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A Neural Network approach for integrating banks’
decision in shipping finance

Marina Maniati*, Emeritus Sambracos® and Sokratis Sklavos?

Abstract: Forecasting refers to the process of predicting future trends by lying on
data from the past. An error in forecasting can lead to significant business losses
especially in banking industry where decisions are taken in a highly volatile and
uncertain environment due to the dynamic changes in world economy. In this
paper, we study both the effectuations of the exogenous factors in the tanker
shipping-related financial market and the modulation of the credibility coefficient as
an internal factor in shipping banks that may affect their decision to either increase
or decrease loans within tanker shipping sector by adopting the artificial neural
network technique. Within this context, we modeled a unique network that adjusts
88 macroeconomic indices to the real data of 89 shipping banks within a period of
T = 5 years time. The main contribution of this study is the understanding of the
relation between bias and either exogenous or unpredictable factors in the market
as a key factor in the financing decision policy of a shipping bank for the
forthcoming year T + 1.
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1. Introduction

Forecasting refers to the process of predicting future trends by lying on data from the past. Within
this process, when forecasting is accurate, it facilitates better planning and budgeting (Mostafa
et al,, 2017). The forecasting error can lead to significant business losses especially in cases that it
comes from a long established process rather than random effects.

This error is the sum of reqgular and irregular factors and its study becomes more crucial in
finance industry and especially within banking industry, where relevant decisions are considered to
be highly volatile and uncertain due to the dynamic changes in world economy and little informa-
tion about the future (Cao et al., 2020). Banks have to take into account: i) various endogenous
variables that account for the regular factors, in order to maximize their return and minimize any
risk, ii) the current market variables, as well as the recent regulatory framework restrictions applied
by the Basel (Sambracos & Maniati, 2013), referred as exogenous variables that account for
irregular factors. To uphold competitiveness in the global world, the industry has embraced highly
developed computer technologies that may approximate universal functions to a desired accuracy
(Cybenko, 1989; Hornik, 1993; Huang et al., 2007).

Artificial intelligence models constitute new forecasting approaches for financial decision-
makers (Sharda & Patil, 1992; Trinkle & Baldwin, 2016), while they have been proved to provide
a solution over the well-established linear regression models (LRM) in case of non-linear data
(Bollershev, 1986; Sambracos et al., 2020), advancing the economic modelling (Fumagalli, 2016) in
a volatile, noisy environment characterized by irrelevant or partial information (Dobrescu et al.,
2014; Huang et al., 2007), especially in shipping financial market (Maniati et al., 2017), where the
macroeconomic environment matters a lot for shipping firm’s performance (Angelopoulos et al,,
2021; Michail, 2020; Michail & Melas, 2022; Michail et al., 2021; Tsioumas et al., 2021) and hence
bank’s decision to proceed or not with relevant financing. The transport sector projects require
a large amount of funds, leading to different financing sources (Mostafa et al., 2017). The majority
of current finance artificial intelligence approaches refer to risk and/or credit management,
algorithmic trading, pattern recognition and process automation (Aziz et al., 2019; Gooijer &
Hyndman, 2006).

Machine Learning (ML) techniques have been applied in several topics of financial research as
well. Bjorkegren and Darrell (2018) applied ML techniques to predict loan repayment using mobile
phone data. Apart from the ML techniques, financial time series prediction methods also refer to
Deep Learning techniques (Schmidhuber, 2015), which have been mainly applied for forecasting
stock price and trend in financial variables.

Credit facilities use forecasting techniques for loan appraisals (Heaton et al., 2016); while neural
networks (NNs) are becoming popular in determining the revenue generation trends for repayment
of the funds.

Hawley et al. (1990) applied NNs, in order to develop a new technique for financial—decision-
makers dealing with environments that continuously change, such as in transport/shipping sector.
This technique was then applied to lending and credit risk management decisions (Varetto, 1998).
Altman et al. (1994), by analyzing industrial firms in Italy, proved that NNs can be a supplementary
to the regression analysis acceptable diagnostic instrument though researchers should be careful
with the structure of the NNs.

Odom and Sharda (1990), Coleman et al. (1991), Fletcher and Goss (1993), Wilson and Sharda
(1994), and Inam et al. (2019) used NNs in order to forecast bankruptcy and/or business failure;
Geng et al. (2015) applied artificial NNs in combination with decision trees to predict banking
financial distress; Weng et al. (2018) presented an ensemble-based approach to predict the 1-day
ahead stock price using various data online sources; Jessica et al. (2020) tried to develop a model
based on artificial NNs to predict financial distress in the Spanish banking system by combining
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other financial problems with bankruptcy; Turiel and Aste (2020) tried to replicate lender accep-
tance and to predict default of loans and proved that they were able to predict well above 50% of
defaults on loans. In all cases, NNs have shown superiority over traditional techniques for
forecasting.

In principle, NNs are structured by the input, the hidden and the output layer where the last two
layers are biased. Consistent with the literature and according to simulation techniques
(Sambracos et al., 2020), the bias is considered as a significant factor that matches the input to
the output layer after the internal process of the hidden layer. On the other hand, previous
techniques such as the LRM consider the bias as error and remove it in order to present the
general trend and finally provide less accurate models.

There is indeed a need for synergistic efforts between financial sector and NNs. The lasts may
exhibit characteristics that on some level model the behavior or the real world. Implicitly, the real
world is explained by also psychophysical aspects that arise from the human individualists (Lieder
et al,, 2018). Within this context, cognitive neurosciences refer to the logic-computational brain
left-hemisphere that is “biased” by the innovative-enthusiastic right brain-hemisphere
(Churchland, 2002) and forwarding the “decision”. Consistent with human evolution, decisions
might be presumably uncontrolled and, in some sense, unpredictable because they are biased or
self-controlled.

Considering a mass population of discrete units, any “decision” C is z-weighted by both the
“mass” H and the “unit” R (Maniati et al., 2017) and modeled as C = z R + (1-z) H. At the extreme
cases where the parameter z equals either 0 or 1, the decision follows the mass or the unit,
respectively. Based on this previous study, it has been implicitly stated that when the parameter
z is being modeled by hypothetical statistical distributions, it ranged between 0 and 1.

As common practice, banks are assumed to be excused from responsibility and to deal with
decision-making process for loan granting or not by judging their similarity to uncontroversial and
well-worn prototypes. This is assigned to values of z closed to zero.

Consequently, when banks upgrade from the simple prototypes to a multi-parametric space,
they fall into a spectrum of scaled decisions that is assigned to values of z greater from zero and
less than one. Finally, values of z closed to one are assigned when decision-makers have to
consider and control various parameters that reflect the primary determinants of self-controlled
behavior.

However, actual measurements of the parameter z showed a percentage of values outside the
normal range. Such values have been biased from random effects and have neither contribution
nor utility to the decision C.

Following that, a key question arises; whether we are able to predict any future bank’s decision
even the knowledge of the past history and exploring any possible relationship between parameter
z and bias effectuation.

In this paper, we study both the effectuations of the exogenous factors in the tanker shipping-
related financial market and the modulation of the credibility coefficient as an internal factor in
shipping banks that may affect their decision to either increase or decrease loans within tanker
shipping sector by adopting the artificial NN technique. Within this context, we developed a unique
network that adjusts 88 macroeconomic indices to the real data of 89 shipping banks within
a period of 5 years time. In testing the predictive status of the developed network, we used the
last year as the one to be forecasted. This approach integrated the initial classical linear regression
technique (Maniati et al., 2017) and the last simulation study comparing the performance between
linear regression and NN models (Sambracos et al., 2020).
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The main contribution of this study is i) the relationship integrated between the parameter z and
the NN bias estimation and ii) how this relationship may predict the forthcoming year. Specifically,
for values of parameter z between 0 and 0.9333333 the NN bias is negligible and the prediction of
the forthcoming year is matched. This result indicates that the NN simulates satisfactorily the
gross market behavior. On the other hand, as the parameter 0.93333 < z — 1-, the NN is more
(absolute) biased and the less the unit-bank decision for the forthcoming year can be predicted.
Finally, for values of parameter z outside the normal range, the NN bias is totally random and no
relationship was found between them. Moreover, the prediction of the forthcoming year is failed.

To this point, this is the first time that the internal factor z is combined with the bias in a NN and
its output as well.

This paper is organized as follows; the next section describes the methodology applied, as well
as the data set and variables used. Section 3 presents the results based on the application of
NNs in bank financial decisions for increasing or decreasing loan grants portfolio for the next
period. Finally, Section 4 provides some discussion and concluding remarks.

2. Methodology

Input data refer to shipping market indices and loan grants that were derived from Bloomberg,
Bankscope and Clarksons databases, while all rules and restrictions were conditioned accordingly.
Additionally the credibility coefficient was calculated for each bank in order to identify bank’s
policy to either increase or decrease its total loans in the shipping sector towards market as
a whole.

A NN was developed. For each bank, the NN was trained over the first T empirical years. The
extracted optimized parameters of the architecture (weights, biases) were applied, in order to
forecast the bank’s policy either to increase or decrease its total loans in the shipping sector the
next year T + 1, which is the evaluation period. NN’s forecasting performance is tested by the
percentage of relevant agreement compared to the credibility coefficient: whether the NN output
matches the evaluated T + 1 year bank’s sign of change.

Technical analysis was forwarded with MATLAB™
(IBM COM, v.22).

and all statistics were processed with SPSS

2.1. Neural networks

nodes was time-optimal selected according to multiple tests of 8, 32 and 64 nodes. Using 8 nodes,
the network failed to match adequately the output, while using either 32 or 64 nodes made no
difference with reference to the output compared to the 16 nodes’ network.

The purelin transfer function was applied between input and the hidden layer. In addition, the
input to the g-node is biased by e{” so that the lumped input is hg = 7%, wq; - X; + €. The i-
16
output is also biased by e}") and its response is Yy = f< > Ujq-hg+ ef‘”) where uj 4 is the weight
q=1
projection of g- node to i- output. The function f(t) =2-(1+ e*“)’1 — 1 is a hyperbolic tangent
sigmoid tansig transfer function which assigns the value t to the point (t,f(t)) € (R,[-1,1]) in
a non-linear way due to the data derived from shipping market and banks.

The network is being trained using a training function that updates weight and bias values
according to Levenberg-Marquardt back propagation optimization process. The Levenberg-
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Marquardt training algorithm was considered as a valid method for finding optimal solutions over
determined systems of nonlinear equations in the least-squares. Although this algorithm required
more computational memory compared with other methods, it was faster for the back propaga-
tion learning process. This is performed by using the trainlm function with learning rate, goal
performance and maximum number of epochs equal to 0.01, 0.001 and 1000, respectively.

All functions purelin, tansig, trainlm and net are MATLAB™ functions.

2.2. The credibility coefficient estimate

Considering that the market consists of j = 1, ..., 89 shipping banks that grant loans to the shipping
sector the last i =1, ... T observed years, each bank’s credibility equals C; = Zf’e" R+ (1 - ZJ.C’ed) -H,
where R; = 1/T- ZiT:l R;i is the observed mean of loans R; granted the last T-observed years and H =

(89)7". 21?31 R; is the corresponding overall mean of a shipping banks portfolio. Credibility is the
difference of the total loans that will be granted from the ji,-shipping bank conditioned on
a credibility coefficient ZjC'ed that might either be explicitly calculated as ch’e" = (G —H)/(R;—H).

According to Biihlmann (1967), the coefficient Z<® is in principle limited between values 0 and 1
as a percentage of the amount of credence attached to the individual experience. A zero coeffi-
cient implies that the bank grants loans based on the whole market grand average (H) while
a coefficient equal to one implies that the bank grants loans by ignoring the whole market trend.

However, in the current research, the lower and upper limits of the credibility coefficient are either
extended below zero or above one. For instance, when either C;<H<R; or Rj<H<C; then the credibility
factor ijd is below 0, which implies bank’s aversion to its previously adopted loan grant policy in

favour of the whole market grand average. On the other hand, when either H<R;<C; or Cj<R;j<H then
the credibility factor ZJF’E" is greater than 1, which underlines the bank’s full aggressive policy with
respect to loan granting portfolio decrease or increase despite the whole market grand average.

2.3. Statistical analysis

The non-parametric Kolmogorov-Smirnov test was used for testing the null hypothesis that
the projection weights of: i) either market to the hidden layer or hidden layer to the output
layer and ii) either bias to hidden or output layer are uniformly or normally distributed,
respectively.

Cohen’s kappa coefficient (k) was used to measure the degree of agreement between the bank’s
decision policy to either increase (p; positive) or decrease (n; negative) total loan grants and the NN
output (positive or negative). There are either two ways of agreement (counts pp; positive to
positive and nn: negative to negative) or disagreement (counts pn; positive to negative and np:
negative to positive). Then, the k-coefficient is defined as

-l
T1oT
where I, = ppﬂﬁ’,ﬁ% is the relative observed agreement and I, = % is the hypothetical

probability of by chance agreement. In case of a complete agreement, k-coefficient takes its
maximum value of 1 and if there is no agreement then k = 0. Negative values might be occurred
and reflect a tendency of the NN to give different outputs regarding banks.
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Figure 1. NNs training process

The k-coefficient is considered to be significant at a 5% level of significance if its lower bound
kg =k—1.96- ,/m is greater than zero.

3. Data &empirical results

In total, we used the annual differences of 88 indices from tanker shipping market (Appendix Table
A1) and of loans granted by 89 shipping banks (Appendix Table A2) over the period 2005-2009,
which is characterized by high volatility for the specific shipping sector.

All differences calculated either from shipping market or shipping banks were normally distrib-
uted (Kolmogorov-Smirnov, p > 0,05) and then using their mean and standard deviation, they were
normalized, according to Gauss distribution of zero mean and a standard deviation equal to one.

3.1. Credibility coefficient
In 6 and 29 banks out of 89 (6.7% and 32.6% respectively), the credibility coefficient z*¢ was
found less than zero and greater than one, respectively. In the vast majority of banks (54, 60.7%),

the coefficient z*? was limited into the normal range zero to one.

3.2. Training process
For each bank, the NN had been trained (Figure 1) to adapt with no error in the initial T periods.
T was either three or four years.

The projection weights w of markets to hidden layers as well as the projection weights u of hidden layers
to the single output were found to be uniformly distributed between values -1 and 1 (Kolmogorov-
Smirnov Z = 0.85, p = 0.465) and from -3 to 3 (Kolmogorov-Smirnov Z = 0.74, p = 0.644), respectively. The
bias weights e, to hidden layers were found to be typical normal distributed (Kolmogorov-Smirnov
Z =0.963, p = 0.312) and the bias weights e, to output layer were found to be normally distributed of
zero mean and standard deviation 1.6 (Kolmogorov-Smirnov Z = 0.54, p = 0.824), respectively.

By applying the NN extracted from the training process to the next evaluation period T + 1, we
measured the error comparing the actual with the output data.

Market

Bank's

grants
Xj Y
Xgg
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Figure 2. NN and z coefficient
relationship
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For 35 out of 89 banks (39.3%) where the z-coefficient was either less than zero or greater than
one, the NN output failed to match the bank’s decision regarding the loan granted policy either
increasing or decreasing loans targeted the shipping sector. In details, for six banks (6.7%) where
the z-coefficient was less than zero, the NN output matched only half of them (3) and the relatively
observed agreement was 50% (Io) and had no difference to the hypothetical probability of chance
agreement (Ie) returning therefore a zero Cohen’s Kappa coefficient (k). For 29 banks (32,6%)
where the z-coefficient was greater than one, the NN output matched less than 1 over 3 of them
by a 27.59% relative observed agreement (Io) and less than the hypothetical probability of chance
agreement 50.5% (lIe), returning therefore a negative Cohen’s Kappa coefficient (k).

On the other hand, for 54 banks (60.67%) where the coefficient z*? lied between zero and one
(Figure 2), the NN output matched 31 bank’s decision (I, = 57.4%), i.e. significantly greater than
halves (X? = 4.056, p = 0.044). This percentage is also significantly greater than the corresponding
hypothetical probability of chance agreement I, = 46.3% (Wald’s test, z=1.651, p = 0.049) and the
assigned coefficient k = 20.7%. A detailed analysis showed that the k-coefficient takes its max-
imum value for values of the coefficient z® between 0 and 0.4 and then decreases gradually up
to the value 0.9 of the coefficient z<d. More specifically, for 24 banks where the coefficient z¢rd
lied between zero and 0.9, the NN output matched 20 of bank’s decision (I, = 83.7%) and with the
corresponding hypothetical probability of chance agreement I, = 57.9% it was assigned to coeffi-
cient k = 61.3%. For values of the coefficient ze®? between 0.9 and 1, the k-coefficient decreases
sharply and takes its minimum value of 20.7%. For all values of the coefficient 0 <z*4<1, the k-
coefficient was found significant compared with its lower bound (k).

4. Conclusions

The main purpose of this study was to model a unique NN architecture for forecasting a shipping
bank’s decision either to increase or decrease its loans targeted the tanker shipping sector by
taking into account the exogenous factors in the relevant market. This approach integrates other
approaches already applied for forecasting a similar bank’s decision, such as the linear regression
technique and a simulation study comparing the performance between linear regression and NN
models.

The first study revealed the disadvantages of big data analysis, which is necessary within
shipping sector by default, performed by the linear regression technique. Main disadvantage issues
concerned primarily the exception of possible important market variables (i.e Baltic Dirty Dry
Index) due to multicollinearity effects among them and secondly, by considering a strictly linearity,
all other effects were lumped into the residual errors that were ignored from further analysis.
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On the other hand, the second study, that was based on all market variables with no exception
and non-linear training functions, optimised the output performance in an environment character-
ized by both volatile and noisy information like shipping sector.

In this study, we modelled a NN architecture that was driven by all shipping market’s data. In
addition, bank loan grants’ output was non-linearly functioned. This model was further used for
forecasting each bank’s decision whether to increase or decrease its loans targeting the tanker
shipping market.

Following the bias-error analysis, we noticed that the prediction of the aforementioned bank’s decision
policy is dependent on the z-coefficient. The lower the z-coefficient, the higher the predictive perfor-
mance of the NN model is. Considering the z-coefficient’s meaning, the analysis implied that it might be
easier to predict a decision policy if the bank adopts a more conservative strategy. However, forecasting is
heavily biased for values of z-coefficient close to one. Presumably, a self-defined policy at bank’s level
based on unique characteristics might account for the noise that biases the output.

In this paper, we figured out the advantages of NNs compared with the traditional linear
regression techniques for forecasting shipping bank’s decision about its financing policy either to
increase or decrease shipping loans: i) it takes into account all data from the shipping market
without any exception, ii) linear restrictions are not imposed, iii) it adapts perfectly to the data
during the training period and iv) it returns the bias as an important factor of the model. Its main
contribution is the understanding of the relation between bias and either exogenous or unpredict-
able factors as a key factor in the decision policy with reference to each shipping bank’s strategy
compared with financial market attitude as a whole. For values of parameter z between 0 and
0.9333333, the NN bias is negligible and the prediction of the forthcoming year is matched. This
result indicates that the NN simulates satisfactorily the gross market behavior. On the other hand,
as the parameter 0.93333 <z — 1-, the NN is more biased and less the unit-bank decision for the
forthcoming year can be predicted. Finally, for values of parameter z outside the normal range, the
NN bias is totally random and no relationship was found between them.

To this point, this is the first time that the internal factor z is combined with the bias in a NN and its
output as well for forecasting bank’s policy within a specific sector, like tanker shipping, whether to
increase or decrease its loans. A future work might also use raw time series financial data from other
shipping sub-sectors, as well as industries, using the same macroeconomic indices and compare the
NN architecture, as well as the noise as a key factor with effect on the decision-making process.
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