necessary to reveal the comparative performance of both methods.

Last, the present study finds a statistical forecasting technique in the form of an ARIMA-TF model 
produced competitive results compared with a machine-learning technique in the form of artificial 
neural network (ANN) method.

5. Conclusions
The present study has developed a model for improved accuracy of steel price forecasts by 
forming weighted average combinations of forecasts generated separately by a transfer function 
ARIMA model (ARIMA-TF) and an artificial neural network model (ANN), with the implementation 
of a constrained generalized reduced gradient algorithm (GRG) technique to estimate the com
ponent model forecast weights. These component models (ARIMA-TF and ANN) are chosen for 
the combination as both models are shown to contribute independent information with regard to 
steel price determination. The independent information provided by each model partly stems 
from the fact that the ARIMA model can discern any linear functional relations inherent in the 
data, but not nonlinear; while the ANN model can discern any nonlinear functional relations 
inherent in the data. And also, by the fact that the ANN model employs a greater number of 
explanatory variables.

Figure 2. Vertex line indicating 
lowest RMSE with forecast 
weights constrained to be non
negative and sum to one. 

Terregrossa & Şener, Cogent Economics & Finance (2023), 11: 2169997                                                                                                                            
https://doi.org/10.1080/23322039.2023.2169997

Page 22 of 25



The present analysis is in part motivated by a research gap in the literature with regard to steel price 
forecasting: The present study appears to be the first in forming a combining model to enhance 
accuracy of steel price forecasts. The present analysis is also partly motivated by a methodological gap 
in the research area of combination forecasting, which the study addresses with the introduction of 
a constrained generalized reduced gradient algorithm (GRG) technique to estimate the component 
model forecast weights. The current study finds that the combining model formed with the gradient 
algorithm approach in which the weights are constrained to be nonnegative and sum to one has the 
lowest MAPE of all models tested, and overall is found to be very competitive with other models tested 
in the study. The policy implication for firms that use steel as a major input is to base their hedging 
decisions on a such a combining model of steel price forecasts as employed in the present study.

One area of future study would be to experiment with different combining methods such as 
using a hybrid method in which steel price forecasts are first generated with an ARIMA-TF model, 
and the ARIMA-TF error series is recorded; then an autoregressive neural network (NARNET) model 
can be employed to model the residuals from the ARIMA model and generate forecasts of the 
ARIMA-TF error series. The hybrid price forecast is the sum of the ARIMA-TF forecast and the 
NARNET-generated error forecast. Additionally, a further step may be taken by combining an 
ARIMA-NARNET (or ARIMA-ANN) hybrid forecast with yet another forecast (for instance, a poly
nomial regression forecast), employing a constrained gradient algorithm approach (GRG) to deter
mine the component forecast weights. Another idea that may prove useful is to utilize 3-month 
data periods, as a way to smooth out any noise in monthly data. One limitation of the present 
analysis stems from the need to eliminate data from the pandemic period, as a result of a 
structural break as indicated by unit root testing.
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Notes
1. However, the significance of the restricted regression 

results can only be inferred from the unrestricted case, 
as the software utilized in the present study to run 
constrained WLS regressions [E-views] does not report 
the t-stat significance test values for the constrained 
WLS regressions.

2. However, the significance of the results in the 
restricted case can only be inferred from the unrest
ricted case, for reasons as explained above with regard 
to the regression results for the full data set, reported 
in Table 5 above.
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