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Abstract 
Many financial markets are populated by dealers, who commit to participate regularly in the 
market, and non-dealers, who do not commit. This market structure introduces a trade-off 
between competition and volatility, which we study using data on Canadian treasury auctions. 
We document a consistent exit trend by dealers and increasing, but irregular, participation by 
non-dealer hedge funds. Using a structural model, we evaluate the impact of dealer exit on 
hedge fund participation and its consequences for market competition and volatility. We find 
that hedge fund entry was partially driven by dealer exit, and that gains thanks to stronger 
competition associated with hedge fund entry are offset by losses due to the irregular market 
participation of hedge funds. We propose an issuance policy that stabilizes hedge fund 
participation at a sufficiently high average level and achieves revenue gains. 

Topics: Debt management; Financial markets; Financial institutions; Market structure and pricing 
JEL codes: D44, D47, G12, G28 

Résumé 
De nombreux marchés financiers comptent des courtiers, qui s’engagent à participer 
régulièrement au marché, et d’autres participants qui ne sont pas des courtiers et donc, qui 
ne s’engagent pas à le faire. Cette structure crée un compromis entre concurrence et 
volatilité, que nous étudions à l’aide de données sur les adjudications de titres du Trésor 
canadien. Nous décrivons une tendance constante de retrait de courtiers et une participation 
croissante, mais irrégulière, de fonds de couverture qui ne sont pas courtiers. À l’aide d’un 
modèle structurel, nous évaluons l’incidence du retrait des courtiers sur la participation des 
fonds de couverture et sur la concurrence et la volatilité du marché. Nous constatons que 
l’entrée de fonds de couverture était en partie attribuable au retrait de courtiers, et que les 
gains réalisés grâce à la plus forte concurrence associée à l’entrée des fonds de couverture 
sont compensés par les pertes causées par la participation irrégulière des fonds de 
couverture au marché. Nous proposons une politique d’émission qui stabilise la participation 
des fonds de couvertures à un niveau moyen suffisamment élevé et qui entraîne des hausses 
de revenu. 

Sujets : Gestion de la dette; Marchés financiers; Institutions financières; Structure de marché et 
fixation des prix 
Codes JEL : D44, D47, G12, G28 



1 Introduction

Governments worldwide have traditionally relied on regulated banks, known as primary

dealers, to consistently purchase government debt and regularly facilitate trade between in-

vestors, such as firms, public entities, and individuals. More recently, other institutions have

assumed an increasingly important role. For instance, in the U.S., hedge funds doubled the

total value of their U.S. Treasury holdings between early 2018 and February 2020, reaching

$2.39 trillion (Banegas et al., 2021). Given that hedge funds and other non-dealer institu-

tions, referred to as customers, are subject to less-stringent regulations than dealers and have

no obligation to participate in market-making activities, the implications of this observed

trend on the functioning of Treasury markets remain uncertain.1

Broadly, we are interested in better understanding why customers have entered Treasury

markets and evaluating the consequences for market functioning. Answering these questions

is challenging because there is limited data that allows us to study how customers trade

Treasuries. We overcome this challenge by focusing on the Canadian primary market in

which the government issues bonds via regularly held auctions. We document dealer exits as

well as the increasing, yet irregular, incidents of customer participation. We then introduce

and estimate a structural model to assess the role of dealers’ exits in explaining customers’

entries and to quantify the benefits of greater customer competition against the costs of

higher market volatility.

Our data combines bidding information on all Canadian Treasury auctions, from 1999 to

2022, with price information from the secondary market and the futures, foreign exchange

and repo markets. Two types of bidders participate in these auctions: dealers and customers.

Only dealers can submit bids directly to an auctioneer; customers must bid via a dealer—a

common feature in Treasury auctions. For all securities, we observe bidder types, unique

anonymized bidder identifiers, and all submitted bids. We also know through which dealer

a customer submits bids and where the market cleared.

With these data, we document a series of facts, the first set of facts being related to

entry and exit. We show that dealers have been systematically exiting the primary market

since these auctions began. In contrast, customers have entered, in particular hedge funds.

1Unprecedented market turmoil in March 2020 triggered a policy debate on whether to reform Treasury

market rules (e.g., Logan 2020; Ackerman and Hilsenrath 2022; Grossman and Goldfarb 2022).
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However, unlike dealers, who have an obligation to regularly attend auctions and buy suf-

ficient amounts of debt, customer participation is irregular. This suggests that customers

select specific auctions, depending on market conditions. In line with this idea, we show that

customers participate in auctions when secondary-market spreads in the days leading up to

the auction are high. The second set of facts helps us model bidding behavior, conditional on

auction participation. We show that when dealers observe an aggressive customer bid, they

systematically adjust their own bids in anticipation of greater competition in the auction.

Sophisticated customers, such as hedge funds, should take this adjustment into account when

bidding.

Motivated by the empirical evidence and institutional features of the market, we construct

a model that mimics a fiscal year. At the start of each year, when the government announces

its debt issuance plan, each dealer decides, at a cost, whether to commit to bidding in every

auction in the upcoming year and the number of participating dealers is announced publicly.

Then, prior to each auction, customers observe the market conditions and decide whether

or not to enter that specific auction, at an entry cost. Conditional on participation, all cus-

tomers and dealers draw private signals about how much they value the bond—representing

how much profit they expect to generate post-auction, given their (private) balance sheet

positions—and place their bids. The auction clears at the price at which aggregate demand

meets supply and each bidder pays their offered prices for each unit won.

To solve for the equilibrium conditions of this game and to estimate the dealer and

customer values and entry costs, we build on the empirical literature on multi-unit auctions,

in particular Guerre et al. (2000), Hortaçsu (2002), Kastl (2011), and Hortaçsu and Kastl

(2012). Unlike existing studies, we allow customers to behave strategically, in that they

anticipate dealers updating their own bids, and we endogenize bidder participation. This

contributes to the empirical auction literature that allows for endogenous entry but has so

far focused on single-object auctions (see Hortacsu and Perrigne (2021) for an overview).

Estimation approaches for entry in single-object auctions require knowledge of how the

equilibrium bid function behaves. In multi-unit auctions, this is a complicated object and

so these tools are not directly transferable. Instead, we exploit estimated bounds on bidder-

specific surpluses together with a matching procedure to estimate the entry costs of multi-unit

auctions. This approach could be used to endogenize bidder participation in other auction
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settings, including those for electricity, renewable energy, or carbon allowances.

We find that both dealers and customers have high entry costs, and that customers are

willing to pay more for bonds than dealers are. The latter suggests that, post-auction,

participating customers expect to execute more-profitable trading strategies with the bonds

than participating dealers. One reason for this may be that customers face less-stringent

regulation than dealers, especially post global financial crisis. Consistent with this, we find

that prior to 2007-2009, dealer values were not so different from customer values but that

they differed significantly afterwards.

To disentangle whether the surge in customer engagement resulted from dealers leaving

the market, potentially influenced by regulatory shifts, or from broader alterations in market

conditions favoring customer bond purchases, we employ our structural model and conduct

a counterfactual analysis. In this process, we calculate counterfactual bids without relying

on the conventional assumption of truthful bidding, as is typically employed in multi-unit

auction studies. Instead, we utilize the empirical guess-and-verify method introduced by

Richert (2021). By reintroducing the dealers who withdrew from the market after 2014 and

simulating customer participation in these counterfactual auctions, we can evaluate the effect

of increased dealer competition on customers’ participation decisions. We find that if dealers

had not exited, then an average customer would have been approximately 31.56% less likely

to partake in an average auction. This substantial reduction in participation indicates that

dealer exit is a significant economic driver of customer entry.

We next use our model to evaluate the market consequences from the rise in customer

participation. On one hand, stronger participation may increase competition (as in Bulow

and Klemperer 1996), which reduces debt funding costs and price distortions due to bid

shading. On the other hand, irregular bidder participation may increase the volatility in

market outcomes, such as the market price. For example, two auctions may clear at different

prices only because one auction attracts more customers than the other, and not because the

auctions offer bonds of different fundamental values. This not only introduces unnecessary

volatility that might destabilize financial markets but also increases the total cost of issuing

government debt, since auction revenues fall by more when customer participation is low

than they rise when it is high.

To build an intuition for these effects, we start with a simplified environment with one
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type of bidder (dealers) that bids directly to the auctioneer and we ask by how much the

(expected) auction outcomes vary in the number of competing bidders. We find that when

we remove one dealer (from the status quo), the (expected) price drops by 0.06% because of

stronger shading. When the expected number of participating customers increases by one,

the expected price increases by 0.0004% and bid shading decreases by 51.51% due to stronger

competition.

To compare the competition and volatility effect from the increasing yet irregular cus-

tomer participation, we contrast the revenue gain from attracting one extra customer in

expectation with the expected revenue loss coming from the across-auction variation in the

customer participation probabilities. Irregular participation results in revenue losses relative

to consistent average participation because the expected auction revenues are concave in the

customer participation probabilities. The concavity implies that the revenue improvements

when participation is high can be more than offset by the losses under low participation.

With our model estimates, the revenue gains from attracting an additional customer versus

losses from volatility are not too dissimilar: C$0.2 million versus C$0.04 million.

In light of the competition-volatility trade-off, we propose a simple issuance policy that

aims to increase competition while simultaneously decreasing volatility. Our idea is to strate-

gically shift the supply from auctions in which we predict strong customer participation to

auctions with low predicted customer participation. The hope is that by doing so, we can

stabilize customer participation and attract a sufficient number of market participants to

guarantee a high level of competition. Indeed, we find that the median revenue increases by

about C$0.38 million per auction when implementing our proposed rule.

The competition-volatility trade-off we highlight might be present in other settings. It

is common in auctions for financial products to have a set of regular and irregular bidders;

for example, see Hendricks et al. (2023) for mortgage securities and Richert (2022) for credit

event auctions. Our framework can be easily adjusted to fit these applications. Further-

more, the economic insights generalize to non-auction markets that are populated by regular

and irregular participants. Examples include market makers versus opportunistic traders in

financial markets, global versus local firms in production markets, loyal versus non-loyal cus-

tomers in consumption markets, and irregular versus stable energy generation in electricity

markets (Petersen et al., 2022).
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2 Institutional details and data

In most countries, government bonds are issued in primary auctions to a small set of reg-

ulated banks, often called primary dealers, and to customers (see Appendix Figure A2).

While specific auction rules may vary slightly, the main market features are common across

developed economies.

Canadian primary market. In November 1998, Canada adopted a typical primary dealer

market structure to distribute its debt. Since then, Treasury auctions have been held ac-

cording to an annual schedule. For instance, between 1999 and 2022 there have been about

twenty-eight government bond auctions per year, with an average nominal issuance size of

C$3.24 billion, given the bonds’ face value is C$100. The auction schedule specifies the tim-

ing of auctions and the total debt to be issued. One week prior to the auction, the precise

issuance size is announced.

Anyone can participate in Treasury auctions, but only dealers can bid directly.2 Other

bidders, called customers, can only participate indirectly by placing their bids via a dealer,

who can observe the customers’ bids (see Appendix Figure A3). Indirect customer bidding

is a common feature of Treasury auctions across countries. It is also present, for example,

in Japan and the U.S. (Boyarchenko et al., 2021).

Similar to Treasury auctions in other countries, customers include different types of insti-

tutions, such as pension, mutual and exchange traded funds, insurance companies, sovereigns,

or bank treasuries. For over a decade, the biggest customer category has consisted of alter-

native investments companies, which included hedge funds. For simplicity, we use the term

hedge fund to describe these investment companies throughout the paper.

A bidder may submit and update two types of bids from the time the tender call opens

until the auction closes. This is also a common feature of most Treasury auctions worldwide.

The first type of bid is a competitive bid. This is a step function, with at most 7 steps,

which specifies how much a bidder offers to pay for specific amounts of the asset for sale.3

2Strictly speaking, there are two types of dealers in Canada. Most dealers are primary dealers, but some

are government security distributors. These are smaller dealers, who also place bids on behalf of customers,

but face fewer market-making requirements. For simplicity, we do not distinguish between groups.
3Prices are expressed with three decimal places, e.g., C$ 99.999, and quantities must be stated in multiples

of C$1,000. The minimum demand is C$100,000.
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During normal times, primary dealers can demand up to 25% of the supply of Treasuries for

their own account and 25% for their customers (with an aggregated cap of 40%), in the form

of competitive bids.

The second type of bidding is a non-competitive bid. This is a quantity order that the

bidder wins for sure at the average price of all the accepted competitive bid prices. The Bank

of Canada actively utilizes non-competitive bids to reduce the announced auction supply

(before observing the submitted bids). For example, the Bank buys Treasuries (assets) to

match the value of its bank notes (liabilities). For dealers and customers, non-competitive

bids are trivial since they cannot be larger than C$10 million for dealers and between C$3

million and C$5 million for customers.

All submitted bids are aggregated and the market clears at the price at which aggregate

demand equals auction supply. In case of excess demand, bidders are rationed pro-rata on

the margin, which means that the auctioneer proportionally adjusts demand at the clearing

price until supply equals demand (see Kastl 2012, for a formal definition). Every bidder wins

the units they demanded at bids weakly above the clearing price, and pays the bids for each

unit won.4

Regulation. In Canada, as elsewhere, dealers have an obligation to actively buy bonds

in the primary market. Concretely, in normal times, primary dealers face minimal bidding

requirements of roughly 10% of the auction supply. The minimum level of bidding must be at

reasonable prices, and accepted bids should be approximately equal to a dealer’s secondary

market share over a specified time period. Primary dealers are also expected to act as market

makers in the secondary cash and repo markets, where they provide liquidity to investors who

seek to exchange government bonds for cash.5 In exchange, primary dealers enjoy benefits.

For instance, they have privileged access to liquidity facilities, overnight and term repurchase

operations, and extract auction rents from observing customer bids. There are also positive

reputation effects that potentially spills over to many market segments, coming from the

fact that primary dealers are financial institutions the central bank trusts, and this can help

4Shortly after the auction clears, the clearing price and some additional aggregate summary statistics

about the auction are publicly announced. This implies that no one has the incentive to participate in the

auction only to learn about the market price, without wanting to win.
5For the most recent terms and conditions, see https://www.bankofcanada.ca/wp-content/uploads/

2016/08/standard-terms-securities180816.pdf.
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attract customers.

Given the important role dealers play in the market (in Canada and elsewhere), they are

heavily regulated. In particular, in the aftermath of the 2007-2009 financial crisis, regulation

tightened for dealers and large banks more broadly. For instance, banks in developed coun-

tries faced heightened capital requirements. A notable illustration of this is the Basel III

leverage ratio, which was enforced at the close of 2014 and represents a significant limitation

for bond trading (CGFS 2016; Wittwer and Allen 2022; Favara et al. 2022). In addition, in

Canada, starting in 2016, dealers must report all trades to the Investment Industry Regu-

latory Organization of Canada, while customers are exempt. A similar trend happened in

other countries; for example, in the U.S., dealers started reporting trades in 2017.

Traditionally, customers, such as hedge funds, played a negligible role in Treasury mar-

kets.6 We know that this has changed in recent years, but we have a limited understanding

of what customers are doing, given that there are only a handful of empirical studies. For

example, Sandhu and Vala (2023) argue that hedge funds can act as market makers, en-

gaging in trades that counter the positions of other investors. In this way, they are not

very different from dealers. During times of distress, such as March 2020, however, hedge

funds can contribute to market imbalances, reduced liquidity, and increased price volatility

(e.g., Barth and Kahn 2020; Vissing-Jorgensen 2021). Increased hedge fund trading may

also have implications for systemic risk in the market, given that hedge funds are more likely

to employ riskier trading strategies (Dixon et al., 2012)—an effect that we do not consider

in our analysis.

Data. Understanding trading activity and customers’ impacts on market functioning poses

challenges due to limited data availability. For one, comprehensive long panels of trade-

level data with unique identifiers for all traders are not readily accessible. For instance,

the U.S. started collecting trade-level data through TRACE in mid-2017, but customer

reporting with unique IDs is not mandatory. Similarly, while the Bank of England and Bank

of Canada provide firm IDs, identifying all customers remains difficult; see, for example,

Kondor and Pintér (2022); Pintér and Semih (2022); Coen and Coen (2022); and Allen

and Wittwer (2023). Additionally, customers, unlike dealers, are not obliged to report their

6In stock markets, hedge funds have long been active, and their role in these markets has been discussed

in the academic literature (e.g., Stein 2009).
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Table 1: Data summary of bond auctions

Mean SD Min Max
(Nominal) amount issued (in C$B) 3.24 1.04 1.00 7.00
Revenue (in C$B) 3.25 1.04 0.88 7.00
Number of dealers 14.46 2.61 11 23
Number of customers 6.74 2.56 1 15
Comp demand of a dealer (in %) 14.80 7.51 0.00 40
Comp demand of a customer (in %) 5.83 4.70 0.01 25
Non-comp demand of a dealer (in %) 0.09 0.04 0.00 0.30
Non-comp demand of a customer (in %) 0.19 0.16 0.00 0.76
Non-comp demand of the Bank of Canada (in %) 13.84 4.00 0.01 20
Number of submitted steps of a dealer 4.34 1.71 1 7
Number of submitted steps of a customer 1.86 1.02 1 7
Amount won by a dealer (in %) 4.79 5.85 0 35
Amount won by a customer (in %) 4.02 5.90 0 25

Table 1 displays summary statistics of our sample, which covers the period February 10, 1999 to
January 27, 2022. There were 645 auctions, none of which failed due to insufficient demand. The
typical auction issues $3.2 billion worth of debt. The total number of competitive bidding functions
(including updates) is 62,813. Competitive bids are step functions with at most 7 steps. The total
number of non-competitive bids is 10,552. Demand and amount won are in percentage of supply.

trades. Consequently, studies analyzing hedge fund trading behavior face limitations in that

they miss trades between hedge funds and non-dealers, which could represent a biased sample

of hedge fund trades.7

We overcome the lack of data on hedge fund secondary market activity by focusing on the

primary market—where we can trace market participants over a long time horizon, thanks to

unique identifiers. Bidder identifiers are created by Bank of Canada staff, who observe bidder

names and are, therefore, able to account for mergers, acquisitions, and name changes. We

observe all winning and losing bids in regular government bond auctions from the beginning

of 1999 to the end of January 2022. This represents the entire auction history with the

exception of three auctions held in December 1998. Table 1 provides summary statistics for

our auction sample.

We augment the auction data with the daily average prices of each security from the

secondary market and the futures, foreign exchange and repo markets, from the Canadian

Depository for Securities. These data range from the beginning of 2014 to the end of 2021.

7For instance, Banegas et al. (2021) acknowledge challenges in assessing the extent of hedge funds’

Treasury sell-offs during March 2020, given the lack of detailed data on their cash and derivatives positions.
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3 Empirical evidence: Exit, entry and bid updating

We document a series of stylized facts to motivate our structural model.

Exit and entry. We observe two striking time trends regarding entry and exit in the

Canadian primary market. Appendix Figure A4 visualizes similar trends using public data

of U.S. Treasury auctions; moreover, policy reports and newspaper articles indicate similar

patterns for other countries.8 This highlights that these trends are not Canadian-specific.

On one hand, dealers have (voluntarily) been exiting the market since the first Treasury

auctions took place. While our data shows this fact only for the auctions, we know from

exit interviews that primary dealers exited the Canadian Treasury market entirely. The

total number of dealers declined from 24, in 1999, to 15, in 2021 (see Figure 1A). After an

early round of exits, the number of dealers remained stable until 2014, when global players—

such as Deutsche Bank and Morgan Stanley—exited the primary market for Canadian debt.

Smaller broker-dealers such as PI Financial Corporation and Ocean Securities followed in

2015 (see Appendix Table A1). The exit of global banks from the Canadian bond market

around 2013-2015, during a period of tighter banking regulations and monitoring, suggests

that stricter regulations may have pushed some banks out of the market.9 More recently,

two dealers sought buyers, which would have meant exiting via acquisition: RBC (which

is also a dealer) purchased HSBC in December 2023 and Laurentian Bank failed to find a

buyer.

On the other hand, customers—in particular, hedge funds—have become more active (see

Figures 1B and 2A). The total number of hedge funds increased from zero to ten in 2021.

Furthermore, they have been buying an increasingly larger share of the auction allotments

relative to dealers and other customer groups (see Appendix Figures A5 and A6). How-

8For example, the OECD raised the concern that primary dealers might not have the capacity to commit

capital to debt markets post-global financial crisis and would exit (Blommestein et al. 2010); Bloomberg

reports on dealer exit in the U.K., in particular the exit of Credit Suisse Group AG and Societe General

SA in 2016. More recently, Association for Financial Markets highlights the exit of 7 primary dealers in the

Eurozone between June 2021 and January 2022; The Economist and the Wall Street Journal discuss the

rising role of hedge funds in the U.S.; Reuters highlights the increasingly important role of hedge funds in

European Treasury markets. All websites were accessed on 07/05/2024.
9This would align with anecdotal evidence. For instance, according to research by Greenwich Associates—

a leading financial consultancy—regulations implemented after the 2008 global financial crisis caused a

general (voluntary) retreat from Canadian debt markets in 2014 (Altstedter, 2014).

9
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Figure 1: Dealer exit and hedge fund entry from 1999 to 2022
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Figure 1A shows how many dealers have participated in primary auctions, on average, in a year
since the first auction in 1999 to 2022. Figure 1B shows how many hedge funds participate, on
average, each year.

ever, since customers have no obligation to participate regularly, like dealers, their auction

participation is highly volatile, as shown in Figure 2.

Predicting customer participation. In Appendix B.1, we analyze potential predictors

of customer auction participation, without claiming causality.10 These predictions are used

in our policy counterfactuals to demonstrate how an auctioneer could shift the supply of

Treasuries across auctions to boost competition and reduce volatility. Our selection of ex-

planatory variables is inspired by emerging research into the trading behavior of hedge funds,

particularly during 2020.

Across regression specifications, we find that the spread between the highest and lowest

price at which a bond trades shortly prior to being auctioned is positive and significant.

Since this spread correlates closely with the bid-ask spread and other liquidity measures (see

Duffie et al. 2023), this finding suggests that customers buy bonds at auction when they can

quickly sell them at high prices in the secondary market. Additionally, some coefficients,

detailed in the appendix, indicate that fewer customers participate when there is increased

uncertainty about interest rates. The issuance amount (supply) is also a significant positive

10Since hedge funds in the Canadian fixed income market are large international players, it is impossible

to capture all of their potential uses of Canadian bonds and how these interact with their activities in global

markets.
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Figure 2: Irregular hedge fund participation

(A) Number of hedge funds per auction (B) Variance in participation

Figure 2A shows the number of participating hedge funds in all auctions. The first box plot of Figure
2B, called dealers, shows the distribution of the variance in the percentage of dealers bidding across
auctions in a year out of all active dealers in that year. The second box plot, called hedge funds,
shows the analogue for hedge funds. The distribution is similar when including all customers.

factor, although the estimate is noisy. The R2 ranges between 37% and 41%, highlighting

the influence of unobservable factors on customer participation—a feature that our model

will incorporate.

Dealer updating. Our auction model, presented in Section 4, builds on Hortaçsu and

Kastl (2012), who model the bidding process of Canadian Treasury auctions, in which cus-

tomers must bid via dealers. To provide evidence that dealer updating plays a role in our

data, we would like to regress the “change in a dealer’s bid conditional on observing a cus-

tomer’s bid” on “the customer’s bid.” Given that bids are step functions, this is non-trivial.

We compute the change in the dealer’s bid as the difference between the average quantity-

weighted bid of the dealer’s update, having observed a customer’s bid, minus the average

of the dealer’s bid, excluding the update. If no update is placed, we use the last bid before

observing the customer bid, since by refusing to update, the dealer decided that that bid was

still optimal. We regress this variable on three moments of the customer’s bidding function

to get a sense of what aspects of the step function affect updating the most: the quantity-

weighted average bid (that is, the price a bidder is willing to pay per unit of the bond), the

number of steps, or the highest amount demanded. We normalize the customer’s quantity-

weighted average bid by the average of all customer bids within an auction to capture the

idea that dealers update their bid when the customer’s bid they observe differs from what

11



Table 2: Dealer updating

Change in qw-bid of dealer
Customer’s qw-bid - average customer qw-bid +0.047∗∗∗ (0.009)
Customer’s number of steps 0.032∗∗∗ (0.029)
Customer’s total demand +0.001∗∗∗ (0.001)
Auction fixed effects Yes
Observations 8193
Adjusted R2 0.21

Table 2 shows the results from regressing the change in a dealer’s quantity-weighted average (qw) bid,
calculated as the difference between the qw bid of their next submitted bid and the average qw bid of
all other steps that they submit in the auction on the quantity-weighted average bid of the customer less
the average customer qw-bid in that auction (which reflects how aggressive a particular customer’s bid is
relative to the average customer at that auction), the number of steps, and the customer’s total demand.
The regression also includes auction fixed effects. We use bidding data from all bond auctions from 1999
to 2022. Bids are in bps, quantities are in C$ millions. Standard errors are in parentheses.

they expected. In rare cases in which the dealer’s update follows multiple customer bids, we

average over them.

We report in Table 2 that a dealer bids more aggressively when observing a more ag-

gressive customer bid. Of the moments in the customer’s step function that we consider,

only the quantity-weighted average is statistically significant—a detail that we exploit in our

estimation presented in Section 5.

4 Model of the Canadian primary market

Motivated by the empirical evidence, we construct a model with two main features, which

are both novel relative to the existing literature. First, we endogenize the bidders’ partic-

ipation decision. Here, we distinguish between the dealer’s decision to exit the market at

an annual frequency and the customer’s decision to enter specific auctions. This allows us

to highlight the benefit of greater competition versus the cost of higher market volatility

when an increasing share of bidders participates irregularly. Second, we allow customers

to be sophisticated in that they can anticipate that dealers might update their bids when

observing a customer bid. We show in Figure 4 as well as Appendix B.3 that this feature is

empirically relevant in that the model estimates are biased if we assume that customers do

not anticipate dealer updating.
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4.1 Players, timing, and preferences

Our model describes bidding decisions over the course of a fiscal year. We highlight four

assumptions in particular because they directly relate to the model primitives that we later

estimate. We denote random variables in bold.

There are two groups (g) of market participants: dealers (d) and customers (h). The

number of dealers who consider remaining as dealers, N̄d > 1, and the number customers

who are interested in bidding, N̄h ≥ 0, are commonly known.11 Similarly, all distributions

and functional forms are commonly known.

At the beginning of the year, the debt issuance plan is announced, stating T auctions

will be held. At this point, dealers decide whether they wish to continue being a dealer, that

is, whether they commit to participating in all auctions in the upcoming year. Whether this

is profitable depends on the private annual cost each dealer faces, γd
i . One may think of this

as an opportunity cost that an institution that acts as a dealer suffers because it cannot do

other things during the time it fulfills its dealer activities, such as bidding at auction and

making markets.

Assumption 1. At the beginning of the year, dealers’ private entry costs for all T auctions

of the year, γd
iγ
d
iγ
d
i , are drawn independently from a common atomless distribution, Gd.

After each dealer makes their decision, the market is informed about the number of bidders

who will act as dealers in the upcoming year, Nd. In reality, this information is posted on

the website of the auctioneer. The game ends if no dealer enters.

Before each auction, t, customers observe how costly it is for them to enter the auction.

Similar to dealers, one may think of these entry costs as opportunity costs, since it takes

time to monitor the market and compute competitive bids.12

Assumption 2. Before each auction t, customers’ entry costs for auction t, γh
tiγh
tiγh
ti, are drawn

independently from a common atomless distribution, Gh.

11We could distinguish between different types of customers, for instance hedge funds versus other cus-

tomers. Theoretically, such an extension would be straightforward. However, empirically, non-hedge fund

customers play such a small role that the cost of complicating the model and increasing measurement error

(due to more bidder groups in the resampling procedure described below) outweighs the benefit of separating

non-hedge fund customers from other customers.
12In principle, these costs could be constant over time or within customers. However, both of these

alternative assumptions imply entry patterns that are inconsistent with the data.
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In addition, customers observe the distribution from which they will draw their (multi-

dimensional) private signals, shtis
h
tis
h
ti,—which affects their willingness to pay—if they choose to

bid at auction. The signal captures institution-specific knowledge, including information

about the balance sheet or outstanding client orders, on auction day. The signal distribution

is specified in Assumption 3. It captures current market conditions, which can be unobserved

by the econometrician. For example, the expected willingness to pay may be high when

secondary spreads are high (as suggested by the evidence in Appendix Table A2), or when

interest rates are expected to fall.

Observing the signal distribution, each customer decides whether to enter an auction

before learning their private signal. This timing assumption is standard in the literature

on endogenous bidder participation in single-object auctions and reflects the idea that most

customers are part of large institutions that tend to allocate tasks (such as bidding at

auction) some time in advance, before the bidding process starts. An alternative would

be to assume that customers first observe private signals and then enter; that is, allow

for selective entry. In this case, customers with lower signals would enter an auction after a

dealer exits, as fewer bidders make the auction less competitive, lowering the entry threshold.

Consequently, the average customer value in auctions after a dealer exits should be lower

than before. While we cannot perfectly test this implication, we can provide some supporting

evidence by comparing the average customer bid (relative to dealer bids) around the dealer

exits. We find no evidence of a change in relative bids; the same is true when comparing

value estimates.

Assumption 3. Dealers’ and customers’ private signals sdtis
d
tis
d
ti and shtis

h
tis
h
ti are, for all bidders, i,

independently drawn from common atomless distribution functions F d
t and F h

t with support

[0, 1] and strictly positive densities fd
t and fh

t .

Within an auction, a bidder’s signal must be private and independent from all other signals,

conditional on everything that bidders know when bidding, which includes a reference price

range provided by the auctioneer. To support the assumption that signals are private, we

follow Hortaçsu and Kastl (2012) and test whether dealers who observe customer’s bids only

learn about the degree of competition in the auction (and not about the fundamental value

of the bond). Our findings, reported in Appendix Table A5, support the assumption of

private values.
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Assumptions 1-3 rule out that bidders have an incentive to adopt strategies that connect

multiple auctions. Thus, technically, our game consists of dealers’ exit decisions plus T ex-

ante identical and separate auction sub-games. We think this is reasonable in our setting,

given that the typical dealer sells most of their auction-purchased bonds before the next

auction takes place and there is no evidence that dealers are willing to pay more in sub-

sequent auctions when they were allocated fewer bonds than expected. Further, customer

participation in two subsequent auctions is uncorrelated (once we control for the upward

time trend in customer participation, in Appendix Table A3). In other settings, it can be

important to take inter-temporal strategic considerations into account (e.g., Rüdiger et al.

2023).13

How bidders bid in a specific auction, t, depends on how much they value the bond at

that time. This, in turn, is driven by their signals.

Assumption 4. A bidder, i, of group g ∈ {d, h} with signal sgti values amount q of the bond

by vgt (q, s
g
ti). This value function is non-negative, measurable, bounded strictly increasing in

sgti for all q, and weakly decreasing in q for all sgti,.

Given these values, bidders place bids. Each bid is a step function that characterizes the

price the bidder would like to pay for each amount offered at auction. Specifically, bidder i

has the following action set to place a bid in auction t:

Ati =


(b, q,K) : dim (b) = dim(q) = K ∈ {1, ..., K}

bk ∈ [0,∞) and qk ∈ [0, Qt]

bk > bk+1 and qk < qk+1 ∀k < K,

(1)

where Qt is the (maximal) auction supply, which is explained in more detail below.

Following Hortaçsu and Kastl (2012), bidding evolves in three rounds. First, dealers

can place early bids directly with the auctioneer. Second, each participating customer is

13Rüdiger et al. (2023) analyze inter-temporal incentives of Argentinian primary dealers to forgo short-

term auction gains to fulfill the longer-term minimal bidding requirements necessary to maintain their dealer

status. Appendix Figure A7 provides evidence that Canadian primary dealers are above minimal bidding

requirements and, therefore, do not face the same inter-temporal trade-off as in Rüdiger et al. (2023). In

addition, if these bidding requirements played an important role, dealers should be willing to pay more in

subsequent auctions when winning less than expected, for which we find no evidence in our setting.

15



randomly matched to a dealer and places their bid with this dealer.14 Third, each dealer

observes these customer bids (if any) and may update their own bids.

To rationalize early bidding (which we observe in the data), we let one dimension of each

dealer’s signal, sdtis
d
tis
d
ti, be a random variable, ΨtiΨtiΨti ∈ [0, 1], which is the mean of another Bernoulli

random variable, ΦtiΦtiΦti, that determines whether the dealer’s later bid will be made before the

auction closes. The idea is that, when observing a customer’s bid shortly before the auction,

the dealer might not have sufficient time to recompute their bid and enter it into the bidding

interface. Whether there is sufficient time or not is revealed only in the last stage. Formally,

in the last stage, the dealer observes the realization ωti ∈ {0, 1} of ΦtiΦtiΦti, where ωti = 1 means

that the late bid will make it on time, in addition to their signal, sdti, and information that

includes the bid(s) of the customer(s) that was (were) matched to this dealer or the fact that

no customer bid has arrived.

A pure bidding strategy is a mapping from the information set of a bidder to the action

space at each stage of the game. To capture everything that a bidder knows, we introduce a

bidder type, labeled θgτi. This is the private signal of the bidder in the first and second stages

of the game, and it includes information about the observed customer bid at the final stage.

To highlight the symmetry across bidder groups when defining strategies, we use subscript

τ , which summarizes the auction and bidding stages within a bidder group. For a dealer,

τ = t1 in the first stage and τ = t2 in the third stage in auction t, while for a customer, who

only moves in stage 2 of the game, τ = t. With this, bidding strategies can be represented

by bidding functions, labeled bgτi(·, θ
g
τi), for bidder i of group g with type θgτi at time τ .

When choosing the bidding function, a customer anticipates that their dealer can update

their own bid. This differs from Hortaçsu and Kastl (2012), who focus on dealers. Since the

customer does not know the dealer’s type, θdτi, they do not know whether and how the dealer

will update their bid. As a result, a customer cannot be sure if the market-clearing price will

increase or decrease when they marginally increase their own demand at step k—anything

14The assumption of random matches simplifies the equilibrium conditions and the estimation procedure.

In Appendix Figure A8, we provides some evidence that random matching is a reasonable approximation

of reality. Further, we provide evidence that since 2014, dealers have not been leaving the market because

they systematically observe fewer customers than dealers who remain in the market, which would violate the

random matching assumption. We find that on average the total number of customers that an exiting dealer

observes in a year (because the customer bids via this dealer) is not statistically different from the average

number of customers that the remaining dealers observe. The test’s p-value is 0.28 for auctions post-2014.
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can happen.15 This makes it complex for the customer to determine their optimal bid.

To render the customers’ optimization problem solvable, we assume that dealers only

pay attention to finite sets of Lt moments of the customers’ bidding function when updating

their own bid—motivated by the empirical evidence presented in Table 2.16 Formally, a

moment is a mapping µl
t that transforms the bidding function, bhτi(·, θhτi) for type θhτi, into a

real number R. We restrict our attention to moments that are differentiable with respect to

the quantity at each price. This includes, for example, the intercept with the price or the

quantity axis, some smooth approximation of the slope, or the quantity-weighted bid, which

is defined as follows:

µl
t(b

h
τi(·, θhτi)) =

b1q1 +
∑K

k=2 bk(qk − qk−1)

qK
(2)

where {bk, qk}Kk=1 constitutes bidding function bhτi(·, θhτi).

Once all bidders submit their step function, the market clears at the lowest price, P ∗
t ,

at which the aggregated submitted demand satisfies the total supply. The supply, QtQtQt, is

unknown to the bidders when they place their bids because a significant fraction of the total

allotment goes to the Bank of Canada, which is the largest non-competitive bidder. QtQtQt

is distributed according to an auction-specific distribution on [0, Qt] with strictly positive

marginal density conditional on sgti ∀ i, g = h, d.

Given all bidding functions, bgτi(·, θ
g
τi), bidder i of group g wins amount qg∗ti at market

clearing. They pay the amount they offered to win for each unit won. In case there is excess

demand at the market-clearing price, each bidder is rationed pro-rata on the margin.

4.2 Equilibrium conditions

We first characterize the equilibrium in auction t, conditional on customer and dealer par-

ticipation. Then, we determine the entry and exit decisions of customers and dealers, re-

spectively.
15As a comparison, when dealers do not update their bids, the market-clearing price will weakly increase

in all states of the world if the customer increases their quantity qk at price bk by a little bit, assuming that

all other participants play as in the equilibrium.
16Alternatively, we could assume that customers only think that this is the case, even though the dealer

responds to the full curve.
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Bidding. To find the optimal bidding strategy, a dealer maximizes their expected total

surplus, taking the behavior of other bidders as given. For bidder i in group g of type θgτi

the expected total surplus at time τ is

TSg
τi = E

[∫ qg∗tiqg∗tiqg∗ti

0

[vgt (x, s
g
ti)− bgτi(x, θ

g
τi)]dx

]
. (3)

Note that for customers who bid a single time, TSh
τi is equivalent to TSh

ti. For dealers, we

have two surpluses: TSg
t1i and TSg

t2i, one for each bidding round. In all cases, the expectation

is taken over the amount the bidder will win at market clearing, qg∗tiq
g∗
tiq
g∗
ti , which depends on all

bidders’ strategies and types as well as the unknown supply.

We focus on the group-symmetric Bayesian Nash equilibrium (BNE) in which all dealers

and customers play the same bidding strategy if they are the same type. Formally, a pure

strategy BNE of auction t is a collection of bidding functions, bgτi(·, θ
g
τi), such that each

bidder, i, and almost every type, θgτi, maximizes their expected total surplus (3) each time,

τ .17 Going forward, we use the τ subscript for dealers and t for customers, to stress that

customers only bid one time while dealers may update their bids.

Proposition 1. Fix a set of Lt moment functions that map a customer’s bid function into a

real number, µl
t : b

h
τi(·, θhτi) → R, and consider a group-symmetric BNE. Let Nd > 1, Nh > 1.

(i) Every step k but the last step in the dealer’s bid function, bdτi(·, θdτi), has to satisfy

Pr(bk > P ∗
tP
∗
tP
∗
t > bk+1|θdτi)

[
vdt (qk, s

d
ti)− bk

]
= Pr(bk+1 ≥ P ∗

tP
∗
tP
∗
t |θdτi)(bk − bk+1). (4)

At the last step, bK = vdt (q̄(θ
d
τi), s

d
ti), where q̄(θdτi) is the maximal amount the dealer may be

allocated in the auction equilibrium.

(ii) Every step k in a customer’s bid function, bhti(·, θhti), that generates moments ml
ti =

µl
t(b

h
ti(·, θhti)) for all l has to satisfy:

17Since there is no cost of submitting steps, all bidders choose the maximal number of steps in equilibrium:

K = K. To rationalize the variation in the number of steps in the data, we could follow Kastl (2011) and

include a private cost of computing and submitting steps. We refrain from doing so since this does not add

additional economic insights; instead, we treat the observed K as the bidder-specific K.
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Pr(bk > P ∗
tP
∗
tP
∗
t > bk+1|θhti)

[
vht (qk, s

h
ti)− bk

]
=

Pr(bk+1 ≥ P ∗
tP
∗
tP
∗
t |θhti)(bk − bk+1)−

Lt∑
l=1

λl
ti

∂µl
t(b

h
ti(·, θhti))
∂qk

+ Ties(bhti(·, θhti)), (5)

with Ties(bhti(·, θhti)) = Pr(bk = P ∗
tP
∗
tP
∗
t )E[vht (qh∗tiq

h∗
tiq
h∗
ti , s

h
ti)

∂qh∗tiqh∗tiqh∗ti )
∂qk

|bk = P ∗
tP
∗
tP
∗
t ]−Pr(bk+1 ≥ P ∗

tP
∗
tP
∗
t )E[vht (qh∗tiq

h∗
tiq
h∗
ti , s

h
ti)

∂qh∗tiqh∗tiqh∗ti
∂qk

|bk+1 ≥

P ∗
tP
∗
tP
∗
t ]+Pr(bk = P ∗

tP
∗
tP
∗
t )E[

∂qh∗tiqh∗tiqh∗ti
∂qk

|bk = P ∗
tP
∗
tP
∗
t ]+Pr(bk+1 = P ∗

tP
∗
tP
∗
t )E[

∂qh∗tiqh∗tiqh∗ti
∂qk

|bk+1 = P ∗
tP
∗
tP
∗
t ]+Pr(bk+1 < P ∗

tP
∗
tP
∗
t )E[

∂qh∗tiqh∗tiqh∗ti
∂qk

|bk+1 <

P ∗
tP
∗
tP
∗
t ]. Here we omitted the dependence on θhτi. In addition,

λl
ti[m

l
ti − µl

t(b
h
ti(·, θhti))] = 0 for all l, (6)

with Lagrange multipliers λl
ti ∈ R for all l.

(iii) The moments, {ml
ti}Ll=1, are such that the expected total surplus (3) is maximized

and ml
ti = µl(bhti(·, θhti)) for all l and all customers.

If Nh = 0, conditions (ii) and (iii) do not apply.

From the existing literature, we know how the dealer determines their equilibrium bid.

Essentially, in each stage they choose their bid to maximize the total expected surplus,

TSd
τi, defined in (3), subject to market clearing:

max
{qk,bk}Kk=1

TSd
τi subject to market clearing. (7)

They trade off the expected surplus on the marginal infinitesimal unit versus the probability

of winning it, summarized in Proposition 1 (i) (see Kastl 2017, p. 237, for more details).

Given that it is never optimal for a dealer to submit a bid above their true value, dealer

demand is never rationed in equilibrium, except for the last step. At the last step, the dealer

submits their true value because it is not possible to increase the winning probability of

(non-existing) subsequent steps by shading the bid.

Our innovation is to characterize the equilibrium bidding of a customer. The key dif-

ference between the dealer and the customer comes from the fact that the customers take

into account the dealer’s response to observing their bid. For illustration, assume for now

that no dealer observes two customer bids. Since dealers only change their own bids in

response to changes in the Lt moments of the observed customer bidding function, {ml
ti}Ll=1,

the customer’s optimality conditions can be decomposed into two parts. This helps to draw

the connection to the dealer’s equilibrium condition. First, for each fixed set of moments,
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{ml
ti}Ll=1, the customer’s equilibrium bidding function must achieve the highest expected

surplus among all of the functions that induce the same dealer updating; that is, {ml
ti}Ll=1

must be such that:

max
{qk,bk}Kk=1

TSh
ti subject to market clearing and ml

ti = µl
t(b

h
ti(·, θhti)) for all l ∈ Lt. (8)

The corresponding optimality conditions are summarized in Proposition 1 (ii). Second,

among those partially optimal functions, the customer chooses the optimal one by choosing

moments {ml
ti}Ll=1 so that the expected total surplus, TSh

ti, is maximized—Proposition 1 (iii).

Both conditions generalize to the case where dealers observe more than one customer. The

only difference is that the customer forms a different expectation over where the market will

clear, taking into account the possibility that the dealer might observe some other customer’s

bid.

Dealer updating implies that it may be optimal for a customer to place a bid above their

true value. As a consequence, we cannot rule out that ties may occur at any step, with

positive probability. Formally, in Proposition 1 (ii) the term Ties(bhti(·, θhti)) includes all of

the cases in which the customer ties with some other bid and the bid must be rationed.

To illustrate why it might be optimal for customers to bid above their value and tie at

non-final steps with positive probability, assume customer i places their bids via dealer j.

They could submit a step function with bk ≤ vk for all k. Alternatively, they could deviate

and bid above their value, for example, at the fourth step, b4 > v4, as depicted in the solid

and dotted lines, respectively in Figure 3A. This would increase their quantity-weighted bid

relative to bidding below their value at all steps; that is, it would modify one moment, m1
t .

Observing a higher quantity-weighted average of the customer’s bid, dealer j updates their

own bid towards a more aggressive bid—going from the solid line, when seeing the original

customer bid, to the dotted line, Figure 3B. The dealer’s new bid is more aggressive on most

but not all units. Since they have a small number of steps to rearrange, the more aggressive

bid ends up crossing their (on average) less aggressive bid for a small set of quantities. The

dealer might have been willing to bid higher on those units but they cannot introduce another

step to do so.

How the dealer updates their bid depends on their private beliefs about where the market

will clear, which is something the customer does not know. Therefore, the customer cannot
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perfectly predict how the dealer will update. However, they can predict the dealer’s update

probabilistically and construct the distribution of the residual supply curves against which

they play (which includes the dealer’s update), to choose the bidding function that maximizes

their expected auction surplus.

Figures 3C–3D display one realization from the distribution of the residual supply curves

and the implied point of market clearing given the customer’s bid for both scenarios. Given

this realization, it is profitable for the customer to bid above their value: Rather than clearing

at the second step of the customer’s bidding function, the auction now clears at the third

step, which implies that the customer wins more units at prices below their values when

deviating to b4 > v4. Given another realization of the residual supply curve, the customer

could tie at the new, more aggressive fourth step. In this case, the market-clearing price

would increase relative to their original bid. At this step, they would be happy to be rationed

and win fewer units at prices above value.

Entry and exit decisions. A customer, i, enters an auction, t, if their entry cost, γh
ti, is

smaller than the total surplus they expect to earn from participating in the auction before

they observe their private signal but they know the current market conditions, which are

captured by the signal distributions, F g
t , and the shape of the value functions, vgt (·, ·), for

g = {h, d}.

Proposition 2. Customer i with entry cost γh
ti enters auction t if

γh
ti ≤ E[TSh

tiTSh
tiTSh
ti|Nd] with TSh

ti given by (3). (9)

Note that, relative to expression (3), we relabeled the time subscript τ to t to highlight that

TSh
ti is the surplus that customer i expects from participating in auction t. The expectation

is taken over the customer’s private signal, shtis
h
tis
h
ti, and is conditional on Nd dealers bidding in

the auction.

Anticipating all auctions, t = 1, ..., T , of the upcoming year, dealer i exits the market if

their entry cost is higher than the surplus they expect to earn from bidding in all T auctions

of the upcoming year.

Proposition 3. At the beginning of the year, dealer i with entry cost γd
i exits the market if
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Figure 3: Bidding example
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(C) Initial market clearing (D) New market clearing

Figure 3 provides an example for why it can be optimal for a customer to deviate from a bidding
function with bk ≤ vk (shown in solid lines) and bid above their value, here, at step b4 > v4 (the
dashed lines in panel A). This is true even though this triggers a more aggressive dealer bid, as
shown in the dashed line of panel B. Panels C and D display one realization of market clearing
for both customer bids; the downward-sloping step function is the customer’s bid and the upward-
sloping function is one realization of the residual supply curve that the customer faces.

γd
i ≥

N̄d∑
Nd=1

(
T∑
t=1

E
[
TSd

tiTSd
tiTSd
ti|Nd

])
Pr(NdNdNd = Nd) (10)

where TSd
ti = [1−Ψti +Ψti Pr(no customer)]TSd

t1i +Ψti Pr(at least 1 customer)TSd
t2i

with TSd
t1i and TSd

t2i given by (3) for τ = t1, t2.

The dealer cares about the aggregate surplus they expect to earn over the entire year and,

when making their decision, they do not know how many other dealers will compete in the

auctions, Nd. Therefore, the dealer considers all possible realizations ofNdNdNd and weights each

by how likely it is to occur, Pr(NdNdNd = Nd). Furthermore, for each auction, t, the dealer must

take an expectation over bidding rounds, τ , to determine how much surplus they expect to

earn in the auction, TSd
ti. This is because ex-ante the dealer does not know whether they
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will place a final bid and earn a surplus of TSt2i, or just an early bid which leaves them with

a surplus of TSt1i. This depends on the probability that the final bid will make it on time

(Ψti) and the probability that at least one customer is matched to the dealer.

5 Identification and estimation

The goal is to learn about the unobserved bidder values, vgt (·, s
g
ti), and the entry and exit

cost distributions, Gh and Gd.

Identifying and estimating values. The idea behind identifying and estimating bidder

values from bidding data is to infer how much each bidder is truly willing to pay, from

the equilibrium conditions, under the assumption that everyone plays this equilibrium, here

specified in Proposition 1. Other than our object of interest—the bidder values—we either

observe all of the elements in Proposition 1 or can estimate them.

For dealers, it suffices to estimate the probabilities of where the market will clear to point

identify the dealer values at all of the submitted steps, qk, (Kastl, 2012). We estimate these

probabilities by extending the resampling procedure in Hortaçsu and Kastl (2012) to account

for the fact that in the data bidders sometimes update their bids more often than predicted

by our model (see details in Appendix C). We account for differences across auctions (in-

cluding differences that arise from different market conditions, such as secondary spreads),

by resampling within, rather than across, auctions.18 We then leverage the monotonicity of

the marginal value function to construct an upper and a lower bound for the values at the

intermediate quantities, q ∈ (qk, qk+1), where steps are not submitted.

It is more difficult to learn about the customer values because the customer’s equilibrium

condition (5) involves ties, which implies that this depends on all of the quantity points on

the bidding curve and not only those at the submitted steps. This leaves us withK equations

but infinitely many unknowns, so that the customer values cannot be point identified.

We can, however, construct sets of informative bounds on the customer values that are

consistent with the observed bids (see Proposition 4 in Appendix A). To recover K upper

and K lower values for vht (qk, s
h
ti) for customer i in auction t, we assume that dealers only

18Hortaçsu and Kastl (2012) also resample within auctions. Their data features a similar number of

unique bidders and slightly fewer bids per auction than our sample.
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pay attention to the quantity-weighted bid when updating their own bid—motivated by the

empirical evidence in Table 2. Condition (5) then simplifies to an equation with a single

moment, the quantity-weighted bid (2). For simplicity, we drop the superscript l = 1.

Before describing the algorithm we use to identify the customer bounds, let us take a step

back and ask what variation in the data identifies these bounds. As in the existing literature,

the first-order conditions for a quantity change at each step submitted provide information

about the marginal value of the bidder at that step. However, in our setting the customers’

optimality condition (5) contains two additional terms, λ∂µ
∂q
, and a term that comes from

ties. While ∂µ
∂q

is directly observed in the bidding data, λ is an additional free parameter. To

pin it down, we use the additional optimality restriction of Proposition 1, according to which

the chosen moment must be optimal, together with data on how the dealer changes their

own bid when observing a higher or lower quantity-weighted customer bid. This additional

information is not leveraged to estimate values in the standard approach (without dealer

updating); it is similar to the variation used to test the model in Hortaçsu and Kastl (2012).

For details on identification, consult the proof of Proposition 4.

We proceed in three steps to back out customer bounds. First, we guess a Lagrange

multiplier, λti ∈ R, and replace the system of equations from Proposition 1 (ii) with a

system that eliminates the infinitely many unknown values due to rationing. To do this,

we utilize boundedness and monotonicity to replace the values at quantities where a step

is not submitted, with a bound. For example, the upper bound on the value at quantity

q ∈ (qk, qk+1) is vht (qk, s
h
ti) and the lower bound is vt(qk+1, s

h
ti). This results in a system of

2K equalities, which are linear in the unobserved values, with 2K unknown.

Second, we simplify this system of equations by showing that, at a subset of steps,

rationing never occurs in equilibrium, which implies that we can cancel out all of the terms

involving rationing at these steps. We do this by constructing profitable deviations at these

steps in Lemma 1 in Appendix A. With these simplifications, it is straightforward to express

the system of equations in matrix format and show that the matrix has full rank, which

proves that the system is identified.

To provide an intuition for how Lemma 1 works, consider a customer with λti > 0. If

the dealer does not update their bid (λti = 0), this customer will submit a lower quantity-

weighted bid. With dealer updating, the customer cannot reach this optimum but they
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can move as closely as possible to it. To do this, the customer starts at the unconstrained

optimum and inflates the quantity-weighted bid in the cheapest way possible, meaning that

the costs coming from dealer updating are minimized. At steps other than the last step, this

may involve rationing, that is, demanding larger quantities than in the unconstrained bid

so as to inflate the quantity-weighted bid without winning all of the extra units. However,

at the last step, demanding a larger amount causes the quantity-weighted bid to fall and,

therefore, the customer does not find it optimal to tie at the last step. Terms involving

rationing at the last step are therefore zero. A similar logic applies when λti < 0. Now, if

the dealer does not update, the customer will want to submit a higher quantity-weighted

bid. Ties may now only occur at the last step, so that the terms involving rationing drop

out at all earlier steps.

Third, we check that the guessed Lagrange multiplier, λti, is valid in equilibrium, by

using Proposition 1 (iii). To do this we rely on the fact that we observe the distribution

of dealer-bid updates following any customer bid. This allows us to calculate what residual

supply curves a customer would have faced had they chosen any other quantity-weighted

bid. With this, and the implied marginal values from λti, we can compute bounds on the

expected surplus that the customer could have achieved at any alternative quantity-weighted

bid, given λti. We then check whether the guessed λti is consistent with the changes in the

surplus between the submitted quantity-weighted bid and the alternative quantity-weighted

bids. For example, if the guessed λti suggests that the customer is forgoing profitable changes

in their bid in order to reduce their quantity-weighted bid, then the residual supply curves

that they expect to face after submitting a larger quantity-weighted bid must imply large

enough losses in their surplus. However, these losses should not be so big that the customer

would rather choose a bid function that resulted in an even lower quantity-weighted bid.

Identifying and estimating cost distributions. To learn about the cost distributions,

Gh andGd, we rely on Propositions 2 and 3, respectively. For this, we fix the maximal number

of dealers to what we observe in our sample, that is, N̄d = 24. We define the number of

potential customers in a year, N̄h, as the maximal number of customers we observe bidding

in any auction that year.

We first compute bounds on how much the customers and dealers expect to gain from
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participating in the game, that is, the RHS of (10) and (9), respectively. For the customers,

this is straightforward. We can compute each customer’s auction surplus (3) at the upper and

lower bounds of the customer’s values, TS
h

ti, and TSh
ti, conditional on auction participation.

For example, TS
h

ti is the area between the upper bound on the customer’s value function

and the submitted bid function, where each quantity is weighted by the probability that it

is won at market clearance. We then average TS
h

ti across all participating customers in an

auction to obtain the expected surplus prior to auction entry, E[TSTSTSh
ti|Nd], and similarly for

the lower bound. Here, we rely on the assumption that the customers’ signals are drawn iid

from the same distribution.

For the dealers, it is more difficult to construct bounds on the expected annual auction

surplus, given in (9), since dealers make their entry decisions before knowing how many other

dealers will be participating in the upcoming year. This implies that we need to compute

two additional objects, besides the expected total surplus, given the observed number of

dealers (which is constructed as for customers). First, when there is a different number of

dealers than the observed participants in the market we need to compute the expected total

surpluses for all of the potential numbers. Second, we need to compute how likely it is that

Nd dealers will participate from the empirical probability that a dealer participates in a fixed

year.19

We could exactly compute the counterfactual surpluses at the non-observed numbers of

participating dealers, following a similar approach presented in our counterfactual exercises.

However, this is computationally intensive. Therefore, we approximate these surpluses by

finding auctions that are similar (in that all bidders expect similar per-unit auction sur-

pluses), but with different numbers of participating dealers. For example, to obtain the

counterfactual surplus for an auction in which Nd dealers participate, we find a similar auc-

tion in which Nd
1 dealers participate. For that similar auction, we compute the expected

surplus for dealers: E[TSd

tiTS
d

tiTS
d

ti|Nd
1 ]. Repeating this exercise for other similar auctions with dif-

ferent numbers of participating dealers provides an estimate for each counterfactual surplus.

With the bounds on how much dealers and customers expect to gain from auction par-

ticipation, we identify the bounds on their cost distributions by matching the predicted

participation probability of a customer and a dealer (according to Propositions 2 and 3) to

19Formally: Pr(NdNdNd = Nd) =
(
N̄d

Nd

)
(Nd/N̄d)N

d

(1− (Nd/N̄d)N̄
d−Nd

.
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what we observe in the data. For example, the predicted expected number of customers

entering an auction, N̄h Pr(γh
tiγh
tiγh
ti ≤ E[TSh

tiTSh
tiTSh
ti|Nd]), must equal the observed expected number.

Relying on the fact that

N̄h Pr(γh
tiγh
tiγh
ti ≤ E[TSh

tiTSh
tiTSh
ti|Nd]) ≤ E[Nh

tNh
tNh
t ] ≤ N̄h Pr(γh

tiγh
tiγh
ti ≤ E[TSh

tiTS
h

tiTS
h

ti|Nd]) (11)

we could identify a lower and upper bound for the customer’s cost distribution non-

parametrically as long as we can construct sufficiently many different surpluses, E[TSh

tiTS
h

tiTS
h

ti|Nd])

and E[TSh
tiTSh
tiTSh
ti|Nd]), to cover the full support of the cost distribution. With our data, we impose

an exponential distribution with parameter βh for customers and parameter βd for dealers.20

6 Estimated values and costs

For each auction, t, we estimate the dealer values, v̂dt (qk, s
d
ti), which we call v̂tik, and the

bounds for the customer values, vtik and vtik, at each submitted quantity step, k, of final

bids. In addition, we obtain the upper and lower bounds for the parameters of the exponential

cost distributions of both bidder groups, Gh and Gd.

Customer and dealer values. Before interpreting the economic magnitudes of our value

estimates, we show in Figure 4 that it is quantitatively important to account for the fact that

sophisticated customers, such as hedge funds, anticipate that a dealer might update their

own bid after observing the customer’s bid. An alternative assumption would be to neglect

the customer bidding incentives that are triggered by dealer updating. In that case, we could

simply follow the estimation procedure of the existing literature and back out the customer

values in the same way we back out the dealer values. However, our results highlight that

the customer values would be significantly biased if we followed this approach.

Independent of the assumption we make about the customer’s degree of sophistication,

customers are typically willing to pay more than dealers (see Figure 5, Appendix Figure 4).

20Concretely, for customers we estimate a set of βh, using the following criterion function: Q′(βh) =

Q(βh)− infβ′ Q(β′) with Q(βh) = (
Nh

t

N̄h −H(E[TSTSTSh
ti|Nd];βh))+)

2 + (
Nh

t

N̄h −H(E[TSTSTSh
ti|Nd];βh))−)

2, where H

is the CDF of an exponential distribution with parameter βh. As the sample size grows, all points in the

identified set produce criterion values of zero. To account for finite sample errors, we define a contour set of

level cn, and estimate the parameter set {βh|Q′(βh) ≤ cn}. We choose the cutoff cn proportionally to the

number of auctions in our sample cn = log(645)/645, inspired by Chernozhukov et al. (2007).
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In our benchmark where customers are fully sophisticated, we estimate that, in the median,

customers are willing to pay between 4.6 and 7.3 bps more per unit of the bond than dealers.

This difference is economically meaningful compared to the median market yield-to-maturity

of the bonds, which is 161 bps, and is sizable compared to the median difference between

the quantity-weighted average winning bid and the quantity-weighted average secondary

market price on auction day (one day after the auction), which is 0.4 bps (2 bps). Further,

the difference is statistically significant at the 5% level (as shown in Appendix Table A5)

and cannot be driven by customer selection into more-profitable auctions, given that we are

considering value differences conditional on auction participation. This is true when using

the lower and upper bounds of the customer values.

Over time, customer values have increased relative to dealer values, as shown in Figure

5B.21 Since these values reflect how much an auction participant expects to earn from trading

bonds in the secondary market, this finding suggests that customers anticipate increasingly

larger per-unit returns from buying bonds, relative to dealers. This is in line with anecdotal

evidence according to which more-stringent regulations for dealers, since the financial crisis

in 2007-2009, have decreased profit margins for dealers relative to customers. This finding

is also in agreement with evidence documented by Sandhu and Vala (2023), who argue that

hedge funds that entered the market after 2009 are able to obtain higher than average returns

in the secondary market for Canadian government bonds because they have more flexibility

to employ complex and risky trading strategies (Ontario Securities Commission, 2007).

Finally, we test whether our estimated distribution of customer values correlates with

the observed market conditions that predict customer participation (shown in Appendix

Table A2). This provides a validity check for our value estimates since we have not used any

information of these market conditions in our estimation. Specifically, we regress the average

quantity-weighted customer value per auction, in addition to other moments of the customer

value distribution, such as the standard deviation, on the explanatory variables that we used

to predict customer participation shown in Appendix Table (A2). Our findings, reported in

Appendix Tables A6 and A7, confirm our prior that customer values are higher (and more

disperse) when secondary market spreads are wide.

21This trend could come from the same customers becoming more profitable over time. Alternatively, if

different customer types (e.g., hedge funds vs. pension funds) have systematically different value distribu-

tions, this could come from a change in the composition of customer types over time.
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Figure 4: Customer bid shading under different bidding assumptions

Figure 4 shows the distribution of the customer’s average shading factors in C$, defined as the
customer’s quantity-weighted average value minus the quantity-weighted average bid, under different
assumptions regarding the customer’s degree of sophistication. The box plot called “Sophisticated”
shows the distribution of the lower bound quantity-weighted customer value estimates according to
our model. ‘Ties only’ estimates the values under the assumption that customers bid according to
Proposition 1 (ii) but set λti = 0. The ‘Naive’ box uses the dealers’ optimality condition, i.e., forcing
the customer to bid without accounting for the impact of the information their bid might have on
the dealers’ behavior.

Entry costs. The entry costs capture the opportunity cost of the profits that customers

and dealers could generate outside the Treasury market. These costs differ from values in

that they are independent of how much a bidder wins at auction; they must be paid when

an institution spends time bidding at auction (and in the case of dealers, conducting other

market- making activities), even if the institution does not buy any bonds.

On average, we estimate an annual cost of being a dealer of between C$3.263 and C$4.117

million, with a (bootstrapped) confidence interval of [C$3.111M, C$4.296M]. This is sizable

compared to the average annual profit a bank generates from its market-making activities in

all financial markets combined, which amounts to roughly C$413 million (Allen and Wittwer,

2023). To get a sense of whether our cost estimate is sensible, we collect information on the

fees that a typical trading desk must pay to act as a primary dealer for a year, for example,

to access data feeds and electronic platforms, such as Bloomberg. These fees sum to C$3.1

million, which is surprisingly close to our estimate, even though we do not use the information

on fees in our estimation.

The average entry cost of a customer is between C$471,505 and C$492,605 per auction,
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Figure 5: Difference between customers and dealers’ values

(A) (B)

Figure 5A shows the distribution of the difference in the quantity-weighted average values between
participating customers’ and dealers, using customer lower bound values on the LHS and upper
bound values on the RHS. We remove outliers, defined as those with a value that is more than
three scaled median absolute deviations from the median. Figure 5B plots the point estimates and
the 95% confidence intervals from regressing the difference between the lower bound of the average
customer value and the lower bound of the average dealer value in each auction on a set of time
indicator variables. The first indicator is 1 for 1999-2000, the second indicator is 1 for 2001-2002,
and so forth, until 2021-2022. The confidence intervals are computed using the point estimates of
the dealer and customer values at the lower bounds and, therefore, do not account for noise in the
estimation of these values. Prices are in C$ with a face value of $100.

with a (bootstrapped) confidence interval of [C$401,204, C$562,905]. Given that there are

about 28 auctions per year, the customer’s cost is larger than the dealer’s cost. This is in

line with the idea that customers are better at executing profitable trading strategies—here,

outside of the Treasury market, driving up the opportunity entry cost.

Summarizing, our findings highlight systematic differences between dealers and cus-

tomers, both in terms of their values and their entry costs.

7 Drivers and consequences of customer participation

With the estimated model, we conduct counterfactuals to understand why hedge funds en-

tered the market and we evaluate the consequences for market functioning. For this, we

assume that all model primitives, such as the distributions of values and costs, remain fixed

when we change the market rules. We use final bids only and the lower bound estimates of

the values and costs. Ideally, we would compute counterfactual outcomes for all auctions in
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our sample; however, this is computationally intense. We therefore only consider every third

auction since 2014, that is, the period when hedge funds became the dominating customer

group.

Computing counterfactuals Conducting counterfactuals for multi-unit auctions in which

bidders have multi-unit demand is challenging because it is analytically impossible to solve

for an equilibrium. We proceed using a numerical solution approach (explained in more

details in Appendix D.1).

We extend the empirical guess-and-verify approach of Richert (2021) to allow bidders to

expand their auction-specific demands in response to changes in the auction environment.

We limit the amount of expansion to the quantity that would result if the bidder submitted

the greater of their largest ever bid and a bid for 10% of the supply. The bidder-specific

limit accounts for the unobservable constraints that restrict the amount a bidder is able to

buy, such as balance sheet constraints; the 10% bound approximates the minimal bidding

requirement of dealers in normal times.22

Concretely, we solve for the counterfactual bid distributions such that two conditions are

satisfied. First, the distribution of the values implied by these bids and optimal bidding must

be indistinguishable from the distribution of the estimated values. Second, the counterfactual

distribution of the maximal amount each bidder demands in an auction must be first-order

stochastically dominated by the observed distribution of maximal demands. We obtain this

distribution by first fixing each bidder and computing the maximum between the largest

fraction of the bond supply this bidder bids on in any auction and 10% of this supply.

We then take the empirical distribution of these maximal quantities across bidders. For

robustness, we alternatively impose constraints such that when each dealer is removed, the

coverage ratio (which is the ratio between the sum of all bids over total supply) falls by the

same amount as the average decrease in the coverage when a dealer exits, as estimated using

the three exits in 2014-2015.

Our approach might not fully capture the size of the demand in counterfactual auctions

that are far from any observed auction. Moreover, it does not account for endogenous changes

22For small changes in the number of dealers, this approach may be conservative, given that dealers do

not increase their maximum quantity demanded when a dealer exits the market, as shown in Appendix Table

A4.
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in the value or cost distributions, given that we need to fix the estimated model primitives to

compute counterfactual bids and entry decisions. For example, since bidders at least partially

derive value from the money they make from reselling bonds, we might be concerned that

their values change when their competitors win more at auction—since this impacts the

degree of competition the bidder faces in the secondary market. Sufficiently small changes

in the auction allocation, however, should result in similar degrees of competition in the

secondary market. We therefore focus our discussion on local changes where our approach

provides more-reliable predictions. To avoid focusing on any particular draw from the cost

or value distribution, we take the ex ante perspective and compare the expected market

outcomes. For instance, we analyze the expected price at which an auction clears under the

current market rules, relative to counterfactual market rules.

Why did customers enter? We first aim to understand whether customers entered the

market because of dealer exit or because of changing market conditions. For this we compare

the status quo, in which two dealers left in 2014, with a counterfactual with two additional

dealers (fixing dealer participation but allowing customers to select into auctions).

Our findings suggest that customer participation was partially driven by dealer exit and

partially due to the changes in the market that made it more profitable for customers to buy

bonds (as the time trend in Figure 5B suggests). Adding two dealers reduces a customer’s

participation probability by roughly 17.06 percentage points, or 31.56%, on average. Fur-

thermore, Figure 6 highlights that the probability of participating in some auctions drops to

almost zero.23

Competition-volatility trade-off. Next, we illustrate the competition-volatility trade-

off that arises when adding market participants who do not participate with regularity.

For this, we first consider a hypothetical auction environment with only dealers. This

eliminates the effects coming from changes in the bidder composition or from dealer bid

updating. In this simplified auction environment, we ask by how much the expected auction

price and auction coverage vary in the number of competing dealers.

23Appendix Figure A9 shows by how much the expected price and revenue change in the counterfactuals

relative to the status quo. Given that all auctions are relatively competitive, these effects are relatively

small.
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Figure 6: Why did customers enter?

Figure 6 shows the customer’s participation probability in percentage points for every 3rd auction
from 2014 onward in the status quo (on the x-axis) and the counterfactual in which we add back
the two dealers who left (on the y-axis).

Consider a typical auction, shown in Figure 7: If 14 dealers compete, the market clears at

a competitive price, which is similar to the observed one. If the number of dealers competing

drops to 13 or 12, the expected price drops by close to 0.06% and 0.41%, respectively.24

Next, we analyze the effects of varying the probability with which customers participate in

a typical auction, fixing the number of dealers—see Figures 8. The expected price decreases

by 0.015%, the expected revenue decreases by 0.004% (or C$0.2 million), and bid shading

increases by 12%. With fewer dealers, the effects are much larger.

To compare the competition effect to the volatility effect from increasing customer par-

ticipation, we compute the expected revenue loss from a reduction in the expected customer

participation of one competitor on average and the expected revenue loss from across-auction

variation in customer entry rates.25 The loss arises from the feature that both the expected

24These large changes rely on the assumption that the dealers are limited in their increases in demand

around an exit. This is consistent with evidence when a dealer exits the market (illustrated in Appendix

Table A4). Appendix Figure A10 shows the analogous results for other auctions, specially p5 and p95.
25Formally, let pr denote the probability that a customer participates and pr data = 1

T

∑
t N

h
t /N̄

h.

The competition effect = E [revenuerevenuerevenue|pr = pr data] − E
[
revenuerevenuerevenue|pr = pr data− 1

1
T

∑
t N

h
t

]
is the difference

between the expected auction revenue with the observed customer entry probabilities and the expected

revenue when we remove one customer, in expectation. The volatility effect = E [revenuerevenuerevenue|pr = pr data] −
E [E[revenuerevenuerevenue|pr]] is the expected revenue with observed entry probabilities minus the expectation of expected

revenues over the distribution of customer entry probabilities.
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Figure 7: Typical auction: Varying number of dealers

Figure 7 shows how the range of the expected prices (in C$) at which an auction clears varies as
the number of dealers increases in an auction that issues the average supply with medium customer
participation, i.e., 3 customers. In theory, there is one expected price for each fixed number of dealers.
In practice, we determine a range of prices (marked in black), given that our numerical procedure
to determine counterfactual bids allows for small differences between the value distribution that is
implied by the counterfactual bids and the true value distribution (see Richert 2021). The blue
horizontal line shows the average observed bid, which is close to the observed market-clearing price.

price and the expected revenue are concave functions of the entry probability of customers (as

visible in Figure 8 ). For the median auction, the competition effect (C$ 0.2M) is somewhat

larger than the loss from irregular participation (C$ 0.04M). However, when the distribution

of customers’ entry probabilities gives more weight to auctions with fewer customers than

in our data the volatility loss can outweigh the competition effect. This is because the low

auction revenues on bad days, on which few customers enter, dominate the smaller increases

in the auction revenues on good days.

Taken together, these findings highlight the potential risk of introducing volatility in

auction coverage and clearing prices when bidder participation is irregular. Our results also

indicate that losing additional dealers could have detrimental effects unless an adequate

number of new customers enters the market. This is not only a hypothetical concern, as one

dealer (RBC) recently acquired another dealer (HSBC).

Alternative policies. In the final part of the paper, we aim to determine a simple policy

that both reduces volatility and increases competition relative to the status quo.
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Figure 8: Typical auction: varying customer participation probability

(A) Customer participation (B) Customer participation less dealers

Figure 8 shows how the range of the expected price (in C$) at which an auction clears varies as the
participation probability of (all) customers varies between 0 and 1, computed at an evenly spaced
grid point in an auction that issues the average supply with medium customer participation, i.e.,
3 customers. The right panel, shows the same auction but with 8 dealers. In theory, there is
one expected price for each counterfactual. In practice, we determine a range of prices (marked
in black), given that our numerical procedure to determine counterfactual bids allows for small
differences between the value distribution that is implied by the counterfactual bids and the true
value distribution (see Richert 2021). The blue horizontal line shows the average observed bid, which
is close to the observed market-clearing price.

As a starting point, we consider modifications to the commitment requirements. We first

eliminate dealer commitment, meaning that we allow dealers to freely decide whether to

enter each auction, in the hope that this increases competition without harming volatility.

Then, we require customers to commit to participating in the same way as dealers, in the

hope that this decreases volatility without harming competition. Due to endogenous bidder

participation, in both cases, it is theoretically possible to increase competition and decrease

volatility relative to the status quo. Empirically, we find that neither of these two alternative

policy regimes achieves that goal (see Appendix D.2 for details).

Instead, we propose to strategically reshuffle the supply across auctions to incentivize

and stabilize customer participation. The idea is that we can predict (with some noise) how

many customers each auction would attract, under the current supply schedule, based on the

observable market conditions, and then shift some of the supply from the attractive auctions

to the unattractive ones.
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Concretely, we rely on the OLS regression from Appendix Table A2 to predict how many

customers will want to participate under the current supply schedule, given the observable

market conditions. We exclude the lagged number of participating customers as an explana-

tory variable, because this variable changes endogenously in the counterfactual. We think

that it is reasonable to assume that all other predictors of customer participation, such as

the secondary market spread, are not materially affected by the moderate supply changes

we propose. We also exclude 2020 onward, when debt issuance spiked in response to the

unprecedented level of fiscal intervention during the COVID pandemic. Within each year,

we rank the predicted number of participating customers, N̂ c
t , from smallest to highest, and

obtain a quantile ranking, ranging from 0 (smallest N̂ c
t ) to 1 (highest N̂ c

t ) from the empirical

distribution of N̂ c
t . The quantile ranking is a single dimensional index, s ∈ [0, 1], which

captures the intensity of the predicted customer participation.

Based on this participation index, we increase the supply by 10% in the auction with the

lowest participation (s = 0) and decrease the supply by 10% in the auction with the highest

participation (s = 1). We adjust the supply linearly for all auctions in between. Formally,

the new supply in an auction with index s is Qt + 0.2(0.5 − s), given that the observed

supply is Qt. This rule implies that the supply in the auction with the median participation

(s = 0.5) is left unchanged. All adjustments are made within a year, so the total volume

issued in a year is unchanged. To avoid issuing amounts of debt that are too extreme in any

counterfactual auction relative to the status quo, we normalize all initial supplies to one,

that is, Qt = 1 for all t.26

We find that implementing such supply adjustments successfully increases competition

while decreasing volatility (see Figure 9). Both the median expected price and the median

number of participating customers increase, suggesting enhanced competition relative to the

status quo. In addition, the customer participation probability per auction stabilizes around

a median of 17% and the price volatility diminishes. As a result, the median revenue per

auction increases by about C$0.38 million (or, about 0.01 bps).

This simple rule does not account for all of the factors that influence the complicated

26To illustrate why normalizing the supply reduces the supply changes we propose, consider one auction

that supplies C$4 billion and one auction that supplies C$1 billion in the status quo. Assume that our rule

would suggest shifting 10% of the C$4 billion in bonds from the first to the second auction. This would

mean increasing the supply in that auction by C$400 million—a massive percentage increase of 40%.
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Figure 9: Reshuffling supply to incentivize customer participation

(A) Customer participation (B) Expected price

Figure 9A shows the distribution of customer participation probabilities across auctions in the status
quo and the counterfactual in which we strategically reshuffle supply to incentivize stable customer
participation (in pp). Figure 9B displays the corresponding distributions of expected auction prices
(in C$).

decision on how to issue government debt. For example, it abstracts from the term structure

of bonds and, therefore, ignores the complications that arise from rolling over debt in the

future.

However, this rule has at least three attractive features. First, it is easy to implement and

politically feasible, given that the central bank already changes the supply issued to bidders

by placing sizable non-competitive bids. Second, the rule is supply neutral, in relative terms,

in that we add the same percentage supply in one auction that we subtract from another.

Since the observed supplied quantity (in dollars) is uncorrelated with the quantity changes

we make (in dollars), the rule is also supply neutral in absolute terms as long as we repeat

our exercise with sufficiently many auctions. Third, the rule is essentially revenue neutral.

This is because there is no statistically significant correlation between the average (quantity-

weighted) value for the auctioned bond of participating bidders and the predicted number of

participating customers.27 Therefore, our rule does not systematically shift the supply from

27The point estimate from regressing the average quantity-weighted value of all bidders, in an auction

that issues a bond with C$ 100 face value, on the predicted number of participating customers is -0.03. The
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low-value auctions that clear at low prices, to high-value auctions that clear at high prices,

or vice versa.

8 Conclusion

We study dealer exit and customer entry in the primary market for Canadian government

debt and analyze some consequences for the functioning of the market. We show that cus-

tomer participation has increased, but remains highly irregular. We introduce and estimate

a structural model to trade off the benefits of higher competition from customer entry with

the costs of higher market volatility. Our framework could be used in other settings with

regular and irregular market participants.

confidence interval is [−0.14,+0.07].
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ONLINE APPENDIX

Entry and Exit in Treasury Auctions

By Jason Allen, Ali Hortaçsu, Eric Richert, and Milena Wittwer

Appendix A presents mathematical details, including formal proofs.

Appendix B presents additional empirical tests supporting our model.

Appendix C explains how we estimate dealer and customer values.

Appendix D provides details about counterfactuals, and presents additional findings.

A Mathematical appendix

In this appendix we prove Proposition 1. The proof relies on Lemma 1, stated and proved

below. Finally, we prove that customer value bounds are identified, which is summarized in

Proposition 4.

Proof of Proposition 1. The proof of statement (i) is analogous to the proof of Propo-

sition 1 in Kastl (2011).

To show statement (ii), take the perspective of customer i and assume that all other

bidders play an equilibrium. For ease of notation, we drop the auction and time subscripts,

t and τ , and fix L moment functions, µl. Given that dealers only update their own function

when the customer submits a function with at least one different moment {ml
i}Ll=1, we can

decompose the conditions that characterize the customer’s best reply (and, with that, an

equilibrium, given that the other bidders play, by assumption, an equilibrium) into two parts.

First, we fix some set of moments, {ml
i}Ll=1, and find bhi (·, θhi ) that maximizes the cus-

tomer’s expected total surplus,

TSh
i = E

[∫ qh∗iq
h∗
iq
h∗
i

0

[vh(x, shi )− bhi (x, θ
h
i )]dx

]
such that µl(bhi (·, θhi )) = ml

i for all l. (3)

Denoting Lagrange multipliers of the constraints by λl
i, the objective function is TSh

i −∑L
l=1 λ

l
i

(
ml

i − µl(bhi (·, θhi )
)
. Given this objective function, we can follow the perturbation

argument in the original proof in Appendix A.2 of Kastl (2011), step by step, with one

1



difference. There is an additional term that comes from the constraints that all moments,

l, of the chosen function, µl(bhi (·, θhi ), must equal the fixed moments, ml
i. This term does

not create issues when taking derivatives since the moment functions are differentiable w.r.t.

quantity. Further, since dealers only update their own bids if a moment of the customer’s

bidding function changes, and we are keeping these moments fixed, no complications arise

when predicting which states of the world the market will clear relative to the original proof.

Following the steps in Kastl (2011), we obtain equations A.2 and A.3 in Kastl (2011) plus

the term
∑L

l λ
l
i
∂µl(bhi (·,θhi )

∂qk
. Combining these equations gives condition (5) in Proposition 1.

Unlike for dealers, these expressions do not simplify further because it may be optimal for

customers to tie in steps other than the last one. This is explained in Lemma 1 below.

Statement (iii) specifies that, in equilibrium, a customer must choose a bidding function

that gives rise to moments, {ml}Ll=1, so that the total expected surplus is maximized globally.

Note that solving this maximization is challenging (even when we restrict our attention to

moments that are real numbers) because the objective function—that is, the expected auction

surplus—is not differentiable w.r.t. these moments. To see this, consider a change in moment

ml
i. The dealer who observes the corresponding bid function updates their own bid because

a change in ml
i (weakly) changes the dealer’s information set and, with that, its type, θdi .

Therefore, the dealer submits a different bid function, that is, a step function with steps at

different points. This changes the customer’s beliefs about the price at which the auction

will clear. Formally, the distribution of the clearing price changes when the customer fixes

their own bid function, that is, since bidding functions are step functions, a change in such

a function easily leads to non-continuous jumps that render the objective function, TSh
i ,

non-differentiable.

Lemma 1. (i) For a customer, ties occur with zero probability for a.e. shi in any equilibrium

for either all steps except the last step (if λi ≤ 0), or at the last step (if λi > 0). (ii) For a

dealer, Kastl (2011) Lemma 1 applies.

Proof of Lemma 1 (i). For ease of notation we eliminate the auction and time subscripts,

t and τ , as well as the customer superscript, h.

Case 1: λi > 0. Consider the last step, k = K. Suppose bidder i ties on step k = K. Take

some qm = sup{q|v(q, si) > bk} and let q̄ = max{qk − δ, qm} with δ some strictly positive

2



number bounded above by qk − qk−1. By moving from qk to q̄, the bidder either moves to

where they get a positive surplus from the amount purchased or they buy fewer units at a

negative surplus. Take the deviation to bid b′ik = bik + ϵ, where ϵ > 0 is sufficiently small at

q̄, the associated step, either bidder i gets fewer units than they would in a tie and no longer

pays for those units or they get more units but on each of these units earns an additional

positive surplus.

Given dealer updating, this deviation is strictly profitable. To see this, let us abbreviate

the moment, that is, the quantity-weighted bid of the deviated bidding function by µ(q̄, b′)

and, similarly, the original bidding function. Deviating to b′ik comes at a constraint penalty

of −λi(mi − µ(q̄, b′)), since the targeted moment, mi = µ(qk, b), is no longer met. Because

µ(q̄, b′) > µ(qk, b) = mi and λ > 0, by assumption, −λi(mi − µ(q̄, b′)) > 0, representing a

strictly positive profit from deviating.

Case 2: λi < 0. Suppose bidder i ties on a step k < K. Take some qm = sup{q|v(q, si) >

bk} and let q̄ = max{qk − δ, qm}, with some strictly positive step size, δ, that is bounded

above by qk − qk−1, that is, the bidder steps either toward where they get a positive surplus

from the amount purchased, if possible, or, if not, at least they buy fewer units at prices

above their values (reducing losses). Take the deviation to bid b′ik = bik + ϵ, where ϵ > 0

is sufficiently small, at q̄ (the associated step), either bidder i gets fewer units than they

would in a tie and no longer pays for those units, or they get more units but on each of

these units earns an additional positive surplus. Similar to the first case, there is a positive

gain that arises due to dealer updating. The deviation comes at a constraint penalty of

−λi(mi − µ(q̄, b′)). Because µ(q̄, b′) < µ(qk, b) = mi, the bracketed term is positive. By

assumption, λi is negative, so that −λi(mi − µ(q̄, b′)) > 0.

Case 3: λi = 0. The original proof from Kastl (2011) applies.

Proposition 4. Given customer shti behaves according to Proposition 1 (ii) and (iii), and the

dealer only pays attention to one moment of the customer’s bidding function, that is, L = 1,

the upper and lower bounds on the customer’s values, vht (·, shti) and vht (·, shti), are identified.

Proof of Proposition 4. We fix an auction, t, and a customer, i, and drop the auction,

t, time, τ , customer, h, and bidder, i, subscripts and superscripts, for simplicity. Further,

we assume that only one moment, m, matters, for instance, the quantity-weighted bid,

3



consistent with our estimation, and we drop the l-subscript.

The identification argument is complicated by the fact that condition (5)—here, slightly

rearranged—not only contains values at the submitted steps, v(qk, s), but also the values at

some intermediate quantities between the submitted steps, v(q∗q∗q∗, s):

0 =Pr(bk > P ∗P ∗P ∗ > bk+1|θ,m)v(qk, s)+

Pr(bk = P ∗P ∗P ∗|θ,m)E
[
v(q∗q∗q∗, s)

∂q∗q∗q∗

∂qk

∣∣∣bk = P ∗P ∗P ∗, θ,m

]
+

Pr(bk+1 ≥ P ∗P ∗P ∗|θ,m)E
[
v(q∗q∗q∗, s)

∂q∗q∗q∗

∂qk

∣∣∣bk+1 ≥ P ∗P ∗P ∗, θ,m

]
−

Pr(bk > P ∗P ∗P ∗ > bk+1|θ,m)bk−

Pr(bk+1 ≥ P ∗P ∗P ∗
∣∣∣θ,m)(bk − bk+1)−

Pr(bk = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂qk

∣∣∣bk = P ∗P ∗P ∗, θ,m

]
bk−

Pr(bk+1 = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂qk

∣∣∣bk+1 = P ∗P ∗P ∗, θ,m]

]
bk+1+

λ
∂µ(b(·, θ))

∂qk
. (12)

Here, and for all other expressions in this section, we include the fixed moment, m, as a

condition alongside the bidder’s type. Dependence on intermediate quantities implies that

the customer values cannot be point identified.

To identify the customer’s value bounds, we first guess a Lagrange multiplier, λ ∈ R,

and simplify the system of equations (12) to obtain a set of conditions for λ > 0 and one for

λ < 0.

We start by relying on monotonicity and boundedness of the value function: for all

qk−1 ≤ q ≤ qk, we know that v(qk−1, s) ≥ v(q, s) ≥ v(qk, s). In addition, we sign the

derivatives of the rationed quantity as follows: increasing the bid at step k increases the

quantity rationed in the event of a tie at step k and decreases the quantity rationed in the

event of a tie at step k + 1.

Next, we eliminate terms in condition (12) to obtain a system of 2K linear equations

with 2K unknowns. To do this, we obtain an upper bound on the value at step qk by making

the terms involving the value and the derivative of the rationed quantity in the event of a tie

4



as small as possible (and making them as big as possible for the lower bound). To do this,

we plug in v(qk, s), the maximum possible value at intermediate quantities along the next

step, for the terms involving rationed quantities at the next step (e.g., line 3 of equation

(12)), since the (conditional) expectation of the derivative of the random quantity won at

the next step, E
[
∂q∗q∗q∗

∂qk

∣∣∣bk+1 ≥ P ∗P ∗P ∗, θ,m
]
, is negative. This is because increasing qk decreases

(qk+1−qk), which, due to pro-rata-rationing, decreases the amount the bidder wins in case of

a tie at step k+1. In addition, we plug in v(qk, s), the smallest possible value at intermediate

quantities along the current step, for terms involving ties at the current step (e.g., line 2 of

equation (12)), since the (conditional) expectation of the derivative of the random quantity

won at the step, E
[
∂q∗q∗q∗

∂qk

∣∣∣bk = P ∗P ∗P ∗, θ,m
]
, is positive. This is because increasing qk increases

(qk − qk−1), which, due to pro-rata-rationing, increases the amount the bidder wins in case

of a tie at step k.

To obtain a lower bound, we instead substitute the maximum value at the current step,

v(qk−1, s) (in line 2 of equation (12)) and the minimum value at the next step, v(qk+1, s) (in

line 3 of equation (12)) .

To further simplify the system of equations, we rely on Lemma 1 according to which ties

never occur in equilibrium at a subset of steps. This allows us to cancel terms involving

ties at these steps. There are two cases, depending on the sign of λ. When the current λ

is negative, at the steps before the last step ties cannot be optimal and the terms involving

the derivative of the rationed quantity drop out except for at the second-to-last step. When

the current λ is positive, the only simplification occurs at the last step, where the rationing

terms all drop out. Furthermore, at the last step, all terms involving bK drop out.

With these simplifications, we obtain the following system of equations for two cases,

λ > 0, and λ < 0, where the expected payment is on the LHS and the expected benefit is

on the RHS. It can help to transform this system of equations into a single matrix, one for

each case, to see that the system is indeed identified (conditional on knowing λ).

5



Appendix Figure A1: Identification graphically

bk

qkq3q2q1

Appendix Figure A1 shows an example of a step function with three steps (in dashed lines)
and the corresponding lower bound (in black) and upper bound (in gray) values at each step.
In the example, shading is positive at all steps, which isn’t crucial for identification. Instead,
the main assumption we rely on to create the bounds is that the value curve is monotonically
decreasing in quantity.

Define

Ak = Pr(bk > P ∗P ∗P ∗ > bk+1|θ,m)bk + Pr(bk+1 ≥ P ∗P ∗P ∗|θ,m)(bk − bk+1)

+ Pr(bk = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂qk

∣∣∣bk = P ∗P ∗P ∗, θ,m

]
bk + Pr(bk+1 = P ∗P ∗P ∗|θ,m)E

[
∂q∗q∗q∗

∂qk

∣∣∣bk+1 = P ∗P ∗P ∗, θ,m]

]
bk+1

− λ
∂µ(b(·, θ))

∂qk
for all k = 1, ..., K − 1, (13)

AK = Pr(P ∗P ∗P ∗ > bK |θ,m)bK + Pr(bK = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂qK

∣∣∣bK = P ∗P ∗P ∗, θ,m

]
bk

− λ
∂µ(b(·, θ))

∂qK
. (14)

(i) When λ < 0, the system of equations equalizing the expected payment with the

expected benefit at the upper and lower bound is

A1 = Pr(b1 > P ∗P ∗P ∗ > b2|θ,m)v(q1, s)

A1 = Pr(b1 > P ∗P ∗P ∗ > b2|θ,m)v(q1, s), and analogously for k = 2, ...K − 2.

6



Here, we rely on the fact that when λ < 0, by Lemma 1, ties cannot occur at non-final steps.

AK−1 = Pr(bK−1 > P ∗P ∗P ∗ > bK |θ,m)v(qK−1, s) + Pr(bK ≥ P ∗P ∗P ∗|θ,m)E
[

∂q∗q∗q∗

∂qK−1

∣∣∣bK ≥ P ∗P ∗P ∗, θ,m

]
︸ ︷︷ ︸

<0

v(qK−1, s)

Here, we again rely on the fact that there is no tie at K−1, so that we can cancel the second line in

equation (12). We make the third line as small as possible to maximize v(qK−1, s). All other lines

are part of the expected payment and, thus, are in AK−1. A similar logic applies when determining

the lower bound at K − 1:

AK−1 = Pr(bK−1 > P ∗P ∗P ∗ > bK |θ,m)v(qK−1, s) + Pr(bK ≥ P ∗P ∗P ∗|θ,m)E
[

∂q∗q∗q∗

∂qK−1

∣∣∣bK ≥ P ∗P ∗P ∗, θ,m

]
︸ ︷︷ ︸

<0

v(qK , s)

For the last step, we apply the same logic from above, just that now the third line of equation

(12) drops out because we are at the last step. In addition, we can replace the term v(qK , s) with

v(qK , s) since we know the value curve takes one value at that point. We obtain

AK = Pr(bK > P ∗P ∗P ∗ > 0|θ,m)v(qK , s) + Pr(bK = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂qK

∣∣∣bK = P ∗P ∗P ∗, θ,m

]
︸ ︷︷ ︸

>0

v(qK , s)

AK = Pr(bK > P ∗P ∗P ∗ > 0|θ,m)v(qK , s) + Pr(bK = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂qK

∣∣∣bK = P ∗P ∗P ∗, θ,m

]
︸ ︷︷ ︸

>0

v(qK−1, s),

where Ak and AK are given by (13) and (14), respectively.

(ii) Similarly, when λ > 0, we rely on Lemma 1 to eliminate ties at the last step. For

earlier steps, we follow the analogous point-wise argument as above to obtain

A1 = Pr(b1 > P ∗P ∗P ∗ > b2|θ,m)v(q1, s) + Pr(b1 = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂q1

∣∣∣b1 = P ∗P ∗P ∗, θ,m

]
v(q1, s)

+ Pr(b2 ≥ P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂q1

∣∣∣b2 ≥ P ∗P ∗P ∗, θ,m

]
v(q1, s)

A1 = Pr(b1 > P ∗P ∗P ∗ > b2|θ,m)v(q1, s) + Pr(b1 = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂q1

∣∣∣b1 = P ∗P ∗P ∗, θ,m

]
v(0, s)

+ Pr(b2 ≥ PPP |θ,m)E
[
∂q∗q∗q∗

∂q1

∣∣∣b2 ≥ P ∗P ∗P ∗, θ,m

]
v(q2, s)

7



Here, and in all of the equations for the upper bound that follow, we replace the v(qk, s) in the

terms involving ties with v(qk, s), since we know that the values at that point are a single number.

This makes the bounds more informative.

A2 = Pr(b2 > P ∗P ∗P ∗ > b3|θ,m)v(q2, s) + Pr(b2 = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂q2

∣∣∣b2 = P ∗P ∗P ∗, θ,m

]
v(q2, s)

Pr(b3 ≥ P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂q2

∣∣∣b3 ≥ P ∗P ∗P ∗, θ,m

]
v(q2, s)

A2 = Pr(b2 > P ∗P ∗P ∗ > b3|θ,m)v(q2, s) + Pr(b2 = P ∗P ∗P ∗|θ,m)E
[
∂q∗q∗q∗

∂q2

∣∣∣b2 = P ∗P ∗P ∗, θ,m

]
v(q1, s)+

+ Pr(b3 ≥ PPP |θ,m)E
[
∂q∗q∗q∗

∂q2

∣∣∣b3 ≥ P ∗P ∗P ∗, θ,m

]
v(q3, s), and analogously for k = 3, ...K − 2,

AK−1 = Pr(bK−1 > P ∗P ∗P ∗ > bK)v(qK−1, s) + Pr(bK−1 = P ∗P ∗P ∗)E
[

∂q∗q∗q∗

∂qK−1

∣∣∣bK−1 = P ∗P ∗P ∗, θ,m

]
v(qK−1, s)

In this case, the third line of equation (12) drops out because there is no tie. And similarly for the

lower bound equation:

AK−1 = Pr(bK−1 > P ∗P ∗P ∗ > bK)v(qK−1, s) + Pr(bK−1 = P ∗P ∗P ∗)E
[

∂q∗q∗q∗

∂qK−1

∣∣∣bK−1 = P ∗P ∗P ∗, θ,m

]
v(qK−2, s)

AK = Pr(bK > P ∗P ∗P ∗ > 0)v(qK , s)

AK = Pr(bK > P ∗P ∗P ∗ > 0)v(qK , s),

where Ak, and AK are given by (13) and (14), respectively. This system of equations would

be identified if λ was known. Since this isn’t the case, we rely on Proposition 1 (iii) to obtain

identification of the value bounds.

Specifically, we know that perturbing m cannot be optimal. Formally, the total expected

surplus must decrease when increasing and decreasing m by ϵ > 0:

TS(b(·, θ),m)− TS(b(·, θ),m+ ϵ) ≥ λϵ (15)

TS(b(·, θ),m− ϵ)− TS(b(·, θ),m) ≤ λϵ, (16)

where

TS(b(·, θ),m) =

K∑
k=1

[
Pr(bk > P ∗P ∗P ∗ > bk+1|θ,m)V (qk, s)− Pr(bk > P ∗P ∗P ∗

∣∣∣θ,m)bk(qk − qk−1)
]

+
K∑
k=1

Pr(bk = P ∗P ∗P ∗|θ,m)E
[
V (q∗q∗q∗, s)− bk(q

∗q∗q∗ − qk−1)
∣∣∣bk = P ∗P ∗P ∗, θ,m

]
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with q0 = bK+1 = 0. This expression is equivalent to equation (3) for g = h. TS(b(·, θ),m+ϵ)

and TS(b(·, θ),m− ϵ) are defined analogously.

We can use (17) and (18) to find the bounds for (15) and (16), respectively. Consider

(15) first and omit conditioning on θ, for simplicity, and let 1(·) denote the indicator function
to obtain

K∑
k=1

[
max

{
0,∆Pr(bk > P ∗P ∗P ∗ > bk+1)

}( k∑
j=1

v(qj−1, s)(qj − qj−1)
)

+min
{
0,∆Pr(bk > P ∗P ∗P ∗ > bk+1)

}( k∑
j=1

v(qj , s)(qj − qj−1)
)
−∆Pr(bk > P ∗P ∗P ∗)bk(qk − qk−1)

]
+

K∑
k=1

[
max

{
0,∆Pr(bk = P ∗P ∗P ∗)

}( k−1∑
j=1

v(qj−1, s)(qj − qj−1)
)
+min

{
0,∆Pr(bk = P ∗P ∗P ∗)

}( k−1∑
j=1

v(qj , s)(qj − qj−1)
)

+
[(

Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1)− Pr(bk = P ∗P ∗P ∗|m+ ϵ))(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m+ ϵ]− qk−1)
)]

v(qk−1, s)

× 1
(
Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1)− Pr(bk = P ∗P ∗P ∗|m+ ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m+ ϵ]− qk−1) > 0

)
+
[(

Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1)− Pr(bk = P ∗P ∗P ∗|m+ ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m+ ϵ]− qk−1)
)]

v(qk, s)

× 1
(
Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1)− Pr(bk = P ∗P ∗P ∗|m+ ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m+ ϵ]− qk−1) < 0

)
− bk

(
E[q∗q∗q∗ − qk|bk = P ∗P ∗P ∗,m]− E[q∗q∗q∗ − qk|bk = P ∗P ∗P ∗,m+ ϵ]

)]
≥ λϵ, (17)

where ∆Pr(·) indicates taking a difference between Pr(·|..,m) and Pr(·|..,m+ϵ) and v(q0, s) =

v(q1, s).
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Similarly for (16)

K∑
k=1

[
max

{
0,∆Pr(bk > P ∗P ∗P ∗ > bk+1)

}( k∑
j=1

v(qk, s)(qj − qj−1)
)

+min
{
0,∆Pr(bk > P ∗P ∗P ∗ > bk+1)

}( k∑
j=1

v(qj−1, s)(qj − qj−1)
)
−∆Pr(bk > P ∗P ∗P ∗)bk(qk − qk−1)

]
+

K∑
k=1

[
max

{
0,∆Pr(bk = P ∗P ∗P ∗)

}( k−1∑
j=1

v(qk, s)(qj − qj−1)
)
+min

{
0,∆Pr(bk = P ∗P ∗P ∗)

}( k−1∑
j=1

v(qj−1, s)(qj − qj−1)
)

+
[(

Pr(bk = P ∗P ∗P ∗|m− ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m− ϵ]− qk−1)− Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1)
)]

v(qk)

× 1
(
Pr(bk = P ∗P ∗P ∗|m− ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m− ϵ]− qk−1)− Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1) > 0

)
+
[(

Pr(bk = P ∗P ∗P ∗|m− ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m− ϵ]− qk−1)− Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1)
)]

v(qk−1)

× 1
(
Pr(bk = P ∗P ∗P ∗|m)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m− ϵ]− qk−1)− Pr(bk = P ∗P ∗P ∗|m+ ϵ)(E[q∗q∗q∗|bk = P ∗P ∗P ∗,m]− qk−1) < 0

)
− bk

(
E[q∗q∗q∗ − qk|bk = P ∗P ∗P ∗,m− ϵ]− E[q∗q∗q∗ − qk|bk = P ∗P ∗P ∗,m]

)]
,

≤ λϵ (18)

where ∆Pr(·) instead now indicates taking a difference between Pr(·|..,m−ϵ) and Pr(·|..,m).

Summarizing, we now have a system of 2K linear equations, 2K + 1 unknowns and 2

inequalities from the optimality of the K steps submitted by customer i. Therefore, the

customer value bounds are identified.

B Empirical tests

In Appendix B.1, we analyze what factors predict customer participation. In Appendix

B.2, we provide evidence in favor of independent private values. In Appendix B.3, we test

whether customers take dealer updating into account and, in Appendix B.4, we test whether

customer values are different from dealer values.

B.1 Predicting customer participation

To better understand what predicts customer participation, we regress the number of partic-

ipating customers on a set of explanatory variables, using data from 2014 onward, a period
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when customers are almost exclusively hedge funds. Appendix Table A3 predicts customer

participation at the bidder level and the results are similar. Importantly, we do not try

to estimate the causal effects of customer participation. Instead, we focus on prediction,

which we use in Section 7 to propose a policy rule that stabilizes customer participation at

a sufficiently high average.

The first predictor of customer participation we include indicates the auction dates for

which we estimate that a basis trade, which means buying a bond and shorting the future,

could be profitable, an idea inspired by Barth and Kahn (2020) and Banegas et al. (2021).28

The second indicator variable, denoted CIP , is the ten-year cross-currency basis swap with

the U.S. dollar. A non-zero basis indicates a violation of covered interest parity and an

opportunity for arbitrage (e.g., Du et al. (2018)). The third variable tells us whether the

to-be-issued bond has benchmark status, which is the Canadian equivalent of being on the

run (Berger-Soucy et al. (2018)). It could be, for example, that hedge funds buy more-liquid

on-the-run bonds because they are easier to sell.

The fourth and fifth predictors are indicator variables that capture the importance of

monetary policy committee meetings (MPC) and quantitative easing (QE). Including an

indicator for MPCmeetings is inspired by the findings of Lou et al. (2023), which demonstrate

that hedge funds tend to purchase bonds outside of the pre-MPC window to avoid interest

rate uncertainty. This is why we also include the bond coupon rate—higher coupon rates

are correlated with lower interest rate risk. Including an indicator for the auction days on

which the central bank conducts a bond issuance in the morning and engages in QE in the

afternoon, where hedge funds have an opportunity to sell bonds back, is inspired by An and

Song (2018, 2023).

The sixth variable measures the buy-sell spread at which a to-be-issued bond is traded

prior to the auction. We approximate this spread by the average difference between the

highest and lowest price within a day during which a bond is to be issued is traded in

28We calculate the basis as in Hazelkorn et al. (2022). Specifically, to determine profitability of buying

bonds at auction and shorting the corresponding futures contract, we approximate the bond’s value as the

quantity-weighted average price of winning bids (by customers) plus the accrued interest between the auction

date and the futures’ expiration date. If this price is below the price of the futures contract multiplied by a

conversion rate that is determined by the Bank of Canada, we say that a basis trade is profitable. The

conversion rates are published here: https://www.m-x.ca/en/markets/interest-rate-derivatives/

bond-futures-conversion-factor, accessed on 08/23/2023.
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the secondary market three days prior to the auction. The seventh and eight variables

count the number of dealers who participate in the auction and the number of customers

who participated in the previous auction. Finally, we control for supply in the auction.

Anecdotally, we know that margins are thin in Treasury markets; therefore, countries with

large supplies can attract more participants.

In addition, we add controls that capture the interest rate environment and the expec-

tations about the stance of monetary policy and, therefore, future bond prices. Specifically,

we construct an overnight index swap (OIS) curve that captures the market expectations of

the Bank of Canada’s interest rate target for the overnight lending rate over 12 months.29

Our estimation findings, reported in Appendix Table A2, indicate that customers are

more likely to participate in auctions when the secondary-market spread is high. This

suggests that they buy bonds at auction when they can quickly sell them at high prices.

In addition, we find some support for the idea put forth in Lou et al. (2023) that hedge

funds avoid buying bonds prior to monetary policy announcements. The coefficient on the

coupon rate is positive and this is consistent with hedge funds disliking interest rate risk. The

other explanatory variables are statistically insignificant when including year-fixed effects.

As for the number of dealers, this is because there is little variation within a year—a feature

we will incorporate in our model. For some of the other explanatory variables, this might be

because of low statistical power. For example, between 2014 and 2021 there were only five

cases in which we estimate that a basis trade could have been profitable.

Low statistical power, in addition to a moderately sized R2, indicates that there are

unobservable factors that play a significant role in driving customer participation—a feature

our model will incorporate.

B.2 Testing independent private values

We perform a formal test for independent private values, introduced in Hortaçsu and Kastl

(2012), for auctions of the bonds in our sample. The test checks for equality of the dealers’

estimated values before and after observing a customer bid. In a common values environment,

29Furthermore, even though transactions data only starts in 2016, we did experiment with including

interdealer repo rates and repo spreads to capture the cost of overnight borrowing, but the coefficients are

not statistically significant. The same is true for 1- and 3-month Canadian Dollar Offered Rates, which are

important interest rate benchmarks (e.g., McRae and Auger 2018), but are not statistically significant.
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a customers’ bid would provide the dealer with information that changes their expected

values for acquiring the bond being sold. Under independent private values, this bid reveals

information about the expected level of competition but it should not affect their value.

Similar to the findings of Hortaçsu and Kastl (2012) for bills, we fail to find evidence that

dealer values are shifted by the information learned through the customers’ bids in the bond

market. We calculate a p-value of 0.48 and, therefore, do not reject the null (of no learning

about fundamentals).

B.3 Testing bounds

We test whether customers take dealer updating into account when placing a bid. Formally,

we want to know if λti = 0 in Proposition 1 (ii). To do this, we fix an auction (and therefore

omit the auction t subscript). We construct measures Ti = |vh(q, shi ;λi = 0)− vh(q, shi )| for

each customer i. Here, vh(q, shi ;λ = 0) denotes the customer’s value for amount q, assuming

that λi = 0 and vh(q, shi ) is the value if λi ̸= 0. With this, we construct a test statistic

analogous to SSQT from Hortaçsu and Kastl (2012). The test rejects the null hypothesis

with a p-value of 0, where the p-value is computed via bootstrap.

B.4 Testing value differences

We test whether customer values are significantly above dealer values. The null hypothesis is

that customer values at the lower bound are weakly smaller than dealer values at the upper

bound.

Following Hortaçsu and Kastl (2012), we compute three aggregate test statistics: the first

test is in the spirit of a Chi-squared test, the second is based on the 95th percentile of the

across-auction differences, and the third is based on the maximum difference in these values

across auctions. Since we are interested in a one-sided null hypothesis (are customer values

larger than dealer values), we drop the absolute value, which differs from Hortaçsu and Kastl

(2012). In all cases we omit the subset of auctions where not a single customer participated.

We compute these test statistics for the differences in the average quantity-weighted value,

the average maximum value, and the average minimum value of dealers/customers. In

addition, we compute the confidence intervals for a set estimate of the mean difference.

This allows us to evaluate the size of the expected difference and to compare it to 0.
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The results are reported in Table A5. For all measures, the customer values appear to

be above the dealer values, however, the differences in the average maximum values are less

precise, with some of the test statistics being insignificant.

C Details regarding the estimation of values

To back out the dealer values and bounds on customer values from the equilibrium conditions

of Proposition 1, we need to estimate the probabilities that enter these conditions, which are

determined by the distribution of the market-clearing price, P ∗
tP
∗
tP
∗
t . For customers, we also need

to estimate the Lagrange multiplier, λti, and the terms that capture the ties in condition

(5). For simplicity, we assume that the number of customers matched to each dealer is 1.

This is the case in the data, except for rare cases.

We estimate the market-clearing price distributions by simulating market clearing. If all

bidders were ex-ante symmetric and bid directly to the auctioneer, we would fix a bidder in an

auction and draw N−1 bid functions, with replacement, from all of the observed bids in that

auction. This would simulate one possible market outcome for the fixed bidder. Repeating

this many times, we would obtain the distribution of the market-clearing price, P ∗
tP
∗
tP
∗
t , for this

bidder. Our setting is more complicated because there are both dealers and customers and

customers must bid via dealers. Hortaçsu and Kastl (2012) introduce a resampling procedure

to estimate the price distribution from the dealer’s perspective. We extend their method

to learn about the customers. Further, we allow signals within a bidder to be correlated

over the course of an auction. This is to avoid estimation bias arising from the fact that we

observe some bidders updating their bids without observing a customer bid.30

Specifically, we resample as follows: We first construct the residual supply curve that

bidder i faces in auction t. For this, we start by randomly drawing a customer bid from

the set of N̄h potential customer bids. If the customer did not participate in the auction,

their bid is 0; if they updated their bid, we randomly select one of their bids. Next, we find

a dealer that observed a similar bid to that customers’ bid.31 If the selected dealer made

30For simplicity, our model does not rationalize such updates, but an extended model based on Hortaçsu

and Kastl (2012) could.
31Ideally, we would choose a dealer that observed an identical bid. Given our limited sample size, however,

this event is extremely unlikely. To reflect customer uncertainty about the value of the dealer observing their

bid, we set a bandwidth and define similar bids using the quantity-weighted average bids.
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multiple bids, we select a random bid from the set of bids submitted by that dealer after

they observed a bid similar to the current customer’s bid. If the dealer did not update their

bid after learning the customer’s bid, we choose the last bid before learning it. Once a bid is

selected, we drop all other bids from that dealer. We repeat this procedure N
h
times if i is a

dealer and N
h−1 times if i is a customer. Next, we resample the dealers that did not observe

customer bids. Starting with a list of “uninformed” dealers, we draw one such dealer.32 If

they submitted more than one bid, we randomly select one bid and drop the others. We

continue drawing from the set of uninformed dealers so that there are Nh +Nd − 1 bidding

curves. This is one realization of the residual supply curve that i expects to face. We repeat

the process many times to estimate the distribution of the clearing price, each time starting

with the full set of bids made in the auction.

As in Kastl (2011), consistency of the estimator requires that the probability of market

clearing at each step is strictly bounded away from zero. However, in our finite sample

this event may occur. For steps with estimated win probabilities close to or equal to zero,

we mix the estimated clearing-price distribution with a uniform distribution over the range

of placed bids in order to give all bids a small win probability. In addition to reducing

the sensitivity of the analysis to these small probabilities, we truncate less than 10% of the

estimated values by assuming that these values are below the maximum bid plus C$0.1 times

the maturity length in months divided by 12, which is roughly equivalent to 10 bps in terms

of yield-to-maturity.

With the estimated price distributions, using condition (4), we can solve for the value that

rationalizes a dealer’s bid at each step. To obtain the customer value bounds, we implement

an estimation procedure that follows our identification argument that is presented in the

main text, and formally explained in the proof of Proposition 4 in Appendix A.

To begin, we search over the (one-dimensional) set of λti. For each feasible λti, there is

a unique set of lower and upper bounds for the value at each step, qk, where that customer

submitted a step that satisfies equation (5). Using these implied values together with the

definition of the total surplus allows us to obtain upper and lower bounds on the λti based on

expressions (17 and 18). This range of (λL, λU) is the set of feasible λti that is consistent with

32This includes sampling bids from dealers that later become informed and placed a later bid but that

were not selected in the simulated residual supply curve in the customer resampling step.
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the observed choices and values. To obtain the maximum and minimum, we find the value

at each point that maximizes (minimizes) the change in the total surplus. Whether this is

the upper or lower envelope of the set of values consistent with the observed bids depends

only on the sign of the change in the clearing probabilities under the increased moment, m.

If the initial λti is within the range (λL, λU), then the associated value curve is part of the

identified set of values that can rationalize the behavior of a given customer. When it is

outside the range, the bid is not consistent with equilibrium behavior for that set of values.

To trace out the identified set, we repeat this exercise along a grid of possible λti.

D Details regarding counterfactuals

In Appendix D.1 we explain how we compute counterfactual equilibria. In Appendix D.2 we

present what happens when we make changes to the rules of bidder commitment.

D.1 Computational details

We are interested in finding a set of bid distributions that implies a value distribution that

is similar to the true (in our case estimated) value distribution. We therefore construct a

criterion function that compares these distributions along several dimensions. The criterion

has three components.

First, we evaluate the distribution of the values at quantiles of the quantity-bid distribu-

tion, corresponding to orders for 1.1, 1.7, 2.3, 3.4, 3.6, 4.5, 5.6 and 25% of the total supply.

To reduce the width of the predicted set of solutions, we add to this set the marginal distribu-

tion of the values corresponding to quantities of 10% and 15%. For each auction and bidder

group, g, we construct bounds on the value distribution at each discrete level of quantity,

using an evenly spaced grid running from the 5th percentile to the 95th percentile. At each

point, we compare the bounds on the implied values from the guess of the bid distribution to

the true values and add to the criterion function max(F IM
L −FU , 0)

2 and min(F IM
U −FL, 0)

2,

where F IM
L denotes the implied value distribution at each of the quantity levels evaluated on

the grid points and FU denotes the corresponding upper bound on the distribution known

from the data. F IM
U and FL are defined analogously.

In addition, for each bidder group, we want the (across-bidder) distribution of the largest
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quantities demanded to be smaller than the observed distribution of the largest quantities

a bidder ever purchased in all auctions. The restriction is designed to capture the fact

that some bidders might be capacity constrained below the regulatory 25% maximum and,

therefore, even if the counterfactual price is low, bidders may not be interested in purchasing

up to 25%. Therefore, we require the distribution of the largest quantity bid by bidders of

group g in auction t to be first-order stochastically dominated by the distribution of the

largest quantities ever bid by bidders of group g in any auction t. We add to the criterion

function the squared difference in the probabilities any time the implied maximum quantity

distribution falls below the distribution from the data. These violations are evaluated along

a set of grid points (evenly spaced by quantity, from 0 to 25%).

In an alternative specification, we require the predicted average coverage, that is, the sum

of all bids over the total supply, of the auction to match the observed one, after accounting

for the change in coverage that is induced by a change in the number of bidders. Specifically,

we estimate the change in coverage caused by dealer exits (pooling 10 auctions before and

after each exit) and reduce the coverage by the difference in the number of dealers between

the counterfactual and the factual, multiplied by the average reduction in coverage. If we

allow each bidder to demand up to the bidding limit (25%), no auction will fail. However, it

is unrealistic to assume that all bidders have the capacity to buy Treasuries worth more than

C$81 million (which is 25% of the average amount issued) in each auction. This would be

possible only if a bidder received an extraordinary number of client orders or had sufficient

balance sheet space despite stringent regulatory constraints.

D.2 Evaluating the importance of commitment

In light of the competition-volatility trade-off presented in the main text, we evaluate two al-

ternative policy regimes regarding bidder commitment. First, we make changes to assess the

extent to which primary auctions run smoothly without forcing regular dealer participation.

Second, we attempt to minimize volatility by requiring customers to commit to participating

in the same way as dealers. In both cases, it is theoretically ambiguous whether competi-

tion and volatility increase or decrease relative to the status quo, due to endogenous bidder

participation.
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To analyze the importance of dealer commitment, we compare two settings—in the first,

dealers commit as in the status quo but we allow customers to place bids directly with the

auctioneer; in the second, both bidder groups bid directly with the auctioneer but we do not

impose obligatory participation on dealers. To compute the counterfactual without dealer

commitment, we assume that a dealer’s cost of entering one auction equals their estimated

annual cost divided by the average number of auctions in a year.

We find that most auctions attract sufficiently many bidders to guarantee full auction

coverage, even without obligating dealers to regularly participate (see Appendix Figure A12).

However, both dealer and customer participation is highly irregular. Moreover, three out of

one hundred and one auctions risk failure without dealer commitment (where we define an

auction to be at risk if its chance of not clearing is above 5%). The expected price of these

at-risk auctions drops by more than 5%. Further, even in fully covered auctions, expected

revenue decreases by 0.04%, in the median, without dealer commitment.

To assess the impact of customer commitment, we force customers to decide at the

beginning of each year whether or not to commit to participating in all auctions of the

upcoming year. They enter the market if their annual entry cost (approximated by the

estimated auction-specific cost scaled by the average number of auctions in a year) is larger

than the total surplus they expect from participating in all auctions of that year. Dealer

participation is fixed.

We find that between one and two fewer customers would have participated if they had

to commit (see Appendix Table A8). Nevertheless, auctions would have remained relatively

competitive since sufficiently many bidders would have remained in the market. Expected

revenue would have dropped by C$ 3.6M, or about 0.11% on average.
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Appendix Table A1: List of dealers that exited and entered auctions, and year

Dealer name Bill auctions Bond auctions

CT Securities Entry 1999, exit 2000 Entry 1999, exit 1999
Salomon Brothers Entry 1999 exit 2000 Entry 1999, exit 2001
Goldman Sachs Entry 1999, exit 2001 Entry 1999, exit 2002
SG Valeurs Entry 1999, exit 2004 Entry 1999, exit 2004
JP Morgan Entry 1999, exit 2007 Entry 1999, exit 2007
Deutsche Bank Entry 1999, exit 2014 Entry 1999, exit 2014
Morgan Stanley Entry 1999, exit 2001 Entry 1999, exit 2014
PI Financial Corp Entry 2009, exit 2015 Entry 2009, exit 2015
Ocean Securities Entry 2006, exit 2008 Entry 1999, exit 2015
Sherbrooke SSC Entry 2020 Entry 2020

Appendix Table A1 lists all entries and exits of dealers in bill and bond auctions from
1999 to 2022. We only list years, even though we do observe the exact dates of entry and
exit.

Appendix Table A2: Predictors of customer participation

Number of customers (OLS1) (OLS2) (Year-FE)
β1: Cash-futures basis trade 0.172 (0.692) -0.0589 (0.700) -0.331 (0.698)
β2: CIP basis trade -0.088∗∗∗ (0.0192) -0.109∗∗∗ (0.0204) -0.0117 (0.0374)
β3: Benchmark status 0.158 (0.314) 0.0129 (0.319) -0.139 (0.318)
β4: MPC -1.708∗∗ (0.766) -1.908∗∗ (0.772) -1.888∗∗ (0.760)
β5: QE -0.142 (0.380) -0.350 (0.403) -0.358 (0.409)
β6: Spread 0.260∗∗∗ (0.0579) 0.264∗∗∗ (0.0588) 0.226∗∗∗ (0.0599)
β7: Number of dealer -0.182∗∗ (0.0900) -0.187∗∗ (0.0947) 0.0745 (0.137)
β8: Lagged number of customers 0.158∗∗∗ (0.0513) 0.123∗∗ (0.0522) 0.0655 (0.0534)
β9: Coupon 0.940∗∗∗ (0.176) 0.973∗∗∗ (0.186) 0.985∗∗∗ (0.188)
β10: Supply 1.043∗ (0.550) 0.838 (0.669) 0.0547 (0.711)
Extra controls − ✓ ✓
Adjusted R2 0.375 0.389 0.411
Observations 326 326 326

Appendix Table A2 shows the estimation results of regressing the observed number of participat-
ing customers in an auction on a series of explanatory variables using data from the beginning
of 2014 to the end of 2021 in column (OLS1). “Cash-futures basis trade” is an indicator variable
equal to 1 if buying a bond at auction and shorting the future is profitable (calculated as in
Hazelkorn et al. 2022). “CIP basis trade” captures deviations from covered interest parity using
the 10-year cross-currency swap basis with the U.S. dollar. “Benchmark status” is an indica-
tor equal to 1 if the issued bond is on the run and 0 otherwise. “MPC” and “QE”” capture
conventional and unconventional monetary policy, respectively. “Spread” is the high-minus the
low-trading price for the bond being auctioned. “Number of dealers” and “Lagged number of
customers” are the number of dealers who participate at auction and the number of customers
who participated in the previous auction. “Coupon” is the coupon rate on the bond being is-
sued. Supply is the residual from regressing the log-supply on the bond maturity at issuance.
In column (OLS2) we add additional controls that capture the interest rate environment and
expectations about the stance of monetary policy, using eight points on the OIS curve. In col-
umn (Year-FE) we include year fixed effects, in addition. Standard errors are in parenthesis.
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Appendix Table A3: Predictors of customer participation—Individual level

Participationi (OLS) (Bidder-FE) (Bidder-Year-FE)
β1: Cash-futures basis trade 0.0189 (0.0304) -0.00307 (0.0251) -0.0108 (0.0226)
β2: CIP -0.00259∗∗ (0.000861) -0.000521 (0.00141) -0.00120 (0.00179)
β3: Benchmark status -0.0176 (0.0137) -0.0197 (0.0135) -0.0180 (0.0130)
β4: MPC -0.0413 (0.0329) -0.0619 (0.0314) -0.0611 (0.0330)
β5: QE -0.0218 (0.0161) -0.0312 (0.0178) -0.0366∗ (0.0161)
β6: Spread 0.0170∗∗∗ (0.00251) 0.0127∗∗ (0.00441) 0.00996∗∗ (0.00369)
β7: Number of dealersd 0.00986∗ (0.00483) 0.00760 (0.0115) 0.0136∗ (0.00663)
β8: Lagged-participationi 0.532∗∗∗ (0.0106) 0.230∗∗∗ (0.0521) 0.0354 (0.0300)
β9: Coupon 0.0462∗∗∗ (0.00791) 0.0522∗∗∗ (0.0140) 0.0549∗∗∗ (0.0144)
β10: Supply 0.0528∗ (0.0236) -0.00198 (0.0367) 0.00887 (0.0296)
Extra controls ✓ ✓ ✓
Adjusted R2 0.289 0.427 0.510
Observations 6,567 6,551 6,548

Appendix Table A3 is analogous to Appendix Table A2, but zooms in on customer bidding
participation at the individual level. We regress an indicator for whether customer i participated
in an auction (“Participation”) on the same explanatory variables as in Appendix Table A2 only
that we replace the number of customers who participated in the previous auctions by whether
customer i participated in the previous auction, called “Lagged-participation.” To take the time
variation in the set of potential customers into account, we use data from all auctions between the
first and last time we observe the customer bidding at auction to construct all customer-specific
participation and lagged participation indicators. In column (Bidder-FE) we include a bidder-
fixed effect and, in column (Bidder-Year-FE), we include a year-bidder fixed effect. Standard
errors are in parenthesis. They are clustered at the bidder level in columns (Bidder-FE) and
(Bidder-Year-FE). Our preferred specification includes bidder-year fixed effects, analogous to
column (Year-FE) in Appendix Table A2. As in Appendix Table A2, Spread and Coupon are
the only significant predictors among the market-level explanatory variables. The coefficient
of Lagged-participation is positive without controlling for the upward time trend in customer
participation. However, when accounting for this trend, this coefficient becomes statistically
insignificant, suggesting that customers are not more likely to participate in an auction based
on their participation in the previous auction. The number of dealers is weakly statistically
significant, which likely arises from the fact that a fiscal year does not start in January.
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Appendix Table A4: Dealers do not demand more when a dealer exits the market

Demand in C$ Demand in % of supply
exit -12.22 (28.28) -0.288 (0.929)
Adjusted R2 0.0221 0.0027
Observations 286 286

Appendix Table A4 provides evidence that (participating) dealers do not significantly adjust
their auction demands when a dealer exits the market. Concretely, we regress the maximal
amount any participating dealer demands in the closest auctions around a dealer exit (which
we observe, but cannot display, in Appendix Table A1) on an indicator exit variable that is one
post-exit and also exit-event fixed effects. We report the estimated coefficients and standard
errors in parenthesis, with demands expressed in millions C$ and in percentages of supply. In
both cases, the exit coefficient is statistically insignificant at 10%. This is also the case when
estimating separate regressions for each of the eight exit events.

Appendix Table A5: Differences in customer and dealer values

P95 Sum Max CI
QWA value 0.00 0.00 0.00 [825, 2906]
Max value 0.06 0.00 0.93 [-836,2406]
Min value 0.00 0.00 0.00 [615, 1976]

Appendix Table A5 shows the results from testing whether customer values are above dealer
values. Columns P95, Sum, and Max present the p-values for the test statistics that take the
95th percentile, the sum of squared standardized differences, and the maximum difference across
auctions of the average values of dealers less the lower bound of customer values. P-values are
computed using the bootstrap. The confidence intervals (CI) are for the interval estimates of the
mean difference. The QWA value is the average (within customers and dealers) of the individual
participant’s quantity-weighted average values. The Max value row compares the within group
average values of the individual bidders’ maximum value (at their first submitted step). The
Min value row compares the within group average values of the individual bidder’s minimum
value (at their last submitted step).
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Appendix Table A6: Predictors of customer participation, customer values and bids

Values Bids Values Bids
(OLS) (OLS) (Year-FE) (Year-FE)

β1: Cash-futures basis trade -1.038 (1.340) -0.185 (1.352) -1.554 (1.301) -0.729 (1.308)
β2: CIP 0.0426 (0.0390) 0.0387 (0.0394) -0.0101 (0.0698) -0.0117 (0.0701)
β3: Benchmark status 0.476 (0.612) 0.223 (0.617) 0.612 (0.593) 0.389 (0.595)
β4: MPC -1.942 (1.478) -2.017 (1.491) -1.889 (1.418) -1.984 (1.425)
β5: QE 2.896∗∗∗ (0.771) 2.935∗∗∗ (0.778) 2.345∗∗∗ (0.762) 2.350∗∗∗ (0.766)
β6: Spread 0.428∗∗∗ (0.113) 0.457∗∗∗ (0.114) 0.480∗∗∗ (0.112) 0.519∗∗∗ (0.112)
β7: Coupon 3.831∗∗∗ (0.356) 3.679∗∗∗ (0.359) 3.796∗∗∗ (0.351) 3.612∗∗∗ (0.353)
β8: Number of dealers -0.467∗∗ (0.181) -0.470∗∗ (0.183) -0.218 (0.256) -0.265 (0.258)
β9: Lagged number of customers -0.0309 (0.1000) -0.0223 (0.101) 0.0491 (0.0997) 0.0595 (0.100)
β10: Supply 1.984 (1.281) 1.958 (1.293) 2.413∗ (1.326) 2.472∗ (1.332)
Extra controls ✓ ✓ ✓ ✓
Adjusted R2 326 326 326 326
Observations 0.481 0.468 0.491 0.477

Appendix Table A6 is similar to Appendix Table A2. In the “Values” and (OLS) column, we
regress our estimated quantity-weighted average values of customers on all of the explanatory
variables we used in Appendix Table A2 to predict customer participation. We add a year-fixed
effect in the (Year-FE) column. In the “Bids” columns, we replace the value estimates by the
observed quantity-weighted bids of customers. The data ranges from the beginning of 2014 to
the end of 2021. Standard errors are in parenthesis.
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Appendix Table A7: Predictors of customer participation and moments of the customer
value distribution

(1) (2) (3) (4) (5) (6)
Average Median 5-Percentile 95-Percentile Std Range

Cash-futures basis trade -1.554 -1.376 -2.737∗ -1.047 0.763∗∗ 1.690∗

(1.301) (1.317) (1.400) (1.345) (0.320) (0.888)
CIP -0.0101 -0.0111 0.0343 -0.0328 -0.0268 -0.0671

(0.0698) (0.0707) (0.0751) (0.0721) (0.0172) (0.0476)
Benchmark status 0.612 0.465 1.270∗∗ 0.542 -0.261∗ -0.728∗

(0.593) (0.600) (0.637) (0.612) (0.146) (0.404)
MPC -1.889 -1.980 -0.820 -2.361 -0.531 -1.542

(1.418) (1.435) (1.525) (1.465) (0.348) (0.968)
QE 2.345∗∗∗ 2.335∗∗∗ 2.309∗∗∗ 2.406∗∗∗ -0.0162 0.0976

(0.762) (0.772) (0.820) (0.788) (0.187) (0.520)
Spread 0.480∗∗∗ 0.527∗∗∗ 0.0957 0.613∗∗∗ 0.174∗∗∗ 0.517∗∗∗

(0.112) (0.113) (0.120) (0.115) (0.0274) (0.0762)
Number of dealers -0.218 -0.229 -0.0920 -0.250 -0.0534 -0.159

(0.256) (0.259) (0.276) (0.265) (0.0630) (0.175)
Lagged number of customers 0.0491 0.0508 0.0443 0.0493 0.00298 0.00500

(0.0997) (0.101) (0.107) (0.103) (0.0245) (0.0680)
Coupon 3.796∗∗∗ 3.718∗∗∗ 3.671∗∗∗ 4.113∗∗∗ 0.169∗ 0.442∗

(0.351) (0.356) (0.378) (0.363) (0.0864) (0.240)
Supply 2.413∗ 2.298∗ 2.939∗∗ 2.280∗ -0.298 -0.658

(1.326) (1.342) (1.426) (1.370) (0.326) (0.905)
Extra controls ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effect ✓ ✓ ✓ ✓ ✓ ✓
Adjusted R2 0.525 0.521 0.420 0.557 0.232 0.247
Observations 326 326 326 326 326 326

Appendix Table A7 regresses moments of the estimated customer value distribution (at the
lower bound) on all explanatory variables that we include to predict customer participation
in Appendix Table A2, plus year-fixed effects. “Average” stands for the quantity-weighted
average value, which approximates the quantity-weighted expected value. “Median” considers
the median value, “5-” and “95-percentile” show the 5th and 95th percentiles of the quantity-
weighted average values, “Std” is the standard deviation, and “Range” is the difference between
the 95th and 5th percentiles. The data ranges from the beginning of 2014 to the end of 2021.
Standard errors are in parenthesis.
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Appendix Table A8: Customer commitment

Year No. of customers Clearing Price Revenue Std of Revenue
Com SQ Com SQ Com SQ Com SQ

2015 2 2.90 100.05 100.04 3.58 3.58 0.21 0.21
2016 2 2.46 100.28 100.24 3.60 3.60 0.18 0.18
2017 2 2.40 99.29 99.33 3.62 3.62 0.17 0.17
2018 2 3.06 98.74 98.85 3.62 3.62 0.32 0.32
2019 2 3.35 98.82 98.93 3.61 3.61 0.39 0.39
2020 6 4.4312 98.10 98.41 3.45 3.45 0.48 0.47
2021 6 3.98 98.15 98.45 3.50 3.51 0.43 0.42
2022 6 4.4304 98.01 98.32 3.38 3.38 0.40 0.40

Appendix Table A8 compares the counterfactual with customer commitment (Com) to the status
quo (SQ), where customers make per-auction entry decisions. Dealer participation is fixed. Note
that the equilibrium number of customer entrants depends on auction-specific profits for each
of the 30 auctions per year across 8 years. To avoid computing the equilibrium in all of these
auctions for each possible number of customers, we utilize a selected sample of five auctions.
These auctions are strategically chosen to align the number of customers with percentiles (5th,
25th, 50th, 75th, and 95th) of the customer participation distribution since 2014, while the
quantity sold approximates the average amount. When calculating profits, surpluses, and prices
for each year, we re-weight the predictions from these five auctions to match the composition of
auctions in that specific year. Expected revenues are in C$ billions.
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Appendix Figure A2: Primary auctions in different countries

Appendix Figure A2, taken from Muller (2019), shows an overview of how different coun-
tries issue debt. Towards the left are countries like Canada, which heavily relies on dealers
to make markets. Towards the right are countries such as the U.S., which lets anyone
participate in primary auctions.
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Appendix Figure A3: What a dealer sees when bidding

Appendix Figure A3 shows a screenshot of what a dealer sees when placing its bids, either for its
own account or on behalf of a customer.
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Appendix Figure A4: Auction allotment by investor class for U.S. government bond auctions

Appendix Figure A4 shows the auction allotment in percentage of supply in U.S. government bond
auctions from the beginning of 2010 to the end of January 2022 for broker/dealers (plus) and for
investment funds (circle). Broker/dealers include primary dealers, other commercial bank dealer
departments, and other non-bank dealers and brokers; investment funds include mutual funds,
money market funds, hedge funds, money managers, and investment advisors. To create this
graph, we use public data from TreasuryDirect.org, available at https://home.treasury.gov/

data/investor-class-auction-allotments, accessed on July 19, 2023.
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Appendix Figure A5: Purchased amount by dealers, customers, and hedge funds

Appendix Figure A5 shows the distribution of how much dealers, customers, and hedge
funds win (as a group) in percentage of the total amount issued across all bond auctions
in our sample for each year from 1999 to 2022.

Appendix Figure A6: Purchased amount by investor groups
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Appendix Figure A6 shows a binned scatter plot of how much each investor group wins
in percentage of the total supply bought by non-dealers from 1999 to 2022.
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Appendix Figure A7: Primary dealers are above minimal bidding requirements

Appendix Figure A7 provides evidence that primary dealers are, with rare exception, above the
minimal bidding limit of 10%, which is required to maintain their primary dealer status, conditional
on market participation in a given year. In addition, supervisory data show that there have been
extremely few violations in the past decade. This suggests that Canadian dealers do not face
the dynamic trade-off, noted by Rüdiger et al. (2023), according to which dealers forgo one-shot
auction surpluses in order to fulfill the minimal bidding requirements that must be met over a longer
horizon. Concretely, the figure shows the distribution of the maximal amount an active primary
dealer demands in an auction (as percentage of supply), where a primary dealer is active if they
place at least one bid over the course of an entire year and the maximal demand is zero if the dealer
does not participate in an auction. The distribution is taken over auctions and primary dealers.
Outliers are excluded.
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Appendix Figure A8: Random matching of customers to dealers

(A) Within auction (B) Across auctions

Appendix Figure A8A shows the distribution of how many dealers a customer places a bid through
within an auction. The median is 1. Figure A8B plots the distribution of the number of unique
dealers used by a customer in all auctions in the data (in pink) and the number of unique dealers
that would be predicted for each customer under random matching (in blue). The model prediction
fixes the maximum number of dealers at the median number of dealers across years (12). The
predicted distribution of the number of dealers used by each customer contains predictions from
a single simulation, drawing independently one of the 12 dealers with equal probability for each
customer each time they bid. The histogram plots the total number of unique dealers matched
to each customer in the simulated sample. The distributions are broadly similar, but the model-
predicted distribution somewhat overestimates the probability that a customer sometimes uses all
of the possible dealers.
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Appendix Figure A9: Revenue and price effect—adding back dealers

(A) Customer entry probability (B) Exp. number of dealers/customers

(C) Exp. revenues (in C$) (D) Percentage change of expected price

Appendix Figure A9A shows hedge fund (HF) participation probabilities (in percentage points) in
every 15th auction, from 2014 onward, in the status quo (on the x-axis) and the counterfactual in
which we add back the two dealers who left (on the y-axis). Figure A9B shows the expected number
of dealers and HFs that participate in each auction, in the status quo and the counterfactual.
Figure A9C shows the distribution of the expected auction revenues in million C$. Figure A9E is
a time series of the percentage change in the expected price when going from the status quo to the
counterfactual. Prices are in C$ with a face value of 100.
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Appendix Figure A10: Expected price and number of dealers for auctions p5 and p95

(A) Expected price (B) Expected price

Appendix Figure A10 is analogous to Figure 7. It shows how the range of the expected price
(in C$) at which an auction clears varies as the number of dealers increases from 7 to 14 in two
representative auctions, which issue the average supply with 1 participating customer in A10A,
and with 4 participating customers in A10B. Here, 1 and 4 are the 5th and 95th percentiles of the
observed distribution of the number of participating customers. In theory, there is one counterfactual
equilibrium for each fixed number of dealers. In practice, we determine a range of prices (marked
in black), given that our numerical procedure to determine the counterfactual bids allows for small
differences between the value distribution that is implied by the counterfactual bids and the true
value distribution (for details, see Richert 2021). The blue horizontal line shows the average observed
bid, which is close to the observed market-clearing price.
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Appendix Figure A11: Varying number of dealers: Alternative distribution of maximal
quantities

Appendix Figure A11 is analogous to Figure 7, but this figure uses the alternative distribution of
the maximal quantities of Appendix D.1. Figure A11 shows how the range of the expected prices
(in C$) at which an auction clears varies as the number of dealers increases in an auction that
issues the average supply with medium customer participation, i.e., 3 customers. In theory, there
is one expected price for each fixed number of dealers. In practice, we determine a range of prices
(marked in black), given that our numerical procedure to determine counterfactual bids allows for
small differences between the value distribution that is implied by the counterfactual bids and the
true value distribution (see Richert 2021). The blue horizontal line shows the average observed bid,
which is close to the observed market-clearing price.
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Appendix Figure A12: No dealer commitment

(A) Hedge entry probability (in %) (B) Expected number of dealers/customers

(C) Percentage change in expected revenue (D) Percentage change in expected revenue

For every third auction starting in 2014, Figure A12A shows the probability, in percentage points, that a
customer participates in the status quo (on the x-axis) and the counterfactual in which we add back the two
dealers who left (on the y-axis). Figure A12B shows the expected number of dealers and customers that
participate in each auction in the status quo and the counterfactual. Figure A12C shows the distribution
of the percentage change in the expected auction revenue. Figure A12D is the time series of the percentage
change in the expected price when going from the status quo to the counterfactual. Prices are in C$ with a
face value of 100.
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