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An exchange rate model where the 
fundamentals follow a jump-diffusion process
Jean René Cupidon1 and Judex Hyppolite2*

Abstract:  This paper presents some models of exchange rate with jumps, namely 
jump diffusion exchange rate models. Jump diffusion models are quite common in 
computational and theoretical finance. It is known that exchange rates sometimes 
exhibit jumps during some time periods. Therefore, it is important to take into 
account the presence of these jumps in exchange rate modeling in general. 
However, even the simplest jump diffusion model introduces some analytical diffi
culty in terms of finding a solution to the model. The models we analyze in this 
paper make use of Approximation Theory in order to come up with closed form 
solutions to the underlying variables. This approach leads to the branch of differ
ential equations called functional differential equations and more specifically the 
so-called delay differential equations. Our approach leads to a second order delay 
differential equation. Though, in principle, these types of functional differential 
equations can be solved analytically in some cases, the task, in general, is quite 
enormous. We circumvent this technical difficulty by deriving an approximate 
solution using a power series expansion of the second order. Therefore, we derive 
a complete solution to the models and also investigate the model’s predictions of 
the exchange rate. We introduce two jump diffusion models. The first model 
examines the case where there are jumps with a constant magnitude. The second 
model considers the case of jumps of different sizes. These are relatively simpler 
cases to be analyzed. We will present some computational aspects in terms of the 
difficulty often encountered in estimating these types of models. The difficulty 
increases for the type of exchange rate models being considered in this paper. 
Taking advantage of the specification of the models we have estimated the para
meters using a two-step M-estimation strategy that combines full information 
maximum likelihood estimation in the first step and the simulated method of 
moments in the second step.

Subjects: Macroeconomics; Econometrics; International Finance  

Keywords: Exchange rates; macroeconomic fundamentals; jump-diffusion; monetary 
model of exchange rate
JEL: F31; G12

1. Introduction
Exchange rates data usually exhibit discontinuities. Barrow and Rosenfeld (1984), Ball and Torous 
(1985) provide evidence of the presence of jumps in daily stock returns. Nevertheless, these 
discontinuities are not apparent in many monthly and weekly data. Jorion (1988) examined this 
issue and provided evidence on the presence of jumps in the foreign exchange market, including 
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stock markets. Cont & Tankov (2004) presented an extensive overview of tools that have been used 
in the literature to model financial time series, in particular stock and options data that exhibit 
jumps. If we maintain that exchange rate dynamics are similar to those of stock prices, as 
commonly argued and postulated, it is then a natural exercise to consider exchange rate models 
including jump processes and to investigate if observed exchange rate data are consistent with 
such models. A similar exercise was recently performed by Erdemlioglu, Laurent, and Neely (2015). 
Our paper is related to theirs in the sense that we are all trying to identify the best exchange rate 
model within a set of continuous time models. However, unlike Erdemlioglu et al. (2015) and 
several other authors (Akgiray & Booth, 1988; Bates, 1996; Ficura, 2015)1988, we will not introduce 
the jumps directly in the exchange rate process. We will rely on the monetary model of exchange 
rate determination which indicates that the exchange rate is primarily driven by the monetary 
fundamentals, namely the process fðtÞ. Given evidence of the presence of jumps in exchange rates, 
it follows naturally that these jumps must be captured in the fundamentals process. Several 
studies in the literature have documented the failure of the fundamentals to explain observed 
exchange rate movements (Cheung, Chinn, & Pascual, 2005; Meese & Rogoff, 1983). Using a more 
realistic process to model the macroeconomic fundamentals may lead to an exchange rate model 
that better fits the data. Therefore, in this paper, we will investigate an exchange rate model that 
adds a jump-diffusion component to the stochastic process governing the fundamental determi
nants of exchange rate, namely the process fðtÞ. The paper presents two models of jump-diffusion 
for the fundamentals. For each model, we provide approximate analytical solutions for the implied 
exchange rate process and discuss the estimation of the parameters.

2. Some preliminaries
As commonly done in the literature (Cont & Tankov, 2004) we introduce jumps in the fundamen
tals process using the Poisson process. In general, a jump-diffusion Stochastic Differential Equation 
(SDE) for the process fXðtÞg has the form 

dX tð Þ ¼ f X tð Þ; tð Þdtþ g X tð Þ; tð ÞdW tð Þ þ h X tð Þ; tð ÞdN tð Þ

Xð0Þ ¼ x0;

where fWðtÞgt�0 is a standard Wiener process and fNðtÞgt�0 is a simple Poisson process with 
constant intensity λ. The two processes are assumed to be independent. The Brownian motion (BM) 
component provides the diffusion and the simple Poisson process provides the jump. Given that at 
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Figure 1. Paths of the process 
X(t) with and without jumps.
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this point we consider a simple Poisson process with time-independent intensity, then, the simple 
Poisson process NðtÞ has a Poisson distribution with parameter λt. In integral form, we have 

XðtÞ ¼ Xð0Þ þ
ðt

0
fðXðsÞ; sÞdsþ

ðt

0
gðXðsÞ; sÞdWðsÞ þ

ðt

0
hðXðsÞ; sÞdNðsÞ:

The first integral is a Wiener integral, the second one is an Ito stochastic integral (or possibly, 
a Stratonovich integral), and the last integral is a jump stochastic integral, where the stochastic 
process fhðXðtÞ; tÞgt�0 is being integrated with respect to a simple Poisson process, a random 
measure. More generally, a jump stochastic integral could also be defined with respect to semi
martingales or Levy processes. The fact is that whenever there is a jump process involved in either 
the SDE formulation or the stochastic integral formulation, the usual classical Ito’s lemma has to 
be modified to account for the jump or jumps. The following graphs (Figure 1) show examples of 
paths of the process XðtÞ with and without jumps.

The use of Poisson processes to account for potential jumps makes the analysis simpler. Without 
any doubt, Poisson processes are one of the most important types of stochastic processes given 
their widespread use in modeling.

A basic example of the third integral is the following: 

ðt

0
NðsÞdNðsÞ ¼

1
2

N2ðtÞ � NðtÞ
� �

: (1) 
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Figure 2. Graph of the negative 
of the marginal log-likelihood 
evaluated as a mixture of 5, 10, 
and 30 components.

Cupidon & Hyppolite, Cogent Economics & Finance (2022), 10: 2082025                                                                                                                            
https://doi.org/10.1080/23322039.2022.2082025                                                                                                                                                       

Page 3 of 23



As the solution indicates, this integral differs from the classical Riemann integral and also from the 
Ito integral with respect to a Brownian motion. More generally, it can be shown that 

ðt

0
NmðsÞdNðsÞ ¼ SðmÞNðtÞ� 1; (2) 

where SðmÞn is the super-triangular numbers of order m for the first n positive integers, as defined by 

SðmÞn ¼ ∑
n

k¼1
km (3) 

for non-negative integers m and n (Hanson, 2007).

At this point, we have a certain understanding of the three integrals defined in the jump- 
diffusion SDE as represented in the form of a stochastic integral equation. To solve the models 
presented in this paper, we need a version of Ito’s lemma (Ito, 1944) that accounts for jumps. The 
modified Ito’s lemma (Situ, 2005) is the following:

Consider the function YðtÞ ¼ Fðt; XðtÞÞ, where F is once continuously differentiable in t and twice 
continuously differentiable in X. Let the process ðXðtÞÞt � 0 satisfy the simple jump-diffusion SDE 
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Figure 3. Histograms of the 
estimates of the parameters of 
the jump-diffusion process.

Cupidon & Hyppolite, Cogent Economics & Finance (2022), 10: 2082025                                                                                                                            
https://doi.org/10.1080/23322039.2022.2082025

Page 4 of 23



dXðtÞ ¼ fðt;XðtÞÞdtþ gðt;XðtÞÞdWðtÞ þ hðt;XðtÞÞdNðtÞ (4)  

Xð0Þ ¼ x0; (5) 

where the coefficient functions f , g, h, are possibly nonlinear in the state XðtÞ. Then 

dFðt; XðtÞÞ ¼ dðcontÞFðt; XðtÞÞ þ dðjumpÞFðt;XðtÞÞ; (6) 

where 

dðcontÞFðt; XðtÞÞ ¼ Ft þ FXf þ
1
2

FXXg2
� �

ðt; XðtÞÞ þ ½FXðt;XðtÞÞgðt; XðtÞÞ�dWðtÞ; (7) 

and similarly 

dðjumpÞFðt;XðtÞÞ ¼ ðFðt; XðtÞ þ hðt;XðtÞÞ � Fðt;XðtÞÞÞdNðtÞ: (8) 

The function Fðt; XðtÞÞ referred to in this section will be derived from the monetary model of 
exchange rates.

3. Monetary model of exchange rate determination
The stochastic continuous time monetary model is set up as follows. 

mðtÞ � pðtÞ ¼ ϕyðtÞ � αiðtÞ (9)  

m?ðtÞ � p?ðtÞ ¼ ϕy?ðtÞ � αi?ðtÞ (10)  

sðtÞ ¼ pðtÞ � p?ðtÞ (11)  

iðtÞ � i?ðtÞ ¼
Et½dsðtÞ�

dt
; (12) 

m, p, y, i, and s are respectively money demand, the price level, output, the nominal interest rate, 
and the exchange rate and EtðÞ is the expectation conditional on information available up to time 
t. All the variables, except the nominal interest rate are in logarithm. Variables with a star super
script are foreign variables. The first equation (Equation 9) is the domestic money demand, 
the second (Equation 10) is the foreign money demand equation, the third equation (Equation 
11) is the purchasing power parity, and the fourth equation (Equation 12) is the uncovered interest 
rate parity. The above four equations establish the following relationship between the exchange 
rate and the economic fundamentals fðtÞ: 

1
dt

Et½ds� �
sðtÞ

α
¼ �

fðtÞ
α
; (13) 

where fðtÞ is a function of real money balances and output defined as: 

fðtÞ ¼ mðtÞ � m?ðtÞ þ ϕðyðtÞ � y?ðtÞÞ:
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In this paper, we follow Mark (1995) and set ϕ ¼ 1. The solution of the above stochastic differential 
equation provides the exchange rate as a function of the fundamentals 

sðtÞ ¼ G½fðtÞ�:

Hence, the behavior of the fundamentals determine the behavior of the exchange rate. As 
a result, to solve the differential equation, the stochastic process that governs the fundamentals 
has to be specified. Moreover, if the exchange rate process exhibits jumps, such discontinuities are 
likely to originate from the fundamentals process. So, in this paper we model the behavior of the 
fundamentals using stochastic processes that account for jumps. In the following sections, we 
present two such jump-diffusion processes.

4. An arithmetic BM jump-diffusion process
According to the monetary model of exchange rate, sudden movements in exchange rates 
originate from abrupt movements in the fundamentals. In this section, we assume that at each 
point in time the fundamentals process exhibits a random number of jumps of the same size.

4.1. Model
We consider the following relatively simple jump-diffusion model for the fundamentals process, 
namely 

dfðtÞ ¼ μdtþ σdWðtÞ þ kdNðtÞ: (14) 

The first two terms define the continuous diffusion component of the model, while the third one 
allows for the occurrence of sudden movements in the fundamentals. The model can also be 
written as: 

dfðtÞ ¼ μdtþ σdWðtÞ þ ∑
dNðtÞ

i¼0
k: (15) 

The jump component takes the form of a compound Poisson process. At each time t, up to dNðtÞ
jumps of size k are possible. NðtÞ is a Poisson process with rate λ and WðtÞ is a Wiener process. Both 
processes are assumed to be statistically independent. The jump-diffusion process can also be 
written in integral form as 

fðtÞ ¼ fð0Þ þ μtþ σWðtÞ þ kNðtÞ; (16)  

WðtÞ , Nð0; tÞ;NðtÞ , PoissonðλÞ: (17) 

As stated above, a solution for sðtÞ may be written as sðtÞ ¼ G½f ðtÞ�, where Gð:Þ is assumed to be 
twice continuously differentiable. Then, using the Ito’s lemma (Equation 8) defined in section 2 we 
have 

dsðtÞ ¼ G0½fðtÞ�μþ
1
2

G00½fðtÞ�σ2
� �

dtþ G0½fðtÞ�σð ÞdWðtÞ þ G½f ðtÞ þ k� � G½f ðtÞ�ð ÞdNðtÞ: (18) 

Hence, the conditional expectation is given by 

Et½dsðtÞ� ¼ G0½f ðtÞ�μþ
σ2

2
G00½fðtÞ�

� �

dtþ G½fðtÞ þ k� � G½f ðtÞ�ð Þλdt: (19) 
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The exchange rate equation becomes 

σ2

2
G00½fðtÞ� þ μG0½fðtÞ� þ G½f ðtÞ þ k� � G½f ðtÞ�ð Þλ �

1
α

G½f ðtÞ� ¼ �
fðtÞ

α
: (20) 

Equivalently, the equation can be written as 

G00½fðtÞ� þ
2μ
σ2 G0½f ðtÞ� þ

2λ
σ2 G½f ðtÞ þ k� �

2
σ2 λþ

1
α

� �

G½f ðtÞ� ¼ �
2

ασ2 fðtÞ: (21) 

Now, set x ¼ f tð Þ, y ¼ G f tð Þ½ �. The last equation can then be rewritten as 

y0 0ðxÞ þ
2μ
σ2 y0ðxÞ þ

2λ
σ2 yðxþ kÞ �

2
σ2 λþ

1
α

� �

yðxÞ ¼ �
2

ασ2 x: (22) 

This equation belongs to a class of differential equations called delay differential equations (DDEs). 
Delay differential equations are primarily a special class of differential equations commonly known 
as functional differential equations (FDEs). More specifically, the last equation is a second order 
delay differential equation with constant coefficients. The theory of functional differential equa
tions is still not fully developed. Given the presence of the parameters in the DDE, solving the DDE 
is not an easy task, though in principle, it can be solved, for example, by transforming the equation 
into a system of first order DDEs. First order DDEs are solved by a number of methods, such as, the 
method of Characteristics, the method of STEPS, and the method of Laplace transform. 
Unfortunately, as for ordinary differential equations, closed form solutions for functional differen
tial equations are not, in general, available except for some small classes. Therefore, usually, 
numerical methods are necessary.

As a first approach, we will look at an approximate solution without relying on numerical 
methods. This strategy has been used by Moh (2006) in a completely different context and in 
a much more convenient way. The approximate solution is based on a second order Taylor 
approximation. 

Remark: The specification for the SDE for the economic fundamentals can be extended, in 
principle, to a larger class of SDEs where the drift and volatility parameters μ and σ are time 
invariant so that we have 

dfðtÞ ¼ μðt;WðtÞÞdtþ σðt;WðtÞÞdWðtÞ þ kdNðtÞ;

which can be written in integral form as 

fðtÞ ¼ fð0Þ þ
ðt

0
μðs;WðsÞÞdsþ

ðt

0
σðs;WðsÞÞdsþ kNðtÞ

Such a formulation, though it may possibly fit the data better, presents some serious complica
tions related to the task of finding a closed form solution for the exchange rate, s(t). In addition, 
complications arise when it comes to find the moments of the fundamental series s(t) for 
computational purposes. It is true that for some very particular cases, a closed form solution 
may be found. However, serious technical issues arise with respect to a complete analysis of 
central banks’ interventions in the context of an exchange rate target zone. The focus of the paper 
is not only on the modeling aspect of exchange rate but also about using the model for central 
banks’ interventions in the context of a target zone. These points underlie the rationale for the 
modeling methodology we undertake in this paper.
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4.2. Approximate solution
Look at the equation 

G00½fðtÞ� þ
2μ
σ2 G0½f ðtÞ� þ

2λ
σ2 G½f ðtÞ þ k� �

2
σ2 λþ

1
α

� �

G½f ðtÞ� ¼ �
2

ασ2 fðtÞ: (23) 

A second order Taylor approximation gives  

G½f ðtÞ þ k� ¼ G½f ðtÞ� þ G0½f ðtÞ�kþ
1
2

G00½fðtÞ�k2 þ HOT: (24) 

Therefore, assuming the jump size is not relatively large, we have, approximately 

G½f ðtÞ þ k� � G½f ðtÞ� þ G0½f ðtÞ�kþ
1
2

G00½fðtÞ�k2: (25) 

The equation now becomes 

G00½fðtÞ� þ
2μ
σ2 G0½f ðtÞ� þ

2λ
σ2 G½f ðtÞ� þ G0½fðtÞ�kþ

1
2

G00½fðtÞ�k2
� �

�
2
σ2 λþ

1
α

� �

G½fðtÞ� ¼ �
2

ασ2 fðtÞ: (26) 

Equivalently, we can write 

1þ
λk2

σ2

� �

G00½fðtÞ� þ
2μ
σ2 þ

2λk
σ2

� �

G0½f ðtÞ� �
2

ασ2 G½f ðtÞ� ¼ �
2

ασ2 fðtÞ: (27) 

This is a second order non-homogeneous Ordinary Differential Equation (ODE) with constant 
coefficients. A closed form solution can be found. We first solve the homogeneous equation.

Let 

a ¼ 1þ
λk2

σ2 (28)  

b ¼
2
σ2 ðμþ kλÞ (29)  

c ¼ �
2

ασ2 (30)  

d ¼ �
2

ασ2 : (31) 

Also, as before, we set x ¼ f tð Þ, y ¼ G f tð Þ½ �. Hence, we write the above equation as 

ay00 þ by0 þ cy ¼ dx: (32) 
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The characteristic equation for the homogeneous equation is given by 

ar2 þ br þ c ¼ 0: (33) 

Let 

Δ ¼
4
σ4 ðμþ kλÞ2 � 4 1þ

λk2

σ2

� �
� 2
ασ2

� �

(34)  

¼
4
σ4 ðμþ kλÞ2 þ

8
ασ2 1þ

λk2

σ2

� �

� 0: (35) 

The roots are real and are given by 

r1 ¼

� 1
σ2 ðμþ kλÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþkλÞ2

σ4 þ 2
ασ2 1þ λk2

σ2

� �r

1þ λk2

σ2

� 0 (36)  

r2 ¼

� 1
σ2 ðμþ kλÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþkλÞ2

σ4 þ 2
ασ2 1þ λk2

σ2

� �r

1þ λk2

σ2

� 0: (37) 

It is interesting to note that if k = 0, then 

r1 ¼ �
μ
σ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

σ4 þ
2

ασ2

r

� 0 (38)  

r2 ¼ �
μ
σ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

σ4 þ
2

ασ2

r

� 0; (39) 

which gives the simpler formulation of the Krugman model of a target zone. 

yH ¼ Aer1x þ Ber2x; (40) 

where A and B are given constants. A particular solution can be found by postulating that 

yp ¼ A1xþ B1: (41) 

This leads to 

A1 ¼ 1 

B1 ¼ αμþ αkλ 

and thus we obtain 
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yp ¼ xþ αμþ αkλ:

Therefore, the general solution is given by 

sðtÞ ¼ αðμþ kλÞ þ fðtÞ þ Aer1fðtÞ þ Ber2fðtÞ: (42) 

We summarize the above findings in the following proposition

Theorem 1 Suppose that the fundamentals process follow the jump diffusion SDE  

dfðtÞ ¼ μdtþ σdWðtÞ þ kdNðtÞ: (43) 

Then, an approximate solution for the exchange rate is given by  

sðtÞ ¼ αðμþ kλÞ þ fðtÞ þ Aer1fðtÞ þ Ber2fðtÞ; (44) 

where r1 and r2 are given by 

r1 ¼

� 1
σ2 ðμþ kλÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþkλÞ2

σ4 þ 2
ασ2 1þ λk2

σ2

� �r

1þ λk2

σ2

(45)  

r2 ¼

� 1
σ2 ðμþ kλÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþkλÞ2

σ4 þ 2
ασ2 1þ λk2

σ2

� �r

1þ λk2

σ2

; (46) 

and A and B are arbitrary constants.

In this setting, the jump process NðtÞ affects the exchange rate indirectly through the funda
mentals fðtÞ. We do not intend to tackle in this paper the problem of finding an exact closed form 
solution for the exchange rate, namely, attempting to solve exactly the functions of real money 
balances and output. The second order linear Delay Differential Equation.

To identify the integration constants A and B, we may need to determine appropriate initial 
values for the fundamentals process fðtÞ. Potential choices are the values taken by the funda
mentals at the beginning and at the end of the estimation period. Let s1 ¼ G½f ð1Þ� and sT ¼ G½f ðTÞ�
be our initial conditions. The previous two conditions together with Equation 44 define a system of 
two equations 

c1 ¼ Aer1fð1Þ þ Ber2fð1Þ

cT ¼ Aer1fðTÞ þ Ber2fðTÞ;

where, 

c1 ¼ s1 � αðμþ kλÞ � fð1Þ

cT ¼ sT � αðμþ kλÞ � fðTÞ:

The solutions are 
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A ¼
c1er2fðTÞ � cTer2fð1Þ

er1fð1Þþr2fðTÞ � er2fð1Þþr1fðTÞ

B ¼
cTer1fð1Þ � c1er1fðTÞ

er1fð1Þþr2fðTÞ � er2fð1Þþr1fðTÞ :

A much more attractive option is to consider a central bank intervention in the foreign exchange 
market of the Krugman type. To do so, we rewrite the exchange rate solution as  

sðtÞ ¼ αðμþ kλÞ þ f þ ~Aer1ðf � fUÞ þ ~Ber2ðf � fLÞ; (47) 

where ~A ¼ Aer1fU , ~B ¼ Ber2fL , fL is a lower band on the fundamentals and fU is an upper band. This 
allows us to use the upper band, fU, and the lower band, fL, as initial values needed to obtain 
constants A and B. Since the expressions for these constants are the same for this model and for 
the next one, we will derive them as part of the solution of the model that follows.

5. An arithmetic BM jump-diffusion SDE model with distinct jump sizes
The previous model assumes that a stochastic number of jumps of a fixed size k may occur over 
each time interval. However, in practice, it is more likely to observe jumps of different sizes in 
a specific time interval. To capture this possibility, we formulate the following jump-diffusion SDE 
for the fundamentals.

5.1. Model
We assume that the fundamentals process may be described by the model: 

dfðtÞ ¼ μdtþ σdWðtÞ þ k1dN1ðtÞ þ k2dN2ðtÞ; (48) 

where the N1ðtÞ and N2ðtÞ are two independent simple Poisson processes with intensities λ1 and λ2 

respectively such that dN1ðtÞ and dN2ðtÞ are two independent Poisson differential processes with 
intensities (λ1d t) and (λ2dt) respectively. This specification allows for a random number of jumps of 
sizes k1 and k2 over each time interval.

As before, the jump-diffusion SDE has a closed form solution for fðtÞ given by 

fðtÞ ¼ fð0Þ þ μtþ σWðtÞ þ k1N1ðtÞ þ k2N2ðtÞ: (49) 

Now we turn to the problem of solving the model. The model here is summarized as follows 

1
dt

E½dsðtÞ� �
1
α

sðtÞ ¼ �
1
α

fðtÞ (50)  

dfðtÞ ¼ μdtþ σdWðtÞ þ k1dN1ðtÞ þ λ2dN2ðtÞ; (51) 

where N1ðtÞ and N2ðtÞ are two independent Poisson processes. We assume, as before, that the 
exchange rate is a time-invariant function of the fundamentals, that is, s tð Þ ¼ G f tð Þ½ � . Using Ito’ 
s lemma (Equation 8), it follows that 

dsðtÞ ¼ G0½fðtÞ�μþ
σ2

2
G00½fðtÞ�

� �

dtþ G0½f ðtÞ�σð ÞdWðtÞ þ G½fðtÞ þ k1� � G½fðtÞ�ð ÞdN1ðtÞ
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þ G½fðtÞ þ k2� � G½fðtÞ�ð ÞdN2ðtÞ: (52) 

This entails the following expression for the mean 

E½dsðtÞ� ¼ G0½fðtÞ�μþ
σ2

2
G00½fðtÞ�

� �

dtþ G½fðtÞ þ k1� � G½fðtÞ�ð Þλ1dt 

þ G½fðtÞ þ k2� � G½fðtÞ�ð Þλ2dt: (53) 

The fundamental exchange rate equation becomes 

G00ðtÞ þ
2μ
σ2 G0½f ðtÞ� þ

2λ1

σ2 G½fðtÞ þ k1� � G½fðtÞ�ð Þ þ
2λ2

σ2 G½fðtÞ þ k2� � G½fðtÞ�ð Þ �
1
α

G½f ðtÞ�

¼ �
2

ασ2 fðtÞ: (54) 

5.2. Approximate solution
The last equation is again a second order non-homogeneous Delay differential equation with 
constant coefficients. Though, in principle, a closed form solution could be found, we will rely, as 
before, on an approximate solution. We use a second order Taylor approximation. To do this, we 
write 

G½f ðtÞ þ k1� � G½f ðtÞ� � G0½fðtÞ�k1 þ
1
2

G00½fðtÞ�k2
1 (55)  

G½f ðtÞ þ k2� � G½f ðtÞ� � G0½fðtÞ�k2 þ
1
2

G00½fðtÞ�k2
2: (56) 

Hence, we obtain 

1þ
λ1k2

1
σ2 þ

λ2k2
2

σ2

� �

G00½fðtÞ� þ
2
σ2 ðμþ λ1k1 þ λ2k2ÞG0½f ðtÞ� �

2
ασ2 G½fðtÞ� ¼ �

2
ασ2 fðtÞ: (57) 

For simplification purposes, let 

a ¼ 1þ
λ1k2

1
σ2 þ

λ2k2
2

σ2 (58)  

b ¼
2
σ2 ðμþ λ1k1 þ λ2k2Þ (59)  

c ¼ �
2

ασ2 (60)  
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d ¼ �
2

ασ2 : (61) 

The two real roots for the homogeneous equation are 

r1 ¼
�

μ
σ2 �

λ1k1þλ2k2
σ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
μ
σ2 þ

λ1k1þλ2k2
σ2 Þ

2
þ 2

ασ2 þ
2ðλ1k2

1þλ2k2
2Þ

σ4

q

1þ λ1k2
1þλ2k2

2
σ2

(62)  

r2 ¼
�

μ
σ2 �

λ1k1þλ2k2
σ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
μ
σ2 þ

λ1k1þλ2k2
σ2 Þ

2
þ 2

ασ2 þ
2ðλ1k2

1þλ2k2
2Þ

σ4

q

1þ λ1k2
1þλ2k2

2
σ2

: (63) 

It is clear that if k2 ¼ 0, then we get the previous characteristic roots, showing that the model is 
just an extension of the previous one, allowing for the possibility of distinct jumps.

The solution of the homogeneous equation is given by 

yh ¼ Aer1x þ Ber2x; (64) 

where x ¼ fðtÞ and y ¼ G½fðtÞ�. It can be shown that a particular solution to the non-homogeneous 
equation is given by 

yp ¼ xþ αμþ αðλ1k1 þ λ2k2Þ: (65) 

The general solution is given by the following expression 

y ¼ xþ αμþ αðλ1k1 þ λ2k2Þ þ Aer1x þ Ber2x (66) 

and therefore the exchange rate solution is given by 

sðtÞ ¼ G½fðtÞ� ¼ αμþ αðλ1k1 þ λ2k2Þ þ fðtÞ þ Aer1fðtÞ þ Ber2fðtÞ: (67) 

We summarize the solution to the model in the following proposition:

Theorem 2 Suppose that the exchange rate equation is given by  

1
dt

E½dsðtÞ� �
1
α

sðtÞ ¼ �
1
α

fðtÞ: (68) 

In addition, assume that the fundamentals f(t) follow the jump-diffusion SDE  

dfðtÞ ¼ μdtþ σdWðtÞ þ k1dN1ðtÞ þ λ2dN2ðtÞ; (69) 

where k1 and k2 are time invariant and (N1ðtÞÞ and (N2ðtÞÞ are two independent simple Poisson 
processes with parameters λ1 and λ2 respectively. Also, assume that the processes 
fWðtÞ;N1ðtÞ;N2ðtÞg are independent processes. Then, an approximate solution for the exchange 
rate is given by  

sðtÞ ¼ αμþ αðλ1k1 þ λ2k2Þ þ fðtÞ þ Aer1fðtÞ þ Ber2fðtÞ; (70) 
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where r1 and r2 are given by  

r1 ¼
�

μ
σ2 �

λ1k1þλ2k2
σ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
μ
σ2 þ

λ1k1þλ2k2
σ2 Þ

2
þ 2

ασ2 þ
2ðλ1k2

1þλ2k2
2Þ

σ4

q

1þ λ1k2
1þλ2k2

2
σ2

(71)  

r2 ¼
�

μ
σ2 �

λ1k1þλ2k2
σ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
μ
σ2 þ

λ1k1þλ2k2
σ2 Þ

2
þ 2

ασ2 þ
2ðλ1k2

1þλ2k2
2Þ

σ4

q

1þ λ1k2
1þλ2k2

2
σ2

: (72)  

Remark: Assuming a finite number of jumps when specifying the SDE for the fundamental series 
fðtÞ works as well as the two-jump case assumed in the model as long as the Poisson processes 
are assumed to be independent. This finite number of jump case is handled using the same 
approximation technique used in the paper.

On the other hand, it is, in principle, possible to add one or more Brownian motion to the SDE 
governing the fundamental series fðtÞ. However, that will be the study of a completely different 
paper. The main thing for the paper is to account for the jumps; adding one more Brownian 
motions to the SDE does not account for the possibility of the existence of jumps in the exchange 
rate series.

As an application, we now look at a specific Central bank intervention in the foreign exchange 
market, namely central bank interventions in the form of a target zone a lá Krugman. That will, in 
passing, allow us to definitize the constants A and B in the exchange rate equation. Essentially, we 
are looking at a target zone exchange rate where the central bank is committed to keeping the 
exchange rate within specific limits while only marginal interventions are allowed. In other words, 
we look at Krugman infinitesimal marginal interventions.

5.3. Solutions under Krugman interventions
The (approximate) exchange rate solution is given by 

sðtÞ ¼ αμþ αðλ1k1 þ λ2k2Þ þ fðtÞ þ Aer1fðtÞ þ Ber2fðtÞ: (73) 

Under Krugman infinitesimal marginal interventions, we have 

1þ Ar1er1fU þ Br2er2fU ¼ 0 (74)  

1þ Ar1er1fL þ Br2er2fL ¼ 0: (75) 

Therefore, A and B are given by 

A ¼
er2fU � er2fL

r2 er1fUþr2fL � er1fLþr2fUð Þ
(76)  

B ¼
er1fL � er1fU

r2 er1fUþr2fL � er1fLþr2fUð Þ
: (77) 

These boundary conditions completely specify the solution of the model. However, the para
meters of the model are still to be estimated. Estimating the model does not require having 
a closed form solution for the exchange rate s(t). Here, seven parameters fμ; σ; k1; k2; α; λ1; λ2g

are to be estimated.
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6. Estimation of the parameters of the model
In general, a one-step estimation of all the parameters of the model is preferable. However, the 
density function of the exchange rate process is unknown, which precludes the use of full 
information maximum likelihood. Alternatively, we could generate a set of moments and use the 
generalized method of moments or the simulated method of moments (Gourieroux & Monfort, 
1996). Since the above methods do not generally have good finite sample properties and since the 
parameters of the fundamentals can be consistently estimated by full information maximum 
likelihood, we will adopt a two-step M-estimation mixed procedure. First, we will estimate the 
parameters of the fundamentals process by maximum likelihood. Second, we use the estimated 
parameters to estimate the remaining parameters in the second step using simulated method of 
moments.

6.1. Estimating the Parameters of the Fundamental Process
As indicated above, the parameters of the jump diffusion processes may be estimated by the 
Generalized Method of Moments (GMM) and by the Maximum Likelihood Method (MLE). In the next 
sections, we will review the estimation of those parameters for both models.

6.1.1. Model with constant size jumps
To use the GMM method, we first need to obtain the moments of the model. They can all be 
calculated using Equation 15.

6.1.1.1. Moments. The mean is given by 

E½fðtÞ� ¼ fð0Þ þ μtþ kλt: (78) 

The variance can be calculated as 

V ar½fðtÞ� ¼ σ2tþ k2λt: (79) 

In principle all the other moments can also be derived using the characteristic function technique. 
The characteristic function of fðtÞ is given by 

ΦfðtÞðuÞ ¼ E½eiufðtÞ� (80)  

¼ eiuðfð0ÞþμtÞE½eiuσWðtÞ�E½eiukNðtÞ� (81)  

¼ eiuðfð0ÞþμtÞΦWðtÞðuσÞΦNðtÞðukÞ (82)  

¼ eiuðfð0ÞþμtÞ� 1
2σ2tu2þλtðeiku � 1Þ: (83) 

We then derive 

Φ
0

f tð Þ uð Þ ¼ i f 0ð Þ þ μtð Þ � σ2tuþ λtkieiku
� �

eiu f 0ð Þþμtð Þ� 1
2σ2tu2þλt eiku � 1ð Þ (84) 

It follows that 
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Φ
0

f tð Þ 0ð Þ ¼ i f 0ð Þ þ μtþ λktð Þ: (85) 

Therefore, the first moment is given by 

E f tð Þ½ � ¼ � iΦ0

f tð Þ 0ð Þ (86)  

¼ f 0ð Þ þ μtþ λkt: (87) 

All other moments can be obtained in a similar fashion using the expression for the characteristic 
function for the fðtÞ process. Hence, all the parameters of the model can be estimated using the 
Generalized Methods of Moments (GMM).

6.1.1.2. Density. The fundamental process (Model 15) can be discretized using the Euler method. 
Let Δt ¼ tj � tj� 1; tj 2 ½0; T�; j ¼ 1 � � � ;n. We obtain 

fðtjÞ � fðtj� 1Þ ¼ μΔtþ σ
ffiffiffiffiffi
Δt
p
ðWtj � Wtj� 1Þ þ kðNðtjÞ � Nðtj� 1ÞÞ: (88) 

As written, the intensity of the Poisson process (λ) does not enter the discretized process. However, 
it will enter the conditional distribution of the fundamental process. Let Wtj � Wtj� 1 ¼ Z, 
NðtjÞ � Nðtj� 1Þ ¼ QðtjÞ, and fðtþ ΔtÞ � fðtÞ ¼ yðtÞ, then 

QðtjÞ , PoissonðλΔtÞ (89)  

Z , Nð0; 1Þ; (90) 

and 

yðtjÞjQðtjÞ , NðμΔtþ kQðtjÞ; σ2ΔtÞ: (91) 

Let 

θ ¼ fμ; σ; k; λg:

Let hðyðtjÞjQðtjÞ; θÞ be the distribution of yðtjÞjQðtjÞ, the marginal distribution of yðtjÞ is then 

hðyðtjÞ; θÞ ¼ ∑
1

l¼0
pðQðtjÞ ¼ lÞhðyðtjÞjQðtjÞ; θÞ (92)  

¼ ∑
1

l¼0

ðλΔtÞle� λΔt

l!
1

σ
ffiffiffiffiffi
Δt
p ffiffiffiffiffiffi

2π
p exp �

ðytj � μΔt � klÞ2

2σ2Δt

( )

; (93) 

which takes the form of a mixture of an infinite number of normal distributions.

Note that for small values of Δt 
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pðQðtjÞ ¼ 0Þ � 1 � λΔt 

pðQðtjÞ>0Þ � λΔt:

Thus, the density takes the form of a two-component finite mixture density: 

hðyðtjÞ; θÞ ¼ λΔt� hðyðtjÞjQðtjÞ>0; θÞ þ ð1 � λΔtÞ � hðyðtjÞjQðtjÞ ¼ 0; θÞ:

The conditional distribution hðyðtjÞjQðtjÞ ¼ 0; θÞ is the density of the diffusion component of model 
15, which is known. However, the conditional distribution hðyðtjÞjQðtjÞ>0; θÞ would have to be 
derived to allow the estimation of the model as a two-component finite mixture model. The 
maximum likelihood estimator of θ is 

θ̂ ¼ argmax
θ

∑
n

i¼0
logðhðyðtjÞ; θÞÞ:

6.1.1.3. Identification of μ, σ, λ, andk. The marginal likelihood written above is a simple function 
that can be evaluated in any programming language after choosing a cutoff value for the number 
of components beyond which the remainder of the infinite sum can be neglected. The appropriate 
cutoff value should increase with the intensity of the Poisson process. At first, one would think that 
choosing a high cutoff value would increase the accuracy of the estimates, but the results of a few 
simulations point to the contrary.

We have simulated 5000 observations from the model using the following values for the 
parameters 

μ ¼ 0; σ ¼ 1; λ ¼ 1; k ¼ 1:

We fix the value of λ, estimate the other three parameters by maximum likelihood, and record 
the maximum value of the log-likelihood. We repeat the process for different values of λ and plot 
the results on the following graphs.

It is clear that λ is identified only when the cutoff value is set to 5 (Figure 2). In this case the 
minimum of the negative log-likelihood (or maximum of the log-likelihood) is close to the true value, 
λ ¼ 1. In the other cases, graphs 2 and 3, the log-likelihood is approximately flat for values of λ 
between 0.5 and 3. This suggests that one must be careful about the choice of the cutoff value.

A possible explanation for this observation has to do with the fact that for a value of λ as small 
as 1, the probability mass function of the Poisson random variable is approximately 0 for a number 
of arrivals greater than 5. 

λle� λ

l!
� 0 ðfor l>5 when λ ¼ 1Þ:

In this case, 

λle� λ

l!
1

σ
ffiffiffiffiffiffi
2π
p exp �

ðyðtÞ � μ � klÞ2

2σ2

( )

� 0"μ; k:

The above identification problem is different from the problem discussed in the paper by Honoré 
(1998) because we are working with jumps of a constant size k.
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To mitigate the observed identification problem, the number of components of the mixture is 
determined in an adaptive way while evaluating the likelihood function. For a given vector of 
parameters, the number of components is chosen to be the minimum value of m such that 

∑
m

j¼0
pðQ ¼ jÞ � 1

�
�
�
�
�

�
�
�
�
�
< 2;

for a very small 2 .

Another identification issue commonly observed in finite mixture models is the potential exis
tence of multiple maxima of the log-likelihood function. We tried to deal with this problem by 
estimating the model repeatedly with randomly chosen starting values and chose the estimates 
that correspond to the highest maximum.

6.1.2. Model with jumps of two different sizes
The techniques used above also apply to this model.

6.1.2.1. Moments. The mean is given by 

E½fðtÞ� ¼ fð0Þ þ μtþ ðk1λ1 þ k2λ2Þt: (94) 

The variance is given by 

V ar½fðtÞ� ¼ ðσ2 þ k2
1λ1 þ k2

2λ2Þt: (95) 

Though the distribution of fðtÞmay not have a closed form, the moments of the distribution can be 
found using the characteristic function technique or the moment generating function technique as 
previously described. The characteristic function can be shown to be of the form 

ΦfðtÞðuÞ ¼ eiuðfð0ÞþμtÞ� σ2 tu2
2 þλ1tðeik1u � 1Þþλ2tðeik2u � 1Þ: (96) 

This entails the following expression for the first moment 

E½fðtÞ� ¼ � iΦfðtÞð0Þ (97)  

¼ fð0Þ þ μtþ ðλ1k1 þ λ2k2Þt: (98) 

Of course, we have previously derived this expression directly. Similarly, we know that all the 
moments can be found from the characteristic function. The second noncentered moment is 
given by 

Φ00fðtÞðuÞ ¼ � E½fðtÞ2eiufðtÞ�: (99) 

Moreover, it is easily found that 

ϕ00fðtÞð0Þ ¼ ð� σ2t � λ1k2
1t � λ2k2

2tÞ þ ðiðf ð0Þ þ μtÞ þ λ1k1itþ λ2k2itÞ2: (100) 

Therefore, we obtain 
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V ar½fðtÞ� ¼ ðσ2 þ λ1k2
1 þ λ2k2

2Þt: (101) 

This is the same expression as previously found. Hence, all the moments can be found from the 
characteristic function without knowledge of the distribution of the process ffðtÞgt�0. Those 
moments can subsequently be used to estimate the parameters by GMM.

6.1.2.2. Density. If we want to estimate the model by Maximum Likelihood we need at least an 
approximation of the full density of the model. Fortunately, we can again discretize the model by 
the Euler method and use the resulting equation to approximate the density of the model.

The discretized version of Equation 48 is the following: 

fðtjÞ � fðtj� 1Þ ¼ μΔtþ σ
ffiffiffiffiffi
Δt
p

zþ k1ðN1ðtjÞ � N1ðtj� 1ÞÞ þ k2ðN2ðtjÞ � N2ðtj� 1ÞÞ: (102) 

Let N1ðtjÞ � N1ðtj� 1Þ ¼ Q1ðtjÞ, N2ðtjÞ � N2ðtj� 1Þ ¼ Q2ðtjÞ, and fðtjÞ � fðtj� 1Þ ¼ yðtjÞ, then 

Q1ðtjÞ , Poissonðλ1ΔtÞ;Q2ðtjÞ , Poissonðλ2ΔtÞ (103) 

and 

yðtjÞjQ1ðtjÞ;Q2ðtjÞ,NðμΔtþ k1Q1ðtjÞ þ k2Q2ðtjÞ; σ2ΔtÞ: (104) 

The marginal distribution of ytj is then 

hðyðtjÞÞ ¼ ∑
1

l¼0
∑
1

m¼0
pðQ1ðtjÞ ¼ l;Q2ðtjÞ ¼ mÞhðyðtjÞjQ1ðtjÞ ¼ l;Q2ðtjÞ ¼ mÞ (105)  

¼ ∑
1

l¼0
∑
1

m¼0

ðλ1ΔtÞle� λ1Δt

l!
ðλ2ΔtÞme� λ2Δt

m!

1
σ
ffiffiffiffiffi
Δt
p ffiffiffiffiffiffi

2π
p exp �

ðyðtjÞ � μΔt � k1l � k2mÞ2

2σ2Δt

( )

; (106) 

which takes the form of a mixture of an infinite number of normal distributions. The knowledge of 
the above density function makes the estimation of the parameters of the fundamentals process, 
via maximum likelihood, possible after choosing appropriate cutoff values that allow the approx
imation of the double sum as a finite sum.

Table 1. Summary statistics

Variable Minimum Maximum Mean Median
Standard 
Deviation

Canada

Δf a −0.0469 0.0578 −0.0023 −0.0030 0.0150

ΔlogðsÞ b −0.0601 0.1129 0.0004 0.0002 0.0148

Japan

Δf −0.1770 0.0874 −0.0013 −0.0012 0.0215

ΔlogðsÞ −0.1052 0.0807 −0.0019 −0.0001 0.0267
aΔf is the first difference of the fundamental series, f , which is derived as f ¼ m � m� � ðy � y�Þ (Mark, 1995), m is the 
log of the US monetary aggregate, m� is the log of the corresponding foreign monetary aggregate, y is the log of the 
US industrial production index, and y� is the log of the foreign industrial production index. 
bΔlogðsÞ is the percentage change in the value of the foreign currency. s is expressed in units of foreign currency per 
US dollar. 
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6.2. Estimation of the remaining parameters
The remaining parameters will be estimated by the method of simulated moments (Gourieroux 
and Monfort, 1996) (MSM). Based on Equation 16, the exchange rate can be written as 

sðt; θ;αÞ ¼ G½fðt; θÞ; α�;

where θ is the vector of parameters that characterize the fundamentals process and α is an 
additional parameter that appears in the exchange rate process. Since there is no intersection 
between α and θ, once we obtain the maximum likelihood estimate θ̂ of θ in the first step, we can 
generate draws for the fundamental process, ffðt; θ̂Þg. Those draws will be used subsequently to 
obtain draws for the exchange rate process using 

sðt; αÞ ¼ G½f ðt; θ̂Þ; α�

for given values of α. Thus, in the second step, we will find an estimate of α that minimizes the 
distance between some moments of the simulated exchange rate and the corresponding 
moments of the observed exchange rate data. Let MTðαÞ be such a column vector of moments 
and WT a weighting matrix. Then, the GMM estimator of α is obtained as 

α̂ ¼ argmin
α

M0

T αð ÞW� 1
T αð ÞMT αð Þ:

Table 2. Estimates of the parameters of the fundamental process for Canada and Japan
ABM ABM with jump

Parameters estimates stea p-value estimates ste p-value

Model for Canada

μ 0.0100 0.0081 0.2194 −0.0333 0.0077 0.0000

σ b 0.0531 0.0017 0.0000 0.0493 0.0017 0.0000

k 0.0437 0.0094 0.0000

λ b 0.1440 0.0969 0.1374

log-likelihood 1531.6049 1547.9094

AIC −3059.2099 −3087.8188

BIC −3050.5719 −3070.5429

Model for Japan

μ 0.0100 0.0111 0.3669 −0.0070 0.0099 0.4796

σ b 0.0747 0.0023 0.0000 0.0673 0.0020 0.0000

k −0.1220 0.0126 0.0000

λ b 0.0667 0.0387 0.0847

log-likelihood 1342.2636 1380.8993

AIC −2680.5271 −2753.7985

BIC −2671.8892 −2736.5227
aste = standard error 
bAll the p-values are two-sided, but σ and λ are restricted to be positive. Thus, appropriate p-value for these variables 
should be half the values in the table. 
cAIC ¼ � 2 � log � likelihoodþ 2 � number of parameters 
dBIC ¼ � 2 � log � likelihoodþ logðnÞ � number of parameters 
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6.3. Monte Carlo simulation
To assess the precisions of the estimates we have drawn 500 samples each of size 500 from the 
jump-diffusion process and from the exchange rate process. The parameters chosen are the 
following: 

μ ¼ 0; σ ¼
ffiffiffiffiffiffiffi
0:1
p

; k ¼ 0:5; λ ¼ 2; α ¼ 0:4;Δt ¼ 1=52:

For each sample, we estimate the parameters of the diffusion process. Then the estimates of the 
parameters of the diffusion process, the series f , and the initial and final values for s are then used 
to estimate α. The following figure (Figure 3) shows the sampling distribution of the parameter 
estimates.

The Monte Carlo covariance matrix of the parameter estimates of the jump-diffusion process is 
the following 

μ σ k λ α
μ 0:01015 � 0:00004 � 0:00036 0:00211 � 0:00228
σ � 0:00004 0:00010 0:00001 � 0:00006 � 0:00002
k � 0:00036 0:00001 0:00013 0:00000 � 0:00011
λ 0:00211 � 0:00006 0:00000 0:20099 � 0:05138
α � 0:00228 � 0:00002 � 0:00011 � 0:05138 0:01513

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

The above results show that we can estimate the parameters of the model with a high precision.

6.4. Application to monthly data on fðtÞ andsðtÞ
We estimate the first model using monthly data from January 1972 to April 2018 for the US, 
Canada, and Japan. The data include the bilateral exchange rates between the US and the 
other two countries, the monetary aggregates (M1) for each country, and the industrial 
production index used as proxy for the Gross Domestic Product (GDP) of each country. The 
exchange rates and the US monetary aggregate originate from the Board of Governors of the 
Federal Reserve System and the other data come from the Organization for Economic Co- 
operation and Development (OECD). We present some summary statistics in Table 1.

As indicated in the table, the monthly changes in the fundamentals (Δf ) and in the log of 
the exchange rate (ΔlogðsÞ) are on average small. Since the average change in the funda
mentals is negative for both countries, the monetary aggregate (M1) and/or the industrial 
production index grew faster in those countries than in the US. However, the Canadian 
Dollar has slightly depreciated, while the Japanese Yen has slightly appreciated over the 
period.

Estimates of the parameters of the fundamental process are presented in Table 2.

All the reported p-values are two-sided, but σ and λ are restricted to be positive. Thus, the 
appropriate p-value for these variables should be half the values in the table. As result, at a 5% 
level the jump size k and λ are both significantly different from 0 for Japan, which is evidence of the 
presence of jumps in the data for this country. For Canada, only the jump size, k, is statistically 

Table 3. Estimates of α for Canada and Japan
estimate stea p-value J-stat J-stat p-value

Canada 1162.9387 183.9531 6.3219 51.6241 0.0000

Japan 212.3611 5.7941 36.6513 557.0297 0.0000
aste = standard error 
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significant. However, both the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) suggest that the model that accounts for jumps fits the data better than the usual 
diffusion process for both countries.

Since the process with jumps and the one without jumps are nested, the likelihood ratio 
test would be an alternative way of comparing them. Although the log-likelihood for the jump 
process is clearly greater than the log-likelihood of the usual diffusion, the p-value calculated 
using the chi-square distribution as the asymptotic distribution of the likelihood ratio statistic 
may not be correct because one of the regularity conditions is violated. Under the null 
hypothesis of no jumps in the process, one of the parameters, the intensity of the Poisson 
process, λ, falls on the boundary of the parameter set. Since the mean of the jumps is given 
by the product of the size of the jumps (k) and the intensity of the Poisson process (λ), on 
average the change in the fundamentals jumped up by 0.0063 for Canada and down by 0.008 
for Japan.

Table 3 includes the estimates of α for both countries.

Although the model that allows for the existence of jumps fit the data of the fundamentals 
series better, the estimates of α for both countries and the GMM J-statistic are large. This 
result may be due to the method used to estimate α. The exchange rate derived in the paper 
is a complicated function of the fundamentals, its parameters, and θ. The existence of an 
approximate density for the fundamentals process allows us to efficiently estimate its para
meters. However, neither the density nor the moments of the exchange rate process are 
available.

7. Conclusion
The paper provides a theoretical framework for exchange rate modeling in continuous time that 
accounts for the existence of jumps in exchange rate series. We derived the approximate relation
ship between the exchange rate and the process describing the macroeconomic fundamentals for 
two different specifications. Our empirical analysis shows that the modeling of jumps lead to 
a better fit of the fundamentals data for Canada and Japan. However, the estimation of the 
parameters that are not included in the fundamentals process is somewhat complicated and 
should be the object of further research.
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