
Owusu Junior, Peterson; Jeyasreedharan, Nagaratnam; Alagidede, Imhotep Paul

Article

On the goodness-of-fits of the generalized lambda
distribution on high-frequency stock index returns

Cogent Economics & Finance

Provided in Cooperation with:
Taylor & Francis Group

Suggested Citation: Owusu Junior, Peterson; Jeyasreedharan, Nagaratnam; Alagidede, Imhotep Paul
(2022) : On the goodness-of-fits of the generalized lambda distribution on high-frequency stock
index returns, Cogent Economics & Finance, ISSN 2332-2039, Taylor & Francis, Abingdon, Vol. 10,
Iss. 1, pp. 1-20,
https://doi.org/10.1080/23322039.2022.2095764

This Version is available at:
https://hdl.handle.net/10419/303698

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1080/23322039.2022.2095764%0A
https://hdl.handle.net/10419/303698
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Cogent Economics & Finance

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/oaef20

On the goodness-of-fits of the generalized lambda
distribution on high-frequency stock index returns

Peterson Owusu Junior, Nagaratnam Jeyasreedharan & Imhotep Paul
Alagidede

To cite this article: Peterson Owusu Junior, Nagaratnam Jeyasreedharan & Imhotep
Paul Alagidede (2022) On the goodness-of-fits of the generalized lambda distribution on
high-frequency stock index returns, Cogent Economics & Finance, 10:1, 2095764, DOI:
10.1080/23322039.2022.2095764

To link to this article:  https://doi.org/10.1080/23322039.2022.2095764

© 2022 The Author(s). This open access
article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license.

View supplementary material 

Published online: 08 Jul 2022.

Submit your article to this journal 

Article views: 1312

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=oaef20

https://www.tandfonline.com/journals/oaef20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23322039.2022.2095764
https://doi.org/10.1080/23322039.2022.2095764
https://www.tandfonline.com/doi/suppl/10.1080/23322039.2022.2095764
https://www.tandfonline.com/doi/suppl/10.1080/23322039.2022.2095764
https://www.tandfonline.com/action/authorSubmission?journalCode=oaef20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=oaef20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23322039.2022.2095764?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23322039.2022.2095764?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2022.2095764&domain=pdf&date_stamp=08%20Jul%202022
http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2022.2095764&domain=pdf&date_stamp=08%20Jul%202022
https://www.tandfonline.com/action/journalInformation?journalCode=oaef20


FINANCIAL ECONOMICS | RESEARCH ARTICLE

On the goodness-of-fits of the generalized 
lambda distribution on high-frequency stock 
index returns
Peterson Owusu Junior1*, Nagaratnam Jeyasreedharan2 and Imhotep Paul Alagidede3

Abstract:  In this paper, we investigate the goodness-of-fit of the flexible four- 
parameter generalized Lambda Distribution (GLD) for high-frequency 5-min returns 
sampled from the DJI30 Index. Applying Moment Matching (MM) and Maximum 
Likelihood Estimation (MLE) techniques, we highlight the significance of the higher- 
order parameters of the GLD distribution to depict the asymmetric and fat-tailed 
behaviour observed in high-frequency returns data. We also show and explain why 
the MLE consistently outperforms the MM; especially in the presence of “outliers”. 
Finally, we use lambda-space scatterplots to introduce, clarify and discuss addi-
tional stylized facts of high-frequency index returns not found in the extant high- 
frequency literature.

Subjects: Economics; Econometrics; Investment & Securities 

Keywords: Maximum likelihood; moment matching; generalized lambda distribution; high- 
frequency; Goodness-of-fit; higher moments
JEL Classification: C52; C58; C59

1. Introduction
The fact that the normal distribution is inadequate in depicting the observed asymmetric and fat- 
tailed behaviour of financial returns is an ubiquitous fact in the extant finance literature and 
requires no further statistical rigour to prove otherwise, especially when it comes to depicting high- 
frequency financial returns (Bai, 2000; Dacorogna & Pictet, 1997; Dias & Embrechts et al., 2004; 
Fama, 1965). The literature has been quite exhaustive in the quest for an appropriate distribution. 
The main bane, however, has been to find a probability distribution that will adequately capture 
both the dispersion and also the bias and fat-tailedness observed in high-frequency finance (Su, 
2007b). The various alternatives range from the parametric four-variable generalized lambda 
distribution (GλD; Freimer et al., 1988; Karian & Dudewicz, 2000; King & MacGillivray, 1999; 
Lakhany & Mausser, 2000; Okur, 1988; Öztürk & Dale, 1985; Ramberg & Schmeiser, 1974; Su, 
2005b) to various non-parametric kernel density estimators (Silverman, 1986; Wegman, 1972). 
Of the many alternatives considered to-date, the four-parameter GλD has been consistent in 
providing the flexibility and robustness warranted in depicting the first four moments as when 
compared with the other alternatives. The four-parameters of the GλD are λ1 (location), λ2 (scale), 
λ3 and λ4 (shape) parameters (the latter two higher-order parameters relate to the lower and 
upper tails, respectively, and in combination can be transformed into the skewness and kurtosis 
measures).
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One of the earliest works on fitting the four-parameter GλD distribution to returns data is by 
Ramberg et al. (1979). This was followed by the seminal monograph of Karian and Dudewicz (2000) 
from which many recent studies have explored different parameter estimation approaches to 
fitting empirical data. Since then, a number of studies have sought to improve the formulation 
of the GλD to fit the empirical data even better. For instance, to find robust moments in the GλD 
estimation, Chalabi et al. (2012), Chalabi et al. (2010), and Scott and Wuertz et al. (2012) express 
the location and scale parameters implicitly as the median and interquartile range of the distribu-
tion. The motive stems from, as noted by the authors, the difficulty in the parameter estimation of 
the GλD as the distributional shapes change rapidly by varying the parameters in the different 
regions of the two shape parameters, i.e. in the four regions of the λ3-λ4 lambda-space as per 
Figure 1. The authors further state “in particular, the support of the distribution can change with 
the value of the parameters from being the whole real line to an interval which is infinite in only 
one direction”, hence recommending fitting to be undertaken only within regions where such 
dramatic changes do not take place (Chalabi et al., 2010, p. 3). Using a different approach, Van 
Staden et al. (2014) developed a quantile-based generalized Pareto (GP) formulation with 
a skewness-invariant measure of kurtosis so that both the skewness and kurtosis parameters 
could be studied independently.

In parallel with the development in fitting algorithms, there has been a growing number of 
applications of the GλD to various financial data. For instance, Corrado (2001) extends the GλD by 
developing a multivariate version to model the non-lognormal distribution of observed option 
prices. The author chose the GλD because of the wide range and flexibility of the skewness and 
kurtosis values realisable. Pfaff (2016) also employed the GλD in additon to the generalized 
hyperbolic distribution (GHD) and its special cases, namely: hyperbolic distribution (HYP), normal 
inverse Gaussian distribution (NIG), to fit the Hewlett-Packard (HWP) stock returns data. Corlu et al. 
(2016) investigate how well five alternative distributions (i.e. skewed Student t, GλD, Jonhson 
system, NIG, and g-and-h) fit stock data over the period of 1979 to 2014. They find the GλD to 
be the best alternative to depict daily equity returns of 19 indices from Europe, North and South 

Figure 1. FMKL-GλD Support 
Regions in λ3-λ4 space (Chalabi 
et al., 2012, 2010).
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America, Asia, and Africa. Also, Maghyereh and Al-Zoubi (2008) make use of extreme value theory 
(EVT) to scrutinize asymptotic tail distribution of daily returns in the Gulf region. The authors use 
the “Peaks-Over-Threshold” (POT) model to estimate the tails of the innovational distribution as 
they examine extreme returns. The models exploit tail behaviour and the Gulf equity markets can 
rely on EVT-based risk model in their risk assessment, as argued by the authors. Furthermore, 
Marsani et al. (2017) also examine the tail properties of the Kuala Lumpur composite index (KLCI) 
using GλD, generalized extreme value (GEV), generalized logistic (GL), generalized Pareto (GP), and 
Pearson (PE) distributions. Having estimated parameters by the L-moment method and using the 
k-sample Anderson Darling goodness-of-fit test, they find that the GλD outperforms all the four 
other distributions for the weekly maximums and minimums.

The GλD has been applied increasingly to data other than equity-related data as well. For 
example, Corlu and Corlu (2015) use daily closing price of nine different currencies in terms of 
the US dollar they investigate the performance of GλD via a numerical study against the skewed 
t distribution, the unbounded Johnson family of distributions, and the normal inverse Gaussian 
(NIG) distribution. They conclude that the GλD can be a good choice in various financial applica-
tions where modelling of the fat-tail behaviour is of great importance. Similarly, albeit mathema-
tically revolutionary, Chalabi et al. (2012) fit USD/CHF exchange rate tick data for 2004, 2006, 2008 
and 2012 to the GλD having derived robust estimators for the moments of the original model. 
Among others, the authors indicate the directness of this process which in turn could simplify the 
formulae to express value-at-Risk (VaR), expected shortfall (ES), and other tail indices. 
Furthermore, Tarsitano (2004) models the distribution of income over a population using the 
GλD on the premise that personal income distributions could adequately be described by the 
quantile function. For emerging European countries, Heinz and Rusinova (2015) prove the presence 
of heavy tails in the exchange market pressure (EMP) index through the use of Extreme Value 
Theory (EVT). They opine that disregarding these tail properties have the tendency to under-
estimate tail events.

In addition to the number of studies modifying the original formulation of the GλD and those 
applying the formulations to various financial data to test the appropriateness of the various 
versions of the same, there are also a number of studies that have investigated the adequacy of 
alternative estimations methods of the GλD itself. Corlu and Meterelliyoz (2016) used moment 
matching, L-moments, least-squares, quantile matching, maximum likelihood, the star-ship, and 
the genetic algorithm methods to compare the goodness-of-fits in estimating the FMKL-GλD. Each 
method was applied on daily exchange rates of eight currencies. However, the ensuing results 
were more varied than they were similar. Chalabi et al. (2010) and Scott and Wuertz et al. (2012) 
perform a Monte Carlo simulation closely resembling the returns of the NASDAQ-100 index and 
find the MLE to be reliable for small samples and heavy-tailed returns over maximum spacing, 
goodness-of-fit, and histogram binning approaches. Further, Mahdizadeh and Zamanzade (2019) 
examine the heavy-tails of the German Stock Index (DAX) using the Cauchy distribution. As in both 
Mahdizadeh and Zamanzade (2019) and Mahdizadeh and Zamanzade (2017), a battery of good-
ness-of-fit tests were performed. The tests perform better against the Gaussian distribution.

The extant literature suggests that there is a large authorship on the applications of the GλD to 
fit financial and economic low-frequency returns data. However, studies investigating the perfor-
mance of the GλD estimations approaches for high-frequency financial data are sparse with the 
exception of Chalabi et al. (2012). This paper endeavours to fill this gap by investigating the shape 
distributions of 5-min high-frequency data as per the DJI30 Index (from January 2001 to 
December 2016) using the Freimer, Kollia, Mudholkar & Lin generalized Lambda distribution (FMKL- 
GλD) and both estimation methods of Moment Matching (MM) and Maximum Likelihood 
Estimation (MLE).

Our present study adds to the extant literature in three explicit ways. First, as stipulated earlier, 
studies that have employed the GλD have largely used low-frequency financial data. The use of tick 
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data is almost absent save Chalabi et al. (2012) who apply their robust sample moments estimator 
to tick exchange rate data. Therefore, the paper attempts to increase literature on distribution of 
tick index data with an index comprising many prominent companies in the world. Second, as we 
sample the data as monthly 5-min log-return series, the non-stationarity in the price generating 
process is implicitly addressed. Hence, the inherent non-stationarity in a simple and indirect 
manner and makes the subsequent estimations and findings appropriate and relevant. Our choice 
of the size of each sample is also informed by the fact that in our preliminary analysis of the data 
the FMKL-GλD fit is rejected for the whole sample period (i.e. 5-mins intraday DJI30 Index from 
January 2001 to December 2016). Third, by taking the data sample from 2001 to 2016, the paper 
also explicitly includes the span of the Global Financial Crisis (GFC), particularly the year 2008, 
within the overall sample period. Thus, not only is the data up-to-date, but also covers both the 
pre- and post-GFC periods for subsequent comparisons. In addition, with a special focus on the 12 
months in 2008, the paper highlights the GFC-affected shape distributional properties as per the 
FMKL-GλD. The associated time series plots of GλD parameters offer a rare insight into the 
evolution of the DJI30 return distribution over the GFC. Also λ3-λ4 lambda-space plots further 
describe the support regions for the fitted parameters during the crisis period which may be useful 
for risk estimates and decision-making.

In summary, in this paper, the extant empirical research around the generalized lambda 
distribution is further broadened so as to encompass high-frequency equity markets utilising the 
distributions and methods developed in Chalabi et al. (2012). Our findings confirm that the MLE 
outperforms the MM in line with extant literature and that for both MM and MLE the observed 
anomalies in fits are concomitant with not only large and negative shape parameter estimates (i.e. 
λ3 and λ4) but also with poor overall goodness-of-fits (i.e. GoFs).

The remainder of this paper proceeds as follows: Section 2 is an overview of the GλD in the light 
of Ramberg and Schmeiser (1974) (RS-GλD) and Freimer et al. (1988) (FMKL-GλD) approaches, with 
focus on the latter. Sections 3.1 & 3.2 respectively detail the two methodologies of moment 
matching (MM) and maximum likelihood estimation (MLE) in fitting the dataset of the GλD. 
Section 4 describes the data and a preliminary analysis of the same. Section 5 presents the 
estimated GλD parameters and other empirical results. We close the paper with goodness-of-fits 
(GoFs) comparisons between the MM and MLE methods followed by concluding remarks with 
practical implications in Sections 6 & 7 respectively.

2. Generalized Lambda Distribution (GλD)
The GλD was first introduced by Ramberg and Schmeiser (1974) as the inverse distribution function 
of Tukey’s lambda (TL) distribution. The Tukey’s lambda distribution, as in Hastings et al. (1947), 
has come to be known as the “Tukey-lambda” (TL) family of distributions and is defined as: 

X ¼ Q uð Þ ¼
uλ � 1� uð Þ

λ½ �
λ ; λ�0

log uð Þ
1� u ; λ�0;

(

ð1Þ

where u is a uniform (0, 1) random variable and the transformation Q :ð Þ, known as the quantile or 
percentile function, readily yields Q αð Þ as the α th quantile, 0 < α < 1, or 100αth percentile of the 
distribution of X (see, Freimer et al., 1988).

Subsequently, a quantile generalization of the TL distribution known as the RS-GλD distribution 
was introduced by Ramberg and Schmeiser (1972, 1974); Ramberg et al. (1979) and is given as 
follows: 

F� 1 ρjλð Þ ¼ λ1 þ
ρλ3 � 1 � ρð Þ

λ4

λ2
ð2Þ
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where ρ are the probabilities (ρ 2 [0, 1]), λ1, λ2 are the location and scale parameters, and λ3, λ4, the 
shape parameters jointly related to the strengths of the lower and upper tails, correspondingly. By 
restricting λ1 = 0 and λ2 = λ3 = λ4 = λ we obtain the one-parameter TL Chalabi et al. (2010) formulation.

The more recent Freimer et al. (1988), Freimer et al. (1988)—FMKL-GλD distribution (3) places 
only a single constrain of λ2 > 0, i.e. the scale parameter is restricted to be positive. The funda-
mental motivation for the development of FMKL-GλD is that the distribution is well defined over all 
realisable λ3 and λ4 (Su, 2007a). The FMKL-GλD can be written as 

F� 1 ρjλð Þ ¼ λ1 þ
ρλ3 � 1

λ3
�

1 � ρð Þ
λ4 � 1

λ4

" #

=λ2 ð3Þ

for 0 ≤ ρ ≤ 1.

In this study, comparison of methods moment matching and maximum likelihood is done using the 
FMKL-GλD since it has the property of being a valid distribution as long as λ2 > 0, while the RS-GλD (2) is 
only valid for specified ranges of parameters. This means a fitting method using the RS-GλD will require 
a check to ensure the parameters are in the valid range, which makes programming more involved. 
Moreover, to allow a fair comparison, both fitting methods use exactly the same algorithm in obtaining 
initial values (Su, 2010). Also, as a preliminary suitability of the FMKL-GλD and other GλDs, for that 
matter, they are asymmetric. The four parameters of the various GλD types point to non-gaussianity. 
This stems from an extensive investigation by Karian and Dudewicz (2000), King and MacGillivray 
(1999), Ramberg and Schmeiser (1974), and Ramberg et al. (1979), etc. on the symmetry distribution 
version of the GλD given for λ3 = λ4; all parameter combinations do not yield valid density functions, an 
example is (4) Pfaff (2016). The probability density function of the GλD at x ¼ F� 1 ρjλð Þ is given by: 

f xð Þ ¼ f F� 1 ρjλð Þ
� �

¼
λ2

λ3ρλ3 � 1 � λ4 1 � ρð Þ
λ3 � 1 (4) 

wherefore parameter combinations of λ must yield f xð Þ � 0 and ò f xð Þdx ¼ 1.

In an alternative parameterisation, Chalabi et al. (2012) reduce the GλD to a two-step 
estimation problem in fitting empirical data, wherein the location and scale parameters are 
estimated by their robust sample estimators. Furthermore, this approach works even 
in situations where the GλD moments do not exist. The authors, thus, converted the four 
parameter FMKL-GλD into a two parameter “asymmetry-steepness” formulation. The various 
methods for estimation of the optimal values for the parameter vector λ in the literature 
include, among others: moment-matching Ramberg et al. (1979); Ramberg and Schmeiser 
(1974); percentile-based Karian et al. (1996); histogram-based Su (2005a); goodness-of-fit 
Owen (1988); maximum likelihood (ML) and maximum spacing Cheng and Amin (1983); 
Ranneby (1984) and least squares (LS); Karvanen and Nuutinen (2008); Öztürk and Dale 
(1982), Öztürk & Dale (1985). In Su (2007a) the authors discourse two generic approaches to 
fitting generalized lambda distributions to data; using the discretized method and maximum 
likelihood estimation (or an approach that aims to provide a definite fit to the data set such as 
maximising the goodness-of-fit). Similar to Wang and Wang (2016) they preferred the max-
imum likelihood estimation to the former not just for its efficiency but also its likelihood to 
produce GλD with closer moments to the data set (Su, 2005a, 2007a; Wang & Wang, 2016).

2.1. FMKL-GλD distribution: classes and regions
Despite similarities in the definitions of the FMKL-GλD and RS-GλD parameters, their separate 
representations can present an array of shapes and their utilization in practice. For instance, 
Corlu and Meterelliyoz (2016) ascribed the preferability of the FMKL-GλD to the ease of use. The 
flexibility of GλDs exhibits itself more evidently with the FMKL-GλD. The four-parameter FMKL-GλD 
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family is known for its high flexibility in generating distributions with a range of different shapes 
and has applications in studies as varied as in biology, physics, Monte Carlo, statistics and finance 
(Freimer et al., 1988; Jordan & Loeffen, 2013; Marcondes et al., 2020; Ridout, 2001; Zhu & Sudret, 
2019).

The FMKL-GλD embodies unimodal, U-shaped, J-shaped, and monotone probability density 
functions (pdf’s). Freimer et al. (1988) assert that these can be symmetric or asymmetric with 
tails either smooth, abrupt or truncated, and long, medium, or short. These tail-shapes and density 
supports lead to the following categorisations: Class I (λ3 < 1, λ4 < 1) denoting unimodal densities 
with continuous tails and can be further subdivided with finite or infinite supports at the tails, Class 
II (λ3 > 1, λ4 < 1) referring to monotone pdf’s similar to those of exponential or χ2

1 distributions and 
with truncated left tails; Class III (1 < λ3 < 2, 1 < λ4 < 2) indicating U-shaped densities with left and 
right tails truncated; Class IV (λ3 < 2, 1 < λ4 < 2) representing the rare occurring S-shaped pdf’s 
with one mode and one antimode—both tails are truncated with the right rising sharply, and Class 
V (λ3 > 2, λ4 > 2) showing unimodal pdf’s with both tails truncated.

As mentioned above, the FMKL-GλD Class I (λ3 < 1, λ4 < 1) category can be further subdivided 
into four regions that can exhibit either a finite support (Region 3 with both tails bounded, Region 
2 with the left tail bounded, Region 1 with the right tail bounded) or infinite support (Region 4 with 
both tails unbounded) as shown in Figure 1. Most notably and directly related to our study, Van 
Staden et al. (2014) and Karian and Dudewicz (2000, 2016) have also established that distributions 
with infinite support (i.e. their higher lambda parameters falling within Region 4 (λ3 < 0, λ4 < 0)) 
provide a better fit to empirical data as compared to those with finite supports. A full discussion of 
the range of the Regions 1 to 4 and the corresponding parameter supports are presented in 
Chalabi et al. (2012).

Hence, in this paper, we use the FMKL-GλD representation to examine the goodness-of-fits of the 
GλD using the method of moment matching and maximum likelihood for the DJI30 Index. Overall, 
we find that the DJI30 5-min monthly return distributions are of the Class I category (i.e. unim-
odal) and mainly fall within Region 4, as stated in Pfaff (2016), with the other three regions being 
occupied less frequently for both the MM and MLE fits over the sampled period.

3. Estimation techniques
After the pioneering works of Ramberg et al. (1979), Karian and Dudewicz (2000), and Karian et al. 
(1996), the method of moments, perhaps has been the most common approach in estimating the 
parameters of the GλD from empirical data. Since then, many other parameter estimation tech-
niques have surfaced. In Section 2 we have indicated the various methods available in the 
literature; it would be useful to have all of them estimated and their performances compared. 
However, applying all the various methods mentioned will be an overkill against the focus of the 
present study; the remaining approaches are left for future research. Hence, in this paper, we only 
undertake and compare the method of moments matching (MM) and maximum likelihood estima-
tion (MLE) using monthly sub-samples of our data. We present a summary of the Karian and 
Dudewicz (2000, 2016) MM algorithm in Section 3.1 and in Section 3.2 we briefly describe the MLE 
(Karian & Dudewicz, 2016, pp. 557–584) algorithm.

3.1. Method of moment matching
Given that a random variable Y has a non-normal distribution, we could attempt to approximate it 
by random variable X that is N μ; σ2ð Þ for some µ and σ2 being mean and variance, respectively; 
(first two moments) chosen to match those of Y. However, the explicit restriction that X is normal 
(i.e. skewness = 0 and kurtosis = 3) provides no additional parameters to capture the third and 
fourth moments (Karian & Dudewicz, 2016). The popularity in the use of families of distributions 
with additional parameters to match not only the mean and variance but also the skewness and 
kurtosis stems from this implicit limitation of the normal distribution.
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The family of GλDs is arguably a very good alternative to fix this drawback. To find a moment- 
based GλD fit to a given dataset X1,X2,X3, . . ., Xn, the first four moments of X1,X2,X3, . . ., Xn are 
determined and these set equal to their GλD (λ1, λ2, λ3, λ4) counterparts. The resulting equations 
are solved for λ1, λ2, λ3, λ4. If X is GλD (λ1, λ2, λ3, λ4) with λ3> � 1=4 and λ3> � 1=4 (our data fully 
satisfy these), then its first four moments, α1, α2, α3, α4 (mean, variance, skewness, kurtosis, 
respectively) are given by a set of equations in Karian and Dudewicz (2016). In brief, the process 
is described in the following manner: start by setting λ1 = 0; next obtain the non-central moments 
of the GλD (λ1, λ2, λ3, λ4); the finally derive the central GλD (λ1, λ2, λ3, λ4) moments. Thus, if X is 
a GλD (λ1, λ2, λ3, λ4) random variable, then Z = X − λ1 is GλD (0, λ2, λ3, λ4). If Z is a GλD (0, λ2, λ3, λ4), 
then E(Zk), the expected value of Zk is given by 

E Zk
� �

¼
1
λk

2
∑
k

i¼0

k
i

� �

� 1ð Þ
iβ λ3 k � ið Þ þ 1; λ4i þ 1ð ÞÞ

� �

(5) 

where β(a, b) is the beta function defined by  

β a; bð Þ ¼ ò
1

0
xn� 1 1 � xð Þ

b� 1dx (6) 

Then, the k-th GλD (λ1, λ2, λ3, λ4) moment exists if and only if λ3> � 1=k and λ4> � 1=k. The proofs 
of these are provided in Theorem 3.1.4, Corollary 3.1.10, and Theorem 3.1.11 of Karian and 
Dudewicz (2016). These are not provided here for brevity reasons. It is clear from these equations 
that all four statistics depend on all four parameters and one has to solve a system of four non- 
linear equations to obtain the parameter estimates.

3.2. Method of maximum likelihood
The principle of the MLE states that the desired probability distribution is the one that makes the 
observed data “most likely” as originally postulated in Fisher (1922). This implies that one seeks 
the value of the parameter vector that maximizes the likelihood function as described in (7)—(11). 
Let fðyjwÞ denote the probability density function (PDF) that specifies the probability of observing 
vector y given the parameter w. The likelihood function can be given as 

lðwjyÞ ¼ fðyjwÞ (7)  

1
n

XTu βð Þ ¼ 0 (8)  

LfðyjwÞ ¼
Yn

i¼1
fðyjwÞ (9)  

@LðwjyÞ
@wi

¼ 0 (10)  

@2LðwjyÞ
@w2

i
<0 (11) 

where w = (w1, . . ., wk) is parameter vector defined on a multi-dimensional parameter space and 
y = (y1, . . ., yn) is a random sample data vector Myung (2003). Focardi and Fabozzi (2004) find the idea 
of the MLE highly intuitive as a principle of statistical estimation which, given a parametric model such 
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as the GλD, prescribes choosing those parameters that maximize the likelihood of the sample under 
the model (Baum, 2007; Baum et al., 2003; Hansen, 1982; Hansen et al., 1996; Stock et al., 2002).

Contrary to least-squares estimation as a descriptive tool, MLE in particular, is preferred for 
many statistical modelling involving non-linearity with non-normal data and hence adequate for 
GλD. Given that the current literature is primarily concerned with providing definite fits to 
a dataset, Su (2007b) maintains that the MLE is usually the preferred method in comparing 
different approaches to fitting GλD to data. In addition to the efficiency of the MLE over the 
starship method, it also tends to produce GλD that has proximate first four moments to the data 
set. If the sample y is independent and identically distributed (IID), then the likelihood is the 
product of individual likelihoods in (9). Assuming the log-likelihood function lnLðwjy) is differenti-
able, if wMLE (MLE estimate) exists, it must satisfy the partial differential equation called the 
likelihood equation in (10). A sufficient condition requires that lnLðwjy) is a maximum and not 
minimum. Hence, the shape of the function is convex. The empirical data in this study is fitted to 
the FMKL-GλD using the procedure described in the GLDEX R package (Su, 2007a).

4. High-Frequency DJI30 Data
Our data is the 5-min intraday Dow Jones Industrial Average (DJI30) spanning 4 January 2001 to 
30 December 2016. Dow Jones Industrial Average is a benchmark for the stock market of USA; 
obtained from the Securities Industry Research Centre of Asia Pacific/Thomson Reuters Tick History 
(SIRCA/TRTH) database. To fully encapsulate the tail behaviour of the US stock market, we deem it fit to 
use high frequency rather than daily data based on the statistical principle that more data is preferred 
to less, ceteris paribus. Nonetheless, this may not always be true in the face of noise induced by 
microstructure frictions, such as price discreteness and bid-ask bounce effects, if unaccounted for 
(Aït-Sahalia et al., 2005; Bandi & Russell, 2006). To reduce the effect of noise, the most commonly used 
sampling frequency in the empirical literature range from 5-min intervals (T. Andersen et al., 1999; 
Barndorff-Nielsen & Shephard, 2002; Gençay et al., 2002) to long as 30 min (Andersen et al., 2003).

The DJI30 is selected for its rich history and fame as one of the best indices in the world. First 
published in 1896, index shows the results of trading on the stock market by 30 US large companies 
that participate in New York Stock Exchange and NASDAQ. The top five stocks in the index are 3 M, 
Boeing, Goldman Sachs, IBM, and UnitedHealth Group. The bottom five stocks, on the other hand, are 
Cisco Systems, Coca-Cola, General Electric, Intel, and Pfizer, classified according to market capitalisa-
tion. The 5-min price series was transformed into 5 min continuously compounded logarithmic 
returns, rt ¼ ln Ptð Þ � ln Pt� 1ð Þ where rt and Pt are log-return and price, respectively.

The full sample span (January 2001 to December 2016) is partitioned into monthly sub-samples 
of 5-min returns data to enable the capture of the implicit non-stationarity in the 5-min return 
series. The monthly sub-sample size was chosen over weekly or daily sub-sample sizes to ensure 
changing shape distributions to reflect the evolving dynamics inherent in the higher moment 
parameters. By doing so, we explicitly assume stationarity for the sub-sampled data. There is no 
optimal subsample period per se, but the monthly sub-samples provide a simple trade-off between 
sub-sample size and the sample data span. We subsequently filter the monthly sub-samples to 
remove overnight returns, winsorize at 99.99% to remove outliers, and also remove zero returns to 
reduce the kinkiness in the observed Q-Q plots.

5. Empirical results and analysis

5.1. Log-returns and moments of DJI30
The price plot, log-return plot, and descriptive statistics tables are presented as supplementary 
material1 to maintain brevity of the paper, but we provide an explanation here. For most of the 
months the log-return plots show a variance in the neighbourhood of 0.02 to 0.06, outside of these 
we record a variance of 0.08 in March 2003. We have not recorded significant volatility clusters for 
these series. For shorter samples such as monthly data, it is not a surprise that we find no clusters. 
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There is almost an equal distribution of positive and negative monthly means. We also find that 
most of the months have negatively skewed log-returns as against positively skewed ones. 
Recording only positive excess kurtosis values for all monthly log-returns, we deem the DJI30 
heavy-tailed and many months platykurtic with excess kurtosis less than 0 albeit September 2008 
with leptokurtic distributions.

5.2. Fitted GλD by methods of moment matching & maximum likelihood estimation
Table 1 depicts the monthly estimates of the GλD by methods of moment matching (MM) and 
maximum likelihood estimation (MLE) along with their goodness-of-fit tests, as well as regions of 
support for only 2008 selected from the years (2001, 2002, 2003, 2008, & 2009) in which the GλD 
captured all four regions of support (Regions 1, 2, 3, & 4). The year 2008 is selected because it also 
coincides with the peak of the recent Global Financial Crisis (GFC). The scale parameter λ2 has been 
scaled by a factor of 1

10000 . Goodness-of-fit (GoF) tests used are the Kolmogorov-Smirnoff 
Resample (KS-R) and Kolmogorov-Smirnoff Distance (KS-D) tests. The KS-R test assesses the 
similarity between fitted distribution and actual data by sampling a proportion (for example, 
90%) of the data and fitted distribution and calculating the KS-R p-value. This process is then 
repeated many times and the number of times the p-value is not significant (does not reject the 
null hypothesis that fitted distribution is from the GλD) is recorded and reported. Thus, the higher 
the number, the more confident we can be that the fitted distribution is reasonable Su (2007a). The 
KS-D, on the other hand, produce a statistic that is premised on the largest absolute difference 
between the hypothesized distribution (i.e. the GλD) and the empirical distribution function (edf) 
(i.e. the actual data points). It has often been described as quantification of the eyeball test (Gan 
et al., 1991; Karian & Dudewicz, 2000). The KS-R has a wider usage in modern works, and it is seen 
as more robust than KS-D, at least over its inclination to reject the null hypothesis. For a wide array 
of goodness-of-fit tests, see, Mahdizadeh and Zamanzade (2017) and Mahdizadeh and Zamanzade 
(2019), among others.

In the GoF column, we report only KS-R test statistic. We do not report the p-values of the KS-D 
test because they are all greater than 0.05 (i.e. indicating that GλD fits are not rejected), except for 
May and August (under MM) which are 0.00 and 0.02, respectively. At 5% significance level, the 
approximate percentage of the difference between the fitted and simulated distribution is 
reported for KS-R. These two reports are presented so that we can draw parallels for the two 
approaches. There were 16 different months out of 172 for the GλD via MM rejected by both KS-D 
and KS-R tests. Of these KS-R range from 0% to 70.30%. Notwithstanding, a few of the months for 
which the fit was accepted by both tests, some of KS-R’s fall below 70%. Unlike the MM fits, there 
are only 2 months, namely; August and December 2014, for which the MLE fits are rejected by both 
KS-D and KS-R tests, rejection in December 2014 here coincides with that of MM fit. However, MM 
records an adequacy value of 67.10% in August 2014 instead of 55.10% for MLE fit. The MLE fits 
record a least GoF of 59.80%. Quantile-quantile (Q-Q) plots are another way of assessing the 
adequacy of fits pictorially. For further reading see, Kolmogorov (1933), Su (2007b), Karian and 
Dudewicz (2000), Lakhany and Mausser (2000), and Babu and Feigelson (2006).

Further, in Figures 2 and 3, we present a select number of monthly histograms and Q-Q plots of 
the MM & MLE GLD fits (2008) falling in Regions 1, 2, 3, and 4 to provide a succinct comparison of 
the goodness-of-fits between MM and MLE. In Figure 2 are plots from May 2008 in Region 1, 
August 2008 in Region 2, June 2008 Region 3, and July 2008 Region 4 for MM; in ascending order 
of goodness-of-fit (clockwise). In May 2008, the GλD was rejected, absolutely for Region 1 failing to 
capture the tails; denoted by very poor histogram and Q-Q plot. For August 2008, the inadequacy 
(60.90%) seems to have arisen from high negative values observed in these plots. Large outliers in 
both regions have adverse effects on the overall fits. However, in June 2008 (Region 3) the fit is 
adequate at 75.7% with positive parameter values but this is topped by July 2008 (Region 4) with 
95.5% adequacy albeit negative parameter values. For June 2008 (Region 3) the two large outliers 
had an adverse effect on the fit unlike the latter (July 2008 (Region 4)) with much smaller outliers.
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For MLE in Figure 3 we shown the months of April 2008 in Region 1, August 2008 in Region 2, 
June 2008 Region 3, and February 2008 in Region 4 (in ascending order of goodness-of-fit; clock- 
wise). In April and August 2008 (90.90% and 90%) one outlier each had their respective leverages 
making the fits failing to capture the peak, having encapsulated both tails. The outlying pair in 
June 2008; for 94.40% adequacy the fit is skewed to the right due to an extreme positive value 
dwarfing its positive counterpart; nonetheless bagging the peakedness fit for the sampled data. 
Adjudged the best fit by Q-Q plot at 94% adequacy and right-skewed, February 2008 also has 
a good histogram. It is very clear that comparatively the MLE performs better than MM for the 
DJI30 Index. Both methods result in the same “Regional” placements though their parameters 
(λ’s) differ quite a bit.

6. Performance Comparison
It is imperative to note that a GλD with very similar mean, variance, skewness, and kurtosis to the 
actual data may still be a bad fit (Karian & Dudewicz, 2000; Lakhany & Mausser, 2000). Hence, Su 
(2007a, p. 6) recommends “in some cases, it may be desirable to choose a good distributional fit 
with the closest mean, variance, skewness and kurtosis to the data set so that the fitted 

Figure 2. Histograms and 
Q-Q plots of MM-GλD for 
selected months (2008): May/ 
Region 1, August/Region 2, June/ 
Region 3, and July/Region 4.

Figure 3. Histograms and 
Q-Q plots of MLE-GλD for 
selected months (2008): April/ 
Region 1, August/Region 2, 
June/Region 3, and February/ 
Region 4.
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distribution can be used for simulation studies to model the population of interest”. Hence, in this 
section, we do a time series visual comparison of the MLE and MM fits.

From the time series plots in Figure 5 we see how the descriptive mean, variance, skewness and 
kurtosis of the sample data have been subsumed under the mean, variance, skewness, and 
kurtosis of the two fitted distributions, except for mid-2003 where the variance of the sample 
data is markedly different from the others. Notwithstanding, for 16 and 2 months of MM and MLE 
fits, respectively, the GλD has been rejected. Thus, similarity of sample data moments with those of 
fitted distribution does not guarantee a better fit. More so, in Figure 4 we observe very large 
disparity in the magnitude of fitted moments and fitted lambda values. Hence, there is no clear 
correspondence between these two pairs of values.

In the scatter plots of λ4 against λ3 in Figure 6 for MM (left pane) and MLE (left pane), the pairs 
(points) yielding rejected fits are in red colour. In Figure 6 we notice that the months of rejected fits 
have relatively high negative values for λ3 and λ4 for both MM and MLE, but especially the former. 
However, rejected fits are complementary and MLE is more robust than the MM. Nonetheless, 
extreme values of higher-order λs are more likely to be rejected by the GoFs. In other words, 
rejections are dictated by the extremeness of the higher-order shape parameters and is detected 
by the GoFs. Extreme values of higher-order shape parameters indicate the presence of outliers. 
We use a dashed diagonal line (in blue) to delineate the points of symmetry (i.e. points that lie on 
the diagonal line where λ3 = λ4). A perfectly symmetric distribution hardly ever occurs over the 
whole sample period for the two fitting methods except for MLE in December 2005; this single 
occurrence of perfect symmetry is depicted in purple on the MLE lambda-space plot.

Given that the FMKL-GλD’s higher-order lambda estimates typically fall within Region 4, our 
corresponding estimates do not fully adhere to this behaviour as some of our fits fall outside 
Region 4 (as shown by Table 1 and in Figure 6). Furthermore, the higher-order lambda estimates 
are scattered close to the 45 degree diagonal. This highlights not only the non-stationarity of the 
data generation process but also that the presence of skewness and kurtosis in high-frequency 
returns is the norm. Furthermore, there seems to be no pattern in the Regions from which the 
rejections occur (see, Figures 6 and 7). For the MLE, both rejections come from Region 4 

Figure 4. GλD moments & 
parameters of DJI30 from 
January 2001 to 
December 2016.
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(August 2014 and December 2014); most of the lambda estimates fall in this region anyway. For 
the MM, the 16 rejections occur in Region 1 (March 2005), Region 2 (February 2003, July 2006, 
August 2008, and June 2011), none in Region 3, and Region 4 (September 2001, December 2001, 
September 2002, March 2004, September 2006, February 2007, May 2009, January 2010, 
October 2014, December 2015, and August 2015). The years for which all the Regions are occupied 
by the MM fits are 2001, 2002, 2003, 2008, and 2009. On the other hand, the years for which all 
Regions are occupied by the MLE fits are 2002 and 2008. These findings indicate that rejections can 
occur in all the regions and is likely driven by outlier-sensitivity rather than lambda-sensitivity, 
giving credence to the flexibility of the distribution for high-frequency returns. Also, the MLE 
algorithm is superior to the MM in accommodating outliers within the data.

The Global Financial Crisis (GFC) occurred over the period between mid-2007 and early 2009 
putting extreme stress into the world financial markets and banking systems. With US being the 
epicentre, the crisis peaked following the failure of the US financial firm Lehman Brothers in 

Figure 5. MM & MLE GλD 
moments overlaid with 
descriptive moments.

Figure 6. Lambda (GλD) space 
of MM & MLE fits for DJI30 from 
2001 to 2016.
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September 2008. To get a better insight to the shape of the monthly distributions around the 
month of the Lehman Brothers failure, we focus on the lambda-space plots for 2008 in Figure 7. 
The month of September is clearly an outlier as can be seen from the lambda-space plots with 
a negative implied skewness and a high implied kurtosis. The MM-fit shows this more clearly than 
the MLE-fit; indicating MM-fits are more sensitive to outliers occurring within the data. On the other 
hand, MLE fits are more sensitive to the “non-outliers” in the data as suggested by the greater 
dispersion or lower clustering of the dot-points in the right plot. The year 2008 was surely “bearish” 
with most of the months depicting negative returns. The MLE-lambda parameters are more 
homogeneous with less extreme MLE-lambda parameters on average than the MM-lambda para-
meters; once again giving credence to the superiority of the maximum likelihood method.

In the specific context of tail events modelling, we present in Table 2 the percentage difference 
(%-Diff) between the MM and MLE GλD higher-order moment estimates and the descriptive 
moments (benchmark), i.e. skewness and kurtosis. The underestimates (Under) and overestimates 
(Over) are listed under the “State” column.

Under the MM approach, the higher-order moment %-differences are so tiny that one can 
safely assume that there are no significant differences between the MM-moments and the 
descriptive moments. This is not surprising as the MM approach minimizes the differences 
between the four moments, i.e. mean, variance, skewness and kurtosis. By definition, the MM 
method will always capture the descriptive moments with the least error. Unlike MM, the MLE 
moment estimates display large %-differences for most of the months in 2008. Skewness has 
%-differences ranging from −8.86% to 110.96% and kurtosis has %-differences ranging from 
−19.67% to 94.34%. However, these MLE large higher-order moment %-differences should not 
be seen as an inadequacy. The apparently large %-differences is a direct consequence of the 
MLE approach which maximizes the log-likelihood of the high-frequency returns within the 
relevant month. The MLE implicitly weighs the data around the median higher than the data 
around the tails, especially the outliers. This is further supported by the superior MLE-GoF test 
statistics. The MM method gives priority to the discrete four higher-order moments whereas the 
MLE method gives priority to the “shape-likelihood” of the overall data via the higher-order 
lambdas. Hence, the statement by Su (2007a, p. 6) that “in some cases, it may be desirable to 
choose a good distributional fit with the closest mean, variance, skewness and kurtosis to the 
data set so that the fitted distribution can be used for simulation studies to model the popula-
tion of interest”.

Figure 7. Lambda (GλD) space 
of MM & MLE fits for DJI30 
(2008). Note: The dot-points in 
red (May and August) indicate 
a rejection of the FMKL-GλD by 
the MM.
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7. Conclusions and practical implications
In the extant literature, we find that parametric density estimators are more consistent and 
efficient when compared to non-parametric density estimators. However, the high flexibility of 
four-parametric GλD distribution minimizes the inconsistency and inefficiency of a likely mismatch 
between the data and the distribution family assumed; that is to say the GλD addresses one of the 
biggest concerns about parametric density estimation—the reliability of the assumed functional 
form of the underlying distribution (Wang & Wang, 2016).

Using the FMKL-GλD fitted by MM on the one hand and MLE on the other, we identified the 
regions of support, periods of symmetry or otherwise, periods of goodness-of-fit or otherwise, and 
close matches between the sample data moments and the fitted distribution moments. To 
accomplish these, data was sub-sampled on a monthly basis to maintain stationary and homo-
geneity. We then showed that the MLE fitted FMKL-GλD captures realistically the tail behaviours 
(skewness and kurtosis) of the DJI30 5-min log-returns for the period from January 2001 to 
December 2016; with rejections for August and December 2014 only, whilst the alternative MM 
fits recorded rejections for 16 different months which were scattered across the four regions of 
support. This is due to the MM method giving priority to the four higher-order descriptive moments 
of the returns data and the MLE method giving priority to the likelihood of the “shape” of the 
empirical density of the same data. The results are in line with the extant literature that the MLE 
fits of the FMKL-GλD distribution perform better than the MM alternative (Su, 2005a, 2007a; Wang 
& Wang, 2016).

Our findings show that the four-parameters of the GλD of λ1, λ2 (location and scale parameters), 
λ3, and λ4 (shape parameters) are able to capture the shape of the 5-min return distributions 
consistently and efficiently for the DJI30 index for the monthly sub-samples under study. In 
addition, these four-parameters are also easily mapped into the first four descriptive moments, 
i.e. mean, variance, skewness and kurtosis. This inherent feature of the GλD distribution and its 
ease of fit will prove invaluable to any study in finance where the first four moments of asset 
return-distributions are relevant or required.

In terms of practical implications, regardless of which method (MM or MLE) fits the GλD 
distribution to the data, important ramifications can be drawn. Equity managers and investors 
who base their risk estimates and analysis on the first two descriptive moments (i.e. expected 
returns and variance) unknowingly carry significant levels of higher-order risk, among others; 
unsafe bets, unreliable forecasts, underestimating losses, as well as implicitly underestimating 
the number of assets to include in an optimal portfolio to mitigate unsystematic risk. These 
consequences stem from ignoring the additional information that the GλD distribution captures, 
i.e. the higher-order shape parameters directly allow for the presence of the higher-order moments 
(i.e. skewness and kurtosis) in asset return distributions. Furthermore, as a member of a family of 
stable distributions, diversification assuming the GλD considerably increases the number of stocks 
included in a portfolio in order to achieve the desired level systematic risk as when assuming the 
normal distribution (Young & Graff, 1995).

Additionally for portfolio risk management, the downside risk measures such as VaR and ES 
based on estimates using higher moments can also be useful for equity managers and 
investors. This becomes even more crucial in light of turbulent market conditions such as 
during the recent GFC. Given that the VaR and ES are tail measures, the normal distribution 
is by definition deficient in depicting the fat-tailed or extreme downside risks. In contrast, the 
GλD distribution allows for these tail parameters, hence its widespread use (like other asym-
metric distributions) for calculating VaR and ES (Owusu Junior & Alagidede, 2020, 2020). Thus, 
not only are reductions of unsystematic risk fostered, but the overall portfolio risks are also 
more realistically measured and mitigated to ensure superior risk management of equity 
portfolios.
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For future studies, goodness-of-fit tests can be expanded to include the fourteen tests per-
formed in Mahdizadeh and Zamanzade (2017) and Mahdizadeh and Zamanzade (2019). This 
should provide a better understanding of the performance of not just the GλD but also financial 
assets under non-Gaussian assumptions. In addition, it will be insightful to compare the fitting 
performance using some Monte Carlo simulation, and then comparing the fitting results using 
mean absolute bias (MAB) and mean square error (MSE) measures for robustness reasons.
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