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1. INTRODUCTION

Online advertisements, the primary source of revenue for digital platforms, have become

a ubiquitous aspect of daily life. The projected global spending on digital ads in 2024 is

$740.3 billion and search advertising is the largest segment ($306.7 billion).1 Search ads

are paid links that appear above organic search results on platforms like Google and Yahoo!

and are sold through a weighted generalized second price (GSPw henceforth) auction. Ad

positions are assigned in descending order of the weighted bids. The weight, called “quality

score”, captures the advertiser’s clickability.

This paper investigates the influence of quality scores in sponsored search auctions. We

develop a game theoretic model accommodating multiple extensions of previous results in

the literature. Our main contribution is to propose a novel nonparametric method for esti-

mating participants’ maximum willingness to pay (valuations). Understanding valuations

is pivotal for advertising platforms. Firstly, it provides insights into potential profits left on

the table and market competitiveness by uncovering bid shading practices. Secondly, it en-

ables platforms to fine-tune market mechanisms within the GSPw framework by exploring

counterfactual experiments. Lastly, optimizing policy parameters, such as the reserve price,

hinges on the valuation distribution.

We derive the unique symmetric Bayes-Nash equilibrium (BNE) in the GSPw auction

assuming incomplete information. The weights in the GSPw auction introduce a multi-

dimensional type, which we deal with by showing that the bids only depend on a pseudo-

one-dimensional type.2 Subsequently, we demonstrate that the valuation can be nonpara-

metrically identified based on observed bids and auction parameters. Then we propose

novel nonparametric estimators of the value and its distribution and density functions. Our

estimators do not involve density estimation thus free from the boundary problem and tun-

ing parameters. Therefore, our estimators enjoy favorable finite sample properties, ensuring

precise estimation even with a relatively small sample size.

1Statista Market Insights: https://www.statista.com/outlook/dmo/digital-advertising/worldwide#ad-spending.
2A similar approach was explored in Che (1993) and Asker and Cantillon (2008). They consider the case where

price enters linearly in the scoring rule, which is not true in GSPw auctions.

https://www.statista.com/outlook/dmo/digital-advertising/worldwide##ad-spending
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The proposed method is applied to large data that cover all search ads displayed on Ya-

hoo! over four months in 2008 across five categories: cruise travel, car insurance, laptops,

cable TV, and collectible coins. We estimate valuations and their empirical distribution in

each category. Our findings suggest that advertisers with higher weighted values can shade

their bids more. In all categories, bid shading was close to 0 at the median but increased

rapidly across higher percentiles. The level of competition and position-specific click rates

are closely linked to bidding behaviors.

In counterfactual analysis, we explore alternative quality scoring rules. Firstly, we exam-

ine score squashing, a method that modifies the relative importance of quality weights by

raising the advertiser’s clickability to a power of θ ∈ [0,1].3 Our results suggest that score

squashing improves auction revenue by 8.5%–24.3% at the expense of advertiser profit

and consumer welfare. The revenue-maximizing squashing level differs across markets,

indicating that the scoring rule should be locally decided. Secondly, we investigate the per-

sonalization of ad displays through quality scores. Using more precisely computed scores

based on user attributes, known as "user targeting" in the literature, increases click rates but

reduces competition among advertisers. This trade-off motivates platforms to manipulate

the accuracy of quality scores to maximize revenue. Our results demonstrate that revenue

can be increased by 0.4%–3.0% by optimally adjusting the precision of quality scores.

This paper is structured as follows. The remainder of this section discusses the related

literature. Section 2 outlines the sponsored search market. Section 3 presents the model,

equilibrium analysis, and identification and estimation of valuations. Section 4 describes

the data. Section 5 explains the estimation procedure with our dataset. Section 6 shows

the empirical results. Section 7 conducts counterfactual experiments. Section 8 concludes.

Possible extensions to limited bid data and the reserve price, theoretical proofs, simulation

experiments on generated auction data, additional empirical results, robustness analysis,

and more details on data are provided in the appendix.

3Score squashing is widely recognized and utilized in the industry (Lahaie and Pennock, 2007, Charles et al.,

2016, Thompson and Leyton-Brown, 2013).
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1.1. Related Literature

In the theory literature, Edelman et al. (2007) and Varian (2007) were pioneers in de-

riving ex-post Nash equilibria in unweighted generalized second price (GSP henceforth)

auctions under complete information.4 Börgers et al. (2013) extend this analysis by esti-

mating position-specific valuations. Athey and Ellison (2011) explore the impact of con-

sumer search on auction design. The subsequent research further investigates uncertainty

in GSP auctions. Gomes and Sweeney (2014) (GS14 henceforth) derive the Bayes-Nash

equilibrium under incomplete information. Caragiannis et al. (2015) allow for uncertainty

in the opponents’ values and quality scores and quantify inefficiency in GSPw auctions.

Sun et al. (2014) derive the optimal reserve price in GSPω auctions without formally de-

riving the equilibrium. To our knowledge, we are the first to accommodate both a general

scoring rule and a non-zero correlation between value and quality in GSPω auctions.

Estimating valuations in the GSPw auctions faces several challenges, including multi-

dimensional types, complex equilibrium bid equations, unobserved non-winning bids, and

unknown finite sample properties of previously proposed estimators. As a result, empirical

works in this area have been limited.5 Börgers et al. (2013) and Hsieh et al. (2015) estimate

the value distribution in the GSP auction using Varian (2007)’s model with Chinese data.

Yao and Mela (2011) look at dynamic aspects of the generalized first-price auction.6 Athey

and Nekipelov (2010) (AN10 hereafter) derive a unique ex-post Nash equilibrium under

market uncertainty assuming complete information. Mohri and Medina (2015) propose an

algorithm to estimate the optimal reserve price. They rely on the equilibrium derived in

GS14, which cannot be directly applied in GSPw auctions. We present formal proof of

4This assumption seems implausible in this market, featuring many advertisers each of whom receives limited

information in each round. For further discussions on incomplete information, see Yan (2019).
5Ostrovsky and Schwarz (2011) and Bae and Kagel (2019) studied bidding behaviors in GSP auctions using

experiments. Both found that the equilibrium in the static complete information case deviates from the Vick-

rey–Clark–Groves equilibrium, highlighting the importance of studying the incomplete information setting.
6Yao and Mela (2011) conduct a policy simulation to study the impact of a switch from first- to second-price

auction. Our paper differs from theirs as our model is empirically applicable to data. Unlike their model, we do

not look at the dynamic nature of the market.
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the equilibrium in the GSPw auction. Our approach relies on relatively weaker assump-

tions than previous studies and can be extended to cases of limited data and reserve prices.

Furthermore, our estimator can be more easily computed without a tuning parameter.7

Numerous studies (Ghose and Yang, 2009, Jerath et al., 2011, Amaldoss et al., 2015,

Blake et al., 2015, Decarolis and Rovigatti, 2021, Svitak et al., 2021) have investigated the

impact of auction designs on market outcomes. Our paper extends this literature by empir-

ically examining the effects of score squashing on auction outcomes. Lahaie and Pennock

(2007) introduced score squashing, finding that its impact on revenue depends on how it

alters the allocation. Subsequent research has explored various modifications of the squash-

ing factor.8 Furthermore, we use different levels of user targeting to study the platform’s

motivation to deviate from an efficient match between advertisers and consumers. Prior re-

search has theoretically investigated how the ad match quality leads to a trade-off between

click rates and price competition.9 We empirically analyze how the platform fine-tunes

the alignment between users and ads to maximize revenue. Although Hauser et al. (2009)

and Joshi et al. (2011) indicate advancements in the quality of online ad matches, recent

survey data suggest user dissatisfaction with displayed ads.10 We contribute to uncovering

the platform’s motivation to reduce match quality to bolster ad revenue. Existing literature

presents mixed empirical findings, which underscore the complexity of revenue dynamics

and highlight the need for further research to reconcile these discrepancies.11

7AN10’s valuation estimator relies on a numerical derivative formula with a tuning parameter τn. Therefore,

the convergence rate of their estimator follows the nonparametric rate
√
nτn, whereas our estimator follows the

√
n rate. Mohri and Medina (2015)’s estimator also involves nonparametric density estimation.
8Relying on Varian (2007)’s full information model, Charles et al. (2016) consider squashing only for the first

position, Thompson and Leyton-Brown (2013) look at reserve price methods, and Lahaie and McAfee (2011)

investigate noisy quality score.
9See Levin and Milgrom (2010), Shin and Shin (2023), Bergemann and Bonatti (2011), and Fu et al. (2012).
10https://www.surveymonkey.com/curiosity/74-of-people-are-tired-of-social-media-ads-but-theyre-effective/
11Yao and Mela (2011) show that targeting can enhance revenue. However, Rafieian and Yoganarasimhan

(2021) find that revenue is maximized without targeting. AN10 demonstrate that less precise quality scores can

improve revenue.

https://www.surveymonkey.com/curiosity/74-of-people-are-tired-of-social-media-ads-but-theyre-effective/
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2. MARKET OVERVIEW

Search engines serve as key digital platforms enabling interactions between consumers

and advertisers. Among various advertising avenues they offer, search ads emerge as an

effective tool for advertisers to reach interested consumers with specific needs. For instance,

a consumer seeking a dentist in New York might use Yahoo! to search for ‘New York

dentists’ and click one of the links displayed to make an appointment. As illustrated in

Figure 1, paid ads (highlighted in red box) are strategically positioned atop organic search

results to maximize ad visibility by leveraging established user behaviors, such as the F-

shaped scanning pattern.12

FIGURE 1.—An example of a Yahoo! search result page

A GSPw auction is a prevalent mechanism for allocating and pricing ad slots on search

platforms. Each slot possesses a varying click-through rate (CTR), reflecting the likelihood

of a consumer clicking an ad displayed in that position. The GSPw auction enables adver-

tisers to bid for specific keywords that trigger their ads. Then these ads are assigned to the

12Lines at the top and words at the beginning of lines tend to receive more gazes than subse-

quent lines and words, according to Neilson Norman group research: https://www.nngroup.com/articles/

f-shaped-pattern-reading-web-content/.

https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
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TABLE I

EXAMPLE OF A GSPw AUCTION

Advertiser Bid Quality Score Weighted Bid Position Price per click

A 2 0.8 1.6 2nd 1.50

B 3 0.6 1.8 1st 2.67

C 1 0.9 0.9 X X

D 4 0.3 1.2 3rd 3.00

slots based on weighted bids, calculated by multiplying the original bid and quality score.

This quality score affects both the ranking and the payment of the ad. Ad positions are

allocated in descending order of weighted bids. Each winning advertiser pays a price per

click that equals the next highest weighted bid divided by his quality score. The GSPw auc-

tion boasts several advantages: simplicity, speed, and efficiency. It can operate in real time,

facilitating ad allocation whenever a user submits a search query. Suppose there are three

ad slots and four advertisers who bid for the keyword ‘New York dentists’. Table I details

their bids, quality scores, weighted bids, assigned positions, and prices per click. The win-

ner of the first position need not have the highest bid or quality score. The weighted bids

ultimately dictate the winners and prices.

The search process involves three stages: bidding, auctioning, and feedback as illustrated

in Figure 2. During the bidding stage, each advertiser decides his bid per click on his

ad and selects the keywords that trigger his ad display. For example, Amazon might bid

FIGURE 2.—Search process timeline
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(a) Feedback on keywords (b) Estimated performance of each ad

FIGURE 3.—An example of Yahoo! advertiser account information

$2 for the keyword ‘gaming laptop’. In the auctioning stage, when a consumer submits a

search query (e.g., "budget gaming laptop"), identifies all relevant keyword-matching ads

and ranks them based on weighted bids. Subsequently, the platform assigns each ad to

a position on the search results page and determines the corresponding price. Finally, the

feedback stage involves the platform providing advertisers with performance data regarding

their ads. Figure 3 showcases examples of data accessible to Yahoo advertisers. This data

includes display frequency, click frequency, and cost per click (CPC) for each ad position

and keyword, mirroring the information utilized in this paper.

3. THEORETICAL MODEL

We present a theoretical model of sponsored search auctions under incomplete informa-

tion. We first introduce the market environment and outline the model setup and necessary

assumptions. Then we derive the unique equilibrium in the auction and establish identifi-

cation of valuations.

3.1. Market Environment

Consumer side.— Each consumer, denoted by i, has a unit demand for a product or

service and initiates their search by submitting a query through an online search engine.

Once the result page appears with links related to the search query, the consumer decides

whether to click on any of the relevant links. The consumer considers the anticipated benefit

from clicking on the ad, which is determined by the ad’s visible attributes and its position
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on the results page.13 Each click incurs a substantial search cost in terms of time spent by

the consumer.

Let Ui,j denote the expected utility derived by consumer i from clicking on ad j. If the

consumer chooses not to click on the ad, she allocates her time to an outside good, resulting

in a normalized utility of Ūi,j ≡ 0. In the equilibrium, consumers essentially click on all ad

links as long as the benefit of a click outweighs the search cost. Let y∗i,j denote the binary

indicator capturing consumer i’s click decision for ad j as follows:

y∗i,j =

1 consumer i clicks on ad j if Ui,j > 0

0 if Ui,j ≤ 0

The above equation is used to estimate the predicted click probability for ad j in ad-position

k. We assume that the ad-specific and position-specific effects are multiplicatively separa-

ble. This assumption was adopted by other papers in the literature for identification of the

quality of advertiser (for instance, see Varian (2007) and AN10). Thus, for all ad j and

position k, the click probability can be written as:

Click Probability = sj × ck (1)

where sj is the effect of advertisement j (used as the quality score in the standard GSPw

auction) and ck is the effect of ad-position k on the click probability, ceteris paribus. The set

of click-through rates for all ad positions on the result page is denoted as C = {c1, ....cK}.

The click probability in (1) is employed in the advertiser’s profit maximization problem.

Advertiser side.—Each advertiser, denoted by j ∈ J := {1, · · · ,N}, places a single ad

on the search engine, and the subscript j is used interchangeably for the advertiser and the

ad. We assume each ad is separately optimized following AN10. The ads sold in the auction

are contingent, meaning that advertisers only pay for their ad display if a consumer clicks

on the ad. To simplify notation, all ad-related terms such as bids, valuations, and prices

are defined on a per-click basis and will be referred to as “value”, “bid”, and “price” in

13Other factors may influence the click decision such as the characteristics of generic links on the page, but

their effect on consumer click behavior cannot be determined due to limitations in our data.
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the remainder of this article. Advertiser j has an ad value, vj , drawn independently from a

common distribution Fv supported on [v, v̄]. In addition, the advertiser-specific click prob-

ability, sj , is drawn independently from a common distribution Fs with bounded support

on [s, s̄]. The auctioneer assigns the quality score qj ≡ q(sj) to each advertiser according to

the scoring rule q : [s, s̄]→ [q, q̄], which is known to auction participants.14 Then advertiser

j’s type is given by (vj , sj). We define the weighted value as the product of the ad value and

the quality score of the advertiser denoted as ωj ≡ (vj × qj)∼ Fw. The potential number

of advertisers is denoted by N , and the ads are sold through an auction mechanism. Note

that the advertisers are symmetric in the sense that they draw their value and clickability

from the common distributions and have access to the same information.

Auction Setup.—A GSPw is held for each search query to sell ad positions on search

results pages. Under the standard assumption of symmetric and independent private values,

there are K ad positions to be auctioned and N potential advertisers in each auction. The

bidding strategy for advertiser j is defined by a bid function bj ≡ b(vj , sj), where bj denotes

the bid submitted by j based on his type, (vj , sj). To account for the effect of click probabil-

ity on revenue, the auctioneer uses weighted bids instead of original bids. The weighting of

bids reflects the impact of the advertiser on the click rate, which is captured by the quality

score, qj . The weighted bid for advertiser j is expressed as bw(vj , sj)≡ bj,w = bj × qj .

Let G and Gw represent the distributions of original and weighted bids, respectively.

The kth highest order statistic of the weighted bid is denoted as b[k]w . The ad positions are

assigned in descending order of weighted bids, meaning that the kth ad position is awarded

to the advertiser with the kth highest weighted bid. The price paid by the advertiser who

wins the kth position is equal to the [k + 1]th highest weighted bid divided by his quality

score.15 The price for the same ad position may vary across advertisers. The rules of the

14The quality score was solely determined by the click rate in the period our empirical application investigates.

We maintain this assumption mainly for notational simplicity. Allowing quality scores to depend both on clicka-

bility and other factors is straightforward. Given any quality scores the platform defines, all the theoretical results

hold because advertiser j’s optimization problem depends on the weighted value vj · qj , not clickability sj .
15For simplicity, it is assumed that there is no reserve price. Yahoo! had a fixed reserve price during the data

period but the reserve price was not reported in the data.
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auction can be summarized as follows:

kth position allotted to j if b
[k+1]
w ≤ bj,w ≤ b

[k−1]
w

price for kth position paid by j: pk,j =
b
[k+1]
w

qj
.

In the GSPw auction, advertisers do not submit their values as bids, unlike in the standard

second-price auction. As the bid influences both the winning probability and the price,

bidding less than one’s value can result in a strategic advantage. Advertisers face a trade-

off when determining the bid amount relative to their value. They must balance the benefit

of increasing their bid (higher chance of winning a higher position) with the cost of a

potentially higher price upon winning. This incentive to bid strategically is absent in the

second-price auction, where the bid solely affects allocation and not the price.

The following presents the information setup and assumptions necessary to derive the

equilibrium.

ASSUMPTION 1: (Incomplete information) Each advertiser knows their type, (v, s), and

the scoring rule, q, but does not know the opponents’ bids, quality scores, and values.

They only know the weighted value distribution, Fw. The number of potential advertisers

(N ), click rates across ad positions (C) and the number of ads per page (K) are common

knowledge.

ASSUMPTION 2: The advertiser’s weighted bid in the GSPw auction is strictly increas-

ing in his weighted value.

Assumption 1 describes the standard incomplete information setting. Assumption 2 is

required to guarantee the existence of a unique symmetric equilibrium.

Profit maximization problem.—Denote advertiser j’s profit from winning kth position as

πk,j . This quantity can be expressed as:

profit from kth position: πk,j = (ck × sj)︸ ︷︷ ︸
Prob. of click
at position k

× (vj − pj,k)︸ ︷︷ ︸
Per click profit
at position k

. (2)
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Since each advertiser submits a single bid to acquire one of the K available ad positions,

the equilibrium bid maximizes the expected total profit, which is defined as the sum of the

product of the profit for each ad position and the probability of winning that position.

profit from the auction: Π(bj ;vj , sj) =
K∑
k=1

P (bj,w = b
[k]
w )︸ ︷︷ ︸

Prob. of winning position k

E(πk,j |bj,w = b
[k]
w )︸ ︷︷ ︸

Profit from position k

Using (2), we obtain

Π(bj ;vj , sj) =
K∑
k=1

P (bj,w = b
[k]
w )(ck × sj)

(
vj −E[pj,k|bj,w = b

[k]
w ]

)
. (3)

We are also interested in “bid shading” (vj−bj), which is defined as the difference between

the advertiser’s bid and their ad value.

3.2. Identification Analysis

The primary focus of this paper is to estimate the distribution of advertisers’ valuations,

denoted as Fv . This distribution conveys advertisers’ willingness to pay for an advertise-

ment and serves as a basis for counterfactual analysis. Given Assumptions 1-2, we first

demonstrate the existence of a unique symmetric equilibrium in a GSPw auction. The

equilibrium bid is determined by maximizing the profit function in Equation (3):

b(vj , sj) = argmax
b̂

K∑
k=1

P (b
[k]
−j,w ≤ b̂× qj ≤ b

[k−1]
−j,w )(ck × sj)

[
vj −E

(
b
[k]
−j,w

qj

∣∣∣∣b[k]−j,w ≤ b̂× qj ≤ b
[k−1]
−j,w

)]
(4)

where b
[k]
−j,w denotes the ordered ranking for all weighted bids except for advertiser j. In

a standard auction, the valuation is identified by inverting the equilibrium bid function.

However, in a GSPω auction, the situation is more complex as the weighted bid, bw(vj , sj),

depends on both vj and sj . As a result, it is not possible to simply invert the bid function

to identify the valuation. Therefore, deriving the Bayesian Nash Equilibrium (BNE) in a

GSPω auction is a significant extension of the standard BNE derivation in a GSP auction

and is considered an important and challenging step forward as stated in GS14.
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To address the issue of the non-invertible weighted bid, we prove the equivalence be-

tween a GSPw auction and a non-weighted GSP auction in which an advertiser’s value is

equal to the weighted value. Specifically, we establish that for any advertiser j, the equi-

librium weighted bid in the GSPw auction is equivalent to their equilibrium bid in the GSP

auction, where their value is substituted by the weighted value, ωj . Thus, the bid in the

GSP auction performs a similar function as the weighted bid in the GSPw auction, with the

difference being that the bid in the GSP auction can be represented as a univariate function

as shown below.

bGSP (ωj)→R+, where ωj ≡ vj × qj .

In the following theorem, we formally demonstrate that the equilibrium weighted bid in

GSPw only depends on the weighted value ωj .

THEOREM 1: Under Assumption 1, if exists, the equilibrium weighted bid in a GSPw

auction, bw(vj , sj), only depends on weighted value ωj:

bw(vj , sj) = bw(ωj), ∀j ∈ J .

This theorem establishes that the weighted bid function can be expressed as a function of

the advertiser’s weighted value, ωj . Therefore, the decision problem faced by the advertiser

is analogous to a non-weighted GSP auction in which the weighted value substitutes the

value and the weighted bid bw(vj , sj) can be represented as bw(ωj) at equilibrium. This

simplification greatly facilitates the proof of the existence of the unique symmetric equilib-

rium and identification of the value distribution. We can now derive the unique symmetric

equilibrium bidding strategy using Theorem 1 and Assumptions 1–2.

LEMMA 1: Let Assumptions 1–2 hold. Then, the unique symmetric Bayesian Nash equi-

librium of the GSPω auction is given by the following weighted bidding strategy for all

N ≥ 2:

bw(ω) = ω− Γ(ω)−
∞∑
n=1

∫ ω

0
Mn(ω, t)Γ(t)dt, ∀ω ∼ Fw(.), (5)
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where

Γ(ω) =

K∑
k=1

ck

(
N − 2

k− 1

)
(k− 1)(1− Fw(ω))

k−2

∫ ω

0
FN−k
w (x)dx

K∑
k=1

ck

(
N − 2

k− 1

)
(1− Fw(ω))

k−1FN−k−1
w (ω)

,

M1(ω, t) =

K∑
k=1

ck

(
N − 2

k− 1

)
(k− 1)(1− Fw(ω))

k−2FN−k−1
w (t)f(t)

K∑
k=1

ck

(
N − 2

k− 1

)
(1− Fw(ω))

k−1FN−k−1
w (ω)

,

Mn(ω, t) =

∫ ω

0
M1(ω, ε)Mn−1(ε, t)dε, for n≥ 2.

The equilibrium is efficient if the quality score is equivalent to the advertiser-specific click

probability (qj = sj) and ck ≥ ck+1 for all k ≤K − 1.

Lemma 1 provides a formula for bGSPw

w (vj , sj) that is indeed identical to bGSP
w (ωj). The

equilibrium weighted bid is calculated based on the weighted value, and distribution and

density functions of the weighted values. However, the complexity of the functional form

presents challenges in terms of determining the advertiser’s valuation through inversion of

the equilibrium bid function, due to the presence of an infinite sum and multiple layers of

integral. Furthermore, the distribution and density functions of the weighted bid are never

known to the researcher. To address these obstacles, an alternative method for deriving the

advertiser’s valuation is proposed. It does not require inversion of the equilibrium bid, the

solution of differential equations, or knowledge of the distribution and density functions

of the latent valuation. As demonstrated below, under Assumption 2, the maximization

problem (4) can be modified as

bw(ωj) = argmax
b̂w

K∑
k=1

P (ω[k+1] ≤ b−1
w (b̂w)≤ ω[k−1])ck

[
ωj −E

(
b
[k]
−j,w

∣∣∣∣ω[k+1] ≤ b−1
w (b̂w)≤ ω[k−1]

)]
.

where ω[k] denotes the kth highest weighted value. The following theorem demonstrates

the identification of the advertiser’s valuation.
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THEOREM 2: Under Assumptions 1–2, the advertiser’s value, v, is identified by:

v = b+Φ(Gw, b, q|C,K,N), (6)

where Φ(Gw, b, q|C,K,N) =

K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1−Gw(bw))

k−2
∫ bw

0
Gw(u)

N−kdu

q
K∑
k=1

ck

(
N − 1

k− 1

)
Gw(bw)

N−k−1(1−Gw(bw))
k−2

[
(N − k)(1−Gw(bw))− (k− 1)Gw(bw)

]
,

given the quality score (q), the equilibrium bid (b), the distribution function of weighted

bids (Gw), the number of available ad positions (K), click rates across ad positions (C),
and the number of potential advertisers (N).

A brief overview of the key insights underlying the theorem is given here. The proof

employs an indirect approach, utilizing the Revelation Principle, to derive the equilibrium

bid. As a result, the following equation for the equilibrium bid is established:

K∑
k=1

ckω
dξ(ω)

dω
=

K∑
k=1

ck

(
N − 1

k− 1

)
bw(ω)(N − k)Fw(ω)

N−k−1fw(ω)(1− Fw(ω))
k−1

−
K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2fw(ω)

∫ ω

0
bw(x)(N − k)Fw(x)

N−k−1fw(x)dx, (7)

where ξ(ω) ≡ P (ω[k+1] ≤ ω ≤ ω[k−1]). We apply integration by parts and integration by

substitution to the integral part of (7). Then we replace Fw(ω) with the observed weighted

bid distribution Gw(bw) using Assumption 2. By canceling out the density functions on

both sides and rearranging, the desired outcome is obtained.

The term Φ(Gw, b, q|C,K,N) represents the bid shading amount of the advertiser. It can

also be expressed in terms of the value percentage as follows:

vj − bj
vj

=
Φ(Gw, bj , qj |C,K,N)

vj
.

While the bid shading amount is of interest, the focus is placed on the bid shading percent-

age above. It is important to note that the actual bids are re-scaled in the data, and therefore,

the bid shading percentage provides more accurate information.
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REMARK 1: To ensure the existence of the equilibrium in Lemma 1, Assumption 2 is

necessary. For structural estimation of valuations, there must exist an equilibrium from

which the data are supposed to be generated. Assumption 2 can be verified after estimating

valuations by showing that the weighted bids are monotone in the weighted values. Using

the empirical distribution of estimated valuations, one can further reveal whether the equi-

librium bidding strategy in Lemma 1 is strictly monotone, which implies that the data are

rationalizable by the model.16

3.3. The valuation estimator

In practice, the equilibrium weighted bid distribution Gw is unknown and must be esti-

mated using a consistent estimator, such as the empirical distribution. The following theo-

rem proposes a consistent valuation estimator and proves its convergence properties.

THEOREM 3: Let Assumptions 1–2 hold. Suppose that there are M number of repeated

auctions recorded in the data, each with N number of bidders who draw their valuations

i.i.d. from Fv . Let n denote N ·M. Then given
{
{qmj , bmj}Nj=1

}M

m=1
, K , C, the valuation

is estimated by

v̂ = b+Φ(Ĝw, b, q|C,K,N), (8)

where Ĝw(bw) =
1
n

∑M
m=1

∑N
j=1 1[bmj,w ≤ bw] and bmj,w = bmj · qmj . The valuation esti-

mator v̂ uniformly converges to the true valuation v at the
√
n-rate as n→∞.

Given the auction parameters, the valuations are estimated by substituting the empirical

distribution Ĝw into Gw in (6). The integral component
∫ bj,w
0 Ĝw(u)

N−kdu can be numer-

ically integrated using trapezoidal sums.18 Unlike the nonparametric estimator in Guerre

16Assumption 2 is untestable without having valuations that are obtained only under the assumption. The same

assumption has been imposed and verified by data in other empirical auction papers such as Haile et al. (2003)

and Guerre et al. (2000).17 Note that the assumption does not restrict the equilibrium bid function. Proposition

2 in GS14 shows that the formula in Lemma 1 can result in non-monotonic bidding. The symmetric equilibrium

does not exist in this case.
18The ‘trapz’ command in MATLAB is used for numerical integration in our calculations.
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et al. (2000), our estimator does not require trimming to correct the boundary problem as

it does not involve nonparametric density estimation of observed bids. Given the estimated

values, distribution and density functions of valuations are estimated by the empirical dis-

tribution and the kernel density estimator respectively.19 The valuation estimator uniformly

converges to the true value as fast as the empirical distribution and much faster than the

kernel density estimator. Therefore, the empirical distribution and the kernel density of val-

uations converge to the true distribution and density respectively at standard rates (
√
n-rate

for the empirical distribution and
√
nh-rate for the kernel density).

We conduct simulation experiments on known data generating processes to examine the

finite sample performances of our estimator in Appendix C. The results show that our

estimator can precisely estimate the underlying value distribution with a relatively small

sample size. We further investigate the impact of the correlation between value and quality

on auction outcomes. Advertisers can shade bids more when the market is less competitive

e.g., N is small or value and quality are more positively correlated.

4. YAHOO WEBSCOPE DATA

We apply our method to large search auction data from the Yahoo Webscope Program.20

The data cover all search queries except those specific to brands from January to April 2008

across five product categories: Cruise, Car Insurance, Laptop, Cable TV, and Collectible

Coins. The data include aggregated information on search keywords, bids, clicks, ad po-

sitions, and display frequencies. The keywords consist of a base word with one or more

additional words. For instance, ‘business laptop’ and ‘student laptop’ fall under the laptop

category. Identities of advertisers and keywords are masked, though we can track the same

advertiser and keyword over time. While the base categories are anonymized, we can make

19Given the estimated values {v̂m1, · · · , v̂mN}Mm=1, the value distribution is estimated by
1
n

∑M
m=1

∑N
j=1 1[v̂mj ≤ v] for v ∈ [v, v̄]. Similarly, the density is estimated by 1

nh

∑M
m=1

∑N
j=1K

(
v̂mj−v

h

)
for v ∈ [v, v̄] where K(·) is a kernel function and h is a bandwidth that depends on the sample size n.

20Advertising & Markets Data, A3. Yahoo! Search Marketing Advertiser Bid-Impression-Click data on com-

peting Keywords (version 1.0). Researchers at accredited universities can request access to the data through Ya-

hoo! Labs upon the Data Sharing Agreement.



18

credible speculations about the categories based on observed characteristics, as discussed

in Appendix E.

The raw data consist of 77,850,272 observations. The data are narrowed down to ads dis-

played on the first two pages of search results as click rates on subsequent pages are negli-

gible. The bid amounts, scaled by an unknown amount for masking purposes, are recorded

in cents. We rescale them by subtracting an amount close to the lowest. We restrict data to

February to eliminate extremely high bid values from several advertisers.21 The dataset is

further limited to the top 10% most popular keywords to rule out keywords with distinct

value distributions and prevent multiple keywords from entering the same auction.22 The

most frequent searches are likely to share similar ad values. For instance, the most popular

keywords in the laptop category in 2008 were ‘hp laptop’, ‘dell laptop’, ‘laptop computer’,

‘best laptop’, and ‘laptops’ according to Google Trends. Clustering similar keywords is not

possible due to keyword masking. Lastly, keywords missing some ranks from 1 to 14 each

day are dropped. The restricted data contain 1,610,333 observations.

The aggregate data do not correspond to individual auctions. Each entry represents a

combination of category, day, keyword, advertiser, and ad position, for which the data in-

clude the bid amount, number of impressions, and number of clicks. This allows us to

observe how frequently an advertiser secures a particular ad position for a keyword on a

specific day within a category. For instance, the data report that firm #1’s ad specifying busi-

ness laptop as a keyword was displayed in the top position 100 times, resulting in 5 clicks

on January 1st. For the same keyword-advertiser pair, there is a separate observation for

the ad displayed in lower positions. The variations in click rates across different positions

215 advertisers have recorded bids of $999.99, which is 80 times greater than the 99th percentile of all bids

($12.5). These extremely high bids were deemed outliers as these are unusual bidding behaviors and their removal

was necessary to obtain a more reasonable bid distribution. These outliers never appeared in February when the

data were restricted to the top 10% most popular keywords.
22Yahoo! prioritizes matching user queries with ads containing the most relevant keywords. When insufficient

competition exists for a specific keyword, the platform may broaden the candidate pool to include ads with less

precise keyword matches. To mitigate this concern, we focus on the most popular keywords that have a signifi-

cantly higher average number of advertisers than less prevalent keywords.



NONPARAMETRIC ESTIMATION OF SPONSORED SEARCH AUCTIONS 19

TABLE II

DESCRIPTIVE STATISTICS

Variable Cruise Car Insurance Laptop Cable TV Coin

Number of advertisers1 45 403 124 142 55

Number of Keywords 67 33 110 68 49

Keylength (mean)2 2.28 3.02 2.33 2.16 2.07

Keylength (max) (4) (5) (4) (4) (4)

CTR (mean) 0.87% 0.62% 0.99% 0.75% 0.94%

Bid (mean) 1.15 6.94 0.83 0.90 0.46

Keyword popularity (mean)3 1355 9664 5514 1820 1857

Note: 1) Computed as the maximum number of bidders across day-keyword combinations. 2) The average number of words.

3) Measured by the daily average of the number of times an ad was matched using the keyword in the first position.

for the same advertiser identify the advertiser-specific click probability and the position-

specific click rates separately. Most advertisers maintain a consistent bid throughout the

day, thus we observe the set of all bids placed by the advertisers per day.23

The click-through rate (CTR) is determined by the ratio of clicks to the number of dis-

plays for each ad.24 The average CTR across all ads is 0.8%. The keyword associated with

each ad provides insights into the type of search query. The ads matched with longer key-

words typically correspond to more specific search queries and are therefore considered

more valuable for advertisers (Ramaboa and Fish, 2018). We define the number of words

in the keyword as keylength. There are 327 distinct keywords in the data, with a maximum

of 5 words and an average of 2.4 words per keyword. We measure the popularity of key-

words as the daily average of the number of times an ad was matched using that keyword

in the first position. The descriptive statistics are reported in Table II.

23A small portion of advertisers (5.56% of the restricted dataset) adjusted their bids during the day. To account

for this behavior, the bids for these advertisers were averaged for each day.
2427 entries have click rates greater than 1, which may be due to recording error or consumer mistake. The data

do not provide information to examine this behavior so we impute the click rate 1 if it exceeded 1.
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REMARK 2: Our data do not reveal which ads were shown together on a search page.

For estimating valuations, however, we only need to know the observed bid distribution and

the number of potential advertisers (N ) in each auction given the position-specific click-

through rates and quality scores. We need not know the exact identities of participating

advertisers. Most advertisers placed their fixed daily bids for each day so the bid distribution

is identified from aggregated data. We also assume that advertisers set their equilibrium

bids based on the potential number of competitors (N ). Following Guerre et al. (2000),

we identify N as the maximum number of advertisers observed across all markets (day-

keyword combinations).

5. ESTIMATION PROCEDURE WITH YAHOO DATA

We define the market, denoted by m, as each combination of category, day, and key-

word. Variables are indexed by the market, reflecting that observations are collected from

multiple markets. The estimation procedure involves two steps: 1) Estimating advertiser-

and position-specific effects on click probability, and 2) Calculating the advertiser’s value

based on the observed bids.

Step 1: Estimation of advertiser- and position-specific effects on click probability

The position-specific effect is used to quantify the click rate for each ad position. The

advertiser’s effect on click probability is used to compute the quality score so that sj =

qj .25 To analyze consumer click decisions, we use the following linear probability model

(LPM) with a log transformation and incorporate the aggregate CTR for each category-

day-keyword-ad position-advertiser combination:

log(ctrk,j,m) = αk + βj + γm + ϵk,j,m (9)

where ctrk,j,m is the CTR, αk is the position fixed effect, βj is the advertiser fixed effect,

γm is the market fixed effects estimated by including keyword dummies and the weekend

25When our data were collected, the quality score captured the advertiser’s impact on click probability. The

current practice of calculating the quality score factors in consumer and ad-display characteristics.
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dummy, and ϵi,j,m is the idiosyncratic shock. To prevent log transformation from produc-

ing −∞, we replace zero values with the minimum of observed CTRs. This specification

respects the non-negative nature of the CTR and is fully saturated as only dummy variables

are included. Thus, the specification is fully nonparametric and does not require distribu-

tional assumptions on ϵi,j,m. Furthermore, the specification implies multiplicativity of click

probability and is aligned with our theoretical model because taking exponential on both

sides of (9) yields

ctrk,j,m = exp(αk + βj + γm + ϵk,j,m) = exp(αk)︸ ︷︷ ︸
=ck

· exp(βj)︸ ︷︷ ︸
=sj

·exp(γm) · exp(ϵk,j,m). (10)

The parameters are estimated by weighted least squares, where the weight is determined

by the number of impressions because the click probabilities are more precisely estimated

for more frequently displayed ads.

REMARK 3: The separability condition (1), commonly imposed in the literature, may

not universally hold in empirical contexts. Jeziorski and Moorthy (2018) show that lesser-

known advertisers might witness a larger increase in click rates than well-known counter-

parts when their ads appear in top positions. We conduct a robustness analysis to check

whether the multiplicative separability assumption imposed on the click rate holds in our

data. Specifically, we generalize the regression model (9) by allowing the fixed effects spe-

cific to each advertiser-position pair. Our analysis, provided in Appendix G, demonstrates

that heterogeneity among advertisers in position-specific click-through rates is limited,

and multiplicative separability offers a very reasonable approximation for click probability

within our data.

Given the estimated parameters, two key parameters for the second step estimation

are computed. First, we compute the position-specific click rate (ĉk) using the estimated

position-specific fixed effect, exp(α̂k). We normalize the click rates by dividing them by

the click rate of the first position in each category:

ĉk = exp(α̂k − α̂1)
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The estimated fixed effects for positions on the first page (k = 1, · · · ,7) are highly signif-

icant (p-value < 0.0000) but not for the second page (k = 8, · · · ,14). As a result, we limit

our analysis to only the first page of ad positions (K = 7), assuming positions beyond the

first page have negligible effects on advertiser payoffs. There are substantial gaps between

the click rates of the first and second positions in all categories. A decrease in click rate was

also noted as the ad position became lower, though the decline was not as steep as the drop

between the first and second positions. In car insurance and coin categories, the decrease

was not strictly monotonic. This pattern was consistent with the simple means of ctrk,j,m
across ad positions. Second, we determine the quality score (ŝj) using the estimated ad-

vertiser fixed effect, exp(γ̂j). This quantity is then normalized by dividing with the highest

value of exp(γ̂j). The estimated position-specific click rates and quantiles of quality scores

for each product category are presented in Table III.

Step 2: Estimating the advertiser’s value and its distribution

In this step, we obtain the weighted bids by multiplying the observed bids with the es-

timated quality scores (b̂j,w = bj ŝj). The distribution of weighted bids is then estimated

by the empirical distribution (Ĝw). The valuations (vj) are computed using Equation (6)

presented in Theorem 2. In this calculation, the unknown parameters Gw, C, and qj are

TABLE III

POSITION-SPECIFIC CLICK RATES AND QUANTILES OF QUALITY SCORES ACROSS PRODUCT CATEGORIES

Click Rates Quality Scores

rank Cruise Car Ins. Laptop Cable Coins qtile Cruise Car Ins. Laptop Cable Coins

2th 0.490 0.843 0.627 0.522 0.646 25% 0.002 0.002 0.001 0.005 0.006

3th 0.327 0.480 0.519 0.428 0.537 50% 0.006 0.006 0.004 0.011 0.020

4th 0.142 0.257 0.310 0.269 0.489 75% 0.010 0.030 0.013 0.020 0.045

5th 0.097 0.180 0.421 0.224 0.351 90% 0.022 0.065 0.028 0.025 0.084

6th 0.040 0.310 0.219 0.185 0.246 99% 0.108 0.175 0.174 0.072 0.431

7th 0.037 0.218 0.181 0.149 0.138
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replaced by their respective estimates Ĝw, Ĉ, and ŝj . Finally, the distribution of values is

estimated by the empirical distribution of the estimated values.

6. EMPIRICAL RESULTS

We first estimate the advertiser’s maximum willingness to pay (valuation) for an ad. The

relationship between the weighted value and weighted bid is then verified by drawing the

weighted bid as a function of the estimated weighted value in Figure 4. We also compute

the equilibrium bid functions given the empirical distribution of estimated values using

Lemma 1. For all product categories, the weighted bid is strictly monotone in the weighted

value (Assumption 2 holds), ensuring the existence of the equilibrium in each category

and implying the data are rationalized by our model. The results show that the equilib-

rium weighted bid function deviates significantly from the 45-degree line as the weighted

value increases. The bid shading amount (the distance between the 45-degree line and the

weighted bid function), also increases monotonically with the weighted value, implying

that advertisers with higher weighted values can shade their bids more. We further com-

pute the correlation between estimated values and quality scores by category in Figure 5.

All the categories exhibit a weak positive correlation. The correlation is the strongest in

Car insurance and near 0 in cruise.

Table IV summarizes the quantiles of bid shading percentages across categories. The

median bid shading percentage is close to 0 in all categories, with the highest being less

than 0.8%. The extent to which advertisers can shade their bids varies across product cate-

gories, with advertisers in the laptop, cruise, and coins categories shading their bids more

than their counterparts in the car insurance and cable TV categories. We find that mar-

ket characteristics such as the number of advertisers, position-specific click-through rates,

and the distribution of quality scores are closely related to different bid shading behav-

iors. For example, while laptop and cable TV have similar numbers of advertisers (124 and

142 respectively), the steeper drop in position-specific click rates and less skewered quality

score distribution in cable TV leads to less bid shading compared to laptop. Similarly, the

low number of advertisers (55), smaller decrease in click rates across positions, and more

skewed score distribution in coins result in the highest bid shading percentages at high per-
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FIGURE 4.—Relationship between estimated weighted values and observed weighted bids. The solid lines are

the equilibrium bid functions given the estimated value distributions computed by the iterative approximation

procedure in Appendix D. The dashed line is a 45-degree line which represents truthful bidding.
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centiles. car insurance shows the lowest bid shading level despite the most gradual drop in

click rates across positions because of the largest number of competing advertisers (403).

TABLE IV

QUANTILES OF BID SHADING PERCENTAGE ACROSS PRODUCT CATEGORY

Cruise Car Ins. Laptop Cable TV Coins

25% 0.164% 0.003% 0.025% 0.010% 0.084%

50% 0.769% 0.011% 0.153% 0.068% 0.605%

75% 6.367% 0.069% 0.745% 0.270% 2.878%

90% 13.339% 0.379% 4.825% 1.792% 20.161%

99% 29.366% 17.381% 40.256% 22.927% 51.050%

We also examine the distribution of valuations for each category. We compare the empir-

ical distributions of estimated values with the observed bid distributions. Figure 6 demon-

strates that car insurance has the highest per-click values, followed by cruise, while coins

has the lowest. Cable TV has a similar value distribution to cruise below the median, but

with fewer advertisers with high per-click values. The value distribution in laptop falls be-

tween coins and cable TV, but this category has more advertisers with high values. Our

results further suggest that ad values in general follow a log-normal distribution. Appendix

F includes the approximated value distributions using log-normal distributions, which fit

particularly well for cruise, cable TV, and coins. This supports the extensive use of log-

normal specifications in the theoretical auction literature for Monte Carlo simulations.

Cruise Car Ins. Laptop Cable TV Coins
0
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FIGURE 5.—Correlation between value and quality score by category.
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FIGURE 6.—The cumulative distribution of advertiser’s ad value. The black dashed lines are the 90% confi-

dence bands of the estimated valuation distribution obtained by bootstrap with 200 replications.
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Lastly, we document the average estimated values and quality scores across average ad

positions in Table V. The average per-click values in general drop steeply across positions,

except in car insurance where the level of competition is the fiercest. The average values

for the top 3 positions in car insurance are very close to each other and the average value in

the lowest rank range is close to half of that in the highest rank range. The average quality

scores are not always monotone across ad positions.

TABLE V

QUALITY SCORE AND VALUE ACROSS AVERAGE RANKS

Quality Score Value

Average Cruise Car Ins. Laptop Cable Coin Cruise Car Ins. Laptop Cable Coin

[1,2) 0.0095 0.0276 0.0351 0.0404 0.0664 4.75 13.57 3.78 3.61 1.31

[2,3) 0.0087 0.0281 0.0299 0.0152 0.0357 2.26 12.97 2.07 2.41 1.05

[3,4) 0.0082 0.0308 0.0200 0.0155 0.0360 2.39 12.65 1.83 1.68 1.08

[4,5) 0.0118 0.0286 0.0164 0.0168 0.0379 2.05 10.61 1.43 1.43 0.91

[5,6) 0.0159 0.0249 0.0155 0.0172 0.0370 1.62 8.52 1.12 1.25 0.72

[6,7) 0.0148 0.0234 0.0130 0.0150 0.0417 1.25 6.92 0.84 1.12 0.51

Note: The table summarizes the average quality scores and values across average ranks.

REMARK 4: (Keyword heterogeneity) We use the full keyword sample to examine

keyword heterogeneity. The results in Appendix G show substantial keyword heterogeneity

in the full sample. The perceived value of a click may vary depending on the specific

keyword. For example, in laptop, an advertiser may expect higher profit from a click on

an ad associated with “high-performance laptop” than “budget laptop”. Since keywords

in our data are masked, we cannot cluster similar keywords. Instead, we assume the most

commonly searched keywords share the same valuation distribution. One could apply our

framework after clustering keywords using unsupervised machine learning techniques if

keyword identities are available.
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7. COUNTERFACTUAL ANALYSIS

“When someone has a really high ad click probability, they’re very hard to beat, so it’s not a really com-

petitive auction. So that they don’t just win [every auction], we do squashing. This makes the auction more

competitive. It’s like handicapping. We handicap the people with the high click probability.” – Preston

McAfee26

In this section, we conduct counterfactual experiments to investigate the impacts of al-

ternative quality scoring schemes on auction outcomes such as the search engine’s revenue,

the advertiser’s profit, and consumer welfare. We first consider score squashing, which

involves attaching monotonic nonlinear transformations of advertiser-specific click proba-

bility to bids. Secondly, we examine user targeting which personalizes ad displays through

computing quality scores based on user characteristics. These alternative scoring rules aim

to increase revenue at the cost of efficiency.

7.1. Score squashing

We begin by investigating score squashing under which the squashed quality score is

expressed as follows:

New score → qSQj = sθj ∀j.

θ ∈ [0,1] is called the squashing factor.27 Lahaie and Pennock (2007) show that the im-

pact of squashing depends on the rankings of advertisers based on quality scores, weighted

bids, and squashed weighted bids. Revenue increases if all three rankings are the same

in the top K + 1 positions because squashing increases prices for high-quality advertis-

ers without altering allocations. Conversely, revenue decreases if both weighted bid and

squashed weighted bid rankings differ from the quality score ranking. The revenue con-

sequence is ambiguous if the weighted and squashed weighted bid rankings differ. These

insights provide an understanding of how squashing changes revenue. However, drawing

26Chief economist of Yahoo! in 2010. See https://www.theregister.com/2010/09/16/yahoo_does_squashing/ for

details on score squashing practice at Yahoo!.
27sθ inflates to 1 for all s and the relative importance of the quality score shrinks as θ approaches 0.

https://www.theregister.com/2010/09/16/yahoo_does_squashing/
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practical implications is challenging. In practice, it is more useful to examine how the

outcome changes with auction characteristics at the search-topic level, such as the shape

of value and quality score distributions, position-specific click rates, and the competition

level in the market.

We aim to address the knowledge gap surrounding the effects of score squashing through

a comprehensive counterfactual analysis. While AN10 has explored the impact of score

squashing with a fixed squashing factor of θ = 1
2 , our study extends this work by consid-

ering a wider range of squashing factors and examining the role of market-specific factors

in determining the effects of squashing on auction outcomes. The equilibrium bid in the

case of score squashing is determined by the distribution of the squashed weighted value,

ωSQ
j = vj × qSQj . We calculate the equilibrium bid and compare auction outcomes un-

der different squashing schemes. We examine the impact of θ on auction outcomes. The

squashing factor θ varies in {0,0.1,0.2,0.3, · · · ,0.9,1}. We simulate 2000 auctions for

each category-squashing factor combination and collect the resulting auction outcomes. To

evaluate the performance of the auction, we calculate the average values of revenue, profit,

and consumer welfare (measured by ad quality) across all simulated auctions.

The observed bids in the data cannot be used in our analysis, as the equilibrium bidding

strategy varies with the squashing factor. We calculate the equilibrium bid function given

the population distribution and density functions of the weighted value in each scenario

using the iterative approximation procedure in Appendix D. Given that the value and qual-

ity score distributions in the data are well approximated by log-normal distributions, we

assume vj ∼ L(µv, σ
2
v) and sj ∼ L(µs, σ

2
s).

28 We allow the value and quality score to be

correlated. As a result, the weighted value with the squashing factor θ is also log-normally

distributed, ωSQ
j ∼ L(µv + θµs, σ

2
v + θ2σ2s + 2θσvs), where σvs denotes the covariance

between logarithms of vj and sj . To estimate the means and variances of the log-normal

distributions, we use maximum likelihood estimation (MLE). The estimated distributions

approximate the empirical weighted value distributions well.

28Suppose Z ∼N(0,1). Then, X ≡ exp(µ+σZ) is log-normally distributed. µ and σ represent the mean and

standard deviation of log(X), respectively. We denote the log-normal distribution as X ∼ L(µ,σ2).
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The algorithm determining the auction outcomes is outlined in the steps below. Given

each category and the squashing factor θ, the following steps are executed:

1. Use MLE to estimate (µv, µs, σ
2
v , σ

2
s) of the log-normal distributions of the valuation

and quality score.

2. Solve for the equilibrium bid function using the weighted value distribution and

position-specific click rates {ĉ1, · · · , ĉK}.

3. Draw N values and advertiser-specific click rates from log-normal distributions.

4. Compute the weighted bids and determine the auction outcome. Calculate auction

revenue, advertiser profit, and ad quality for top 7 positions.

5. Repeat Steps 3 to 4 for 2000 replications and compute the average revenue, profit,

per-click price, and ad quality.

Figure 7 presents the counterfactual results. The revenue-maximizing level of squashing

(θ∗) differs across categories, implying that a localized decision for squashing is more ef-

fective in maximizing revenue. All categories show strong improvement in revenue through

squashing. Per-click price is maximized without quality weighting (θ = 0). However, con-

sumer welfare (measured by average ad quality) reduces monotonically as the squashing

parameter decreases. Squashing reduces average ad quality but improves the revenue of the

search platform, which implies that the per-click price increase induced by squashing has

a greater impact on revenue than the decrease in quality. On the advertiser side, squashing

reduces their profit due to higher prices and reduced ad quality of winning ads. Overall,

score squashing improves revenue at the cost of advertiser profit and consumer welfare.

The maximum sum of revenue and profit is achieved with no squashing, which is naturally

the case because the equilibrium with no squashing guarantees efficient allocation. This

suggests that the search engine has to consider a higher value of θ than θ∗ when caring

about the long-term relationship with the advertisers and consumers.

Further, we investigate heterogeneity in the impact of squashing by examining the change

in θ∗ when switching one of the market parameters. We take cruise as the base category

and analyze the impact of replacing its position-specific click-through rates, the number of

advertisers, value distribution, score distribution, or correlation between value and score.



NONPARAMETRIC ESTIMATION OF SPONSORED SEARCH AUCTIONS 31
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

3

0.07

0.08

0.09

0.1

re
ve

nu
e

Auction revenue

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

3

0.05

0.1

0.15

pr
of

it

Advertiser profit

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

3

0.05

0.1

0.15

0.2

qu
al

ity

Consumer welfare

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

3

14

16

18

20

22

pr
ic

e

Average price per click

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

3

0.1

0.15

0.2

0.25

re
ve

nu
e 

+
 p

ro
fit

Revenue + Profit

(a) Cruise
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(b) Car Insurance
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(c) Laptop
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(d) Cable TV
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(e) Coins

FIGURE 7.—Counterfactual simulations with score squashing. The dots are averages across 2000 simulated

auctions. The red dots are maximums across values of θ. The ranges are 95% confidence intervals.
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(a) Click rate switched to (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
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(b) Number of advertisers (N) switched from 45 to 400
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(c) Value distribution's mean and variance switched from (-0.28, 1.17) to (-0.65, 1.0)
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(d) Score distribution mean and variance switched from (-5.45, 1.44) to (-4,3)
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(e) Correlation between value and score switched from 0 to 0.25

FIGURE 8.—Counterfactual simulations with switching auction characteristics of Cruise. The dots are averages

across 2000 simulated auctions. The red dots are maximums across values of θ. The ranges are 95% confidence

intervals.
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The results are presented in Figure 8. We find that more squashing (smaller θ) is revenue-

maximizing when the market is less competitive. We first change the click-through rates

from (1,0.49,0.33,0.14,0.1,0.04,0.04) to (1,0.9,0.8,0.7,0.6,0.5,0.4) so that they drop

much more gradually across ad positions. This configuration decreases θ∗ (from 0.6 to

0.3) as it makes the first position much less attractive, implying stronger incentives for bid

shading. The same pattern is observed when we switch the number of advertisers from 45

to 400. θ∗ jumps up to 0.7 as the market becomes more competitive.

Next, we examine the impact of the value and quality score distributions. By switching

the mean and variance of the value distribution from (−0.28,1.17) to (−0.65,1.0) (similar

to laptop), we find a lower θ∗ (0.5). This switch results in less right-skewed value distri-

bution, meaning less competitive auctions. Switching the quality score distribution’s mean

and variance from (−5.45,1.44) to (−4,1.3) (similar to coins) does not change θ∗. Lastly,

we switch the correlation level from 0 to 0.25 (close to that of car insurance), which results

in a much lower θ∗ (0.2) as a higher correlation between value and quality score makes the

auction less competitive.

TABLE VI

CHANGES IN AUCTION OUTCOMES WITH REVENUE-MAXIMIZING SQUASHING (θ∗)

Cruise Car Ins. Laptop Cable Coins

θ∗ 0.6 0.4 0.4 0.5 0.3

Revenue 10.7% 16.8% 19.7% 8.5% 24.3%

Profit -13.5% -25.4% -27.6% -18.4% -28.3%

Welfare -19.2% -32.4% -33.9% -25.0% -30.2%

Note: The table summarizes the impact of squashing with θ∗ on auction outcomes compared to the case without squashing.

Our experiments shed light on the impact of various factors on the revenue-maximizing

level of θ in advertising markets. More competitive market environments in general lead to

lower θ∗ (the stronger penalty for high-quality advertisers). Score squashing can lead to an

increase in auction revenue, ranging from 8.5% (for cable TV) to 24% (for coins), albeit

at the cost of advertiser profit and consumer welfare. Counterfactual changes in auction
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outcomes given θ∗ are summarized in Table VI. Our framework provides a comprehensive

approach to determining the most appropriate level of squashing for a given auction. Search

engines have the flexibility to adopt an objective function that reflects their priorities by

choosing a weighted average of the auction outcomes.

7.2. User targeting (personalization)

The search platform can utilize user information in calculating quality scores for user

targeting, which matches ads to different types of users to improve click-through rates.

In practice, quality scores are computed by statistical algorithms. Search platforms must

decide on the algorithm’s precision and the level of personalization to individual users to

maximize revenue. More precise and personalized scores drive higher click rates but dimin-

ish advertiser competition. To illustrate this trade-off, consider a scenario involving gender-

specific advertisers, with half appealing to males and the other half appealing to females.

For instance, in the clothing category, we might have male-oriented brands and female-

oriented brands. With user targeting, the platform considers user gender while deciding the

quality score. The level of personalization/accuracy increases with higher weight put on

the best ad match for each gender type. This approach yields more clicks but attracts fewer

advertisers to the auction, compared to the case where quality scores are computed without

factoring in gender information. Thus, to understand this accuracy-competition trade-off,

we introduce flexibility in how the search engine weights user type when calculating quality

scores, allowing it to differ from the actual click rates.

AN10 investigate the impact of employing a less precise quality scoring algorithm (re-

ferred to as “score coarsening” in their paper) on auction outcomes by introducing noise

to observed quality scores. They found that this approach increases revenue by 2%–18%

depending on the search phrase. Our analysis differs from AN10 in the sense that we con-

sider varying degrees of the user targeting level in calculating quality scores. To analyze

the platform’s incentive to reduce the precision of quality scores, we conduct the following

counterfactual analysis. Consider a case where the search engine has access to the gender

information of users, with an equal gender ratio of 1:1. Advertisers offer gender-specific



NONPARAMETRIC ESTIMATION OF SPONSORED SEARCH AUCTIONS 35

products with 50% of them specializing in male-oriented brands and the remaining half in

female-oriented brands. A correct match, when an advertiser is paired with their intended

target user, yields a click rate of (2− p) · sj , while an incorrect match results in a click rate

of p · sj , where p lies within the range of [0, 1] and sj is the average click rate of j across

genders. When p= 0, advertisers receive clicks solely from the correct gender, while p= 1

indicates no gender difference in click rates. Here we allow the search engine to decide the

weight assigned to the correct gender match. Gender-specific quality scores are calculated

by multiplying the average click rate sj with (2−θ) for the correct match and with θ for the

incorrect match. The targeting factor θ lies in [0,1], where θ = 0 leads to the highest level

of accuracy/personalization and θ = 1 completely ignores user attributes. Now the quality

score under user targeting is as follows:

qj(θ) =

 sj × (2− θ) for a correct match,

sj × (θ) for an incorrect match.

Note that, if θ = p, the quality score uses the same weight as the actual click rate, which we

define as the efficient level. We denote the profit generated from correct gender matches as

Πc and from incorrect gender matches as Πic, defined as

Πc(bj ;vj , sj , qj) =
K∑
k=1

P (bj,w = b
[k]
w )(ck × (2− p)× sj)

(
vj −E[pj,k|bj,w = b

[k]
w ]

)
,

Πic(bj ;vj , sj , qj) =
K∑
k=1

P (bj,w = b
[k]
w )(ck × p× sj)

(
vj −E[pj,k|bj,w = b

[k]
w ]

)
.

Thus the profit and consequently the bid depend on gender. Note that we look at the case

where the search engine can modify the assigned quality score of the advertiser based on

the advertiser-user match type. For varying values of θ, we use the following algorithm to

determine counterfactual outcomes:

1. Use MLE to estimate (µv, µs, σ
2
v , σ

2
s) of the log-normal distributions of the valuation

and quality score.

2. Solve for the equilibrium bid function using the weighted value distribution and

position-specific click rates {ĉ1, · · · , ĉK}.
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3. Draw N number of advertisers with the value (vj and average click rate (sj) from

log-normal distributions. Each advertiser is assigned a gender indicator gj that takes

a value of 1 if the user is right-gender. The gender indicator follows a Bernoulli dis-

tribution with P (gj = 1) = 0.5

4. Compute the weighted bids and determine the auction outcome. Calculate the auction

revenue, advertiser profit, and ad quality for the top 7 ad positions.

5. Repeat Steps 3 to 4 for 2000 replications and compute the average revenue, profit,

per-click price, and ad quality.

The actual gender penalty on click rate, i.e., p, is set to be 0.25. The quality score distri-

bution in this case becomes a mixture of score distributions for male-oriented and female-

oriented advertisers.29 Thus the weighted value distribution in Step 2 now varies with the

value of θ.

The findings, illustrated in Figure 9, offer valuable insights into the impact of user tar-

geting. Consistent with the theoretical expectations, the efficient allocation, where the sum

of advertiser profit and platform revenue is maximized, is achieved at θ = p= 0.25. How-

ever, for revenue maximization, the search engine goes for neither the highest (i.e., θ = 0)

nor the efficient level. The revenue-maximizing level (θ∗) is higher than the efficient level

p, with the level varying across product categories from 0.35 (for car insurance) to 0.7

(for coins). This implies that targeting with a lower level of accuracy/personalization is

revenue-maximizing, with gains ranging from 0.4% (car insurance) to 3.0% (coins). Ad-

vertiser profit is also maximized with an inefficient allocation. The profit-maximizing θ

is below p, suggesting that increasing personalization enhances advertiser profit. Per-click

prices rise with θ, while average ad quality declines, reflecting the trade-off between qual-

ity accuracy and price. The average ad quality is maximized when we apply the highest

penalty level for mismatch as expected.

29Given sj ∼ L(µs, σ
2
s), the advertisers draw quality scores from F 1

s ≡ L(µs + logθ,σ2
s) when they are the

wrong gender. Likewise, if they are the right gender, quality scores are drawn from F 2
s ≡ L(µs+ log(2−θ), σ2

s).

Then the quality score distribution unconditional on gender is the mixture of F 1
s and F 2

s with equal weight.
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FIGURE 9.—Counterfactual simulations for gender-specific keywords with user targeting. The dots are av-

erages across 2000 simulated auctions. The red dots are maximums across values of θ. The ranges are 95%

confidence intervals.
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TABLE VII

CHANGES IN AUCTION OUTCOMES WITH THE REVENUE-MAXIMIZING TARGETING LEVEL (θ∗)

Cruise Car Ins. Laptop Cable Coins

θ∗ 0.45 0.35 0.5 0.45 0.7

Revenue 1.5% 0.4% 1.3% 1.0% 3.0%

Profit -3.3% -0.7% -3.3% -2.7% -8.0%

Welfare -5.7% -2.3% -5.1% -4.5% -10.8%

Note: The table summarizes the impact of user targeting with θ∗ on auction outcomes compared to the case with θ = p.

Our results suggest that platforms may lean towards inefficient, and less accurate ad-user

matching. While this approach can optimize revenue, it comes at the expense of advertiser

profit and consumer welfare as shown in Table VII. In a competitive landscape, platforms

may not necessarily prioritize inefficient matching in the long term, as it risks displeasing

their customer base. Beyond its implications for revenue and welfare, our analysis sheds

light on the delicate balance between privacy concerns and efficient user-ad matching, of-

fering valuable insights for policymakers and regulators.30 Despite search engines advo-

cating for user targeting to enhance ad quality,31 our findings suggest that platforms have

incentives to prioritize inefficient matches with lower ad quality when targeting is permit-

ted. Hence, the purported benefits of targeting in ad quality may not be as substantial.

Recently, Larsen and Proserpio (2023) demonstrated that introducing a large language

model (LLM) improved revenue and efficiency in search auctions by better interpreting

search queries and identifying more relevant advertisers (query-based targeting). Our find-

ings align with theirs, although we focus solely on user-based targeting, which leads to

a thinner market. Investigating revenue-optimal query-based targeting would be a fruitful

avenue for future research.

30The use of user information has raised privacy concerns. See https://www.ftc.gov/news-events/news/

press-releases/2012/03/ftc-issues-final-commission-report-protecting-consumer-privacy.
31See https://safety.google/privacy/ads-and-data/.

https://www.ftc.gov/news-events/news/press-releases/2012/03/ftc-issues-final-commission-report-protecting-consumer-privacy
https://www.ftc.gov/news-events/news/press-releases/2012/03/ftc-issues-final-commission-report-protecting-consumer-privacy
https://safety.google/privacy/ads-and-data/
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8. CONCLUSION

The framework proposed in this paper provides a valuable tool for estimating the value

distribution in GSPω auctions under more realistic assumptions than those used in prior

literature. The estimated value distribution can be used for counterfactual analyses, such

as examining the impact of changes in auction design on advertisers, determining revenue-

maximizing levels of score squashing and user targeting, and calculating the optimal re-

serve price. These counterfactual experiments offer a deeper understanding of how advertis-

ers respond to changes in market mechanisms. Unlike the consumer side, where search en-

gines can conduct randomized controlled trials to examine the effects of potential changes,

it is challenging to implement such experiments on the advertiser side. This difficulty arises

because advertisers’ responses to changes in market factors, such as pricing mechanisms,

are typically slower, and frequent changes in the market environment may prompt adver-

tisers to leave the platform.

Our model assumes symmetric bidders. In practice, however, advertisers also face bud-

get constraints, and budget smoothing can lead them to shade bids further. Bidders can

also exhibit additional dimensions of heterogeneity, such as advertiser prominence. Future

research could extend the model to include bidder asymmetry and additional sources of

uncertainty, such as entry decisions and position-specific valuations. In practice, the num-

ber of competitors changes throughout the day. Incorporating advertisers’ entry and exit

decisions would be a promising extension, especially when data recording these dynam-

ics are available. Additionally, relaxing the separability assumption on click probability

could allow for differential position effects across advertisers. This approach would re-

sult in advertiser-specific valuations differing across ad positions, transforming the auction

dynamics into selling multiple unordered heterogeneous objects within a single auction.

This would necessitate a significantly more intricate theoretical framework. Lastly, future

research could extend the model to a dynamic setting, thereby accommodating a multi-

period game. It would be interesting to investigate whether the Bayes-Nash Equilibrium of

our static model serves as a good approximation to the dynamic model in this market, as

speculated by Gomes and Sweeney (2014).
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APPENDIX A: EXTENSIONS

The proposed method possesses a key advantage in its versatility in incorporating ad-

ditional features present in online search auctions. This study specifically examines two

noteworthy cases. In the first case, we only observe winning bids, while the latter case

involves the presence of a fixed reserve price that is observable.

A.1. Case 1: Limited bid data

In sponsored search auctions, a full set of bids is sometimes not available to the re-

searcher. For instance, Athey and Nekipelov (2010) (AN10 hereafter) discusses a potential

missing data problem, as they only observe a subset of weighted bids in each auction.32

This can potentially lead to bias in the estimation of the empirical weighted bid distribu-

tion. In this section, we provide one possible way to resolve this bias. The advantage of

search bid data is that we observe the weighted bids as well as their order statistic. We can

infer the order of an observed weighted bid by the winning position. Under this setting,

we need very limited bid information for our proposed method, as long as we know the

total number of advertisers. Consider the case where we only observe the weighted bid of

the advertiser who won the first position. Recall, in terms of the order statistic notation,

we observe bkw ∼ Gw,k:N (·), where Gw,k:N (·) is the distribution of the kth highest order

statistic.

To further exploit the order statistic, we use the following equivalence for the order

statistic

Gw,k:N (bw) =

∫ Gw(b)

0

N !

(N − k)!(k− 1)!
tN−k(1− t)k−1dt

= Γ(Gw(bw);N − k+ 1, k). (11)

32AN10 observes only the winning bids and the highest (in terms of weighted bid) non-winning bid. In our

data, we observe a large set of non-winning bids (beyond the first search result page) so this problem is negligible.
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We can use the above equation to see the relationship between the order statistic distribu-

tion and the primitive distribution given an incomplete beta function, represented here as

Γ(z;a, b) with a=N − k+ 1 and b= k.

Next, we can use Equation (11) and a well-known property of order statistic i.i.d vari-

ables, which states that given a known number (N ) of i.i.d. draws of weighted bids from

Gw(·), the order statistic distribution can be used to identify the parent distribution Gw(·)
using the following equation:

Gw(bw) = Γ−1
(
Gw,k:n(bw);N − k+ 1, k

)
. (12)

where Γ−1 is the inverse of the incomplete beta function defined in Equation (11).33 Once

we have estimated the weighted bid distribution, all the other steps follow the same as our

main results.

A.2. Case 2: Reserve Price

We explore the case in which the data have a known fixed reserve price, denoted by r.

Assume that the search engine sets a fixed reserve price observed by everyone. In such a

case, we can still derive the value given observable quantities. However, the solution for

the value is now obtained by modifying the equation in Theorem 2. The following theorem

proves the identification of the valuation in the presence of a reserve price.

THEOREM 4: Under Assumptions 1–2, the advertiser value, v, is identified by:

v = b+Φ(Gw, b, q|C,K,N, r) (13)

where

Φ(Gw, b, q|C,K,N, r) =

33For further details of using this property in an auction context, refer to Lemma 2 of Haile and Tamer (2003).
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K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1−Gw(bw))

k−2

(∫ bw

r
Gw(u)

N−kdu− rGw(r)
N−k

)

qj

K∑
k=1

ck

(
N − 1

k− 1

)
Gw(bw)

N−k−1(1−Gw(bw))
k−2

[
(N − k)(1−Gw(bw))− (k− 1)Gw(bw)

]

given the quality score (q), the equilibrium bid (b), the distribution function of equilib-

rium weighted bids (Gw), the number of available ad positions (K), click rates across ad

positions (C), the number of advertisers (N), and the fixed reserve price (r).

We have now a lower bound on the price which is the reserve price. More details are

provided in the proof in appendix B. Note that bids below the reserve price are not observed.

In such a case, one can use the strategy proposed in the previous subsection (A.1) to derive

the weighted bid distribution.

APPENDIX B: THEORETICAL PROOFS

Proof of Theorem 1: We begin by noting that in (4), the advertiser’s profit maximiza-

tion problem can be redefined as the advertiser choosing a weighted bid that maximizes

the payoff, instead of the bid. Thus, we can express the equilibrium outcome in terms of

weighted bids by rewriting (4) as:

bw(vj , sj) = argmax
b̂w

Π(b̂w|vj , sj). (14)

Consider any symmetric equilibrium {b∗1,w, · · · , b∗n,w} of a GSPw auction. We show that

the equilibrium strategy only depends on the weighted value ωj for any arbitrary advertiser

j. The equilibrium strategy of advertiser j in the GSPw is given by

b∗j,w = argmax
b̂w

K∑
k=1

sjck

[
vj −

E
(
b
∗[k]
−j,w

∣∣∣∣b∗[k]−j,w ≤ b̂w ≤ b
∗,[k−1]
−j,w

)
qj

]
× P (b

∗[k]
−j,w ≤ b̂w ≤ b

∗,[k−1]
−j,w ),

= argmax
b̂w

K∑
k=1

sj
qj
ck

[
ωj −E

(
b
∗[k]
−j,w

∣∣∣∣b∗[k]−j,w ≤ b̂w ≤ b
∗,[k−1]
−j,w

)]
× P (b

∗[k]
−j,w ≤ b̂w ≤ b

∗,[k−1]
−j,w ),

where ωj = vj × qj . Here the advertiser’s auction outcome, i.e., the price paid and the

allocation probability is not affected by the term sj
qj

. Thus, the above maximization problem
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is the same as the following:

b∗j,w = argmax
b̂w

K∑
k=1

ck

[
ωj −E

(
b
∗[k]
−j,w

∣∣∣∣b∗[k]−j,w ≤ b̂w ≤ b
∗,[k−1]
−j,w

)]
· P (b

∗[k]
−j,w ≤ b̂w ≤ b

∗,[k−1]
−j,w ). (15)

This implies that the equilibrium strategy only depends on the weighted value ωj for ad-

vertiser j and therefore

bw(vj , sj) = bw(ωj).

Q.E.D.

Proof of Lemma 1: Suppose an equilibrium exists in this auction. Under Assumption 2,

in the equilibrium allocation, an advertiser with weighted value ω wins the k-th ad position

with probability:

ζk(ω)≡ P (w[k+1] ≤w ≤w[k−1]) =

(
N − 1

k− 1

)
(1− Fw(ω))

k−1FN−k
w (ω). (16)

Using the Revelation Principle, an advertiser with weighted value ω has payoff that satisfies

ω = argmax
ω̂

K∑
k=1

ζk(ω̂)ck

[
ω−E

(
bw(ω

[k+1])

∣∣∣∣ω[k+1] ≤ ω̂ ≤ ω[k−1]

)]
(17)

Applying the envelop theorem (see Milgrom and Segal (2002)) in the payoff function in

Equation (17), we have:

d

dω
Π(ω) =

K∑
k=1

ckζk(ω) (18)

and also using the Fundamental Theorem of Calculus, we get

Π(ω) = Π(ω) +
K∑
k=1

ck

∫ ω

0
ζk(x)dx. (19)

As a bidder with type ω never has a non-zero payoff – Π(ω) = 0, we have

Π(ω) =
K∑
k=1

ck

∫ ω

0
ζk(x)dx. (20)
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Furthermore, using Equations (17) and (20), we obtain

K∑
k=1

ck

∫ ω

0
ζk(x)dx=

K∑
k=1

ckζk(ω)

[
ω−E

(
bw(ω

[k+1])

∣∣∣∣ω[k+1] ≤ ω ≤ ω[k−1]

)]

which can be rearranged as

K∑
k=1

ck

[
ζk(ω)ω−

∫ ω

0
ζk(x)dx

]
=

K∑
k=1

ckζk(ω)E
(
bw(ω

[k+1])

∣∣∣∣ω[k+1] ≤ ω ≤ ω[k−1]

)
.

Using integration by parts on the left-hand side we derive

K∑
k=1

ck

∫ ω

0
x
dζk(x)

dx
dx=

K∑
k=1

ckζk(ω)E
(
bw(ω

[k+1])

∣∣∣∣ω[k+1] ≤ ω ≤ ω[k−1]

)
.

Opening up the expectation on the right-hand side,

K∑
k=1

ck

∫ ω

0
x
dζk(x)

dx
dx=

K∑
k=1

ckζk(ω)

∫ ω

0
bw(x)(N − k)Fw(x)

N−k−1fw(x)dx

Fw(ω)
N−k

and substituting ζk(ω) using Equation (16) in the right hand side yields,

K∑
k=1

ck

∫ ω

0
x
dζk(x)

dx
dx=

K∑
k=1

ck

(
N − 1

k− 1

)∫ ω

0
bw(x)(N − k)Fw(x)

N−k−1fw(x)(1− Fw(ω))
k−1dx.

Differentiating both sides we get:

K∑
k=1

ckω
dζk(ω)

dω
=

K∑
k=1

ck

(
N − 1

k− 1

)
bw(ω)(N − k)Fw(ω)

N−k−1fw(ω)(1− Fw(ω))
k−1

−
K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2fw(ω)

∫ ω

0
bw(x)(N − k)Fw(x)

N−k−1fw(x)dx.

(21)
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Gomes and Sweeney (2014) show that the above equation can be expressed as the following

Volterra equation of the second kind:

ω− bw(ω) = Γ(ω) +

∫ ω

0
M1(ω,x)(x− bw(x))dx. (22)

Debnath and Mikusinski (2005) proved that (22) has a unique solution given by (5) given

that Γ(ω) and M1(ω, t) are square-integrable.

Now we show the uniqueness and existence of the equilibrium weighted bid. Similar to

the equivalence shown in (19), by using Integral-form Envelope Theorem (Milgrom and

Segal, 2002), we can show that if the weighted bid is as defined in (5), the profit function

satisfies the following:

Π(bw(ω), ω) = Π(bw(ω), ω) +
K∑
k=1

ck

∫ ω

0
ζk(x)dx. (23)

Then using the constraint simplification theorem (Milgrom, 2004), we can show that bw(ω)

is a selection from B∗
w(ω) = argmaxb̂w Π(b̂w(ω), ω) if and only if the envelop formula

(23) holds and the weighted bid defined in (5) is strictly monotonic. This implies that under

Assumption 2, for each bidder j, bw(ω) is the best response to all possible bids of com-

petitors and thus constitutes a unique equilibrium weighted bid which exists if and only if

Assumption 2 is satisfied.

Furthermore, the efficient allocation maximizes the overall auction surplus
∑K

k=1 cks
[k]v[k]

where s[k] and v[k] are the advertiser-specific click rate and the valuation of the winner of

the kth position. By Theorem 1 and Assumption 2, the allocation in the equilibrium will

be monotonic in the weighted value, which leads to efficiency if the weighted value is

equal to the product of the value and the advertiser-specific click rate and ck ≥ ck+1 for all

k ≤K − 1. Q.E.D.

Proof of Theorem 2: We begin by using (21) in the proof of Lemma 1. The integral

part in Equation (21) can be re-written using integration by parts:∫ ω

0
bw(x)(N − k)Fw(x)

N−k−1fw(x)dx= bw(ω)Fw(ω)
N−k −

∫ ω

0
b′w(x)Fw(x)

N−kdx

(24)
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Under Assumption 2, the integral in the last term of Equation (24) can be replaced by∫ ω

0
b′w(x)Gw(bw(x))

N−kdx

where Gw is the distribution function of weighted bids. Integration by substitution yields:∫ ω

0
b′w(x)Gw(bw(x))

N−kdx=

∫ bw(ω)

0
Gw(u)

N−kdu

and therefore plugging the above expression into Equation (21) using Equation (24),

K∑
k=1

ckω
d(ζk(ω))

dω
=

K∑
k=1

ck

(
N − 1

k− 1

)
bw(ω)(N − k)Fw(ω)

N−k−1fw(ω)(1− Fw(ω))
k−1

−
K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2fw(ω)bw(ω)Fw(ω)
N−k

+
K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2fw(ω)

∫ bw(ω)

0
Gw(u)

N−kdu.

Now the last step is to open up d(ζk(ω))
dω and to rearrange.

ω = bw(ω) +

K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2
∫ bw(ω)

0
Gw(u)

N−kdu

K∑
k=1

ck

(
N − 1

k− 1

)
Fw(ω)

N−k−1(1− Fw(ω))
k−2

[
(N − k)(1− Fw(ω))− (k− 1)Fw(ω)

]
Divide both sides by quality score q:

v = b+

K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2
∫ bw(ω)

0
Gw(u)

N−kdu

q

K∑
k=1

ck

(
N − 1

k− 1

)
Fw(ω)

N−k−1(1− Fw(ω))
k−2

[
(N − k)(1− Fw(ω))− (k− 1)Fw(ω)

]
The only unobservable object in the solution is Fw(x). By replacing it with Gw(bw(x)), the

desired expression in the theorem is obtained. Q.E.D.

Proof of Theorem 3: By the Glivenko-Cantelli Theorem, the empirical distribution

Ĝw(bw) uniformly converges to Gw(bw). Furthermore, the Dvoretzky–Kiefer–Wolfowitz
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inequality (Dvoretzky et al., 1956, Massart, 1990) provides that for every ϵ > 0,

P

(
sup
bw

|Ĝw(bw)−Gw(bw)|> ϵ

)
≤ 2e−2nϵ2 .

By setting ϵ= k/
√
n for a constant k > 0, the inequality becomes

P

(
sup
bw

|Ĝw(bw)−Gw(bw)|
√
n > k

)
≤ 2e−2k2 .

For any small ε > 0, there exists a constant k =

√
− log(ε/2)

2 such that

P

(
sup
bw

|Ĝw(bw)−Gw(bw)|
√
n > k

)
≤ ε,

which implies that supbw |Ĝw(bw) − Gw(bw)| converges in probability to 0 and is

Op(1/
√
n). Therefore, Ĝw(bw) uniformly converges to Gw(bw) at the

√
n-rate.

Now we show that Φ(Ĝw, b, q|C,K,N) in the valuation estimator uniformly converges

to Φ(Gw, b, q|C,K,N) at the
√
n-rate as n→∞. Recall that

Φ(Ĝw, b, q|C,K,N) =

K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Ĝw(bw))

k−2
∫ bw

0
Ĝw(u)

N−kdu

q
K∑
k=1

ck

(
N − 1

k− 1

)
Ĝw(bw)

N−k−1(1− Ĝw(bw))
k−2

[
(N − k)(1− Ĝw(bw))− (k− 1)Ĝw(bw)

]
.

Notice that addition, subtraction, multiplication, and division are rate-preserving. Thus we

only need to show that a power function of Ĝw(bw) and its integral uniformly converge at

the
√
n-rate. First, consider Ĝw(bw)

l for any integer l. By the mean value theorem, there

exists some c(bw) between Ĝw(bw) and Gw(bw) such that

|Ĝw(bw)
l−Gw(bw)

l|= |lc(bw)l−1(Ĝw(bw)−Gw(bw))| ≤ |lc(bw)l−1||(Ĝw(bw)−Gw(bw))|.

As |lc(bw)l−1| is bounded and supbw |(Ĝw(bw)−Gw(bw))|=Op(1/
√
n), supbw |Ĝw(bw)

l−
Gw(bw)

l| is also Op(1/
√
n), meaning that Ĝw(bw)

l uniformly converges to Ĝw(bw)
l at the
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√
n-rate. Now consider

∫ bw
0 Ĝw(u)

ldu for any integer l. We can show that∣∣∣∣∣
∫ bw

0

(
Ĝw(u)

l −Gw(u)
l
)
du

∣∣∣∣∣≤
∫ bw

0

∣∣∣Ĝw(u)
l −Gw(u)

l
∣∣∣du≤ bw sup

u

∣∣∣Ĝw(u)
l −Gw(u)

l
∣∣∣ .

Given that bw is bounded and that the uniform convergence of Ĝw(u)
l,

sup
bw

∣∣∣∣∣
∫ bw

0

(
Ĝw(u)

l −Gw(u)
l
)
du

∣∣∣∣∣=Op(1/
√
n).

Therefore, Φ(Ĝw, b, q|C,K,N) uniformly converges to Φ(Gw, b, q|C,K,N) at the
√
n-rate

as n→∞ and so does the valuation estimator v̂. Q.E.D.

Proof of Theorem 4: Using the same argument as used in the proof of Theorem 2, given

the fixed reserve price r, the advertiser with the weighted value ω has a payoff that satisfies

ω = argmax
ω̂

K∑
k=1

ζk(ω̂)ck

[
ωj −E

(
Max{bw(ω[k+1]), r}

∣∣∣∣ω[k+1] ≤ ω̂ ≤ ω[k−1]

)]
(25)

Additionally, similar to Equation (20) derived in the proof of Theorem 2, here again we

derive the advertiser’s payoff function to be equal to

Π(ω) =
K∑
k=1

ck

∫ ω

r
ζk(x)dx. (26)

Using Equations (25) and (26), we obtain

K∑
k=1

ck

∫ ω

r
ζk(x)dx=

K∑
k=1

ckζk(ω)

[
ω−E

(
Max{bw(ω[k+1]), r}

∣∣∣∣ω[k+1] ≤ ω̂ ≤ ω[k−1]

)]
After differentiating the above equation and algebraic manipulations we yield

K∑
k=1

ckω
dζk(ω)

dω
=

K∑
k=1

ck

(
N − 1

k− 1

)
bw(ω)(N − k)Fw(ω)

N−k−1fw(ω)(1− Fw(ω))
k−1

−
K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2fw(ω)

∫ ω

r
bw(x)(N − k)Fw(x)

N−k−1fw(x)dx
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−
K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2fw(ω)

∫ r

0
r(N − k)Fw(x)

N−k−1fw(x)dx

(27)

Then the same steps used in the proof of Theorem 2 obtain the desired result. Q.E.D.

APPENDIX C: SIMULATIONS

We examine the finite sample performances of our estimator and the impact of the corre-

lation between value and quality on auction outcomes via the following simulation designs.

We consider auctions with 5 ad positions. For K > 2 and arbitrary N , no analytic repre-

sentation for the equilibrium weighted bid exists. Due to the complexity of numerically

implementing the equilibrium bid function in Lemma 1, an iterative approximation proce-

dure is employed instead to solve the equilibrium strategy. The specifics of this procedure

can be found in Appendix D. The solution to the equilibrium bid equation depends on the

parameters {c1, · · · , c5}, N , and Fw. For sample sizes n= 1200, we simulate the auctions

n/N times with N = 10,25,50 and 100, resulting in a consistent number of observations

for each value of N . We draw the value vj and the advertiser-specific click rate sj from the

following joint log-normal distribution:vj
sj

∼ L

µv
µs

 ,

 σ2v σvs

σvs σ2s

 ,

so that vj and sj can be correlated. We consider the standard GSPw auction where the

scoring rule is simply qj = sj . As a result, the weighted value is also log-normally dis-

tributed (ωj ∼ L(µv + µs, σ
2
v + σ2s + 2σvs)). We use parameter values µv = −0.5, µs =

−3.5, σ2v = 0.2, σvs = 0, σ2s = 0.1. We consider cases where v and s are uncorrelated

(σvs = 0), negatively correlated (σvs = −0.1), or positively correlated (σvs = 0.1) here.

We set ck = (1/2)k−1 so that the position-specific click rate quickly drops across ad po-

sitions. We estimate valuations using the proposed method. This process is repeated 1000

times for each combination of n and N .
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FIGURE C.1.—Finite sample performances when n= 1200. The dashed lines are the 5th and 95th percentiles

of the estimated value distributions across 1000 replications.

Figure C.1 displays the median, 5th, and 95th percentiles of the estimated value distri-

butions in comparison to the true distribution.34 The median of the estimated distribution

coincides with the true distribution. It also demonstrates the finite sample performances

of the proposed estimator. The 5th and 95th percentiles are very close to the true distri-

bution even with a relatively small sample size. The availability of extensive observations

across repeated auctions in online auction data renders the proposed estimator capable of

accurately estimating the unobserved values from bids.

Figure C.2 displays the equilibrium weighted bid as a function of the weighted value. We

find that as N increases, bid shading approaches zero. This aligns with what is observed

in other auction designs, such as first-price auctions.35 Table C.I presents a summary of

the selected quantiles of bid shading percentage. We find that the decrease in bid shading

percentage with an increase in N is much slower for higher quantiles. Furthermore, for

each quantile, the bid shading percentage becomes higher as the value and the quality score

are more positively correlated. This is because the advertisers with higher values tend to

also have higher quality scores in the positive correlation case so they are much more likely

to win ad positions when they shade bids more compared to the negative correlation case.

Note that lower bid shading in the negative correlation case does not necessarily mean that

34The underlying value distribution remains constant regardless of the value of N , resulting in identical esti-

mation results for different values of N .
35For further details on effects of N on bids in the first price auction, refer to Krishna (2009), Ch 2.3.
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FIGURE C.2.—Equilibrium weighted bids given weighted values. The dashed line in each plot is a 45-degree

line

the search engine will have higher revenue. To further investigate this, our next figure plots

various auction outcomes across different degrees of correlation.

TABLE C.I

QUANTILES OF BID SHADING PERCENTAGE (%)

Negative correlation Zero correlation Positive correlation

# of advertisers (N) # of advertisers (N) # of advertisers (N)

qtile 10 25 50 100 10 25 50 100 10 25 50 100

25% 1.07 0.08 0.02 0.00 1.79 0.14 0.03 0.01 2.26 0.18 0.03 0.00

50% 3.29 0.38 0.08 0.02 5.42 0.64 0.13 0.03 6.76 0.82 0.17 0.04

75% 6.24 1.66 0.43 0.10 10.05 2.80 0.73 0.17 12.37 3.55 0.94 0.22

90% 9.22 4.33 1.92 0.60 14.46 7.12 3.24 1.02 17.48 8.88 4.10 1.30

99% 17.01 11.39 8.09 5.43 25.01 17.63 12.91 8.86 29.13 21.16 15.83 11.04
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FIGURE C.3.—Auctioneer revenue, advertiser profit, quality score, and per click price
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Figure C.3 reports the means of auction revenue, advertiser profit, quality of winning

advertisers, and per click price across 1000 Monte Carlo samples for different values of

N (the number of advertisers) and DGPs. The search engine’s revenue is influenced by

both the per-click price and the click rate (captured by the quality score). For lower N , the

negative correlation case yields a higher per-click price, possibly due to lower bid shading,

while also resulting in the lower average quality of the winning ads. We find that the impact

of the quality score dominates, leading to auction revenue being positively correlated with

the degree of correlation between v and s. Additionally, as competition increases with

larger N , the negative correlation case no longer has a higher per-click price due to the

gap in bid shading diminishing, and the average value of winning advertisers being lower

compared to the other cases. Lastly, we find that advertiser profit is positively correlated

with the degree of correlation. In the case of negative correlation, advertiser profit slightly

decreases as N becomes larger, while the opposite occurs in the zero correlation case. We

see a more rapid increase in the positive correlation case. Winning advertisers have higher

weighted values when N is larger but at the same time, they can shade their bids less. The

impact of bid shading is more dominating as the degree of correlation becomes lower.

APPENDIX D: ITERATIVE PROCEDURE FOR THE EQUILIBRIUM BID

This section explains the iterative procedure used in our counterfactual analysis to ap-

proximate the equilibrium bid function. From Equation (21) in the proof of Theorem 2, one

can derive the following equation:

bw(ω) = ω−

K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2δ(ω|bw, Fw, fw,N,k)

K∑
k=1

ck

(
N − 1

k− 1

)
Fw(ω)

N−k−1(1− Fw(ω))
k−2

[
(N − k)(1− Fw(ω))− (k− 1)Fw(ω)

]

where δ(ω|bw, Fw, fw,N, k) = bw(ω)Fw(ω)
N−k−

∫ ω
0 bw(x)(N−k)Fw(x)

N−k−1fw(x)dx.

We do not know about bw so we start with our initial guess b
(1)
w (ω) = ω. We plug the

initial guess in the RHS of the above equation and check whether the resulting function

is sufficiently close to the guess. If not, we update our guess and repeat the step. More

formally, for each n stage, using the guess b
(n)
w , we compute the RHS of the equation to
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obtain b
(n∗)
w as follows.

b
(n∗)
w (ω) = ω−

K∑
k=1

ck

(
N − 1

k− 1

)
(k− 1)(1− Fw(ω))

k−2δ(ω|b(n)w , Fw, fw,N,k)

K∑
k=1

ck

(
N − 1

k− 1

)
Fw(ω)

N−k−1(1− Fw(ω))
k−2

[
(N − k)(1− Fw(ω))− (k− 1)Fw(ω)

]

At the end of each stage, we check whether supω |b
(n∗)
w (ω)− b

(n)
w (ω)|< ε for some small

ε > 0. If the condition is met, we stop and use b
(n∗)
w as the approximated equilibrium bid

function. Otherwise, we update our guess b(n+1)
w = ab

(n)
w +(1− a)b

(n∗)
w for some a ∈ (0,1)

and iterate the steps until convergence. As n→∞, b
(n)
w converges to βw from above. We

set ε = 10−4 and a = 0.9. In every case we consider, the convergence is quickly achieved

with n less than 100.

APPENDIX E: IDENTIFICATION OF PRODUCT CATEGORIES

The raw dataset we use in the paper has multiple product categories, namely cruise, car

insurance, laptop, cable, and coins. Additionally, the keywords are declassified and thus

the product categories are also declassified (stated by numbers 0-4).36 To overcome this

problem, we analyze the differences in the categories and match each of them to the closest

possible category among cruise, car insurance, laptop, cable, and coins according to the

observed features. Table E.I gives a summary of how variables differ across categories.

This table also shows the corresponding means of all features in different categories.

First, look at the features of category 1. This category is the easiest to identify because

there are no keywords with one word. The base keyword consists of two words which

must be ‘car insurance’. We can see that all the keywords in this category share the same

two-word base keyword. This category is characterized by the very high average bid as

well as the relatively small number of competitors compared to the other categories. This

is consistent with the car insurance category. They are known to be the industry with one

36The categories are identified through the base keywords. The data have four single-word base keywords

which identify the four categories, and one category is identified by a two-word base keyword.
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of the highest prices per click. This is due to the high profit margins in the auto insurance

industry which is a highly concentrated market.

The next category that stands out is category 2, which is characterized by a high number

of advertisers and a high number of search queries per day. Due to its high volume of

consumer searches, this is likely a consumer good. Therefore, it is closest to the ‘laptop’

category as that is the only consumer good category in the data. Another category that is

easy to identify is category 0. This category has a high number of advertisers and a high

average click-through rate. A key feature of this category is more detailed searches that

have longer keyword lengths. This is again a popular category with detailed search, and

thus it is best matched with the ‘cruise’ category.

Category 4 has the lowest average bid and search volume, as well as the fewest number

of advertisers. It is most likely to be the least popular category in the data and thus likely

‘coins’. Lastly, ‘cable TV’ is also a less popular and less expensive category but it is rel-

atively more popular than ‘coins’. Therefore, we match ‘cable TV’ with category 3. The

table below summarizes the findings. Although these claims are just from our speculation,

we use this classification for the main analysis in the paper. Even if there is some error in

identifying the categories, we can still use the features of the category and interpret how

and why the results might differ for categories with different features.

TABLE E.I

FEATURES OF DIFFERENT CATEGORIES

Category Description CTR bid adv search length

(%) (cent) (million)

Cruise (Cat 0) high competition & detailed search 1.28 0.51 6223 1320 3.18

Car insurance (Cat 1) highest bids & high concentration 0.44 3.59 3815 2509 3.75

Laptop(Cat 2) popular & high competition 1.33 0.45 4764 2913 3.03

Cable (Cat 3) less popular & high bids 0.64 0.77 4703 1874 3.02

Coins (Cat 4) low value across variables 1.36 0.36 3330 784 2.83

Note: This table shows the summary of key features of product categories in the raw dataset. ‘CTR’ is the average click-

through rates, ‘bid’ is the average bid, ‘adv’ is the number of advertisers, ‘search’ is the daily average search volume, and ‘length’

is the average word counts across keywords within each category.
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APPENDIX F: LOG-NORMAL APPROXIMATION OF THE VALUE DISTRIBUTION
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FIGURE F.1.—The fitted log-normal distribution of advertiser’s ad value. The blue lines are the empirical

distributions and the red lines are fitted log-normal distributions.
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APPENDIX G: ROBUSTNESS ANALYSIS

G.1. Click rate regression with interactive fixed effects

To justify the log-linear regression specification (9) in Section 5, we compare it with the

following specifications:

ctrk,j,m = αk + βj + γm + ϵk,j,m, (28)

log(ctrk,j,m) = δkj + γm + ϵk,j,m. (29)

The latter model incorporates interactive (advertiser-position specific) fixed effects, thereby

allowing for heterogeneity among advertisers in click rate changes across positions. Re-

sults in Table G.I reveal that the log-linear model (9) offers significant improvements in

most categories in terms of both adjusted R2 and F-statistics compared to the linear model.

Although the most flexible specification (29) marginally improves adjusted R2, it is accom-

panied by substantially lower F-statistics than (9). These findings suggest that heterogene-

ity among advertisers in position-specific click-through rates is limited and the log-linear

model is a good approximation for click probability within our dataset.

TABLE G.I

ADJUSTED R2 AND F-STATISTIC FOR DIFFERENT MODELS

Adjusted R2 (F-statistics in the parentheses)

Cruise Car Ins. Laptop Cable TV Coins

Linear model 0.457 0.177 0.325 0.254 0.489

(225.0) (47.2) (173.4) (131.2) (249.5)

Log-linear Model (additive FE) 0.533 0.526 0.403 0.482 0.459

(304.2) (238.6) (243.0) (356.4) (221.7)

Log-linear Model (interactive FE) 0.563 0.585 0.483 0.508 0.496

(37.4) (32.5) (35.3) (40.4) (26.1)
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G.2. Full sample analysis and keyword heterogeneity

We restrict the data to the top 10% most popular keywords only to make sure that the

underlying valuation distributions across markets are similar. Here we consider the full

sets of keywords in our estimation. This empirical strategy results in much larger sample

sizes so that the underlying valuation distributions are more precisely estimated. Note that

the included keywords are now much more heterogeneous and hence the common value

distribution assumption is more likely to be violated. Nonetheless, this exercise can shed

some light on keyword heterogeneity. We expect that the popular keywords correspond to

higher valuations than less popular keywords.

TABLE G.II

POSITION SPECIFIC CLICK RATES WITH THE FULL SAMPLE

Ad-position Cruise Car Insurance Laptop Cable TV Coins

2th 0.457 0.837 0.599 0.522 0.618

3th 0.293 0.479 0.482 0.417 0.484

4th 0.129 0.256 0.279 0.253 0.384

5th 0.091 0.180 0.339 0.208 0.287

6th 0.042 0.289 0.171 0.163 0.196

7th 0.038 0.205 0.143 0.133 0.114

Note: The click rate of the first position is 1 due to re-scaling and hence omitted in the table.

Tables G.II-G.III show the position-specific click rates, quantiles of quality scores, and

quantiles of bid shading percentages estimated on the full sample. Figure G.1 compares the

empirical distributions of the estimated valuations for the popular keywords and the full

sample. The estimated bid shading percentages on the full sample are overall smaller than

those for the popular keywords. This is partly due to the lower position-specific click rates.

The full sample contains many keywords that are rarely searched by consumers. The results

show that ads related to unpopular keywords are less likely to be clicked when they are

displayed. Another reason for less bid shading is the lower weighted value. Quality scores
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TABLE G.III

QUANTILES OF QUALITY SCORE AND BID SHADING PERCENTAGE ACROSS PRODUCT CATEGORIES

Quality score Bid shading percentage (%)

qtile Cruise Car Ins. Laptop Cable TV Coins Cruise Car Ins. Laptop Cable TV Coins

25% 0.0000 0.0002 0.0002 0.0111 0.0001 0.1 0.0 0.0 0.0 0.1

50% 0.0000 0.0004 0.0004 0.0169 0.0002 0.6 0.0 0.1 0.1 0.5

75% 0.0001 0.0010 0.0009 0.0242 0.0003 5.7 0.1 0.7 0.2 3.4

90% 0.0001 0.0021 0.0018 0.0299 0.0005 16.5 0.3 5.2 1.6 20.6

99% 0.0007 0.0054 0.0092 0.0772 0.0019 27.0 13.0 38.4 24.3 48.0

Note: The table summarizes the quantiles of the estimated quality scores and bid shading in terms of the percentage of the

corresponding estimated values.

and valuations are overall lower on the full sample. As advertisers with higher weighted

values can shade their bids more, the overall bid shading is smaller on the full sample.

The results on the full sample clearly show heterogeneity across keywords. The valuation

distributions of the popular keywords are strictly below their counterparts from the full

samples. The gaps are larger for ‘cruise’ and ‘car insurance’ categories. This implies that

keyword heterogeneity is more outstanding in these categories. We speculate that the two

categories have more diverse underlying products in terms of price. For instance, the price

gap between ‘luxury cruise’ and ‘budget cruise’ would be much larger than the gap between

‘high-end laptop’ and ‘budget laptop.’ These results support our baseline empirical strategy

that focuses on popular keywords.
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FIGURE G.1.—The valuation distributions for the top 10% popular keywords and the full sample.
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