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ECONOMETRICS | RESEARCH ARTICLE

The Gini coefficient and discontinuity
Jens Peter Kristensen1*

Abstract:  This article reveals a discontinuity in the mapping from a Lorenz curve to the 
associated cumulative distribution function. The problem is of a mathematical nature— 
based on an analysis of the transformation between the distribution function of a bound 
random variable and its Lorenz curve. It will be proven that the transformation from 
a normalized income distribution to its Lorenz curve is a continuous bijection with 
respect to the Lq ([0,1])-metric—for every q ≥ 1. The inverse transformation, however, is 
not continuous for any q ≥ 1. This implies a more careful attitude when interpreting the 
value of a Gini coefficient. A further problem is that if you have estimated a Lorenz curve 
from empirical data,then you cannot trust that the associated distribution is a good 
estimate of the true income distribution.

Subjects: Microeconomics; Mathematical Economics; Political Economy  

Keywords: inequality; probability; math analysis; discontinuity

1. Introduction
Since the 1960s, economists have widely accepted the Lorenz curve as the tool for deriving measures 
of income inequality in society, among them the Gini coefficient. The traditional method was to group 
data in a number of intervals and assume all incomes in an interval to be equal to the average income 
in the actual interval, Morgan (1962). This gives a lower limit of the “true” Gini coefficient.
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The ability in our time to collect and centralize precise data about individual income implies that 
direct methods are now used to compute the Gini coefficient (see, OECD-IDD, 2017, p. 8). This 
actual OECD method does not take its offset in the Lorenz curve of observed data. It is based on 
the relative mean differences of observed income data.1

In education in the economic sciences, however, the Lorenz curve keeps its position in illustrat
ing the Gini coefficient. Still, in this century, scholars find new ways to derive the approximations 
made in the 1950s to 70s (see Golden (2008) and Farris (2010)).

At least since 1970, there has been a critical attitude towards the Gini coefficient as a precise 
measure of inequality (see Atkinson (1970)). Moreover, different proposals using the Lorenz curve 
have been advanced to give a more multi-faceted idea of inequality. Most influential in that 
respect were Kakwani (1980), Donaldson & Weymark (1983), and Yitzhaki (1983) with their gen
eralized or higher-order Gini coefficients. Their formulas turned out to be equivalent. In the last 
twenty years, a variety of new inequality measures have been developed, among them the 
generalized entropy family of indices. All the way through, we alternatively could use the ratio 
of the top to bottom shares (see, e.g., Liu and Gastwirth (2020)).

The voice of critics is thus rather comprehensive. The aim of the present article is to point out 2 
potential problems working with the Gini coefficient, problems that remain even when using the class 
of generalized Gini coefficients proposed by Kakwani and others. This is not just another demonstration 
of the fact that 2 different distributions could have the same Gini coefficient. Rather, we will discover 
that a small Gini coefficient does not necessarily imply a noticeable degree of equality. Furthermore, if 
you try to obtain the populations' income distribution from an estimated Lorenz curve—that is solving 
an inverse problem—then your result might be far from the true distribution. The cause to the problems 
is not solely due to observed data. It is a discontinuity in the relationship between 'the distribution 
function and the Lorenz curve for a bounded random variable, which brings trouble.

Consequently, we will in section 2 establish the connection between a cumulative distribution 
function for a bound, non-negative random variable and its Lorenz curve. It will be proved that any 
non-decreasing, convex function mapping [0,1] on [0,1] with a non-vertical left-hand tangent in 
(1,1) will be the Lorenz curve for some bound distribution. the correspondence is 1–1 up to scale. In 
section 3, the set of normalized income distributions and its subset, the Lorenz curves will be 
conceived of as subsets in the linear Lq 0;1½ �ð Þ-spaces. Thus, for any q � 1, a metric is present, and 
it will be established that the Lorenz curve results from its income cdf through a continuous 
transformation. Traditional measures of inequality, especially the Gini coefficient, appear as dis
tances in Lq 0;1½ �ð Þ, and in section 4, we shall see that the inverse transformation, mapping the 
Lorenz curve to its normalized distribution function, is not continuous. In section 5, we will draw 
some implications from this fact. The results will be derived in a general manner, which means that 
there will be no restrictions with respect to the type of bound distribution. This implies that the 
formal language departs somewhat from prevalent presentation in the economic literature.

2. The transformation mapping a cumulative distribution function to its Lorenz function
A Lorenz curve2 is formally a curve in the plane with the property, which for every point belonging 
to it, p; yð Þ; p, will denote a fraction of a population, while y will denote the relative share of some 
limited resource or goods, which this fraction possesses. p is explicitly the fraction that has the 
lowest share of the resource. If we assume that y can never be negative, the curve will contain the 
points (0,0) and (1,1), and it will be non-decreasing. The associated cumulative distribution func
tion, which has this curve as its graph, will in accordance with the current style also be termed the 
Lorenz curve. In fact, we have implicitly chosen a statistical model that operates with a large or an 
indefinite number of members of the population, which is treated as a continuous medium. 
Furthermore, we will only work with bound and non-negative distributions of the good.
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As preliminary results, we have that for any real, non-negative and bound random variable X, 
with cumulative distribution function F; the expectation exists and could be calculated as 

m ¼ E Xð Þ ¼
ðXe:s:

0
1 � F xð Þð Þdx ¼

ð1

0
F� 1 uð Þdu: (1) 

The integral used is the Lebesgue integral, and Xe:s: is the essential supremum of X: Note that (1) is 
valid for any mixture of continuous and atomic distribution functions.

F� 1 uð Þ might not exist as a function as it is not required that F is strictly increasing. So, in this 
text, F� 1 uð Þ simply means the u-fractile of F, formally, 

F� 1 uð Þ ¼ inf x : F xð Þ � uf g

If you are not used to work with F� 1 in this way, the correctness of the last equality sign in (1) 
can be justified by Figure 1. The red curve is the graph of F; and the area of the shaded set is both, 

E Xð Þ and 
ð1

0
F� 1ðuÞdu;

L pð Þ ¼
1
m

ðp

0
F� 1 uð Þdu; p 2 0;1½ �: (2) 

Expression (2) was used by Gastwirth to define the Lorenz curve (see Gastwirth (1971)). Dorfman 
(1979) in fact generally proves an equivalent result to (2).3

Note that there is no problem with this definition. As F� 1 uð Þ is uniquely determined as a measurable 
function with up to countably many discontinuities, L pð Þ is given in [0.1]. That the Lorenz curve might 

Figure 1. The graph of a non- 
continuous cdf. The area of the 
shaded set is 

ò
1

0
F� 1 uð Þdu.

Kristensen, Cogent Economics & Finance (2022), 10: 2072451                                                                                                                                          
https://doi.org/10.1080/23322039.2022.2072451                                                                                                                                                       

Page 3 of 16



not be differentiable is merely a consequence of the model (half of me earns half of my income, and 
my income ranked neighbor to the right-hand side might earn the same as me or (considerably) more). 
If F is an empirical cdf, then one could object to its application if the sample is small (see Yitzhaki and 
Schechtman (2013) p 28–29). Let us assume that this is not the case.

Formula (2) defines a mapping, L, of the class of non-negative, finite distribution functions into itself,

L : F xð Þ↷L pð Þ.

Furthermore, (2) ensures that the Lorenz curve, L; will always be convex.

As the third assumption, familiar to the reader, we have that the distribution function of a �
X; a>0 is given by FaX xð Þ ¼ FX

x
a
� �
: We therefore conclude that 

L FaXð Þ ¼
1
m

ðp

0
FX
� 1 uð Þdu: (3) 

We will now determine the preimage of an arbitrary Lorenz curve, L: Formula (3) means that for 
every a>0; FaX will belong to the same preimage as FX:

Equation (2) is equivalent to  

m�LðpÞ ¼
ðp

0
F� 1ðuÞdu 

, m�lðpÞ ¼ F� 1ðpÞ: (4) 

Here, l pð Þ is the density function corresponding to L pð Þ, uniquely determined almost everywhere.

Note that l pð Þ is non-decreasing, and because of that, its inverse function will exist in the sense 
explained above.

In order that X is bound, F� 1 1ð Þ must be the finite number Xe:s: Consequently, we have 

Theorem 2.1 
A non-negative random variable is bound if, and only if, the Lorenz curve associated with it has 

a non-vertical left-hand tangent in the point (1,1). The slope of this tangent is Xe:s:
m 

Equation (4) is equivalent to  

ðm�lÞ� 1
ðxÞ ¼ FðxÞ

, l� 1 x
m

� �
¼ F xð Þ:

So, for any fixed m and any given L—without a vertical left-hand tangent in (1,1)—F as 
a cumulative distribution function will be uniquely determined for x 2 0;Xe:s:½ �: We can arrive at 
the below conclusion:  
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If the cumulative distribution function FX for some non-negative, finite random variable X is in 
the preimage, with respect to the mapping L; of a Lorenz function L, the preimage will be exactly 
fFaX : a>0g. Thus, we have that 
Theorem 2.2 

Any finite non-negative distribution function—up to scale—is determined by its Lorenz curve. If 
the expectation or essential supremum is known, the distribution function is uniquely given.

Formula (4) and Theorem 2.2 were proved by Lambert (1990), p 40–41, in the case of F being 
differentiable and strictly increasing. In the present context, no results depend on the existence of 
a density function for the actual distribution function.

We realize that, from now on, we only have to look at the normalized random variable,  

Y ¼
1

Xe:s:
�X 

when we are working with Lorenz functions for finite random variables. We achieve that Y 2 ½0;1�
and that the transformation 

L : FY !
1
m

ðp

0
FY
� 1 uð Þdu 

is an injection of the class of distribution functions for normalized non-negative random into itself. 
Remark: Note that for the graph of L; by Theorem 2.1, the left-hand tangent in (1,1) has a slope of 
1
m , where m is the expectation of Y:

Let us illustrate what we found with an example: Suppose that in a given situation,  

LðpÞ ¼ p2 for p 2 ½0;0:5�
1:5ðp � 1Þþ 1 for p 2�0:5;1�

�

and that m ¼ 2:

As  

lðpÞ ¼
1
2
�F� 1ðpÞ

we get 

F� 1 pð Þ ¼ 4p for p 2 0;0:5½ �

3 for p 2 0:5;1� �
:

�

Hence, 

FðxÞ ¼
0:25x for x 2 0;2½ ½

0:5 for x 2 2;3½ ½

1 for x ¼ 3

8
<

:

It is the unique solution for F in this situation.
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As a random variable, X; with this distribution function F; has the maximal value of 3, and the 
normalized random variable is Y ¼ X

3 :Y has the distribution function,  

FYðxÞ ¼
0:75x for x 2 ½0; 2

3 ½

0:5 for x 2 ½ 23 ;1½
1 for x ¼ 1

8
<

:

We will denote this class of distribution functions for normalized random variables NCDF;
Normalized Cumulative Distribution Functions.

From the way we constructed Y; it is essential that any member of NCDF fulfills that 

x<1, FY xð Þ<1:

We know that L ¼ L Fð Þ is a convex function that maps [0,1] on [0,1]. From Theorem 2.1, we further know 
that L cannot have an infinite left-hand derivative at x ¼ 1: But will any convex function with the domain 
and range [0,1] be the L-image of some member of NCDF if it only has finite left-hand derivatives?

In the strict sense of convex function, the answer must be no, because the L-image will have to 
be a distribution function. Consider therefore a convex nondecreasing function f ; mapping [0,1] on 

[0,1], satisfying that lim
t!1�

f 1ð Þ� f tð Þ
1� t is a finite number. We denote this class of functions CCDF; Convex 

Cumulative Distribution Functions. Every member of CCDF must be continuous.

If c 2 0;1� ½ then, 

α tð Þ ¼
f cð Þ � f tð Þ

c � t
; t 2 0;1½ �; t�c 

will be a non-decreasing and non-negative function,4 and hence, α c�ð Þ ¼ lim
t!c�

α tð Þ and α cþð Þ ¼

lim
t!cþ

α tð Þ exist and 

α c�ð Þ � α cþð Þ:

So, f is differentiable from both the left and the right in any point in [0,1] and f 0 � cð Þ � f 0þ cð Þ: f 
must be differentiable almost everywhere in [0,1] for the following reason: The set of points 
fulfilling 

f 0 � cð Þ<f 0þ cð Þ

is at most of numerable cardinality, because if we define  

gðxÞ ¼ f 0ðxÞ if f is differentiable in x
f 0 ðxÞ if f is not differentiable in x

�

g will be non-decreasing in [0,1] and therefore continuous almost everywhere. So, in this way, we 

found that f tð Þ ¼ ò
t

0
g xð Þdx on [0,1].

We can identify g with k � F� 1, the inverse function to a member of NCDF; multiplied by 
a constant of value g 1ð Þ, which, in fact, equals 1

m , with m being the expectation associated with 
F: Thus, any member of CCDF is the L-image of a member of NCDF.
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So far, our investigation has shown the following: 

Theorem 2.3 
The mapping 

L : F!
1
m
�

ðp

0
F� 1 uð Þdu  

is a bijection of the class NCDF on the class CCDF:
Thus, any member of CCDF will be the Lorenz curve for some finite cdf.

3. Convergence of sequences in NCDF and CCDF
NCDF is a subset of the Banach spaces Lq 0;1½ �; λð Þ5 for every q 2 1;1½ �; with λ being the 
Lebesgue measure. NCDF and CCDF can now be conceived of as metric spaces—the metric 
of course induced by Lq 0;1½ �; λð Þ. Neither of them is complete, which can be seen in the 
following example. Let 

Fn xð Þ ¼ f1 � 1
n for x 2 0;1½ ½

1 for x ¼ 1 :

Then, Fnf g is a Cauchy sequence in the space NCDF for any of the metrics in Lq 0;1½ �; λð Þ; q 2 1;1½ �:

Since 

1 � Fnk kq ¼

ð1

0
1 � Fn xð Þj j

qdx

 !1
q

¼
1
n
! 0 for n!1;

Fnf g must converge to 1 in the Lq-metric, q<1. In the L1-metric—the supremum norm—the 
convergence is obvious. Function 1 on [0,1] is certainly not in NCDF:

The L-image of Fnf g is the sequence n p � 1 � 1
n

� �� �
� 1 1� 1

n;1½ � pð Þ
n o

: It is a Cauchy sequence in the 

Lq-metric for any real q � 1; because the distance between numbers n and m is less than m� n
2mn

�
�

�
�

1
q, 

which shrinks to zero with increasing n and m : The limit of the sequence will be 

FðpÞ ¼ 0 for p 2 0;1½ ½

1 for p ¼ 1

�

Although F is a member of NCDF; and although it is convex in 0;1½ �, it cannot be in CCDF, because 
this set contains exclusively continuous functions. In the L1-metric, the L-image of Fnf g is not 
even a Cauchy sequence.

We will now examine to which extent convergence of a sequence in NCDF implies conver
gence in CCDF of its L-image. 

Lemma 3.1 
Given that F;G 2 NCDF, if we name the expected values connected with F and G, 

respectively,mF and mG, then 
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jmG � mFj � F � Gk k1 

Proof: 

mG � mFj j ¼

ð1

0
1 � G xð Þð Þdx �

ð1

0
1 � F xð Þð Þdx

�
�
�
�
�

�
�
�
�
�

¼ ò
1

0
F xð Þ � G xð Þð Þdx

�
�
�
�
�

�
�
�
�
�
� ò

1

0
F xð Þ � G xð Þj jdx:

Now, let Fnf g be a sequence in NCDF:
At first, we demand that Fnf g converges to F belonging to NCDF in the L1 0;1½ �; λð Þ-metric. Let 

mn and m be the expected values connected with Fn and F; respectively.  
Now,   

L Fnð Þ � L Fð Þj jj j1 ¼ sup
p2 0;1½ �

1
mn

ò

p

0
F� 1

n uð Þdu �
1
m

ò

p

0
F� 1 uð Þdu:

�
�
�
�
�

�
�
�
�
�

We see that   

Figure 2. The graph of 2 mem
bers of NCDF; named G and H:
The area of the shaded set is 

G � Hj jj j1:
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L Fnð Þ � L Fð Þj jj j1 �
m � mnj j

m �mn
ò
1

0
F� 1

n uð Þduþ
1
m

ò
1

0
F� 1

n uð Þ � F� 1 uð Þ
�
�

�
�du:

As a consequence of Lemma 3.1, mn ! m for n!1; which means that the first term shrinks to 0 
as n increases.

For 2 members of NCDF; G and H, we consider 

G � Hk k1 ¼

ð1

0
G xð Þ � H xð Þj jdx:

But this is exactly identical to  

ò
1

0
G� 1 uð Þ � H� 1 uð Þ
�
�

�
�du;

as visualized in figure 2. As ò
1

0
Fn xð Þ � F xð Þj jdx 

< sup Fn xð Þ � F xð Þj j;
x2 0;1½ �

we conclude  

1
m ò

1

0
Fn
� 1 uð Þ � F� 1 uð Þ

�
�
�

�
�
�du! 0 

for n!1:

So,  
L Fnð Þ � L Fð Þj jj j1 ! 0

whenever Fn � Fj jj j1 ! 0:

Next, we let Fnf g converge to F belonging to NCDF in the L1 0;1½ �; λð Þ-metric and look at  

k L Fnð Þ � L Fð Þk1 ¼ ò
1

0

1
mn

ò

p

0
F� 1

n uð Þdu �
1
m

ò

p

0
F� 1 uð Þdu

�
�
�
�
�

�
�
�
�
�
dp 

With an argument similar to the above one, we get that 

k L Fnð Þ � L Fð Þk1 � ò
1

0

m � mnj j

m �mn
ò
1

0
F� 1

n uð Þdudpþ ò
1

0

1
m

ò

p

0
F� 1

n uð Þ � F� 1 uð Þ
� �

du

�
�
�
�
�

�
�
�
�
�
dp;

Again, the first term will shrink to zero as n increases. The second term will be equal to or lesser 
than 

1
m

ò
1

0
ò

p

0
F� 1

n uð Þ � F� 1 uð Þ
�
�

�
�du dp ¼

1
m

ò
1

0
ò
1

u
F� 1

n uð Þ � F� 1 uð Þ
�
�

�
�dp du;

where we switched the order of integration. The last expression will be less than 

ò
1

0
F � 1

n uð Þ � F� 1 uð Þ
�
�

�
�du! 0 for n!1:

So,  
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Fn � Fj jj j1 ! 0) L Fnð Þ � L Fð Þj jj j1 ! 0:

We now face the case where Fnf g converges to F belonging to NCDF in the Lq 0;1½ �; λð Þ-metric for 
a q>1:

If Fn � Fj jj jq ! 0, then Fn � Fj jj j1 ! 0 according to Jensen’s inequality. We just saw that this 
implies that j L Fnð Þ � L Fð Þj jj1 ! 0 for n!1:

As x
1
q ! 0 for x! 0þ for any q>1; we have that k L Fnð Þ � L Fð Þ k

1
q
1! 0 for n!1:

Furthermore, LðFnÞðpÞ � LðFÞðpÞj j<1 for every p 2 0;1½ �; which means that for every p 2 ½0;1�;

jLðFnÞðpÞ � LðFÞðpÞjq<jLðFnÞðpÞ � LðFÞðpÞj:

We can conclude that  

k LðFnÞ � LðFÞkq ! 0 for n!1:

This finishes the proof of the following: 

Theorem 3.2 
For any sequence Fnf g belonging to NCDF and any q 2 1;1½ �;

lim
n!1

k Fn � Fq k¼ 0) lim
n!1

k LðFnÞ � LðFÞkq ¼ 0:

The result could also be stated this way: The transformation L that maps any cdf for a normalized 
random variable 1–1 to its Lorenz curve is continuous with respect to the Lq 0;1½ �; λð Þ-metric for 
every q 2 1;1½ �:

4. The L1 0;1½ �ð Þ-metric and generalized Gini coefficients
With the L1-metric in NCDF; we have introduced a way of measuring distances between bound 
distribution functions. If we name the completely equal distribution of the resource under obser
vation I, we have  

I xð Þ ¼ 0forx 2 0;1½ ½

1forx ¼ 1

�

:

Given that an F 2 NCDF; F � Ij jj j1 will be a measure of the distance between F and a complete 
equality with respect to the actual resource. We see that  

F � Ik k1 ¼ 1 � m: (7) 

with m being the expectation associated with F:

Note that this distance should not be confused with Ebert’s distance between income distribu

tions (Ebert, 1984). Every member of Ebert’s class,
dr X; Yð Þ ¼ ò

1
0 F� 1

X vð Þ � F� 1
Y vð Þ

�
�

�
�rdv

� �1
r
; r � 1
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is   

an absolute measure, because the income distributions are meant for absolute income. In con
trast, (7) is strictly relative: If you add the same amount to every individual share, the distance will 
decrease—this also happens for the distance between 2 arbitrary members of NCDF:

Replacing 7ð Þ with L Fð Þ � L Ið Þj jj j1 gives 

L Fð Þ � L Ið Þj jj j1 ¼ ò
1

0
p � L pð Þð Þdp ¼k p � Lk1;

where we have named L Fð ÞL—as usual—and calculated L Ið Þ to be p; the identical mapping.

The value of this integral will be in [0, 0.5], since L, as we know, is convex. If we normalize it, i.e., 
multiply it with 2, we of course get the Gini coefficient for the distribution function F, 

G ¼ 2 k p � Lk1:

This is the most popular way to explain the Gini coefficient, because it is illustrated as the size of 
an area. If k F � Ik1 is a quantity near zero, then the Gini coefficient will also be near zero—this is 
a consequence of theorem 3.2. But the opposite conclusion can generally not be drawn. In other 
words, we could have a small Gini coefficient in a rather polarized population. E.g., if 96.7 % of the 
population each earns 37.9% of the maximal income and while 3.3% each earns the maximal 
income, then G ¼ 0:05, while k F � Ik1 ¼ 0:6: This is a symptom of the following: 

Theorem 4.1 
The inverse mapping to L;L� 1; which maps CCDF; the set of Lorenz curves, 1–1 on NCDF; the 

set of distribution functions for normalized random variables, is not continuous with respect to the 
Lq 0;1½ �ð Þ-metric for any q 2 1;1½ �:

Proof:
If we can construct a sequence in CCDF with the property that it converges to the identical 

mapping—and that at the same time its L� 1-image will not converge to I; which is the L� 1-image 
of the identical mapping, then we are through with the proof.

In fact, we are able to choose the sequence in CCDF in the following two-parameter-class of 
linear combination of power functions6, 

L pð Þ ¼ apþ 1 � að Þpb; a 2 0;1½ �; b > 1: (8) 

As 

p � L pð Þj j ¼ p � ap � 1 � að Þpb�
�

�
� ¼ 1 � að Þ p � pb

� �
;

we have that 

a! 1� ) sup
p2 0;1½ �

p � L pð Þj j ! 0:

So, if L is given by (8), for every q 2 1;1½ �;
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k p � Lkq ! 0 for a! 1� :

According to theorem 2.1, L0 1ð Þ equals m; with m being the expectation of a normalized random 
variable with Lorenz curve L: m can be chosen as any value in ½0;1�:

Following formula (8), L0 1ð Þ ¼ aþ 1 � að Þb: So, in CCDF, we choose a sequence Lnf g of type (8) 
fulfilling that for every n 2 N ;

a ¼ 1 �
1
n

and b ¼
1
m � a
1 � a

: (9) 

We regard now, 

L� 1 Lnð Þ � L
� 1 pð Þ

�
�

�
�

q ¼ L� 1 Lnð Þ � I
�
�

�
�

q:

For q ¼ 1, we have L� 1 Lnð Þ � I
�
�

�
�

�
�

�
�
1 ¼ ò

1

0
L� 1 Lnð Þ � I
� �

dx ¼ ò
1

0
L� 1 Lnð Þ xð Þdx ¼ 1 � m:

As k L� 1 Lnð Þ � Ikq �k L
� 1 Lnð Þ � Ik1forq 2 1;1½ �; we conclude that L� 1 Lnð Þ

� �
does not con

verge to I for any q 2 1;1½ �: This finishes the proof.

Note that we also showed that you could have a situation where the Gini coefficient shrinks to 
zero for a sequence of Lorenz curves, while at the same time, every one of the associated 
distribution functions has an arbitrarily great difference between the mean and maximal income!

This pattern in fact repeats for every higher-order Gini coefficient for the sequence Lnf gn2N:

Corollary 4.2 
For the sequence of Lorenz curves given by (8) and (9), any generalized Gini coefficient will 

shrink to zero with increasing n:
Proof: 

Using the formula of Kakwani (1980), we have 

Gk ¼ k k � 1ð Þ ò
1

0
p � ap � 1 � að Þpb
� �

1 � pð Þ
k� 2dp; k 2 2;3 . . .f g

, Gk ¼ 1 � kðk � 1Þ
ð1

0
ðapþ ð1 � aÞpbÞð1 � pÞk� 2dp; k 2 f2;3g:

For k ¼ 2;Gk is the ordinary Gini coefficient.
We achieve an estimate of Gk using partial integration. Set 

LðiÞðpÞ ¼
a

ðiþ 1Þ!
piþ1 þ

1 � a
ðbþ 1Þ� . . . �ðbþ iÞ

pbþi; i 2 f0;1 . . . k � 1g

which is the i th integral of the Lorenz function (8), then 
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Gk ¼ 1 � k k � 1ð Þ L 1ð Þ pð Þ 1 � pð Þ
k� 2

h i1

0
þ ò

1

0
L 1ð Þ pð Þ k � 2ð Þ 1 � pð Þ

k� 3dp

 ! !

¼ 1 � k k � 1ð Þ k � 2ð Þ ò
1

0
L 1ð Þ pð Þ 1 � pð Þ

k� 3dp:

Iterating this process, we get 

Gk ¼ 1 � k! ò
1

0
L k� 2ð Þ pð Þdp ¼ 1 � k! L k� 1ð Þ pð Þ

h i1

0 

, Gk ¼ 1 � k!
a
k!
þ

1 � a
bþ 1ð Þ . . . bþ k � 1ð Þ

� �

, Gk ¼ 1 � að Þ 1 �
1

Qk
j¼2

bþj� 1
j

0

@

1

A:

Inserting the values of a and b given by (9), it is easy to see that for every k; Gk will shrink to zero 
as n!1:

In principle, the transformation L creates a unique connection between any bound, non- 
negative probability distribution and its Lorenz curve. The mean value is intrinsic when calculating 
one of the objects from the other. Although the transformation proves to be continuous, the 
inverse transformation does not possess this feature. The very example that points out the 
discontinuity shows that the Gini coefficient of a population income can be very small, while in 
the same population, the income obtained by the majority can be far below the maximal income. 
This repeats for higher-order Gini coefficients although they were meant to weight poverty higher.

The specific property in our model, which creates this weakness, is the fact that the expected 
value of the individual share of the good in question determines the slope of the left-hand tangent 
of the Lorenz curve in the point (1,1).

5. Some conclusions related to the discontinuity of the inverse mapping
The results from section 4 rise at least 2 problems which our examples can illustrate.

First, we already saw that there is an obvious inequality in the non-continuous distribution example 
mentioned just before theorem 4.1. One can construct a continuous case almost parallel to it with 
a Lorenz curve of the type (8) choosing a ¼ 0:95 and b ¼ 31. This example has m ¼ 0:4 and a Gini 
coefficient value of 0.04688. In both examples, there is a majority with homogeneous and low income. 
The minority though is big enough to create a feeling of inequality. Following the advice in Liu and 
Gastwirth (2020) about supplying the Gini coefficient with other measures, one finds that the series of 
generalized Gini coefficients gives only slightly different values. The so-called generalized entropy family 
of indices gives only smaller values. Even Gastwirth’s more promising modified Gini coefficient multi
plying the Gini coefficient with the ratio of the mean value to the median gives only a value near 0.05. 
These measures of inequality are presented in Liu and Gastwirth (2020). In this situation, one should turn 
to the relative deviation of the income distribution. This means the square root of the variance divided by 
the double mean value.7 Yitzhaki and Schechtman (2013, p 22–25) gives thorough analysis and discus
sion on the relationship between the Gini coefficient and variance. So, if you accept that 5% of 
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a population is not an extremely small part and if the Gini coefficient is suspiciously low, or lower 
than 0.1, then supply it with a computation of the relative deviation. In our examples, it is about 0.096. 
You could state it like this: A low Gini coefficient is necessary for relative equality in a society, but it is not 
sufficient.

Second, the fact that the continuous mapping of a cdf for a normalized random variable to its 
Lorenz curve has an inverse mapping, which is discontinuous, is in fact just another example of 
inverse problems in econometry. Horowitz (2014) gives a survey of the problem—all his examples 
are with respect to the supremum norm—in economics and also some rather different fields. It 
seems that the phenomenon has a certain prevalence in the empirical sciences. Trying to estimate 
a distribution following the discontinuous mapping, one is faced with an ill-posed inverse problem. 
Horowitz shows in his examples how to deal with the problem in some specific cases through 
regularization.

In our case, one could ask: Is it possible to estimate the income distribution in the society if we 
have information related to the Lorenz curve? Kleiber and Kotz (2002) point out that a finite, non- 
negative cdf always could be found exactly as all the moments of it are known. Alternatively 
knowing the mean of the minimum of n independent random variables sharing the cdf for every 
n 2 N gives the same possibility. From there, they conclude that if the sequence Gkf g

1
k¼2 of 

generalized Gini coefficients is known, then the cdf can be determined. They refined the result 

somewhat proving that you could do with a subsequence Gkj

n o1

j¼1 
fulfilling that ∑

1

j¼1

1
kj
¼ 1:

Farris (2010) states an idea to make it less labor-intensive: Suppose that you take a sample of 
incomes. You compute G2;G3, and G4 from the empirical distribution function. Then, calculate 
a Lorenz curve of the type (8) directly from the values of G2 and G3; which means that you have 
estimates of a and b in (8). Finally, you compute the 4th order Gini coefficient from the Lorenz 

curve you found, fG4. . If it fits well to G4, then you have good model. But if you from this stage 
conclude that you have a well-estimated income distribution function based on a and b; then 
you are facing an ill-posed inverse problem, and you cannot be sure that your estimated cdf is 
useful.

6. Epilogue
The widespread idea of illustrating the Gini coefficient as the area between the segment from (0,0) 
to (1,1) and the Lorenz curve of empirical data or some approximation to them is sound because 
this area can be conceived of as a distance—in L1 0;1½ �ð Þ: Still, a small Gini coefficient is not enough 
to ensure a high degree of income equality in a society.

This conclusion is not the same as a removal of the Gini coefficient or its generalizations. Corrado 
Gini’s own introduction, and especially the moderate rewriting of it made by Dorfman (1979), gives 
this interpretation: In the population, pick 2 individual shares of the good in question, X1 and X2. 
Let Y ¼ min X1; X2ð Þ. Then, 

G ¼ 1 �
E Yð Þ
E X1ð Þ

:

Therefore, if you make a repeated experiment choosing a sample of 2 values, note the first and the 
least, then in the long run, the ratio between the average of the latter and of the former subtracted 
from 1 will approximate the Gini coefficient. So, if you take a stroll somewhere in your town and 
ask a random and honest pedestrian about her income, then on average, the answer would be 
close to your own income—if the Gini coefficient is low.
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Notes
1. Furthermore, the current OECD formula weights 

income higher, the more numerous the household in 
which the individual lives is.

2. Named after M. O. Lorenz, the American economist 
who developed the concept in his pioneering 
research on income inequality. Se Lorenz, 
M O. (1905) Methods of measuring the concentration 
of wealth. Journal of American statistical 
Association. p 209–219.

3. Dorfman does not use the concept of F� 1 uð Þ. 
Furthermore, he uses Stieltjes integrals. Other writers 
I found only prove the case with a differentiable dis
tribution function. We will at present be content with 
this, although it is not difficult to prove (2) for any 
kind of distribution using the Lebesgue measure on 
[0,1].

4. More details in the proof of these claims about convex 
functions could be found in Rudin (1974) p 62–63.

5. The term is chosen because here – in accordance with 
the current literature – is used as argument for Lorenz 
curves.

6. I found this class of functions in Farris (2010) p 863. 
He calls them Pareto functions which they obviously 
not are. They can only be Lorenz curves for finite 
random variables. One could utter that for b > 2 the 
associated cdf has a certain resemblance to Pareto 
distributions.

7. In Liu & Gastwirth’s (2020) terminology this is “one 
half of the coefficient of variation”.
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