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Preface

Industrial engineering and management are of great importance in sustainable supply chains.
The first reason is the optimization of resource consumption. Industrial engineering and management
optimize production and logistics processes, allocate resources reasonably and reduce energy
consumption and waste generation, thereby reducing negative impacts on the environment. Next
is the improvement of efficiency and efficiency. By optimizing supply chain management and
production processes, industrial engineering and management can improve production efficiency
and efficiency, reduce costs and minimize negative impacts on the environment. Additionally,
the application of industrial engineering and management in sustainable supply chains can
promote environmental awareness among enterprises and consumers, create a good environmental
atmosphere and promote sustainable development. It is important to ensure the stability of
the supply chain. By allocating resources reasonably and optimizing supply chain management,
industrial engineering and management can guarantee the stability of supply chains, ensuring the
sustainable development and stable operation of various enterprises. The contributors to our Special
Issue have conducted research on the above aspects, hoping to provide new ideas, theories, methods
and technology for achieving the coordinated development of economic benefits, environmental

protection and social benefits.

Conghu Liu, Xiaoqian Song, Zhi Liu, and Fangfang Wei
Editors
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The integration of information technologies with the industry has marked the beginning
of the Fourth Industrial Revolution and has promoted the development of industrial
engineering. However, the depletion of resources and the creation of industrial waste
caused by increasing industrial production pose a huge threats to nature. The application
of sustainable supply chains in industrial engineering and management is one of the ways
to balance the economy, society, and the environment. Therefore, it is a key concern for
us to explore the construction of sustainable supply chains in industrial engineering and
management. Moreover, to understand the impact of low-carbon, sustainable, and recycled
supply chains on industrial engineering, we need more in-depth investigations. The Special
Issue, entitled “Sustainable Supply Chains in Industrial Engineering and Management”,
has collected 18 recent works from relevant researchers, including research on sustainable
supply chain technology in the fields of logistics, intelligent manufacturing (including
remanufacturing), and management. The Special Issue is currently available online at:
https:/ /www.mdpi.com/journal/processes/special_issues/A47ZFBWQ22 (accessed on
15 July 2023).

1. Sustainable Supply Chain Design and Management

Gong et al. [1] established game models for a live-streaming supply chain and found
optimal strategies for live-streaming members on streaming marketing modes, prices, and
carbon emission reduction efforts.

Based on data-driven theory, Mu et al. [2] designed a sequence parameter index system
for the logistics industry’s ESE-B composite system, applied a Z-score to dimensionless
data to standardize the original index data, and constructed a collaborative degree model
to estimate the collaborative development between various subsystems of the logistics
industry’s ESE-B system.

Wang et al. [3] proposed a CNN-SA-NGU mixture model for forecasting silver closing
prices, in which a CNN is used to extract the characteristics of the input data, SA is used
to capture the correlation between different characteristic values, and the new NGU deep
learning gating unit is used to predict the silver closing price. This system improves the
ability to extract feature data and the non-linear fitting ability of the model.

Guo et al. [4] proposed a data-driven method that can be used to measure, evaluate,
and identify the coupled and coordinated development (CCD) of the logistics industry (LI)
and the digital economy (DE) to promote the integrated development of LI and DE.

Yang et al. [5] built a data-driven multimodel decision approach to calculate, assess,
diagnose, and improve the regional innovation—economy—ecology (IEE) system. This
method was used to test the coupling coordination degree of the Anhui IEE system and
optimization measures were proposed.

Processes 2023, 11, 2280. https:/ /doi.org/10.3390/pr11082280
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2. Evaluation of Sustainable Supply Chains in Industrial Engineering

Huang et al. [6] reviewed the literature on the risk management of automotive supply
chain interruption in recent years, listed the achievements in automotive supply chain
interruption risk management, pointed out the problems in automotive supply chain man-
agement, and discussed the most concerned areas and development trends in automotive
supply chain management.

Liu et al. [7] constructed an evaluation indicator system to measure organizational
quality-specific immunity based on immune theory and introduced interval-valued hesitant
fuzzy information and bidirectional projection technology to create bilateral matching
evaluation and decision-making models in order to improve the bilateral matching decision
making of manufacturing enterprises seeking partners in the manufacturing supply chain.
The empirical analysis shows that this model can overcome the problem of information
scarcity and help solve interval hesitation fuzzy decision-making problems.

Liu et al. [8] constructed a regression equation with employment in strategic emerging
industries as the dependent variable, and the change direction, employment elasticity, and
change speed of strategic emerging industries’ structures as independent variables to measure
the impact of structural changes in strategic emerging industries on employment in China.
The research results indicate that the direction of changes in strategic emerging industries and
employment elasticity is positively correlated with employment, while the change speed in
strategic emerging industries is unstable and negatively correlated with employment.

Shi et al. [9] studied the role of carbon-abatement cost-sharing contracts in supply
chains with a capital-constrained manufacturer. The results show that one-way cost-sharing
contracts can improve manufacturers” carbon reduction levels, and two-way cost-sharing
contracts have potential “economic-environmental” benefits.

Orsi¢ et al. [10] used a new approach to achieve more sustainable deliveries through
machine learning forecasts based on real-time data, different dynamic route planning
algorithms, tracking logistics events, fleet capacities, and other relevant data. The devel-
oped model proposes to influence customers to choose a more sustainable delivery time
window with important sustainability benefits using machine learning to predict accurate
time windows with real-time data influence. This approach also leads to better vehicle
utilization, less congestion, and fewer failures during home delivery.

Yang et al. [11] constructed a duopoly competition game model for channel competi-
tion between offline retailers and online retailers, studied the optimal pricing decisions in
different scenarios, revealed the conditions for online retailers to provide return strategies
and return insurance strategies, and provided management insights for online retailers.

3. Smart Manufacturing Process Monitoring and Control

Sun et al. [12] integrated blockchain and FL technologies in the intelligent manufactur-
ing process, introducing the concept of Sustainable Production concerned with External
Demands (SP-ED). The blockchain stores and manages detailed logs to identify defects, FL
validates the sustainability and flaw detection for modifying the operations in consecutive
operation cycles, which can improve sustainability by 11.48% and flaw detection by 14.65%
and can reduce modifications by 11.11% and detection time by 10.46% for the varying
energy supply-to-demand factor compared to DDSIM.

Chen et al. [13] proposed a control-centered data classification technology for the
detection and analysis of emissions from industrial enterprises. Through intelligent hard-
ware, the intensity, emission rate, and composition of emissions at different manufacturing
intervals are obtained, and a repeated analysis is carried out via in-depth learning. Then,
previous emission regulations and manufacturing guidelines can be improved to identify
high emission intensities and dangerous components in gas emissions.

Bai et al. [14] developed the DECIA improvement model based on the internal quality
control of water-saving products and external marketing policies, which promotes the
upgrading of production processes or technologies to improve product quality and increase
market penetration.
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References

Taking into consideration the impact of lightweight quality on carbon emissions
throughout the lifecycle of automobiles, Li et al. [15] proposed a more comprehensive
lightweight design method. This method not only provides insight into the lightweight
design of automobiles and other equipment against the background of low carbon but also
offers a mean to calculate the carbon emission changes across the entire process after the
implementation of the lightweight design.

4. Optimized Operation and Management of Remanufacturing Production System

Yang et al. [11] develop a game-theoretic model to examine the selection of different
recycling strategies in the remanufacturing supply chain considering blockchain adoption and
uncertain demand. Results show that the coefficient of collection investment costs determines
the collection method and the incentive for collectors to participate in the blockchain.

Liu et al. [16] have established a remanufacturing supply chain recycling model based
on the Bass innovation diffusion model. In this model, a single manufacturer takes the
lead, while a single retailer follows. The retailer is responsible for the recycling aspect. The
authors have determined the optimal wholesale price, retail price, and recovery effort path
with the optimal control theory.

Chen et al. [17] studied the impact of subsidy policies on the donation strategy of the
remanufacturing industry and found that the subsidy amount, first-mover advantage, and the
form of the subsidy will affect the donation behavior of manufacturers and remanufacturers.

5. Conclusions

This Special Issue has published 18 papers on the sustainable development of supply
chains in industrial engineering, including system modeling and simulation, supply chain
management and evaluation, the combination of artificial intelligence and supply chains,
and supply chain issues in remanufacturing. This Special Issue presents mathematical
models for different industrial scenarios, improving supply chain management’s efficiency
in all aspects. Introducing artificial intelligence technology into industrial production
promotes low-carbon and sustainable industrial development. We believe that integrating
information technology and industry can promote sustainable supply chain development
and accelerate the achievement of carbon neutrality goals in the manufacturing industry in
the future [18,19].

We sincerely thank all the scientific contributors who submitted the papers in this
special issue.
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Abstract: A livestreaming supply chain composed of a single manufacturer and a single streamer
in the low-carbon market is examined. Motivated by the actual production and operation, both the
manufacturer and the streamer have a chance to dominate the supply chain. Low-carbon strategies
and livestreaming marketing modes of the supply chain are studied. The impacts of the consumer’s
price sensitivity coefficient, low-carbon preference, and streamer’s promotion sensitivity coefficient
on the equilibrium results are further studied. The results show that: the streamer achieves the
optimal level of promotion effort in the resale mode under both power structures. The manufacturer
achieves the optimal low-carbon level in the commission mode when the promotion sensitivity
coefficient is smaller under both of two power structures. The streamer’s profit is optimal in the
resale mode, while the manufacturer’s profit is optimal in the commission mode when under the
streamer-led structure. Two parties’ profits are optimal in the commission mode when the promotion
sensitivity coefficient is smaller under the manufacturer-led structure. The low-carbon level, streamer
promotion effort and selling price in two livestreaming marketing modes will increase when the
streamer promotion sensitivity coefficient and consumer low-carbon preference increase and will
decrease when consumer price sensitivity increases under two power structures. Lastly, the selling
price in resale mode is always higher than that in commission mode under two power structures.

Keywords: low-carbon strategy; livestreaming marketing mode; consumer low-carbon preference;
level of low-carbon promotion effort; power structures

1. Introduction

Global governments and environmental organizations have placed a high priority
on the numerous climate and environmental issues caused by massive greenhouse gas
emissions. In order to deal with this issue, the Chinese government has included carbon
neutrality and peaking in its government work report for 2021, encouraging green and
low-carbon development. Moreover, consumers’ awareness of environmental protection
has been continuously enhanced. Environmentally friendly, low-carbon products are more
attractive to consumers [1-3]. With the development of online technology and the upgrad-
ing of shopping styles, consumers are increasingly turning to online shopping channels.
According to Statista, global e-commerce sales will total about 5.2 billion U.S. dollars in 2021
and are expected to reach 8.1 billion U.S. dollars in 2026 [4]. To further cater to consumers,
Facebook, TikTok, Jindong, Taobao, and others have started launching livestreaming mar-
keting channels on their platforms. After the COVID-19 outbreak, livestreaming marketing
has grown as a no-touch, interactive selling format. According to a report on livestreaming
e-commerce in China, the number of livestreaming e-commerce users was 515 million as
of December 2022 [5]. In that background, more manufacturers began to provide green
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products and adopt the popular livestreaming e-commerce channel to meet and promote
consumers’ low-carbon needs. The livestreaming e-commerce channel has been loved by
a large number of consumers and manufacturers at present because it allows real-time
interaction between consumers and steamers [6]. Then consumers can obtain professional
explanations about the products or services, and manufacturers can obtain more sales. For
the manufacturer, there are usually two main livestreaming marketing modes between
manufacturers and streamers. One is the resale, and the other one is the commission. In the
resale mode, the streamers have their own livestreaming room and operate the product
sales channel; they purchase goods from manufacturers and resell them to consumers on the
platform, such as Dongfangzhenxuan. Consumers buy the products in the livestreaming
room, and the streamers gain sales revenue. In the commission mode, the manufacturers
operate the product sales channel, and they hire the streamers to help them sell products
in the streamers’ live steaming room and pay a certain percentage of commission to the
streamers, such as Li Jiaqi and Wei Ya. Consumers buy the products in manufacturers’
online shops, and the manufacturers gain revenue. Streamers can stimulate consumers’
willingness to buy low-carbon products.

However, the selection of the livestreaming marketing mode and low-carbon promo-
tion effort is an important decision of the low-carbon livestreaming supply chain. Because
although livestreaming marketing can attract more consumers to purchase low-carbon
products through low-carbon promotion efforts made by streamers, many limitations
remain. Under the commission mode, manufacturers are required to pay commissions
to streamers, which typically account for 30-50% of sales [7], and the high commissions
may squeeze manufacturers’ profit margins. Under the resale mode, the manufacturer
loses the power to price their products, and some streamers try to attract consumers by
decreasing prices, which may create a psychology of fairness concern for consumers [8]
and impact other sales channels of manufacturers. Moreover, different efforts will be made
by the streamers in different livestreaming marketing modes. Then manufacturers need
to choose the mode of cooperating with streamers, especially when the manufacturers or
streamers play a leading role in the supply chain. What’s more, manufacturers must also
face the additional unit production cost of producing low-carbon goods. Obviously, high
production costs often lead to higher product selling prices. The decision of low-carbon
and selling price is also an important issue for manufacturers. Manufacturers’ low-carbon
strategy will also be affected by consumers’ low-carbon preference and price sensitivity,
streamer’s promotion effort. Therefore, our study will also discuss how these factors affect
the strategy of the livestreaming supply chain. We attempt to solve problems as follows:

(1) Optimal low-carbon strategies of the manufacturer and streamer under two livestream-
ing marketing modes when there are two different power structures, respectively,
dominated by the manufacturer and the streamer.

(2) How do the marketing mode and power structure impact the optimal low-carbon
strategies of the members? When to choose a “resale” or “commission” mode to
obtain more profits?

(3) The impacts of the parameters, including the consumer price sensitivity coefficient,
commission ratio, streamer’s low-carbon promotion level coefficient and consumer’s
low-carbon preference on the optimal strategies of the manufacturer and streamer
under the two livestreaming marketing modes.

To solve those issues, this paper establishes game models of a livestreaming supply
chain and finds optimal strategies for livestreaming supply chain members on streaming
marketing modes, prices and carbon emission reduction efforts. We discussed four supply
chain structures: manufacturer-led in resale mode (model wm), streamer-led in resale
mode (model w!), manufacturer-led in commission mode (model am), and streamer-led
in commission mode (model al). Furthermore, the influences of model parameters on
decision variables are analyzed. The results of our research will help the manufacturer and
streamer manage and improve their strategies for livestreaming marketing mode selection
and carbon emission reduction. The main contributions of this work include the following:
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e  This paper focuses on a livestreaming supply chain in which the manufacturer and the
streamer need to decide both the low-carbon promotion level and optimal livestream-
ing marketing mode. Unlike previous research focused on the supply chain with
manufacturers and e-commerce platforms [9,10], we considered the importance of
streamers’ low-carbon promotion which will influence consumers” willingness to
purchase low-carbon products.

o  We examine the influences of different power structures on manufacturers’ and stream-
ers’ decisions to choose their livestreaming marketing mode. Studies on the choice of
livestreaming marketing mode have only considered the case of power parity between
manufacturers and streamer [6,7]. And interestingly, we found that the optimal selec-
tion of marketing mode of both the manufacturer and the streamer always depends
on their position in the supply chain, and they will make the same selection in the
manufacture-led structure and the opposite selection in the streamer-led structure.

This paper seeks the maximum low-carbon effort level. It is found that both the
manufacturer’s and streamer’s optimal low-carbon effort levels do not depend on the
power structure of the supply chain. The manufacturer’s optimal low-carbon effort level
only depends on the livestreaming marketing mode, while the streamer’s low-carbon effort
level depends on both the livestreaming marketing mode and the promotion sensitivity
coefficient. The manufacturer always makes the maximal effort in the commission mode.
The streamer makes the maximal promotion effort in the resale mode when the promotion
sensitivity coefficient is smaller, and the streamer makes the maximal promotion effort in
the commission mode when the promotion sensitivity coefficient is bigger. The rest part of
the article is arranged as follows: In Section 2, related studies are offered. Section 3 is about
model descriptions and assumptions. In Section 4, models of resale mode and commission
mode are established, and the optimal decision is obtained. In Section 5, decision results are
compared and analyzed. In Section 6, numerical experiments are conducted. In Section 7, a
case is studied. Finally, the conclusions and limitations are in Section 8. All mathematical
proofs are shown in Appendix A.

2. Related Works
2.1. Low-Carbon Strategies of Supply Chain

Consumer awareness of environmental protection is considered an important factor
that can affect the emission reduction level of the supply chain. Zhang et al. [11] exam-
ined how consumers’ low-carbon awareness and merchants’ concerns about fairness in
cost-sharing percentages and supply chain decisions. The research found that increasing
consumers’ environmental awareness and carbon emission reduction sharing ratio was
beneficial to improving environmental quality. However, the more significant the retail-
ers’ fairness concern coefficient, the more unfavorable it was to environmental quality.
Jietal. [12] made a single-game model and a combined game model for reducing emissions.
They found that the combined strategy for reducing emissions is good for both retailers
and manufacturers. Wu et al. [13] created a differential game model with centralized
versus decentralized decision-making. They discovered that consumer preferences for
low-carbon products encouraged suppliers and manufacturers to reduce emission lev-
els. The government’s low-carbon policies also influence the emission reduction efforts
of supply chain members [14,15]. Zhang et al. [16] studied the emission reduction of a
dual-channel supply chain under the background of carbon quota. Chen et al. [17] com-
pared manufacturers’ channel choice and emission reduction under various government
subsidies. Wang et al. [18] formulated a revenue-sharing contract with compensation.
Wang et al. [19] considered retailers” altruistic preferences when making decisions and
coordination. Gong et al. [20] studied the strategies of blockchain technology adoption
and channel selection when consumers’ willingness to pay for remanufactured products is
low. Basiri et al. [21] proposed a supply chain coordination contract to improve product
greenness while lowering retail prices. Zhang et al. [22] studied how an e-platform sup-
ply chain selects the optimal channel mode from platform mode and wholesale mode in
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the presence of a secondary marketplace. Dolai et al. [23] considered an EPQ model for
screening imperfect products with GHG emission rates, and they concluded that higher
screening rates lead to higher average profits when the screening rate is below a threshold,
but higher screening rates may lead to lower profits when the screening rate is above a
threshold. Manna et al. [24] proposes a two-plant production model that takes into account
consumer demand. They believe that product warranty policies and rework policies are
conducive to lowering greenhouse gas emissions and increasing average manufacturer
profits and customer demand. Kumar et al. [25] developed a production inventory model
with dynamic demand and found that reducing the cost of defective items facilitates manu-
facturers to increase their average profit. Manna et al. [26] studied the inventory problem
of retailers with two warehouses based on the TDE algorithm.

Previous research on supply chain emission reduction mainly focused on manufac-
turers and retailers, but with the development of the platform economy, the mode of
cooperation between manufacturers and streamers on the platform is becoming increas-
ingly popular. Different from the previous research, we focus on the supply chain composed
of manufacturers and streamers under the livestreaming marketing mode.

2.2. Livestreaming E-Commerce

There are few works of literature on livestreaming supply chains, and the existing
research focuses primarily on manufacturers’ livestreaming strategies and consumers’
purchase behavior in live e-commerce. Zhang et al. [27] investigated the decision to imple-
ment live channels in multinational corporations while considering channel substitutability
and tax differences. Gong et al. [28] discussed online retailers’ live channel introduction
strategy. Hao et al. [29] studied the effect of consumer returns and living sales on the
selling mode chosen by e-commerce platforms and suppliers. Zhang et al. [30] found that
live-streaming services always benefit e-commerce platforms, whereas manufacturers must
consider production costs. Ma et al. [31] used an empirical approach to investigate the
mechanism of streamer interaction’s influence on consumer behavior and to analyze the
factors influencing consumer purchase hesitation. Chen et al. [32] explored the mechanism
of the role of weblebrities’ traits and consumers’ purchase intention and discovered that
the more significant the weblebrities’ traits, the stronger the consumers’ purchase inten-
tion. Huang et al. [33] found that celebrity streamers selling hedonic goods and corporate
streamers selling valuable goods are more likely to stimulate consumers’ purchase desire.
Xing et al. [34] examined the relationship between streamer commissions and streamer
service quality efforts in both sign-up and non-sign-up scenarios. The research shows that
the streamer’s effort increases with the increase of streamer commission.

The preceding studies have empirically examined the impact of livestreaming market-
ing on consumers’ purchase intention motivation and demonstrated the ability of streamers
to stimulate consumers to purchase products. However, fewer studies have considered
models to examine manufacturers’ choices of livestreaming marketing mode and consider
that manufacturers and streamers are in different power structures.

2.3. Power Structures of Supply Chain

Different power structures will lead to different decision results. Huang et al. [35]
analyzed the supply chain members’ optimal emission reduction decisions under different
power structures, with manufacturers taking CSR and retailers taking social responsibil-
ity. It confirmed that the green degree and green publicity level of products are higher
when the other party engages in CSR with both of the power structures. Li et al. [36]
discovered that supply chain members always make more money when they have domi-
nance. Lu et al. [37] studied the pricing problem with three structures: retailer-dominated,
manufacturer-dominated, and power-parity situations. Chen et al. [38] explore the power
structure’s impact on the optimal O20 price and profit of retailers and suppliers. Gen-
erally, the manufacturer requires the dominant position between the streamer and the
manufacturer, but not all streamers are subordinate, especially the celebrity streamers who
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can even take the initiative when cooperating with the manufacturer. Therefore, there are
also different power structures between manufacturers and streamers under livestreaming
marketing. Qiu et al. [39] considered a supply chain consisting of an online retail platform,
a used sales platform, and a recycling platform and investigated the influence of different
power structures on the integration strategies of used recycling platforms.

Most of the previous work considered the power imbalance between a manufacturer
and an e-commerce platform and a manufacturer and a retailer in the supply chain. Our
work differs from previous research in the following aspects. First, we consider the power
imbalance between a manufacturer and a streamer in livestreaming marketing. Second,
we study the impact of different power structures on the low-carbon strategies of the
manufacturer and streamer.

To sum up, the existing literature has achieved specific results on low-carbon supply
chain and livestreaming e-commerce, paying more attention to the low-carbon strategies
between manufacturers and e-commerce platforms and the strategies about whether the
manufacturer should choose a livestreaming channel, but the low-carbon problem of the
livestreaming supply chain is rarely addressed. Not paying enough attention to the fact that
the livestreaming platform is different from an e-commerce platform on the consumer’s
willingness to pay and the selection of the livestreaming marketing mode, especially when
there are more than one livestreaming marketing mode and power structure. This paper
will consider these facts. Our study can help manufacturers, and steamers determine the
optimal livestreaming mode and emission reduction strategy.

3. Model Description and Assumption
3.1. Model Description

There is a manufacturer and a streamer. The decision objective of manufacturers and
streamers is to maximize their own revenue. They have two livestreaming marketing
modes to sell the products. One is resale mode, and the other one is commission mode. In
the resale mode, the manufacturer sells the products to the streamer at a wholesale price,
and the streamer reprices and sells them in the livestreaming room. Manufacturers gain
income from wholesale products, and streamers gain income from product sales. In the
commission mode, the streamer sells the products in the livestreaming room and draws
a certain percentage of commission from each order, the selling price determined by the
manufacturer. Manufacturers gain income from product sales.

There are two power structures between the manufacturer and the streamer: manufacturer-
led and streamer-led. The research objective is to discuss the decision of low-carbon
and livestreaming marketing mode of the manufacturer and streamer in four situations:
manufacturer-led in resale mode (model wm), streamer-led in resale mode (model wi),
manufacturer-led in commission mode (model am), and streamer-led in commission mode
(model al). Then we build Stackelberg game models for four scenarios to analyze the
optimal strategies of low-carbon efforts and livestreaming marketing modes.

3.2. Assumptions

Consumers are low-carbon conscious in the low-carbon supply chains; they are will-
ing to pay higher prices for low-carbon products [40—43]. And consumers’ purchasing
needs in the livestreaming supply chain are also influenced by the promotion efforts of
streamers [44]. Therefore, the consumer’s demand in the low-carbon livestreaming sup-
ply chain is mainly influenced by the low-carbon level of the product ¢ of manufacture,
the low-carbon promotion effort level s of the streamer and the product price p. By in-
creasing the low-carbon level of products, manufacturers attract low-carbon-preferring
consumers to buy them [45], and streamers further strengthen consumers’ low-carbon
consciousness through product demonstration and narration, stimulating the growth of
demand in the livestreaming room. According to [46-48], we have Assumption 1 about the
demand function.
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Assumption 1. Consumers have a low-carbon preference, and more consumers are willing to pay
higher prices for low-carbon products; manufacturers are willing to make low-carbon investments to
meet consumers’ low-carbon demand and gain more profits. The demand function of consumer’s
low-carbon products under the livestreaming marketing mode is

d=a—up+ne+ ¢s 1

where y and 1 are the consumer’s price sensitivity coefficient and low-carbon preference for the
product, and the ¢ is the streamer low-carbon promotion sensitivity coefficient.

Assumption 2. The manufacturer is responsible for improving the low-carbon level of the product,
and the streamer is responsible for improving the low-carbon promotion effort level in the low-
carbon supply chain. The manufacturer pays production and R&D costs for low-carbon products.
The streamer pays promotion effort cost. Without losing generality, we assume the product’s
production cost is 0 without affecting the calculation result [21,49]. Refer to [50,51]. We assume
the manufacturer’s unit production cost is c(e) = e?/2, and the streamer’s unit sales cost is
c(s) =s%/2.

Assumption 3. Manufacturers pay the same percentage of commission to the same type of streamers
in the industry in the commission mode. Because in actual operation, the manufacturer does not
set a separate commission ratio for each streamer but often decides uniformly based on market
conditions [52], and usually less than 0.5 [29], then we assume that the streamer commission ratio
6 is an exogenous variable, 0 < 6 < 0.5.

The definitions of parameters in the paper are shown in Table 1.

Table 1. Parameters definition.

Symbol Description

U

Demand function of consumers
Potential maximum demand
Product selling price
Wholesale price in resale mode
product unit profit in the resale mode
Price sensitivity coefficient
Product low-carbon level
Consumer low-carbon preference
Streamer low-carbon promotion effort level
Streamer low-carbon promotion sensitivity coefficient
Commission ratio
., nfn Manufacturer’s profit under two livestreaming marketing modes

DR v o= 8T

m, 7-({ Streamers’ profit under two livestreaming marketing modes
i = wm, wl, wm: manufacturer-led in the resale mode, wl: streamer-led in
the resale mode
j = am, al, am: manufacturer-led in the commission mode, al: streamer-led
in the commission mode

ij

In the resale mode, the manufacturer produces at level ¢!, and resells it to the streamer
at price w'. The streamer decides its promotion effort level s and selling price p’, where
p' = k' +w', k' stands for the product’s profit per unit; as a result, the streamer decides the
profit per unit product k'.

In the commission mode, the manufacturer produces at level ¢/, and sells it to the
consumer with the help of the streamer at price p/. The streamer promotion effort is s/. The
structure of the models in resale and commission mode are shown in Figure 1.

10
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Figure 1. Model structure.

4. Modeling and Analysis
4.1. Resale Mode

The manufacturer’s profit function in resale mode is:

= w [a - y(ki + wi) + e + (psl} - %(ei)2 )
The streamer’s profit function in resale mode is:
=k [afy(kl+w’) +ﬂel+<psl} — E(sl) (3)

4.1.1. Model wm (Manufacturer-Led)

In the model wm, the livestreaming marketing mode is the resale mode; the structure
is manufacturer-led. The objective of the manufacturer and streamer is to maximize
their own profit. The decision sequence is: (1) the manufacturer decides w and e, (2) the
streamer decides k and s. Practice shows consumers’ low-carbon preference and promotion
sensitivity coefficient are not infinite, but there is a range. In order to make our study more
realistic and have optimal solutions for functions (2) and (3), the following assumption
about the model parameters are made regarding the studies of Wang et al. [19,48] scholars.

Assumption 4. The parameters meet the following conditions: the 1 < /—2¢% +4u, ¢ <
\/ — %1% + 2 in resale mode with a manufacturer-led structure.

Lemma 1. The optimal low-carbon strategies in resale mode with a manufacturer-led structure are
as follows:

wm ay
_ 4
‘ 1%+ 292 — 4y @
W — ﬁ(—gﬁz + 2;{) (5)
H(n?+2¢% —4p)
a
kwm* — 6
—n2 =292 +4u ©)
Pwm* _ Ll(—(P2 + 3”) (7)
p(—n? —2¢% +4u)
wom pa
_ - 8
’ —n? =292 +4p ®

The following Propositions can be drawn from Lemma 1.

11
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From Proposition 1 we can find low-carbon level, unit profit and streamer’s low-carbon
promotion effort level are negatively related to the price sensitivity coefficient in resale mode
with a manufacturer-led structure. That shows the higher the price sensitivity coefficient,
consumers are easier influenced by the product’s price, and the lower the selling price is. At
the same time, the low-carbon product’s selling price is always higher than the traditional
product’s price because of the higher R&D cost and streamer promotion cost. Consumers
will be less interested in purchasing low-carbon products. The manufacturer will choose a
lower low-carbon level; the streamer will choose a lower low-carbon promotion effort level.
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From Proposition 2, we can see wholesale price, low-carbon level, unit profit, selling
price and streamer’s low-carbon promotion effort are positively related to consumer’s
low-carbon preference in resale mode with manufacturer-led structure. The results are
consistent with the reality. That shows both manufacturer and streamer will be motivated by
consumers’ low-carbon preference to pay more effort and costs for low-carbon promotion.
The wholesale price, unit profit and selling price increase subsequently.
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Proposition 3. 2 >0, 2 > 0.

From Proposition 3 we can see wholesale price, low-carbon level, selling price, steamer’s
low-carbon promotion effort, and unit profit is positively related to the streamer’s promo-
tion sensitivity coefficient in resale mode with manufacturer-led structure. That means
the streamer’s low-carbon propaganda has positive feedback on the low-carbon level and
product selling price, the product selling price has positive feedback on the streamer’s

low-carbon propaganda, then a feedback loop is formed.

4.1.2. Model w! (Streamer-Led)

In the model wl, the livestreaming marketing mode is the resale mode; the structure is
streamer-led. The decision sequence is: (1) the streamer decides the value of k and s, and
(2) the manufacturer decides the value of w and e.

Assumption 5. The parameters meet the following conditions: 5 < 1/ w, ¢ </ —2n%+4u

in resale mode with a streamer-led structure.

The basis of Assumption 5 is similar to Assumption 4.

Lemma 2. The optimal low-carbon strategies in resale mode with a streamer-led structure are as
follows:

wlx __ an
R Y- Ry R PP ©)
Ix a
W = T g g (10)
kwl* _ a(zy - ’72) (11)
(=21 — 9> +4p)p
pwl* — ﬂ(3],l - ;72) (12)
(=277 — > +4p)u
wlx agp
sV = pYe— (13)

The following Propositions can be drawn from Lemma 2.

12
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Proposition 4 shows low-carbon level, unit profit and streamer’s low-carbon promo-
tion effort level are negatively related to the price sensitivity coefficient in resale mode with
a streamer-led structure. It is similar to Proposition 1.
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Proposition 5 means wholesale price, low-carbon level, unit profit, selling price and
streamer’s low-carbon promotion effort are positively related to consumer’s low-carbon
preference in resale mode with a streamer-led structure. It is similar to Proposition 2.

Wl

9

kwl *
99

apwl* 95l
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Proposition 6. % m

>0, % > 0,2
Proposition 6 shows that wholesale price, low-carbon level, selling price, steamer’s
low-carbon promotion effort, unit profit is positively related to a streamer’s promotion

sensitivity coefficient in resale mode to a streamer-led structure. Similar to Proposition 3.

4.2. Commission Mode

The manufacturer’s profit function in commission mode is:
R i+ el + g51) — S (/)
ﬂm:P(1—9)<a—VP +ne+¢5)—5(6) (14)
The streamer’s profit function in commission mode is:

L N 1,0
) = pfﬂ(a —up! +ne +gos]) - E(S]) (15)

4.2.1. Model am (Manufacturer-Led)

In the model am, the livestreaming marketing mode is commission mode, and the
structure is manufacturer-led. The objective of the manufacturer and streamer is to max-
imize their own profit. The decision sequence is: (1) the manufacturer decides p and ¢,
(2) the streamer decides s. In order to make our study more realistic and have optimal
solutions for functions (14) and (15), we propose Assumption 6. The basis of Assumption 6
is similar to Assumption 4.

— 02 2042
Assumption 6. The parameters meet the following conditions: 1 < %, @ </ W
in commission mode with manufacturer-led structure.

Lemma 3. The optimal low-carbon strategies in commission mode with a manufacturer-led structure
are as follows:

am __ 77(1 — 9)”

C T 02097 — 2+ 2u (16)
amkx __ a

P T 20— 2097 — 2 + 21 {17)

120 —209% — > +2u

The following Propositions can be drawn from Lemma 3.
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From Proposition 7, it can be seen that the low-carbon level, selling price and streamer’s
low-carbon promotion effort level are negatively related to the price sensitivity coefficient
in commission mode with manufacturer-led structure. It’s similar to Propositions 1 and 4.

ANk am*
S

d
>0, %5

Proposition 8. %™ 0, i > 0.

an an

Proposition 8 shows that low-carbon level, selling price and streamer’s low-carbon
effort are positively related to consumer’s low-carbon preference in commission mode with
a manufacturer-led structure. It’s similar to Propositions 2 and 5.

Comparing Proposition 8 with Proposition 2, we can find that the mode of cooperation
between streamer and manufacturer does not change the impact of low-carbon preferences
on the members’ optimal strategies.

ant* *
SIZWI

¢

Proposition 9. %™ 0, i >0, 2 > 0.

o9 o9

Proposition 9 shows that the low-carbon level, selling price and streamer’s low-carbon

promotion effort are positively related to the steamer’s promotion sensitivity coefficient in

commission mode with a manufacturer-led structure. It’s similar to Propositions 3 and 6.

This indicates that if we want to improve the low-carbon level and streamer’s promotion
effort, we’d better improve the steamer’s promotion sensitivity coefficient.

agum* aAm*

Proposition 10. %5~ < 0, %~ > 0.

Proposition 10 reveals that the low-carbon level is negatively related to the commission
ratio, streamer’s low-carbon promotion effort level is positively related to the commission
ratio in the commission mode with a manufacturer-led structure.

4.2.2. Model al (Streamer-Led)

In model al, the livestreaming marketing mode is commission mode; the structure is
streamer-led. The decision sequence is: (1) the streamer decides s, (2) the manufacturer
decides p and e.

. . L —2u+@+/210
Assumption 7. The parameters meet the following conditions: n < %, p <
V2(i?0—n+2p)

2/

The basis of Assumption 7 is similar to Assumption 4.

in commission mode with a streamer-led structure.

Lemma 4. The optimal low-carbon strategies in commission mode with a streamer-led structure are

as follows:
il _ (1—0)na((6 —1)n%+2u) 19)
(=14 0)%p* + 4pu(—1 4 0)% — 2920u + 442

pal* — (71 + 9)”’72 + Zl/la (20)
(=14 0)*p* + 4p(—1 4 0)7% — 220u + 42

alx zaGV(P
(=14 0)n*+4u(—1+0)n? — 2¢%0u + 4p?

The following Propositions can be drawn from Lemma 4. Due to the computational
complexity, the effect of the consumers’ low-carbon preference and commission ratio on
optimal strategies will be discussed in the numerical study.

aeal* apal* asal*
a]/l <O,W<O, a]/l < 0.

Proposition 11.
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Proposition 11 shows that the low-carbon level, selling price and streamer’s low-
carbon promotion effort level is negatively related to the price sensitivity coefficient in
commission mode with a streamer-led structure. It’s similar to Propositions 1,4 and 7.
Comparing Propositions 1, 4, 7 and 11, it can be found that the impacts of the price
sensitivity coefficient on the optimal strategies are not changed by both the power structure
or livestreaming marketing mode.

apal* asﬂl*

Lo > 0,55 > 0.

alx
Proposition 12. 657 >0,

Proposition 12 shows that the low-carbon level, selling price and streamer’s low-
carbon promotion effort in commission mode with the streamer-led structure is positively
related to the steamer’s promotion sensitivity coefficient. It’s similar to Propositions 3,
6 and 9. Comparing Propositions 3, 6, 9 and 12, it can be found that the impacts of the
promotion sensitivity coefficient on the optimal strategies are not changed by both power
structure or livestreaming marketing mode.

5. Results Comparison

Optimal results in resale mode and commission mode are compared on the basis of
the above conclusions so that we can obtain the conclusions of the two parties’” optimal
choice about the livestreaming marketing mode under two different power structures.

Proposition 13. When it’s under the manufacturer-led structure: (1) eV < e, if 0 < @ <
\/}7/' PAUEIEN eam*, lf ) > \/ﬁ 2) gWmx ~, gamx.

Proposition 13 suggests that the manufacturer’s optimal low-carbon level in commis-
sion mode is higher than that in resale mode when the streamer’s promotion sensitivity
coefficient does not meet critical value. Otherwise, the low-carbon level in resale mode is
higher. The streamer’s optimal low-carbon promotion effort level in resale mode is always
higher than that in commission mode. For the manufacturer, the commission mode is
a better choice when the steamer’s low-carbon promotion sensitivity coefficient is low.
Otherwise, the resale mode is a better choice. The resale mode is always better for the
steamer than the commission mode. Therefore, the choice of livestreaming marketing
mode depends on the steamer’s low-carbon promotion sensitivity coefficient under the
manufacturer-led structure. Both parties will unanimously choose the resale mode when
the steamer’s low-carbon promotion sensitivity coefficient is big. When the steamer’s
low-carbon promotion sensitivity coefficient is small, the streamer can only choose the
commission mode listening to the manufacturer in practice because the manufacturer has a
stronger voice.

Proposition 14. When it's under the streamer-led structure: (1) e > e°* if 8 > @/; e < %,

if 0 < 0/, where 0 — \/Z;t(Zpt—qJZ)(2]4—772)}(;1(44;}772,7—;072;-25‘)(2#—'72)(2V—172—q92)' (2) sol > galx.

Proposition 14 suggests that the manufacturer’s optimal low-carbon level in com-
mission mode is higher than that in resale mode when the streamer’s commission ratio
does not meet critical value. Otherwise, the low-carbon level in resale mode is higher.
The streamer’s optimal low-carbon promotion effort level in resale mode is always higher
than that in commission mode. The resale mode is a better choice for the manufacturer
than the resale mode when the commission ratio is low. Otherwise, the resale mode is the
better choice. The resale mode is always better for the streamer than the commission mode.
Therefore, the choice of livestreaming marketing mode depends on the commission ratio
under the streamer-led structure. Both parties will unanimously choose the resale mode
when the commission ratio is big. When the commission ratio is small, the manufacturer
can only choose the resale mode listening to the streamer in practice because the streamer
has a stronger voice.
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Proposition 15. (1) When it’s under the manufacturer-led structure: p™™* > p*™*.(2) When it’s
under the streamer-led structure: p“* > p™*,

Proposition 15 suggests the optimal product selling prices in resale mode are always
higher than those in commission mode under both the manufacturer-led and streamer-led
structures. Under the resale mode, the manufacturer and the streamer jointly determine
the product’s selling price, and both of them want to maximize their interests. Then the
selling price is increased as much as possible.

Proposition 16. (1) When it's under the manufacturer-led structure: rtg™* < ™, if 0 < @ <
VI T > ™, @ > (/i (2) When it’s under the streamer-led structure: 7rlwl* > 7'[71*.

Proposition 16 suggests that the manufacturer can make more profit through the
commission mode when the streamer promotion sensitivity factor is weak under the
manufacturer-led structure. Otherwise, the manufacturer can make more profit through
the resale mode. The streamer can always make more profit through the resale model. The
comparison of the profits of the streamer under the manufacturer-led structure and the
profits of the manufacturer under the streamer-led structure is too complex to calculate and
is therefore analyzed in the numerical example.

6. Numerical Experiment Study

The effects of the parameters y, 77, ¢ and 8 on the manufacturer’s and streamer’s
optimal low-carbon strategy under two power structures have been simulated by numerical
experiments. Referring to the numerical experiment studies of [12,19], it is assumed that
a=40,71=07,u4=05¢=04,0=023.

6.1. Impact of Coefficient u

In this section, the values of parameter 7, ¢, 6 are held constant, and the value of
u keeps increasing. Figure 2 shows that the low-carbon level, selling price, streamer’s
low-carbon promotion effort level, and profit of both parties all decrease with the increase
of coefficient y, which are consistent with Propositions 1, 4, 7, and 11. The selling price
in resale mode is higher than that in commission mode, and Proposition 15 has the same
conclusion. That shows when consumers’ sensitivity coefficient to selling price increases,
their willingness to buy decreases, then the selling price, low-carbon level, low-carbon
promotion effort will be reduced. The profits of both parties will also decrease.

6.2. Impact of Preference 1

In this section, the values of parameter y, ¢, 0 are held constant, and the value of %
keeps increasing. The results shown in Figure 3 are consistent with Propositions 2, 5, and 8.
As can be seen in Figures 2b and 3a, in the resale mode, both the optimal low-carbon
level of the product and the optimal low-carbon promotion effort level is higher when the
streamer dominates the supply chain rather than under manufacturer domination. In the
commission mode, even when streamers dominate the supply chain, the level of optimal
low-carbon promotional effort is still higher than that under manufacturer domination.
In addition, the more consumers that prefer low-carbon products in both the resale and
commission models, the greater the influence of the power structure on the low-carbon
strategies of manufacturers and streamers. It needs to be added that the power structure
has less impact on the low-carbon level of the product in the commission model.
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Figure 2. (a) changes of low-carbon level with y; (b) changes of the product sale price with yu;
(c) changes of low-carbon promotion efforts level with y; (d) changes of manufacturer profits with y;
(e) changes of streamer profits with .
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Figure 3. (a) changes of low-carbon level with #; (b) changes of the product sale price with 7;
(c) changes of low-carbon promotion efforts level with 7; (d) changes of manufacturer profits with #;
(e) changes of streamer profits with 7.

6.3. Impact of Promotion Sensitivity Coefficient ¢

In this section, the values of parameter 7, y, 6 are held constant, and the value
of ¢ keeps increasing. The results are shown in Figure 4a—c are consistent with
Propositions 3, 6, 9, 12 and 15. (1) In the manufacturer-led structure. The manufacturer’s
optimal profit, shown in Figure 4d, and low-carbon level, shown in Figure 4a, in resale
mode, are higher compared to the commission mode when ¢ is more than about 0.7. While
it is better in commission mode when ¢ is less than about 0.7. The streamer’s optimal profit
in resale mode, shown in Figure 4e, is higher compared to the commission mode when ¢
is more than about 0.6. While it is higher in commission mode when ¢ is less than about
0.6. The streamer’s optimal low-carbon promotion effort level in the resale mode shown
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in Figure 4c is always higher than that in commission mode regardless of the value of ¢.
(2) In the streamer-led structure. The manufacturer’s optimal profit in commission mode,
as shown in Figure 4d, is always higher than that in resale mode regardless of the value
of ¢. The low-carbon level shown in Figure 4a in resale mode is higher compared to the
commission mode when ¢ is more than about 0.5. While it is better in commission mode
when ¢ is less than about 0.5. The streamer’s optimal profit and promotion effort level in
the resale mode shown in Figure 4c,e is always higher compared to the commission mode,
regardless of the value of ¢. These results are consistent with Propositions 13 and 16.
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Figure 4. (a) changes of low-carbon level with ¢; (b) changes of the product sale price with ¢;
(c) changes of low-carbon promotion efforts level with ¢; (d) changes of manufacturer profits with ¢;
(e) changes of streamer profits with ¢.

Thus, it can be observed that: (1) In the manufacturer-led structure. The manufacturer
and streamer will choose the commission mode if the streamer’s promotion sensitivity
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coefficient is smaller; otherwise, they will choose the resale mode if the streamer’s pro-
motion sensitivity coefficient is larger. In the above two cases, there is no disagreement
between the manufacturer and streamer on the choice of livestreaming marketing mode.
What's more, that choice will also make the manufacturer’s low carbon level the highest,
but the streamer’s effort level is not optimal. (2) In the streamer-led structure. The streamer
favors the resale mode, but the manufacturer prefers the commission mode, regardless
of the value of the promotion sensitivity coefficient. This will need coordination between
the manufacturer and the streamer. Generally, the weaker manufacturer will obey the
streamer’s decision to choose the resale mode in practice.

6.4. Impact of Commission Ratio 0

In this section, the values of parameters y, ¢, 1 are held constant, the value of 0 keeps
increasing. The results shown in Figure 5a,b are consistent with Propositions 10 and 14,
respectively. We can find the manufacturer and streamer will make more efforts to low-
carbon when they own the dominant position. The dominant player tends to be more
active than that when they are a follower. It is also found from Figure 5a that when it
is under the manufacturer-led structure, the optimal low-carbon level is always higher
in commission mode, while the optimal promotion effort level is always higher in resale
mode. From Figure 5b, when it is under the streamer-led structure, the optimal low-carbon
level in commission mode is higher compared to the resale mode when 6 is less than about
0.32. While it is higher in resale mode when 6 is more than 0.32. The optimal promotion
effort level is always higher in resale mode than that in the commission mode. It can be
seen that regardless of the commission ratio and power structure, the resale mode has a
higher incentive effect on the streamer’s promotion effort.
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Figure 5. (a) changes of low-carbon level with 6; (b) changes of low-carbon promotion effort level
with 6.

7. Case Study

In recent years, the Chinese government has vigorously implemented a “double
carbon” policy to address climate change, which has been positively responded to by the
Chinese home appliance brand, such as Midea and Gree, which have started to develop
“low energy” products. At the beginning of 2020, the global COVID-19 pandemic greatly
impacted the Chinese home appliance market, especially the large appliances mainly sold
offline. According to the data from iimedia.cn, in the first quarter of 2020, the market share
of Chinese home appliances was 117.2 billion CNY, down 36.1% year-on-year [53]. At the
same time, the rapid development of “livestreaming + e-commerce”, a new type of retail,
has brought new development opportunities and sales chances for China’s home appliance
market. In order to adapt to market changes, some home appliance brands began to try
livestreaming selling channels. For example, in May 2020, Dong Mingzhu of Gree Group
livestreaming selling on the Kuaishou platform, and Midea Group combined with JD Five
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Star Appliances to livestreaming selling; in June 2020, the AUX Group invited actor Lin
Gengxin to livestream the selling of air conditioners. The common denominator in this
series of livestreaming events is evident: livestreaming e-commerce has opened a new sales
model for brands that mainly sell offline channels.

The most typical of these livestreaming events is the Gree Group, which had opened
up new selling channels for Chinese manufacturing industries that stagnated during
COVID-19. On 10 May 2020, Dong Mingzhu sold 44 million dollars in just three hours
in a livestreaming event on the Kuaishou platform, attracting 16 million consumers to
watch [54]. On 15 May, Dong conducted a livestreaming event on JD, generating 100
million dollars in sales in three hours, making it the highest sales in JD home appliance
livestreaming marketing events [55]. The details of the two livestreaming events are shown
in Table 2. In these two livestreaming events, the cooperation mode between Dong and
Gree is different. In the Kuai livestreaming event, consumers buy products directly from
Gree, so the cooperation mode can be regarded as commission mode, while in the JD
livestreaming event, JD buys products from Gree and then resells them to consumers, so
the cooperation mode can be regarded as resale mode. Comparing the two livestreaming
events, we find that the sales in the JD are higher than those in the Kuaishou for the
following reasons: First, in the JD livestreaming event, Dong introduced the technical
features of the product from a professional perspective, with a higher level of low-carbon
promotion effort, while in the Kuaishou livestreaming event, Dong was not yet skilled
enough for livestreaming marketing, with a lower level of low-carbon promotion effort.
Therefore, a higher level of low-carbon promotion can significantly increase consumer
demand and improve manufacturer profits. Secondly, the Kuaishou livestreaming event
mainly sells air purifiers, juicers and other small home appliances, and the low-carbon level
of these products is relatively low; in JD livestreaming event, it mainly sells air conditioners
and other large appliances, and the low-carbon level of these products is relatively high. The
higher low-carbon level of products can increase the profits of manufacturers. Finally, we
found that Dong, a socially well-known figure known as the “Queen of Home Appliances”,
dominated both the JD livestreaming event and Kuaishou livestreaming events. In addition,
we know that the cooperation mode between Gree and Dong in Kuaishou livestreaming
event is the commission model, and in JD livestreaming event is the resale model. It can be
seen that Gree gained more profit in the resale mode when the streamer dominated. The
above three points are reflected in our article, which fully illustrates the reasonableness and
truthfulness of our proposed model.

Table 2. Comparison of Livestreaming Effect.

Gree Livestreaming Commission Mode Resale Mode

Time 11 May 2020 15 May 2020
Platform Kuaishou JD

Number of viewers 7.45 million 16 million

Power structure streamer-led streamer-led
Production low-carbon level high low
Low-carbon promotion effort level high low

Sales $44 million $100 million

Gree Group’s success has caught the attention of other Chinese home appliance brand
owners, driving livestreaming selling to become a virtual digital channel and development
trend for Chinese home appliance sales. However, there are reasons behind Gree’s success.
There are two main reasons for Gree Group’s success: First, as a company focused on
home appliance manufacturing, Gree has been upholding the concept of low-carbon and
environmental protection and constantly launching green and low-carbon home appliances.
At the same time, Gree Group also actively promotes product innovation through the
launch of the “photovoltaic air conditioning” project, successfully developed “zero carbon
source” air conditioning technology; this advanced low-carbon technology has successfully
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attracted a large number of consumers. Secondly, Dong Mingzhu, the streamer of Gree,
knows more about the products and has made more efforts to promote them, showing the
features and advantages of Gree’s low-carbon products to consumers and conveying the
value of the products. At the same time, through the livestreaming Q&A, the recognition
of Gree products was improved, further enhancing consumers’ willingness to purchase
low-carbon products and, thus, increasing product sales.

In general, with the awareness of green consumption has gradually gained popularity,
and green consumption has become the mainstream trend. In order to adapt to the chang-
ing market trends, manufacturers must cater to consumer preferences and invest in the
production of green, low-carbon products. In addition, consumers’ consumption habits
are also changing, and livestreaming e-commerce is highly sought after by consumers
and has become one of the necessary channels for manufacturers to sell their products.
By interacting with anchors in livestreaming, consumers will be more likely to recognize
low-carbon products, leading to increased sales.

8. Conclusions

The optimal strategies of the low-carbon efforts and the livestreaming marketing mode
of the manufacturer and streamer were studied. Two power structures are considered in the
resale and commission cooperation modes. Members’ profit functions are established under
four scenarios: manufacturer-led in resale mode, streamer-led in resale mode, manufacturer-
led in commission mode and streamer-led in commission mode. It also investigates the
effects of supply chain power structure, and parameters concluding consumer’s low-carbon
preference and price sensitivity coefficient, streamer low-carbon promotion sensitivity
coefficient, and commission ratio on the optimal product low-carbon level, low-carbon
promotion effort level, profit, selling price and wholesale price. The significant findings
can be summarized as follows.

(1) Consumers’ price sensitivity coefficient is negatively related to the two parties’ low-
carbon efforts. Both the product’s low-carbon level and promotion effort will decrease
when the consumer’s price sensitivity coefficient increases. That suggests that the
more sensitive customers are to the price, the streamer and manufacturer are less mo-
tivated to promote low-carbon products. Therefore, it's necessary for the government
to reduce taxes or provide financial subsidies to encourage the consumer and the
manufacturer. For example, the Chinese government will subsidize consumers who
buy new energy vehicles.

(2) Consumers’ low-carbon preferences can deeply influence two parties” decisions. As
long as it is improved, the low carbon efforts and profits of the two parties will increase,
no matter in the resale mode or commission mode, or whether the manufacture-led
structure or the streamer-led structure. So consumers’ low-carbon preference should
be improved through various ways, such as the manufacturer, the streamer and the
government. For example, new energy vehicles can be exempted from restrictive
measures, such as license plate auctions, lottery, and travel restrictions in China.
This government policy has greatly improved the consumer’s preference for new
energy vehicles.

(8) The streamer’s low-carbon effort coefficient is positively related to the manufacturer’s
profit and product low-carbon level, the streamer’s promotion effort and profit, and
the product sale price. This indicates that the more significant the impact of the
streamer’s low-carbon promotion on consumers, the more motivated the manufacturer
and streamer are to make low-carbon efforts. So, the streamer can be encouraged to
improve its influence of live broadcast skills through such means as cost-sharing with
the manufacturer. So that the streamer’s promotion effect can be improved, more
consumers to buy. This is a win-win cooperation for the streamer and manufacturer.

(4) The commission ratio only affects the manufacturer’s effort under the streamer-led
structure. It is higher in commission mode when the commission ratio is smaller. The
streamer’s effort in resale mode is always higher than it is in the commission mode.
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(5) The selection of the livestreaming marketing mode of the two parties is determined
by the power structure and promotion sensitivity coefficient. When it is in the
manufacturer-led structure, if the promotion sensitivity coefficient is smaller, the
profits of two parties reach the maximization when choosing the commission mode,
and the commission mode is the optimal choice for two parties; otherwise, the resale
mode is the optimal choice. When in the streamer-led structure, the two parties’
choices are opposite. The streamer prefers the resale mode, while the manufacturer
prefers the commission mode.

(6) For the low-carbon effort level, the manufacturer makes the maximal effort in the
commission mode, but the streamer makes the maximal effort in the resale mode.
Accordingly, the streamer makes the maximal promotion effort in the resale mode,
while the manufacturer makes the maximal effort in the commission mode if the
promotion sensitivity coefficient is smaller.

Our study provides several managerial insights that may be useful to manufacturers,
streamers, and governments.

Firstly, the manufacturer needs to continuously pay attention to consumers” low-
carbon needs and market trends and adjust the low-carbon strategies in time. As for the
government, it is necessary to take measures to make more consumers aware of low-carbon
products, which also can motivate manufacturers to improve low-carbon technologies and
achieve sustainable economic and social development. Secondly, manufacturers should
focus on their position in the supply chain and the streamer’s influence when choosing a
cooperation mode. For example, when a manufacturer dominates the market, choosing
the commission model is beneficial to increase profits if working with tail streamers; the
resale model is the best choice if working with head streamers. Similarly, streamers should
be concerned about their place in the supply chain. For example, the resale mode is best
chosen when the streamer dominates the market.

Livestreaming marketing is now a new sales trend; our study provides theoretical
support for strategies of low-carbon and the selection of livestreaming marketing modes. It
is worth stating that there are some limitations to this study. Firstly, we assume that the
commission ratio is given exogenously, but sometimes it is bargained by the two parties.
Secondly, we find that in actual operation, besides livestreaming sales, manufacturers
often have other sales channels, and the channels often have interactions with each other.
Finally, corporate social responsibility(CSR) is also important for the low-carbon strategy.
However, due to spatial constraints, we will further study the optimal low-carbon strategies
of the manufacturer and the streamer when the manufacturer has two channels. And the
cooperation mechanism between the manufacturer and the streamer when considering
the CSR.
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Appendix A. Proofs
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4, H; is a negative definite matrix. Hence, 71}"" is concave in k and s. Similarly, with

Proof of Lemma 1. With Equation (3), we can obtain H; = [ ] . From Assumption
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Abstract: Intelligent manufacturing under Industry 4.0 assimilates sophisticated technologies and
artificial intelligence for sustainable production and outcomes. Blockchain paradigms are coined
with Industry 4.0 for concurrent and well-monitored flawless production. This article introduces
Sustainable Production concerned with External Demands (SP-ED). This method is more specific
about energy production and the distribution for flawless and outage-less supply. First, the energy de-
mand is identified for internal and external users based on which sustainability is planned. Secondly,
Ethereum blockchain monitoring for a similar production and demand satisfaction is coupled with
the production system. From two perspectives, the monitoring and condition satisfaction processes
are validated using federated learning (FL). The perspectives include demand distribution and pro-
duction sustainability. In the demand distribution, the condition of meeting the actual requirement is
validated. Contrarily, the flaws in internal and external supply due to production are identified in
sustainability. The failing conditions in both perspectives are handled using blockchain records. The
blockchain records reduce flaws in the new production by modifying the production plan according
to the federated learning verifications. Therefore, the sustainability for internal and external demands
is met through FL and blockchain integration.

Keywords: blockchain; federated learning; intelligent manufacturing; sustainable energy

1. Introduction

Sustainability in various manufacturing aspects, such as energy, is achieved using
intelligent processing in Industry 4.0. Sustainable energy comes from renewable sources
such as wind power, water resources, and solar energy. Sustainable energy production is a
crucial task to perform in industries [1]. Renewable energy applications and technologies
are used in industries. Energy applications provide various services and policies to increase
the sustainability range in energy production. An energy production scheme provides
functions and services to perform specific tasks in industries [2]. Renewable energy produc-
tion improves the energy-efficiency range of organizations. Sustainable energy production
reduces the energy consumption ratio in Industry 4.0. Greenhouse gas (GHG) emission
control is a complicated task to perform in industries. Greenhouse gas emission control
uses various methods and techniques [3]. Artificial Intelligence (Al) technology is used in
Industry 4.0—it increases the computational efficiency level of the systems. The Al method
identifies the critical factors for the energy production process. The Al-based technique
enhances industries’ effectiveness and performance range [4]. Energy surplus or deficit may
threaten the energy supply and demand security, leading to a demand-response issue in the
industrial environment. It is becoming increasingly tricky to optimally schedule in a smart
industry with varying energy consumption patterns and to engage in trustworthy energy
trading due to potential privacy and security challenges in the distributed energy system.
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Ethereum blockchain is the decentralized, open-source blockchain-based technol-
ogy used for sustainable energy production in Industry 4.0. Blockchain-based tech-
niques are mainly used in industries to detect problems and issues in the production
process [5]. Blockchain techniques provide specific solutions to solve problems in produc-
tion. For example, peer-to-peer transmission is carried out in manufacturing sectors, includ-
ing effective assistance for sustainable energy production. Transmission and production
contain various issues and threats that reduce the industry’s production speed [6]. Essential
qualities and attributes are identified in the database, yielding actionable data for multiple
applications. The blockchain-based method identifies industries” potential benefits and
features that provide necessary data for energy production [7]. A blockchain-based secure
system is implemented in industries that increase the accuracy of sustainable energy pro-
duction processes. The security system uses blockchain to initiate production based on
certain conditions and functions. The Ethereum-blockchain-based data analysis method is
also used in Industry 4.0, which analyzes the relevant datasets for the sustainable energy
production process. The data analysis technique reduces the computation process’ latency
and energy consumption ratio [8,9]. Ethereum blockchain in industrial energy production
allows for one to store the collected data (or proof of such data) to exchange them securely
between entities that do not trust each other. Furthermore, blockchain technologies permit
the creation of smart contracts, described as self-sufficient decentralized codes performed
autonomously when certain conditions of an industry progression are met.

Machine learning (ML) models and techniques are widely used in various fields and
applications. ML models are commonly used to improve production, computation effi-
ciency, and feasibility range [10]. ML models are also used in Industry 4.0 for sustainable
energy production. The convolutional neural network (CNN) algorithm is in the produc-
tion model that performs specific industry tasks. CNN uses a feature extraction method
that extracts the essential features and patterns from the database. CNN reduces the energy
consumption range in computation, improving the efficiency ratio in the energy production
process [11,12]. The support vector regression (SVR) technique is also used in sustainable
production. SVR uses analysis that analyzes the data required for the production process.
SVR increases the accuracy and performance range in Industry 4.0 [13,14]. The multiple
linear regression (MLR) model is used for Industry 4.0, which implements a power forecast-
ing system. The MLR model predicts the problems presented in the computation process,
of which reduce the error range in sustainable energy production [15].

Sun et al. introduced a combined production scheduling model for sustainable manu-
facturing systems [16]. The primary goal of the presented model is to pinpoint the origin of
the scheduling-related variation in resource use. The particle swarm optimization (PSO)
algorithm is used here to analyze the data required for the scheduling process. PSO min-
imizes the overall time and energy consumption level in computation and scheduling
processes. As a result, the proposed model enhances the performance and feasibility ra-
tio of the manufacturing systems; however, the complex production efficiency modeling
necessities need to be explored.

Li et al. introduced a digital twin-driven information mechanism for manufactur-
ing systems [17]. A hierarchical analytic process analyzes the information relevant to
scheduling and further processes. The digital twin mechanism uses evidence theory to
build proper intelligent manufacturing techniques for the systems. The introduced method
reduces the complexity and latency in the computation process. The presented strategy
broadens the platforms’ potential for efficiency and long-term sustainability. However, the
incompleteness of primary data sources, the difficulty and uncertainty of actual indicators,
and inaccuracy in human cognitive progression exist in the model procedure.

Majeed et al. developed an infrastructure for Sustainable and Smart Addiction Man-
agement (SSAM) using big data [18]. The proposed framework is mainly used for the
decision-making process. Big data analytics identify the necessary data which are relevant
for SSAM systems. The big data approach is mainly used for analyzing processes that re-
duce energy consumption in the identification process. The suggested architecture has been
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shown to improve the efficiency and functionality of SSAM systems in research conditions.
However, due to the company’s available capabilities and setup of IoT devices, the SSAM
model can only be implemented in the first phases of a product’s life cycle.

Psarommatis et al. presented a holistic approach to sustainable manufacturing
systems [19]. Zero Defect Manufacturing (ZDM) is used here to improve the systems’
efficiency and feasibility range. The suggested method’s true motivation is to lessen
the workload on the power grid during computing. ZDM is a required method since
it supplies essential information and characteristics for production. In addition, the
proposed approach increases the Quality of Service (QoS) in sustainable manufacturing
systems. However, the suggested system data-driven model insufficiently attains the
sustainable factor in the manufacturing process.

Ma et al. introduced a demand-response-based data-driven framework for a sustain-
able manufacturing system [20]. The goal of the proposed method is to manage multi-level
requests which occur during the manufacturing process. The introduced framework re-
duces the computation cost and latency in manufacturing systems. The particle swarm
optimization algorithm also manages the data required for various methods. The presented
framework increases decision-making accuracy, enhancing the systems’ performance. The
suggested sustainable, innovative manufacturing model only considers the product lifecy-
cle’s manufacturing phase, disregarding other stages, such as operation, design, recycling,
maintenance, and remanufacturing.

Tian et al. introduced dynamic evaluation based on correlation relationships for sus-
tainable manufacturing in industrial cloud robots (ICR) [21]. Correlation relationships
produce appropriate data which are related to assessments. The suggested technique may
identify issues throughout the computation and provide a workable answer to fix them.
The proposed approach has a lower energy usage ratio in the calculation compared to prior
methods. The recommended strategy increases ICR’s efficiency and dependability. Impact-
ing sustainability objectives must be considered when developing a more comprehensive
evaluation indicator.

Jasiulewicz-Kaczmarek et al. introduced a multiple-criteria approach for manufactur-
ing systems [22]. The method offered is a continuous sustainability performance evaluation
based on fuzzy set theory. The presented method uses a maintenance indicator that identi-
fies the synthetic index and patterns necessary for the assessment process. The maintenance
indicator reduces the time consumption ratio in both computation and identification
processes. The introduced approach improves the manufacturing systems’ overall sustain-
ability and feasibility range. However, several aggregation functions have a limitation,
primarily from their natural assumption that input criteria are independent.

Zimmermann et al. designed an action-oriented teaching approach for an intelligent
precision manufacturing system [23]. The proposed method detects the exact demands
and reasons for requests in manufacturing systems. Various machine tools are also used
in a teaching approach that provides certain services in the decision-making process. An
intelligent-based reduction strategy is used here that reduces the latency rate in assessment
and scheduling processes. The systems’ effectiveness and energy efficiency are improved by
the proposed method. However, the limitation concerning the included thermal errors and
the inadequate prediction accuracy makes an extensive industrial application unrealistic.

Wang et al. developed an energy consumption intelligent model for additive manu-
facturing (AM) systems [24]. A multisource fusion method is used in the proposed model
that identifies the exact data from the database. The proposed model is mainly used for
3D printing (3DP), which detects the necessary pixels and features from the images. As
the experiments show, the suggested model improves the AM devices’ efficiency range.
However, modeling energy consumption and forecasting with multiple source data are
infrequent. The residues obscure how various sources can be leveraged to effectively learn
a detailed depiction of the prediction task.

Favi et al. proposed an energy management framework for a sustainable life cycle in
Industry 4.0 [25]. The proposed structural framework uses energy material flow analysis
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(EMFA) for the data analysis. Key Performance Indicators (KPIs) are used in industries that
identify the exact production performance ratio of the systems. KPI provides relevant data
for decision-making and allocation processes. The proposed framework minimizes the
material flow range in industries. Furthermore, the efficiency in supporting companies in
the analysis, managing production plants’ energy, and identifying criticalities and material
flows have yet to be verified.

Pei et al. introduced an approximation algorithm for unrelated parallel machine
scheduling in manufacturing systems [26]. The suggested method aims to reduce manu-
facturing systems’ electric power consumption rate. The introduced algorithm identifies
the regional problems that occurred during the manufacturing process. The proposed
approach improves the precision of machine scheduling, which strengthens the systems
overall. The new algorithm enhances both the speed and accuracy of existing systems.
However, one commonly known disadvantage of the branch and bound technique is its
time-consuming feature.

Carfias et al. designed a conceptual framework for Smart Production Planning and
Control (SPPC) in Industry 4.0 [27]. Small- and medium-sized (SMEs) businesses are the
primary users of the proposed framework. The proposed framework provides a systematic
structure to analyze the relevant data for the SPPC process. As a result, the conceptual
framework enhances the efficiency and accuracy of SPPC4.0. Furthermore, compared with
other frameworks, the proposed framework achieves high performance in scheduling
processes. However, it must be noted that multidisciplinary engineering is essential for
establishing SPPC 4.0 models.

Friederich et al. introduced a standardized data-driven architecture for intelligent
production systems [28]. The proposed framework aims to maintain the data in digital-
twin-based systems. Machine learning (ML) and data mining techniques are used here to
reduce the computation process’ complexity. ML techniques are mainly used here for the
validation and detection process. The introduced framework enhances the effectiveness
and feasibility range of smart manufacturing systems. However, due to issues with devices,
networks, etc., data may be incomplete.

Gu et al. developed a cyber—physical architecture for smart factories [29]. The architec-
ture implements a deep reinforcement learning (DRL) algorithm that detects the relevant
data for different processes. DRL selects the necessary information for decision-making, re-
ducing the computation process’ latency and energy consumption. The suggested strategy
also improves the systems’ effectiveness by boosting the precision of their decision-making
and planning. However, a single scheduling rule cannot preserve high-quality scheduling
efficiency in the face of orders of dissimilar sizes.

Liu et al. proposed product lifecycle management (PLM) infrastructure for Industry 4.0
based on blockchain technology [30]. The blockchain technique identifies the exact relationship
among the nodes that provide optimal data for the scheduling process. Blockchain also detects
the problems which occur during manufacturing. The conceptual approach reduces PLM
systems’ overall time-to-energy ratio. The proposed platform increases PLM'’s long-term
viability and scope of industrial importance. This study still needs to implement the real-life
case-study use fully; thus, existing outcomes supported the possibility of implementing this
platform but cannot make a quantitative comparison with conventional PLM platforms.

Krithika L. B. [31] discussed the advancements in blockchain technology that have
shown promising properties that might be useful in farming. There have been some
helpful upheavals and progressive acceptance of blockchain in agribusiness owing to the
development and rollout of blockchain, which has helped to modernize the sector. Decent
quality development in farming has led to the use of blockchain technology at several
stages of the process. This research comprehensively examines the existing research on the
opportunities and threats posed by blockchain technology in the agricultural sector. Much
of the study is in its infancy, the PoCs are based on outdated versions of blockchain, and
the concept has undergone significant rehabilitation since its beginnings.
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Guruprakash Jayabalasamy and Srinivas Koppu [32] suggested nonrepudiation in
Internet of Things (IoT) apps developed on blockchain using High-Performance Edwards
Curve Aggregate Signatures (HECAS). Compared to the standard digital signature model,
the signing and verifying procedures created in the present study took 10% and 13%
less time to process, respectively. Additionally, using HECAS in a blockchain context
may reduce storage costs by 40%, improve transaction flows by 10%, and improve block
validation by 10% compared to a system that does not use HECAS. Finally, the author
tested their technology by simulating several blockchain-based Internet of Things systems.
As a result of their efforts, blockchain-based technologies for the smart Internet of Things
may produce effective, consistent results across various sensor types.

The leakage or collision of secret keys is possible if two identities are generated using
the same randomized integer.

Zixiao Xu et al. [33] suggested a blockchain-based power trading and bidding mech-
anism for several microgrids. Consequently, to accomplish source-sale integration, a
competitive spot market with scattered “multi-seller and multi-buyer” was constructed.
Researchers in this study compared and contrasted traditional power trading with a
blockchain-based alternative. In addition, an ant colony optimization technique was
used for randomized bidding matching, and a blockchain-based multi-microgrid energy
trading model was developed. This method integrates the transfer of energy, data, and
money into a single procedure. Lastly, the efficient allocation of power resources was
ensured by openness and transparency in power transactions. Nonetheless, business still
needs to develop and improve the Energy Internet trading system.

Qu et al. [34] introduced federated learning and a blockchain-based distributed ap-
proach for Data-Driven Cognitive Computing (D2C). Federated learning’s emphasis on
privacy and efficiency makes it well-suited to address the “data island” issue. In contrast,
blockchain’s reward mechanism, completely decentralized nature, and resistance to poi-
soning assaults make it an attractive complement. Improvements in decision-making and
data-driven intelligent manufacturing are already visible thanks to the development of
different Al and machine learning technologies. Furthermore, rapid convergence may be
achieved via sophisticated verifications and member choices made possible by blockchain-
enabled federated learning. The results of a comprehensive review and assessment show
that D2C is superior to the state-of-the-art in terms of efficiency.

Zhao et al. [35] proposed a federated learning (FL) system that uses a reputation
mechanism to allow for home appliance makers to train a machine learning model using
data from actual consumers to facilitate the development of an intelligent home system.
The first step in the system’s workflow involves users training the manufacturer-supplied
baseline model on their mobile device and the mobile edge computing (MEC) server in
addition to an incentive system to reward participants for enticing more consumers to
participate in the crowd-sourced FL work.

Energy surplus or deficit may threaten the energy supply and demand security, lead-
ing to a demand-response issue in the industrial environment. It is becoming increasingly
more work to optimally schedule in an intelligent industry with varying energy consump-
tion patterns and to engage in trustworthy energy trading due to potential privacy and
security challenges in the distributed energy system. Based on the survey, there are several
challenges in existing methods in achieving high sustainability factors, attack detection
time, modifications, and flaw detection for energy supply—demand. Hence, in this paper,
Sustainable Production concerned with External Demands (SP-ED) has been proposed for
practical energy production and distribution for flawless and outage-less supply.

2. Sustainable Production Concerned with External Demands

The features of Ethereum blockchain are used in Industry 4.0 for a synchronous
and well-observed, flawless production. This method introduces Sustainable Production
concerned with External Demands [SP-ED]. This method is used for energy production
and the distribution of flawless outages. Industry 4.0 evolves many technologies, and
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blockchain is one of them. Blockchain enhances the Industry 4.0’s security, privacy, and
data transparency. This Industry 4.0 enables the manufacturers to achieve their goals in a
more agile and quick way. Blockchain is used to attain more identification and improve the
manufacturing environment. As blockchain is more straightforward and less intermediary,
it is used to defend their inventions. Using this blockchain technology in Industry 4.0
enhances their competitiveness, which can access the world of copyrights. This unique
technology eliminates transaction communication, effectively as a productive production
flow. Decentralized energy trade and supply, the safe records of all industrial activities in
energy generation, and the effective automated management of energy and storage flow
via smart contracts are ways the Ethereum blockchain with FL might benefit the energy
sector. This proposed SP-ED is portrayed in Figure 1.
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Figure 1. SP-ED illustration.

This method’s manufacturing process is the modern version of automation. The
manufacturing process depends on the energy demand to improve energy sustainability
during the production of goods. The internal and external demands are identified from
the energy demand. Internal demand is the one that has the energy used in the process
of manufacturing. External demand is the one that contains the excess energy not used
in the procedure of manufacturing. Blockchain technology observes these internal and
external demands, which will be given as input to federated learning (FL). This FL checks
the demands, distribution of energy, and energy consumption. From this FL, the production
flaws, energy sustainability, and recommendations are obtained. These production flaws
check the energy distribution and the internal usage of energy. If the energy is insufficient,
it can be identified in this process. Energy sustainability checks how long the energy lasts
to achieve the demand. A recommendation is used to recommend scheduling the energy
and time depending on the output. From the blockchain, the monitor control takes place.
Based on the input in the blockchain, the modification process is carried out to improve the
manufacturing procedure. Ethereum blockchain technology can improve energy efficiency
and give consumers more control over their utilities in the industrial environment.

Furthermore, the data on how much energy is used is updated securely and promptly
due to an immutable ledger. Here, the intelligent manufacturing process is carried out in
Industry 4.0 based on the energy demand. X;, X, are the subset of variance to calculate
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the energy consumption. The process of enhancing the manufacturing procedure by the
energy demand is explained by Equation (1), as given below:

a—b—c(X)+Xa), if0< Xy + X < b/c—0, )

where a is denoted as the measure of observation, b represents the data feature, c is the
covariance of data, and X; and X are characterized as the internal and external energy
demand. Now, from the energy demand, the sustainability of the energy can be improved.
Then, the internal demand and the external demand are identified. In this internal demand,
the information on the energy used in the manufacturing process can be determined. This
is used to obtain information on the energy that can enhance manufacturing in Industry 4.0.
This also determines the energy utilized in the process and how much energy can be saved.
Based on the demand, the energy can be accommodated for internal usage, and thus it will
be helpful in flawless production. The internal demand accumulates the amount of energy
that is needed in the manufacturing process. Additionally, it does not occupy unnecessary
energy consumption, which will not be used during the process. This information can
be observed by blockchain technology later, and it gives input for the upcoming process.
Thus, the internal demand stores the needed energy during the manufacturing process.
This eliminates the excess energy which is not required for the process. This procedure is
used to enhance energy sustainability to produce flawless execution. The internal demand
is extracted from the energy demand to improve manufacturing. This also helps identify
the needed amount of energy for the process and helps make the energy last longer during
flawless production. This process of internal demand usage is based on the sustainability
plan. Equation (2) below explains the process of extracting the internal demand and its
functions. di and dp are the internal demand parameters, and the energy function is
denoted as C.

m =i (71,72) = (b= CXq = CXp — dl)Xl} )
) — (71, 72) = (b= CXy = CXp —d2) X,

where (711, 71) is denoted as the mean of all observations and () is represented as
the energy variance during the manufacturing process. Now, the external demand is
extracted from the energy demand. In this external demand, the excess energy not used
for the process is stored. Based on the energy demand, the amount of energy can be used
for the process. Then, if an excessive amount of energy is occupied, it will be stored
in the external demand. This extreme energy can be used for the upcoming process
in production. This can be well monitored by blockchain technology and given as the
input for federated learning. Based on the energy demand, the energy can be used for
manufacturing. The energy utilized in the process is stored in the internal demand, and
the energy not utilized will be stored in the external demand. Thus, the excessive amount
of unused energy will be helpful in the other flawless production process. This will
be helpful to the observation process, which is carried out by blockchain technology.
Internal and external demands are based on the energy demand for the manufacturing
process. The external demand is used to accumulate the excess energy which is not used
in the manufacturing process. This excessive energy acquired during the process can be
helpful in the upcoming flawless production process. Both internal and external energy
is used to improve energy sustainability. This sustainable energy will last longer in the
manufacturing process and production processes. Equation (3) below explains the process
of obtaining the external demand from the energy demand for manufacturing.

Ly = Ly(Xy, X2) = mm + (L= 711)Q1 — (b= CXy — CXp —dq) Xy, [11 — 1] } 3)

My — M (X1, X2) = 1272 + (1 = 72)Q2 — (b — CX1 — CX2) Xp — 722 Xp, [{ 72/ 72 < 1}]

where (L1, Ly) is denoted as the different energy demand levels and M; and M are denoted
as the excessive energy monitored in manufacturing and production levels. Now, the
internal demand and the external demand are observed by blockchain technology. This
observed information value is given as the input to the federated learning. Furthermore,
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Produced

this blockchain process can identify the energy used and available for the upcoming process.
The blockchain implication for internal and external monitoring is illustrated in Figure 2.

Monitoring

Operation
Hours

Blockchain

Figure 2. Blockchain implication.

Ethereum blockchain monitoring is used for similar products, and demand satisfaction
is carried out in the production system. This process is used to check whether it satisfies
the production system and whether it carries out the demanded process. This blockchain
technology will obtain the energy used to fit the demand. It took care of both the demand
and production satisfaction coextending. If there is any issue in the process, blockchain
technology takes a further step to resolve the problems. It is used to check whether the
demand satisfaction is met and the production flow. It also assumes energy and excessive
energy consumption in the internal and external demand (Figure 2). Based on this input,
federated learning is used for flawless production. In this technology, more identification is
attained to produce the perfect deliverance without any flaws.

Ethereum blockchain technology is used to manage energy, which satisfies both the
production and the demand. It is also used to observe the entire internal and external
demand process extracted from the energy demand. It can be given as input to FL for
production without flaws. It can also help monitor the control process. It has information
about the used and unused energy for manufacturing and production. Therefore, it can be
observed by satisfying both the presentation and demand during flawless execution. This
process of observing blockchain technology’s internal and external demand is explained by
Equation (4) below:

8(Xp) = Xab— 5 — 3
B(X1,Xp) — Xp — o2 %
w(72) — bfzdézr'yzdz
B(12) — =2

)

where « denotes the performance threshold of the blockchain technology, f3 is the energy
evaluation function, v is represented as the output of the internal and external demand
from the energy demand, and d is the energy distribution. The observed information by
the blockchain technology is sent as input to federated learning. The FL validates the
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monitoring and condition satisfaction processes from two perspectives. This perspective
includes the distribution of the demand and the sustainability of the production. In the
distribution of the demand perspective, the condition is validated to meet the actual
requirement. FL is used for the intelligent manufacturing process by using sustainable
energy. It uses the input given by the blockchain for flawless production. It is used to
check the sustainability of production and demand distribution. It also verifies whether
the energy can satisfy the demand and execute a perfect show. It also has information
about the energy consumption and distribution rate used to fulfill the need. It is used to
enhance energy sustainability during manufacturing and production processes. It is also
used to validate whether the condition meets the actual requirement. The input given by
the blockchain to FL is used in the monitoring control for further modification. Then, it is
also used in FL for the perfect flawless production with good energy sustainability. The FL
functions are explained in Figure 3.

OLB) @B
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Figure 3. FL functions.

Federated learning is an ML method that trains an algorithm across servers holding
local data samples and multiple decentralized edge devices. FL allows for ML to be used
locally without transmitting data to a centralized server. The centralized storage permits
the evaluation progression to work fully asynchronously. Since every FL training round
creates a model for every user and a united model resulting from the merge procedure,
the number of models grows fast. The blockchain and federated-learning-assisted solution
deliver secure energy distribution between industrial applications. Federated learning
is used to verify the demand distribution and the sustainability of the production with
the two perspectives. The input given by the Ethereum blockchain to FL checks whether
it satisfies the actual requirement and checks the availability and sustainability of the
energy to meet the demand. The FL extracts the production flaws, energy sustainability,
and recommendation. It can validate the energy state for the manufacturing process and
flawless production (Figure 3). The distribution rate and energy consumption can be
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identified through FL. The method of FL using the input given by blockchain technology is
explained by Equations (5) and (6), as given below:

2
V1(72) — %
Va(72) — (b_d2+d1+'yzd%)(5—72d2+d1)2

Q)

* 7&12*1)1*&
=t (6)

z

where (V) is denoted as the normalization vector of federated learning, (}") is designated

as the energy distribution rate, and Z represents the production flaws. NOV\i the production
flaws, energy sustainability, and recommendation are extracted from FL. The production
flaws verify the internal usage of energy. Additionally, they also check whether there
needs to be more energy to lead the manufacturing process. Suppose there is an issue
in the distribution process due to insufficient energy—in this case, the needed energy is
given, and the redistribution process is carried out to the flawless production. It is used
to check whether it satisfies the energy demand and sustainability. If there are any flaws
during the show, further steps are taken to resolve the insufficient energy. After verifying
the internal usage of energy, the needed amount is calculated for the other process. The
redistribution process eliminates the flaws and makes the energy so long for the production
process. The redistribution is made to improve the manufacturing process in the industry
without any time delays and defects. It can also be used in the improvement in demand
and product satisfaction. More energy can be identified, and further steps are taken to
enhance the sustainability of energy. The production flaws were used to check whether
the production rate met the demand satisfaction without flaws and insufficient energy.
FL verifies production distribution and demand satisfaction, and the production flaws
are obtained from that. If there is an inadequate amount of energy in the process, then
the redistribution process is carried out with sufficient energy needed for the perfect
manufacturing process. The method of production flaws obtained from FL is explained by
Equation (7) below:

(073, () Xalm,)) — ( (1,220 ), (P20 E ik Im2ma i) )

where (77) is denoted as the rate of production flaws during manufacturing. Now, the
energy sustainability is verified by FL. Here, it demonstrates how long the energy lasts
to achieve the demands. Additionally, internal and external energy supply flaws during
production are identified. They are used to verify the sustainability of the energy from the
energy demand. The Ethereum blockchain makes the input for FL; thus, the flaws and
production rate can be determined. These are the things that have information about the
energy used in manufacturing. If there is excessive energy in the external demand, it will
be used for the redistribution process when there is insufficient energy. The FL is used to
enhance the sustainability of the energy in order to last a long time to meet the demand
satisfaction. It also improves the production process without any flaws in it.

Energy sustainability checks whether energy can last far for the required demand and
improves the production rate. The condition of meeting the requirement is also validated
in this energy sustainability. From the input of the Ethereum blockchain, these features
are extracted and used to improve the production rate and the manufacturing process in
Industry 4.0. The sustainability of the energy helps in the elimination of flaws and increases
the production rate. The energy sustainability process validates the appropriate value of
energy consumption. It also makes the process effective and improves the satisfaction of the
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required demands during manufacturing. The method of energy sustainability verification
from FL by the input of the blockchain is explained by Equation (8), as given below.

X b—Vdy+d,
X ()= b—Velyds } ®)
2(P) = —F

where (X7) is denoted as the sustainability of the energy, 7 is designated as the process
carried out by the sustainable energy production, and V is the volume of the energy charac-
terized as the output of FL. Now, the recommendation takes place from the FL processes.
This recommendation gives information about sufficient and insufficient energy, schedul-
ing the time and energy. By this, other methods can be carried out for the manufacturing
process. It provides recommendations to alter the current approach to meet the demand
after flawless production. This information makes changes for the successful production
process without flaws and delays. The recommendation information is preferred for the
following methods by changing accordingly with the perfect amount of energy and time.
The recommendation flow based on decisions is presented in Figure 4.
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Figure 4. Recommendation flow.

The recommendation includes what to change and add for the upcoming processes.
With this reference, the changes are made for the speedy manufacturing process in
Industry 4.0. These changes can be stored in the blockchain records for further modifi-
cation processes. In addition, it is given as input for the monitoring control process in
the industry (refer to Figure 4). The recommendation process extracted from FL with
the blockchain input is explained by Equation (9), as given below:

b— GX1 — ’)’zdz
a

W(X1,72) = ©)
where (W) is denoted as the weighted recommendation for the process and (G) is des-
ignated as the energy gain. Now, the monitoring control process takes place from the
blockchain records. The observed information by the Ethereum blockchain modification is
carried out accordingly. By monitoring the production plan based on the federated learning
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verification, the Ethereum blockchain records can be used to reduce the flaws in production.
The monitoring control process is explained by Equations (10) and (11), as given below:

(b -GXp —a’dez -2 ) X

m —m(X172) — (10)
(b — GXy + 72da —2]5) (b — CXq — 72d3)
2a

where (71]) is denoted as the monitoring control process and (]) is represented as the flaw
rate obtained during production. The modification is carried out for the new production
process based on the monitoring control output. Improvement is made to improve the
sustainability and production rate during manufacturing. The changes are made according
to the records in the Ethereum blockchain and the validation of FL. These can help produce
a productive manufacturing process in Industry 4.0. The method of the modification
procedure carried out based on the Ethereum blockchain records and FL validation is
explained by Equations (12) and (13), as given below:

5 — 3 (X172) — (11)

o b+ Tody —2d
L Xi(r) - (12)

E(X) -1 (13)

where (F;) is denoted as the functionality changes made to improve the manufacturing
process and (T') is the required time in the manufacturing due to the Ethereum blockchain.
Hence, this method uses Ethereum blockchain technology and federated learning to im-
prove the production rate and manufacturing process. The sustainability for internal and
external demand from the energy demand is met through FL and blockchain support inte-
gration. Here, the processing time is reduced and the flaw ratio is decreased. As a result,
the sustainability of the energy is high during the manufacturing process. This method
helps in the improvement in production and demand satisfaction. From the considered
dataset, the monitoring control process is illustrated. The monitoring control process is
shown in Figure 5.
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Figure 5. Monitoring control process using the considered data.

The production unit (industry) is located by its latitude (Lat) and longitude (long)
markers. Based on the capacity, the distribution regions are organized. The generated
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energy is split into internal (machines) and external (public) distributions. The log post the
single operation cycle provides the next cycle’s shortage, consumption, and requirements.
The T is predominantly performed for internal and external distributions (Figure 5).

3. Dataset Description

The dataset from [36] is used for validating the SP-ED and verifies sustainability.
Data on greenhouse gas emissions supplied by significant emitters to the United States
Environmental Protection Agency’s (EPA) Greenhouse Gas Reporting Program (GHGRP)
are used to calculate energy usage from commercial combustion at the plant level. In-
formation on fuel usage is calculated using the EPA’s standard pollutants factors. The
values for the amount of energy required to burn fuel at a specific facility are calculated
based on several factors, including sector (six-digit NAICS code), geographic coordinates
(elevation, meridian, zip/postal code, county, and state), type of combustor, and name of
the unit. The manufacturer’s North American Industrial Classification System (NAICS)
codes may further define combustion energy consumption by identifying energy end-use
(e.g., conventional boiler use, co-generation/CHP utilization, process heating, and other
facility support). The proportion of combustion fuel energy utilized for each end-use group
in assembly plants may be calculated using data from the 2010 Manufacturing Energy
Consumption Survey (MECS, produced by the Energy Information Administration), using
the NAICS code and the stated fuel type. Based on industrial combustion energy, two
observations are presented. The first observation is the attributes such as location, oper-
ation time, etc., as illustrated in Figure 5. The second observation is the utilization and
sustainability of energy generation and distribution. In the first observation, a total of
20,118 (with average production) and 183 entries are jointly used for assessment in the
second observation. The joint evaluation is performed according to 20 cycles for internal
and external distribution. The number of nodes included in the eight industrial nodes and
the amount of data available to each node in federated learning is two. The two blockchain
networks were evaluated as potential components of the experimental setup’s distributed
ecosystem. Each benchmark included 1000 transactions sent at speeds ranging from 20 to
500 transactions per second to determine the maximum, average, and lowest transaction
latency and throughput. Sustainability is accounted as the maximum possible distribution
ratio that is consistently achieved in maximum operation cycles. Based on 7 and L, the
actual representation in the dataset for sustainability is presented in Table 1.

Table 1. 7 & L representation from the data set.

Cycles 7 (kWh) Distribution (kWh) M, L (kWh) Distribution (kWh) M,

2 65.23 64.36 0.87 133.79 133.79 0

4 61.2 61.2 0 259.32 251.36 7.96
6 82.36 78.35 4.1 458.23 452.36 5.87
8 231.21 213.16 18.05 369.6 362.31 7.29
10 198.36 190.3 8.06 698.25 690.58 7.67
12 254.36 251.36 3.0 784.62 785.3 —0.68
14 274.63 269.54 5.90 1008.1 1008.1 0
16 289.46 285.34 4.12 985.36 878.36 107.0
18 303.05 301.21 1.84 874.23 870.69 3.54
20 298.25 298.25 0 963.21 962.21 1.0

The 7t and L different cycles are tabulated above, wherein 7r shows up more minor
variations. Contrarily, L is different due to the distribution regions and unpredictable
consumptions. In the 7t distribution, the fixed count of machines serves the purpose of
planning the distribution beforehand. Therefore, the maximum utilization is improved,
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from which an excess is reported if the machinery is not functional. In this case, M; (ex-
treme) is augmented for L—based distribution. However, My, a cycle modification, is
comparatively high and therefore is required to prevent flaws. Pursued by the above repre-
sents the data recorded by the blockchain for identifying defects. For example, if the M is
vast even after M; scheduling, then the production needs to be modified. Therefore, the
revisiting cycle across the different working machines is pursued under modifications. It is
represented in Figure 6.

Figure 6. Revisited cycle for different hours.

The representation in Figure 6 presents four different combinations—namely, excessive
(green), semi-demand (half red-half green), demand (red), and depleting (red concentration
is high). Therefore, the depleting- and demand-based combinations are revisited to prevent
distribution flaws. Based on («, B) all depletion and demand, («, 8) is analyzed between
successive cycles. In this process, 7v* due to a lack occurs, and hence, F; is required. This
represents the precise cycle for which modification is required. A total of 141 changes
(internal 16, external 125) are observed in a given dataset. As the internal is significantly
less, we discard it; the sustainability for 125 is analyzed in Table 2.

Table 2. (V, 1) for 120 modifications.

Modifications Flaw Detection (%) X" DiStrlizl))(l.clet!is:rilv(ekWh) (V) Ilt‘;fl‘ltr‘:dg
20 13.06 0.365 98.56 0.658 1
40 21.36 0.263 137.604 0.462 3
60 25.69 0.458 121.36 0.541 2
80 29.69 0.547 69.25 0.745 2
100 32.45 0.619 12.39 0.883 0
120 36.46 0.587 58.25 0.851 1

The actual modifications are required to prevent frequent F7 between the operating
cycles. Therefore, sustainability is short-lived, and thus the new * is identified. The
(M; + My) ¥V (L) distribution is planned using G, such that 77* induces successful allocation.
This is further studied using the blockchain output for the logs («, B). In this process, W is
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the modification, and T for preventing sustainability falls (Table 2). Following this process,
the flaw minimization duet to M and G is analyzed in Table 3 data.

Table 3. Flaws for varying G = 1to 7.

G w (V) Distribution Flaws (/Cycle)
1 3 0.883 0.955 6
2 5 0.584 0.854 4
3 4 0.651 0.654 5
4 12 0.521 0.741 3
5 18 0.591 0.845 1
6 16 0.625 0.745 2
7 27 0.462 0.608 0

The flaw minimization is achieved by increasing the distribution and sustainability. W
is segregated from multiple intervals (cycles) to improve the distribution. This is achieved
by considering («, ) various dq,d, and v of the FL process. Any flaws are tracked and
addressed by providing precise G between T’s, and hence, appropriate demands are
satisfied. This generates no hassle in further distribution, thus preventing defects (Table 3).

4. Comparative Discussion

The comparative analysis uses the metrics sustainability factor, flaw detection, demand
satisfaction, modifications, and detection time. The operating hours and supply-to-demand
factors are modified accordingly. Alongside the proposed method, the existing MQIP-
TOU [26], DDSIM [20], and GDDF [28] methods are considered. However, several current
ways have limitations, such as complex production efficiency, a high time-consuming
feature, and inadequate prediction accurateness. When compared to all of the existing
methods, the proposed method has higher efficiency, which is discussed as follows:

4.1. Sustainability Factor

The efficacy of the sustainability factor is high in this method by using Ethereum
blockchain technology and the federated learning technique. Based on the energy demand,
the manufacturing process is carried out. From the energy demand, the internal and
external demand is extracted. By using this demand, the use and the excessive amount
of energy can be determined. Energy demand is used to enhance the sustainability of the
energy during flawless production. Blockchain technology is used to observe the internal
and external needs and provides input to FL. Monitoring control is also carried out based
on blockchain records and FL validation. From this, modifications are made to improve
the redistribution and satisfaction of production. This process helps to strengthen both
demand and production satisfaction. Using Equation (5), the sustainability factor has been
determined for the energy production system. By improving energy sustainability, the
flaws can be reduced for the intelligent manufacturing process in Industry 4.0. With these
methods, sustainability is high in this process (Figure 7).
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Figure 7. Sustainability factor.

4.2. Flaw Detection

Figure 8 depicts flaw detection during manufacturing and production in Industry 4.0
compared with the conventional method on which the proposed model has a high flaw
detection rate. The flaw detection is high in this method using the FL technique, which
uses the Ethereum blockchain records input. The production flaws are detected from FL,
which verifies the consumption and distribution ratio during the manufacturing process.
In this production flaw, if energy is inadequate, it can be verified, and further steps are
taken to provide the needed energy. Thus, the redistribution process is carried out based
on the blockchain records and the FL validations for the new manufacturing processes. The
energy is redistributed based on its need, and a further process is carried out to modify
the manufacturing procedure in the industry. The redistribution process is carried out to
reduce the flaws and to make the energy last so long for the production process. Based
on Equation (7), the production process flaws have been detected. This production flaw
identifies the internal energy usage and the insufficiency of energy. It is used to check
whether it satisfies the energy demand and sustainability. Through this FL validation
process, the flaws in the production can be detected quickly, and further steps are taken to
resolve them.
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Figure 8. Flaw detection.

4.3. Demand Satisfaction

The demand satisfaction is high using Ethereum blockchain technology for manufac-
turing and flawless production. Ethereum blockchain is used to observe the internal and
external demand obtained from the energy demand. It also checks whether the condition
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meets the required show and satisfies the needed directions. It is also used to enhance the
energy’s sustainability, which helps to satisfy the demand needed for flawless production.
FL validates whether the sustainability of the energy lasts longer for the process based
on the demand requirement. Both production distribution and demand satisfaction are
identified by the FL technique, from which the flaws of the production are extracted during
the manufacturing process in the industry. Ethereum blockchain monitoring is utilized for
similar products, and demand satisfaction is completed in the production system. From
Equation (2), demand satisfaction has been identified. The modification process is made
from the blockchain records to improve the sustainability and production rate during man-
ufacturing. The changes are made according to the blockchain records and FL validation
(Figure 9).
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Figure 9. Demand satisfaction.

4.4. Modifications

The modifications are less in this method due to the usage of the required amount
of energy for flawless production and the manufacturing process. Transformations are
carried out to improve energy sustainability for the manufacturing process. Based on the
blockchain records, the modification process is carried out. The modifications are carried
out for the new production process based on the monitoring control output. It can help
produce a productive manufacturing process in Industry 4.0. The improvements are made
to the present method for the new manufacturing process, and the flaws are eliminated
according to the demand requirement. This helps to enhance energy sustainability to
meet production and demand satisfaction. The monitoring and condition satisfaction
processes are identified using FL from two perspectives. The perspectives include demand
allocation and production sustainability. From Equation (1), the modification process has
been recognized. This process can be carried out to reduce the procedure of modification in
the manufacturing procedure in Industry 4.0 (Figure 10).
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4.5. Detection Time

The time taken for detecting the flaws is recommended to be less in this method by
using the Ethereum blockchain and FL techniques. By observing the internal and external
demand, the blockchain technique uses this value as the input for FL. The production flaws
are detected from FL; if there is insufficient energy, then it is said to be a flaw in the execution
of the process. Energy sustainability checks how long the energy lasts to achieve the
demand. The production system accompanies blockchain monitoring for lateral production
and demand satisfaction. The observing and status gratification processes are approved
using FL. The ineffectual conditions in prospects are manipulated using blockchain records.
The Ethereum blockchain records reduce flaws in the new production by customizing the
production plan according to the federated learning confirmations. Based on Equation (13),
the detection time of marks has been identified. Using these processes, the time taken for
the detection is less in this method for the flawless manufacturing procedures (Figure 11).
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Figure 11. The detection time.

5. Conclusions

This article introduces and discusses the Sustainable Production concerned with
External Demands method. This SP-ED method is designed to improve the efficacy
of Industry 4.0 in energy production and distribution. The proposed method utilizes
blockchain and federated learning concepts to improvise sustainability performances.
The entire process is monitored, and the blockchain stores and processes detailed logs to
identify production flaws. In this process, FL validates the sustainability and flaw detec-
tion for modifying the operations in consecutive operation cycles. The sustainability due
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to internal and external distribution demands is identified, and precise recommendations
are provided. In the learning process, the maximum amount of achievable sustainability is
predicted, and the performance is leveraged. The following learning process is instigated
by considering the changes pursued in the production process using the recommenda-
tions. Therefore, the energy scheduling process is validated using joint blockchain and
learning paradigms. Hence, sustainability is slowly leveraged across varying operation
times and demands. The proposed federated learning and Ethereum blockchain model
can achieve sustainability by 11.48%, flaw detection by 14.65%, and can reduce modifica-
tions by 11.11% and detection time by 10.46% for the varying energy supply-to-demand
factor compared to DDSIM. The study’s limitations are speed and scalability, a challenge
identified for energy production and industrial applications. Future studies will examine
the edge computing techniques for energy production for green innovation success in the
industrial environment.
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Abstract: Remanufacturing has been regarded as a key to the sustainable development of enterprises.
However, collection strategies affect the remanufacturing and recycling of used products. Blockchain
can ensure the authenticity of disclosed information and improve the consumer’s trust in remanufac-
tured products. Inspired by this, this paper develops a game-theoretic model to examine the selection
of different recycling strategies in the remanufacturing supply chain considering blockchain adoption
and uncertain demand. Incumbent collector 1 provides the manufacturer with used product 1 for
remanufacturing product 1. For product 2, the manufacturer has two different collection strategies:
in-house collection by the manufacturer or external collection by collector 2. The collectors act as
the channel leader, and the manufacturer, who has private demand information, is the follower.
Results show that collectors are incentivized to participate in the blockchain. If there is no blockchain,
collector 1 prefers external collection. In the case of blockchain, the manufacturer prefers external
collection when the demand variance is low. The manufacturer’s decision on the in-house collection
and external collection depends on the coefficient of collection investment costs.

Keywords: remanufacturing; blockchain; collection channel; recycling strategies; uncertain demand;
game theory

1. Introduction

With the development of society, environmental deterioration and resource shortages
are becoming more and more serious. As an effective way to protect the environment
and save resources, remanufacturing has been recognized by enterprises [1,2]. Remanu-
facturing is a process in which used or underperforming products are collected through
recycling channels and then remanufactured. Product recycling is an essential part of
remanufacturing. Different recycling modes affect optimal decision-making and pricing
in a remanufacturing supply chain. In practice, a manufacturer can collect used products
in three main ways. One is that the manufacturer has in-house collection channels, such
as Xerox and Fuji Films [3,4]. Another is that the manufacturer assigns product collection
to its retailer, such as Kodak [4]. The third one is that the manufacturer outsources the
collection activity to a dedicated collector. In the literature on collection mode selection,
the manufacturer is usually the leader in the supply chain, while some powerful collectors
have become upstream leaders of the manufacturers in recent years, for example, IBM’s
Global Asset Recovery Services, the world’s largest mobile phone recycler ReCellular, and
the world’s largest metal electronics recycler SIMS Metal Management [5]. Therefore, we
consider the situation that a third party performs the dedicated collection in which the
collector is the leader and the manufacturer is the follower in this study.
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In contrast to new products, however, consumers still have doubts about remanu-
factured products, such as uncertainty about the product’s quality, low evaluations, or
distrust [6-9], which decreases their willingness to purchase remanufactured products.
In addition, the problem of uncertain demand in the remanufacturing supply chain
has also attracted considerable theoretical and practical attention. In reality, upstream
collectors are unable to obtain accurate market demand information because they are
not familiar with the consumer market. Market information will have a certain impact
on the operational efficiency of upstream companies [10]. Accurate market demand
information can help upstream collectors adjust their inventories [11] and determine the
transfer price of used products [5].

Blockchain adoption can help enable the information sharing of demand and in-
crease consumer trust in remanufactured products. Blockchain technology ensures
that the information recorded in a supply chain is transparent and unalterable for all
stakeholders [12], which has been widely used in information traceability. In order to
reduce consumers’ concerns about quality issues, some second-hand trading platforms
use blockchain technology to provide quality inspection information, such as Paipai, a
second-hand trading platform of JD.com [1]. When blockchain exists, the downstream
manufacturer records the demand information in the blockchain, and the upstream
collector obtains full demand information. Moreover, the authenticity of disclosed in-
formation can improve consumer trust in remanufactured products. Hence, it naturally
generates the following research problems:

(1) Does the manufacturer have the incentive to participate and record the demand
information in blockchain?

(2) What are the effects of different blockchain scenarios on recycling decisions?

(3) How do demand variance and collection investment costs affect optimal decision-
making in a collector-led remanufacturing supply chain?

To solve the above problems, we consider a collector-led remanufacturing supply
chain comprised of a manufacturer and two collectors. The incumbent collector 1 recycles
the used product 1 and sells them to the manufacturer. The manufacturer produces two
new products with raw and used materials and sells them to the market. For product 2,
the manufacturer has two different recycling strategies: in-house collection (Scenario A)
or external collection (Scenario B). In-house collection denotes the manufacturer recycles
the used product 2, and external collection denotes collector 2 recycles the used product 2.
Because of familiarity with the market, the manufacturer has full knowledge of demand
information, while collectors have to make predictions about market demand. In addition,
the supply chain decides whether to adopt blockchain. In the case of blockchain, the
manufacturer records the demand information in blockchain, and collectors can obtain
full of market demand. As a result, four models are established depending on whether
the supply chain adopts blockchain or not and whether product 2’s collection is through
in-house collection or through external collection (Model AN, Model BN, Model AB, and
Model BB).

The main findings of this study are as follows. First, the unit transfer prices decrease
with the increase in the collection rate in the four models. In Scenario B, the manufacturer’s
expected profits increase in the two collection rates when in-house collection exists. In other
cases, the impact of collection rates on supply chain members’ expected profits is related
to the coefficient of collection investment costs. Second, the unit transfer prices and the
selling quantities of product 1 in Scenario B are higher than that in Scenario A. Moreover,
the unit transfer prices and selling quantities with blockchain are higher than without
blockchain. However, the selling quantities of product 2 in Scenario B are lower than in
Scenario A. Collectors prefer blockchain, but collector 1 is always inclined to the external
collection under no blockchain. In the case of blockchain, collector 1’s decision on the
external collection depends on the demand variance and the coefficient of variance. Finally,
the manufacturer’s decision on the in-house collection and external collection depends on
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the coefficient of collection investment costs. The manufacturer may choose to implement
the blockchain when the demand variance is less than a certain value.

The motivation for this research stems from the growing amount of empirical liter-
ature showing that consumers distrust the quality of remanufactured products [13,14].
Blockchain technology is an effective measure to increase consumer trust in the quality of
remanufactured products. Moreover, recycling used products is a necessary link in the re-
manufacturing supply chain. Different recycling modes affect optimal decision-making and
pricing in a remanufacturing supply chain. However, there is still a big research gap in the
study of recycling models in collector-led remanufacturing supply chains, especially when
considering the uncertain demand. Our findings provide new insights into blockchain
applications and recycling strategies in the field of remanufacturing supply chains under
uncertain demand.

The rest of this paper is organized as follows. In the next section, we briefly review
the related literature. Problem formulation is listed in Section 3. Section 4 presents the
collector-led supply chain models and equilibrium outcomes, respectively. In Section 5, we
determine the supply chain members’ preferences for collection scenarios and blockchain
adoption by comparing four models. Section 6 summarizes and concludes this study.

2. Literature Review

This research is mainly related to studies about blockchain adoption in supply chains,
demand uncertainty in supply chains, and remanufacturing collection modes.

2.1. Blockchain Adoption in Supply Chains

Blockchain technology has attracted considerable attention in supply chains. Consid-
ering the manufacturer’s brand advantages and patent license fees, Yang et al. [1] studied
the impact of blockchain on remanufacturing modes. Gong et al. [15] investigated the
optimal strategies of the OEM regarding adopting blockchain technology and selecting
distribution channels. Niu et al. [16] examined the supply chain members’ preferences for
blockchain adoption considering consumers’ risk-aversion and quality distrust. Zhang
et al. [17] analyzed the impact of three different blockchain adoption scenarios on the direct
and retail channels of a dual-channel supply chain, where the three scenarios include both
manufacturers and e-retailers adopting blockchain, manufacturers adopting blockchain,
and e-retailers adopting blockchain. Cui et al. [18] used game theory to provide a theoretical
investigation into the value and design of a traceability-driven blockchain under serial
supply chains and parallel supply chains. Zheng et al. [19] studied the optimal blockchain-
based traceability strategies in agricultural product supply chains under different strategic
choices among multiple agents. Wang et al. [20] explored a three-echelon supply chain
participants’ motivation, condition, and roles by analyzing the game equilibrium of the
no, upper-stream, lower-stream, and entire blockchain-driven accounts receivable chains.
Zhang et al. [17] explored supply chain members’ attitude towards three blockchain adop-
tion scenarios (only manufacturer, only e-retailer, and both players) considering the direct
sales channel and the retail channel. In contrast, our study focuses on the application
of blockchain technology in collector-led remanufacturing supply chains. At the same
time, we study the effect of blockchain adoption on the manufacturer’s different collection
scenarios considering uncertain demand.

2.2. Demand Uncertainty in Supply Chains

Most studies focus on the incentives for uncertain demand exchange among supply
chain members. Uncertain demand can be categorized into two types: stochastic nature
and fuzzy uncertainty. Currently, most studies with uncertain needs are stochastic
nature. Cai et al. [5] examined how the manufacturer shares demand information
and the effects of different demand-sharing strategies on collector-led CLSCs. Huang
et al. [21] developed a win-win contract based on a revenue sharing and price markdown
and studied how vendors and retailers share their risks and benefits under stochastic
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demand during the pandemic. Ji and Liu [22] studied how the two-part tariff and
ZRS contract (zero wholesale price-revenue-sharing-plus-side-payment contract) affect
risks and supply chain coordination when market demand and supplier yield are both
uncertain. Zhang et al. examined partial demand information sharing from three sharing
methods (neither, one, or both of the manufacturers) in a supply chain consisting of a
single retailer and two competitive manufacturers. Garai and Paul [23] explored supply
chain coordination in a closed-loop supply chain comprising one retailer, one main
supplier whose demand is stochastic uncertain, and a backup supplier. Li et al. [24] built
a two-stage stochastic program and investigated a comprehensive production planning
problem considering uncertain demand and risk-averse. Some other literature has
studied demand uncertainty in supply chains from the perspective of fuzzy uncertainty.
For example, Pei et al. [25] investigated the pricing problem of dual-channel green supply
chains based on fuzzy demand. Liu et al. [26] studied the closed-loop supply chain of
second-hand products with ambiguous demand and different quality levels from the
perspective of centralized and different authority structures. In this paper, we also
set the demand as uncertain in stochastic nature. Differently, we examine asymmetric
demand information in collector-led remanufacturing supply chains. Furthermore, this
paper considers blockchain adoption and compares two collection modes that have been
addressed in few previous studies.

2.3. Remanufacturing Collection Modes

The third related literature stream is about how manufacturers choose collection
modes for remanufacturing. For example, Zheng et al. [27] investigated how the manu-
facturer and retailer choose the recycling cooperation modes between recycling alliance
and cost-sharing and discovered that the optimal recycling cooperation option depends
on the remanufacturing efficiency and the relative recycling cost efficiency. Considering
the heterogeneity of willingness to pay, Long et al. [28] explored the optimal recycling
and remanufacturing decisions by comparing four different remanufacturing modes.
Yi et al. [29] examined the optimal decisions on a dual recycling channel in which the
retailer and the third-party collector simultaneously collect the used products in the
construction machinery industry. Huang et al. [30] further studied the optimal strategies
for a triple recycling channel in a retailer-dominated closed-loop supply chain. Consid-
ering the retailer’s bank loans or trade-credit financing, Zhang and Zhang [31] analyzed
optimal equilibrium strategies of electric vehicle batteries in a closed-loop supply chain
with a manufacturer or capital-constrained retailer recycling. He et al. [32] examined the
competitive collection and channel convenience considering a manufacturer competing
with a third-party collector. In the case of channel inconvenience, Guo et al. [33] investi-
gated the optimal emission reduction strategy in three models with different recycling
structures—manufacturer-led, retailer-led, and competitive under cap-and-trade regu-
lation. Wan [34] investigated six game theory models which consist of different sales
modes and recycling modes to explore the optimal pricing and recycling rate decisions
under the discount coefficient of demand and the competing intensity of recycling. Some
existing literature studies the collection strategies from different authority structures.
For example, Cao and Ji [35] discussed the optimal recycling strategy by establishing
three different Stackelberg leadership models in garment enterprises. Unlike previous
literature, we investigate the optimal collection modes in a collector-led remanufacturing
supply chain under demand uncertainty. Furthermore, this study also explores the
impact of blockchain adoption on collection decisions.

3. Model
3.1. Problem Formulation

In our research, we consider a collector-led remanufacturing supply chain comprised
of a manufacturer and two collectors. The manufacturer produces new products i (i = 1,2)
with raw and used materials and sells them to the market at a unit retail price p;. Collector
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i recycles the used product i and sells the used product i to the manufacturer at a transfer
price b;. For product 2, the manufacturer has two different recycling strategies: in-house
collection through the manufacturer (Scenario A) or external collection through collector
2 (Scenario B). We use A and B to denote the in-house collection and external collection,
respectively. Motivated by Cai et al. [5], we built the supply chain structure as illustrated in
Figure 1. For simplicity, we assume the manufacturer (Scenario A) and collector 2 have the
same collection rate. Collectors will invest in the collection channel at a cost of k)\lz, which
quadratic form of the cost function is common in previous literature. k > 0 represents
the coefficient of investment costs and A; > 0 denotes the collection rate of the collector
i. The manufacturer has a less professional recycling network channel than collector 2,
so the manufacturer’s investment cost is ¢kA3 in Scenario A, where ¢ > 1 represents the
proportion of collector 2’s investment costs. The unit production cost of producing a new
product with raw /used materials are c;,, ¢, respectively, where ¢, < c;, represents the unit
production cost with used materials is less than with raw materials. Denote A = ¢;; — ¢y,
where A > b; guarantees the manufacturer’s positive profit from used products.

——- Collector 1 — »| Collector 1 Collector 2 [«—- .
| | |
| ' I
| b1 : b1 bz :
| | |
[ | I
[ ' I
A : Manufacturer 4 : Manufacturer : 4
[ ' I
| i | |
| | | |
: q A : q, : q q, :
: : i a
|
: ————— Market - - Market -—=-
Scenario A Scenario B

Figure 1. Supply chain structures.

Considering the uncertain market demand, the manufacturer has full knowledge of
demand information since the manufacturer is closer to the market, while collectors have
to predict the market demand. Consumers will have many uncertain concerns (including
product function and product life) about remanufactured products when they know enter-
prises have collection channels. If blockchain is adopted, consumers can learn about the
authenticity of remanufactured products and access the key information on remanufactured
products from the blockchain database via cell phones. Moreover, blockchain technology
can make sure the disclosed information is correct and improve the consumer’s trust in
remanufactured products, which will expand the consumer market. In addition, the manu-
facturer will log the sales information into the blockchain. Thus, the upstream collectors
can obtain accurate demand information by accessing the blockchain platform. Note that
blockchain adoption is a joint decision with the manufacturer and collectors, and this study
does not consider the sunk costs associated with adopting blockchain technology [36,37].
Furthermore, we do not consider the unit collection cost and only consider the investment
cost of collection channel [3,5,38].

Following Niu et al. [37] and Yang et al. [38], we introduce the inverse demand function
given as:

pi=aj—q;—Bqs—i +& 1)
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where j = {B, N} denotes the scenarios with /without blockchain technology and i = {1,2}
denotes the product i. a; stands for the deterministic market potential, where ag > ay
represents that the consumer market is expanded when blockchain exists. The random
variable ¢; represents market demand uncertainty, which has a mean of zero and variance
Var[eq] = rV, Varlea] = V where 0 < r < 1 represents product 1 has a smaller demand
variance than product 2. B € (0,1) represents the competition coefficient between the
two products. For simplification, we assume Ay > Ay > 2BA1/(1+ p?), which repre-
sents collector 2’s collection rate is temperate. Four models are established depending on
whether the supply chain adopts blockchain or not and whether product 2’s collection
is through in-house collection or external collection (Model AN, Model BN, Model AB,
and Model BB). We characterize supply chain members’ profits as nil, where the subscript
h € {R1, R2, M} stands for Collector 1, Collector 2, and the manufacturer, and the super-
script] € {AN, AB, BN, BB} stands for the above four models. Table 1 shows the notations
in this paper.

Table 1. Notations.

Notation Definition

cm/cr Unit production cost of producing a new product with raw /used materials
A Unit saving cost of remanufacturing, A > b;
B The competition coefficient between the two products
k The coefficient of collection investment costs
g Random part of market potential for producti, i =1, 2

rV/V The variance of the random variable €1 /€5

an/ag The deterministic market potential without/with blockchain
A The collection rate of producti,i=1, 2
pi Retail price of the producti,i=1,2

T™™, TTR1, TR2 The profit functions of supply chain members
Decision Variables

qi Selling quantity of the producti,i=1,2
b; Unit transfer price of used product i decided by collector i,i =1, 2

The sequence of events is illustrated as follows. In stage 1, supply chain members
decide whether to adopt blockchain technology. In stage 2, collectors decide the transfer
price based on the demand information. In stage 3, the manufacturer determines the order
quantities based on the transfer prices. Finally, the market demand will be realized.

3.2. Collector-Led Supply Chain Models

In this section, we investigate the four models (Model AN, Model BN, Model AB,
and Model BB) and obtain the equilibrium outcomes through backward induction. To
avoid trivial discussion and ensure that the equilibrium solutions are positive, we assume
(an — ¢m)(1 — B) > APA;. The equilibrium outcomes are summarized in Tables 2-5. The
derivation and proof of this paper are in Appendix A. For ease of exhibition, we define
some items in Table 6.

Table 2. Outcomes in Model AN.

Model AN (i=1,2)

N = ((1-p)(an

AN_(

Cm) +A(A1 ‘BAQ))/Z/\l

)(a
“‘N = ((1—B)(an — cm) +2(e1 — Bea) + A(Ay — BA2)) /4(1 — B2)
(1—B)(B+2)(an — cm) +2(e2 — Ber) — A(BPAa + BA1 —2A7)) /4(1 — B?)

E[miN] = (1= B)(an = cu) + D1 — pA2))” = 8(1 — B)kA3) /8(1 — B2)
E[my] = (1= B)(an — cm) ((5+3B) (an — cm) +2A(A1 + (4 +3B)A2)) +4(1+ 1)V + F1)/16(1 — B2) — pkA3
Fi = A?((A1 = 3BA2) (Mg + BAy) +4A3)
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Table 3. Outcomes in Model BN.

Model BN (i =1, 2)
PN = (1= B)(2+B)(an — cm) — A(B*A1 + PA2 — 2A1)) /(4 = B2) My
bBN ((1=B)2+P)(an —cm) = A(BAz + A1 —2A)) / (4 = B2) Ay

BN = ((1=B)(2+B)(an —cm) + (4= B7) (e — Pes—i) — A(ﬁ2)2\i +BAs-i — %)‘i)) /2(1-p) (4~ ﬁz)z
E[nm I = (1= B)@+ B)an — cm) = AGBPA; + BAs i —200)) = 2(4 = B2)° (1 = B)kAZ) /2(4 - B2)° (1 - B2)
E[mEN] = (201 = B)(2+ B)*(an — cm)(an — n + DM + A2)) + (4= B) (1 4+ 1)V + B ) /4(4 - B2)* (1 - )
F, = A2(A2+A3) (4 —38%) —2B°A%A1 0,

Table 4. Outcomes in Model AB.

Model AB (i=1,2)

bAB (( (ag — cm) + €1 — Pea + MMy — BA2)) /274

q1 = (( (ap — cm) + €1 — Bea + A(Ay — PA2)) /4(1 — B?)

95 = (1= B)(B+2)(ap —cm) + (2= p*)e2 — Per — A(BPA2 + PA1 — 2A2)) /4(1 = )

E[mfP] = (1= B)(an — cm) + DM = BA2)) + (B + 1)V —8(1 - B)kA3) /8(1 - B°)

E[ryf] = (1 - B)(ap — cm)((5+3B)(ap — cm) +2A(A1 + Aa(4+3B))) + (4 —36%) +7)V + F1) /16(1 — B2) — pkA

1-p)
1-§)

Table 5. Outcomes in Model BB.

Model BB (i =1, 2)
bgB (1=pB)(2+B)(ap —cm)+ (2~ ) — Bes_i — D(BPAi + PAs_i —2A;) )/ (4 — B*) A

B (( B)(2+ B)(ag — cm) +(2 ) — Bes— z—A(,BZ)‘ + BAs- 1_2/\))/2(4 .32)( 2)
E[nm]* (1= B) 2+ B)(ap —cu) — ABPAL + BAa —201)) + (B2 +7(2+B)7) V) /24— p)° (1 - B2) — kA
E[n}5] (1 B) 2+ B)(ap — cn) — A(BPA2 + Ay —242)) + (1P + 2+ B)2) V) /2(4 — B7)° (1—52)—k/\2
E[mRP] = (201= B) 2+ B)(as — cm)((aB — cm) + A(A1 +A2)) + (4= 367)( 1+rV+F2)/4(4 B)*(1- p?)

/(4—

m
—~~

Table 6. Definition.

k; (i=0,1,2,3,4,5,6,7)

ko = A((1 = B)(an — cm) + A(Ay — BA2)) /8M1 (1 = B2)
k1 = (A1~ B+ o) +A%((4~3F) 42— pr)) 32021 )

) )(
ko= A2~ B)((1—B)2+B)(an — cm) + AQ2A; — BA1 — BA2)) /201 (1~ B2) (4 — p2)°
s - A (2= B2) (1= B)(2+ B)(an — cm) — A(B2A2 + A1 — 242)) /202 (1 — ) (4 — F7)°
ky = A((1— )(uB—cm)+A(A1 BA2))/8A1 (1 — B2)
ks = (20(1 = B)(4+3B)(ap — cn) + A2((4 = 362) A2 — BA1)) /32920 (1 — f?)
ks = A2~ F) (1= )2+ B) (a5 —on) + A2 — 2\ — o)) /204 (1 - ) (4~ 62)°
k7 = 82— ) (1= B)(2+ B)(ap — c) — A(B*A2 + M1 —242)) /200 (1 = B7) (4 — )’

(1) In-house collection without blockchain (Model AN)

In this subsection, the manufacturer recycles the used product 2 through the in-house
collection and there is no blockchain in the remanufacturing supply chain. In consequence,
collector 1 only knows the expected value of the market demand. Thus, the supply chain
members’ expected profits are as follows:

Max E[i"] = (p1 = en)q1 + (A = b)Mqn + (p2 = em)g2 + Adaqz —9kA; - ()

Z\/Zlyax E[njglN] =biA g1 — k)\% (3)
1

where p1 = any — g1 — Bg2 + &1 and po = ay — g2 — Bq1 + &2.
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Thus, we obtain the optimal solutions from backward induction and the results are
presented in Proposition 1.

Proposition 1. In Model AN, the optimal transfer prices, selling quantities, and expected profits
are summarized in Table 2.

According to Table 2, Proposition 1 presents some important findings. (i) Unit transfer
price is decreasing in A; and A,. The higher the collection rate, the lower the unit transfer
price. The selling quantity of product 1 is increasing in A; and decreasing in A,, while the
selling quantity of product 2 is decreasing in A; and increasing in A,. The reason is that the
higher collection rate of product i, the higher the selling quantity of product i. Conversely,
it is unfavorable to the sales of the product if the collection rate of competing products
is higher. (ii) Collector 1’s expected profit is monotonically increasing if the collection
investment costs coefficient k is lower than a threshold value (i.e., k < ko) and decreasing in
Az. In the market, product 1 and product 2 compete against each other. Thus, the collection
rate of product 2 is not conducive to collector 1’s profit. (iii) The manufacturer’s expected
profit is monotonically increasing in A; if the coefficient of collection investment costs k is
lower than a threshold value (i.e., k < k1) and increasing in A;. For the manufacturer, the
higher the collection rate A, the higher the profit for the manufacturer when the collection
investment costs are lower than the threshold value.

(2) External collection without blockchain (Model BN)

In this subsection, the manufacturer agrees that collector 2 recycles the used product 2
through external collection. Two collectors also need to predict the uncertain demand since
there is no blockchain in the remanufacturing supply chain. Therefore, the supply chain
members’ expected profits are as follows:

A/iax E[ngi\]] =biA1 g1 — k)\% 4)
1
Max E[BY] = baAs g2 — kA3 (5)
2
Max E[y'] = (p1 — e+ (A = b1)A1) g1 + (p2 — o + (A = b2)A2)g2 (6)

q1, 92
where p1 =any — g1 — Bg2 +¢1and pr = ay — g2 — g1 + €2.

Proposition 2. In Model BN, the optimal policies can be formed in Table 3.

Similar to Proposition 1, Proposition 2 also shows that the unit transfer prices decrease
with the increase in the collection rate. An increased collection rate of a competitor’s
product is detrimental to the sales of its own product. Collector 1’s expected profit is
monotonically increasing in A; if the coefficient of collection investment costs k is lower
than a threshold value (i.e., k < k) and decreasing in A;. Collector 2’s expected profit
is monotonically decreasing in Aj, and increasing in A, if the coefficient of collection
investment costs k is lower than a threshold value (i.e., k < k3). As the collection rate of the
two products increases, so does the manufacturer’s expected profit.

(3) In-house collection with blockchain (Model AB)

In this subsection, the remanufacturing supply chain consists only of the manufacturer
and collector 1. The manufacturer recycles the used product 2 from the consumer market
and records the demand information for the two products in the blockchain. Collector 1
can obtain accurate demand information. As a result, the supply chain members’ expected
profits are as follows:

Max E[yf’] = (p1 = cm)1 + (A = b)Mas + (p2 = cun)g2 + Magz —9kAT - (7)
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Max E[mgf’] = bidy 1 — kA 8)
1

where p; = agp — g1 — B2 + €1 and py = agp — g2 — Bg1 + 2.

Proposition 3. In Model AB, the optimal strategies can be given in Table 4.

According to Table 4, in accordance with Proposition 1, we conclude that as col-
lection rates increase, the unit transfer price decreases. The higher the collection rate,
the greater the sales of the related product. When the collection rate of a competitor’s
product increases, the selling quantity of the own product also decreases. In addition,
there is a monotonic increase in collector 1’s expected profit in A, if the coefficient of
collection investment costs k is lower than a threshold value (i.e., k < k4) and a monotonic
decrease in A;. Similar to Model AN, high collection rates are not always advantageous
for the manufacturer. The manufacturer’s expected profit is monotonically increasing
in A, if the coefficient of collection investment costs k is lower than a threshold value
(i-e., k < ks) and increasing in A.

(4) External collection with blockchain (Model BB)

In this subsection, collector 1 and collector 2 recycle the used products from the
consumer market and sells them to the manufacturer. The manufacturer remanufactures
the used products and records the demand information in the blockchain. Collectors can
obtain accurate demand information. As a result, the supply chain members’ expected
profits are as follows:

]\/iax E[mB8] = biA1 g1 — kA2 )
1
Max E[7BB] = byAs g0 — kA3 (10)
2
Max E[75B] = (p1 — e + (A — b)) A1) g1 + (p2 — e + (A — b2)A2) g2 (11)

q1, 92
where p1=4ag—4qi1 — quz + &1 and P2 =4ag —qp — ‘Bql + €7.

Proposition 4. In Model BB, the optimal outcomes can be derived in Table 5.

Based on Table 5, we can derive that the unit transfer prices are also decreasing in
collection rates under the blockchain. The selling quantities are increasing in the corre-
sponding collection rates while decreasing with the competitive product’s collection rate.
With an increase in A4, collector 1’s expected profit increases if the coefficient of collection
investment costs k is lower than a threshold value (i.e., k < k¢), and with an increase in A,
collector 1’s expected profit decreases. Collector 2’s expected profit increases as A, increases
if the coefficient of collection investment costs k is lower than a threshold value (i.e., k < ky)
and decreases with A;. The change in the manufacturer’s expected profit with respect to
the collection rate is similar to Model BN.

4. Analyses

Based on the aforementioned analyses, we further compare the equilibrium solutions
in four models to gain the recycling strategies and blockchain preferences of the supply
chain members.

4.1. Comparison of Different Recycling Strategies

In this subsection, we compare the equilibrium solutions of two recycling strategies
with/without blockchain from the viewpoint of optimal recycling strategies. The results
are summarized in Corollaries 1-3.

Corollary 1. The optimal transfer prices and selling quantities satisfy the relations as follows:
(i) For the transfer prices, we can get bPN > bN and E[bBB] > E[b{B].
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(ii) For the selling quantities of product 1, we can get E[qBN] > E[q/N] and E[qFB] > E[¢4'5].
As for product 2, we have E[g5N] < E[q4N] and E[q5P] < E[q5\8].

Corollary 1 clearly shows that collector 1’s transfer prices and the selling quantities of
product 1 are higher in Scenario B than in Scenario A. The reason is that when collector
2 enters the collection market, the manufacturer just needs to focus on the process of
remanufacturing and selling, which leads to an increase in the selling quantities and
improves the quality and recycling of remanufactured products. As a result, the selling
quantities increase. Hence, in order to increase profitable profits, collector 1 has the incentive
to improve the transfer prices as the selling quantities of product 1 increase in Scenario B.
While the selling quantities of product 2 become lower in Scenario B than in Scenario A,
the reason is that product 2’s procurement cost increases in Scenario B. The manufacturer
will need to pay an additional transfer price for product 2, which will reduce the incentive
for the manufacturer to remanufacture product 2. Therefore, the order quantity of product
2 in the external collection mode is lower than in the in-house collection mode.

Corollary 2. In the case of no blockchain, collector 1 is inclined to external collection (i.e., E [ngll\] ]
E[r4N] > 0). When in the case of blockchain, collector 1 tends to the external collection if r > rg
and V > V; (i.e., E[nB8] — E[n£B] > 0). Otherwise, collector 1 tends to the in-house collection.
_ Ao (2—B2) EbEE X, _ B(6—p2)(2-p?)
Here, o = o parpr—Fs e 0 = “a gy
simplified calculation and exhibition, we define the items X in Appendix A.

where 0 < rg < 1. For ease of

According to Corollary 1, collector 1’s transfer prices and selling quantities of product
1 are higher in Scenario B than in Scenario A. In the case of no blockchain, it is easy
to conclude that collector 1 will be more profitable in the external collection scenario.
Therefore, collector 1 is inclined to external collection under no blockchain. However, in the
case of adopting blockchain, we cannot conclude from Corollary 1 that collector 1 is more
profitable under the mode of external collection. This is because the transfer prices and
order quantities contain random variables of demand in the blockchain scenario, and there
are information values in the profit function of collector 1. Collector 1 can obtain accurate
demand information through the blockchain platform. In addition, the selling quantities of
product 2 decrease in Scenario B, thereby reducing market competition between the two
products. When the variance of uncertain demand is higher (i.e., V > V})) and the demand
fluctuations of product 1 are higher (i.e., r > rp), collector 1’s profit is higher under external
collection. At this point, the demand information value is larger, and the transfer prices
and order quantities are higher. Thus, collector 1 prefers external collection. Otherwise,
when the demand variance of product 1 is small, collector 1 is more focused on the market
competition and does not want other collectors to enter the market. Therefore, collector 1
tends to in-house collection.

Corollary 3. The manufacturer’s attitude toward external collection or in-house collection depends

on the following situations:

(i) In the case of no blockchain, the manufacturer’s expected profit in Model BN is higher than in

Model AN if k > kg (i.e., E[n8N] — E[m{{]N] > 0). Otherwise, if k < ks , we have E[mt§N] —

E[xfN] <.

(ii) In the case of adopting blockchain, the manufacturer’s expected profit in Model BB is higher

than in Model AB if k > ko (i.e., E[t88] — E[n4{f] > 0). Otherwise, if k < ko, we have
Ap(4—p2) BN Xy A (2—B?)EbBB X5 4-X3

Elmi] — Elmif’) < 0. Here ks = 16¢A§(1—ﬁ2))(24—ﬁ2)2 T 16;A%(1zﬁ2§(4—ﬁ2)2 '

simplified calculation and exhibition, we define the items X1, X, and X3 in Appendix A.

For ease of

Corollary 3 demonstrates that the manufacturer will consider the coefficient of col-
lection investment costs for external collection or in-house collection. In the case of no
blockchain, the manufacturer can obtain a higher profit in Model BB if the coefficient of
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collection investment costs exceeds the threshold value (i.e., k > kg). The reason is that the
collection investment costs are larger than the purchase costs of product 2. At this time,
the manufacturer is inclined to introduce collector 2 for product 2’s collection. Conversely,
when the coefficient of collection investment costs is smaller, the manufacturer prefers
the in-house collection (see Figure 2 for illustration). In the case of adopting blockchain,
similarly, external collection can provide the manufacturer with the most profit increase
when the coefficient of collection investment costs is higher than the threshold value k1 (see
Figure 3 for illustration). From Figures 2 and 3, it can be seen that the collection rate affects
the preference degree of the manufacturer’s recycling decision. The higher the recycling
rate, the more likely the manufacturer is to choose external collection.
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Figure 2. The impact of k on profit difference. (axy =2, ¢y =15, A=05,r=08, =05 ¢ =15,
A1 = 0.6).
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Figure 3. The impact of k on profit difference. (a4 =3, ¢,y =15, A=05,r=0.8, =05, ¢ =15,
A1 = 0.6).

4.2. Comparison of Different Blockchain Adoption

In this subsection, we compare the equilibrium outcomes of different blockchain scenar-
ios under the same collection scenario. From the viewpoint of optimal blockchain adoption,
we compare the equilibrium outcomes. The results are summarized in Corollaries 4-6.

Corollary 4. The optimal transfer prices and selling quantities satisfy the relations as follows: (i)
For the transfer price, we can get E[b{\B] > b{\N, E[bPB] > E[bEN] and E[b5B] > E[b5N]. (ii) For
the selling quantities, we can get E[q/'B] > E[q/N] and E[qPP] > E[qBN] (i = 1,2).

Corollary 4 articulates that the optimal transfer prices and selling quantities with
blockchain are larger than that in the case of no blockchain. When the supply chain
members introduce the blockchain, consumers can obtain the key information on remanu-
factured products, which improves the consumer’s trust and expands the consumer market.
Therefore, the selling quantities in the case of blockchain are larger than those without
blockchain, as the increased selling quantities would stimulate collectors to increase the
transfer prices. Hence, no matter the collection mode, the transfer prices and selling quanti-
ties with blockchain are higher than without blockchain. This means that the blockchain
scenario benefits the improvement of both transfer prices and selling quantities.

Corollary 5. By comparing the collectors” expected profits in the same collection scenario, we find
that Ei?) > E[AN), E(r8] > E[xly) and E[3E] > Elmid].

Corollary 5 reveals that collectors can always benefit from blockchain technology. In
the case of no blockchain, collectors do not have the full demand information and need to
predict the uncertain demand based on the existing random information. When blockchain
exists, collectors can obtain accurate demand from the blockchain. Thus, collectors have an
extra demand information, which benefits the increase in collectors’ profit. Furthermore,
according to Corollary 4, the transfer prices and selling quantities with blockchain are
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larger than that without blockchain. It is easy to conclude that collector 1 and collector 2’s
profits in the case of blockchain are higher than that without blockchain.

Corollary 6. By comparing the manufacturer’s expected profits in four models, we find that the
manufacturer’s preference for blockchain depends on the variance of uncertain demand: (i) There
exists a threshold V;: if V < V4, we have E[rt4if] — E[{{N] > 0. Otherwise, if V > V4, we have
E[r4B] — E[m4iN] < 0. (ii) There exists a threshold Vy: if V < V,, we have E[r8F] — E[7BN] >
0. Otherwise, if V > Va, we have E[t8F] — E[7BN] < 0.

Corollary 6 illustrates that the variance in demand is one of the main factors that
affect manufacturers in deciding whether to introduce blockchain technology. In Scenario
A, the remanufacturing supply chain contains collector 1 and the manufacturer. When
the demand variance is lower than a threshold value (i.e.,, V < V;), the manufacturer
is willing to introduce blockchain in order to expand the consumer market. When
blockchain exists, the manufacturer records the demand information in the blockchain,
which will provide collector 1 with accurate information about the market demand.
Even though the manufacturer loses some demand information value, the increase in
profits more than compensates for this loss. When the demand variance exceeds the
threshold value (i.e., V > Vj), the demand information has a greater value than the
profit increase. As a result, the manufacturer is unwilling to adopt blockchain (see
Figure 4 for illustration). As shown in Figure 5, the manufacturer’s blockchain decision
is also influenced by a threshold value in Scenario B. When the demand variance exceeds
the threshold value (i.e., V > V;), the manufacturer has a higher demand information
value than the improvement of profit and prefers no blockchain. When the demand
variance is lower than a threshold value (i.e., V < V;), blockchain adoption can make
the manufacturer obtain more profit from market expansion. Based on Figures 4 and 5,
it can be seen that there is a certain influence of the competition coefficient on the
manufacturer’s recycling decisions. The manufacturer is more likely to adopt blockchain
technology as competition increases.

1 T T T T T T T T T
-

Profit difference
w
/
!
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p— e
st B3=0.8 ]

_7 1 1 1 1 'l L L L 'l
0 1 2 3 4 5 6 T 8 9 10
\

Figure 4. The impact of k on profit difference. (ag =3, ay =2,c, =15, A=05, r=0.8, A; =0.6,
Ar = 0.5).
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Figure 5. The impact of k on profit difference. (ag =3, ay =2,c, =15, A=05,r=0.8, A; =0.6,
Ar = 0.5).

5. Consumer Surplus

Consumer surplus is critically important for enterprises’ sustainable development. In
this section, this study analyzes consumer surplus in different recycling models without
blockchain. Followed by Yang et al. [39] and Shen et al. [40], the consumer utility function
and consumer surplus are as follows:

%k * * lplq*z + Zr)/q*q* + lpzq*z
U(qi,43) = ¢1q; + dog3 — — o 2 (12)

CS = U(q1,92) — pidi — P24z (13)
where the inverse demand functions are p; = ¢1 — 191 — g2 and p2 = ¢2 — P22 — Y91,
respectively. Combining Equation (1) of the inverse demand function, we have ¢; = ¢» =

an, Y1 = P2 = 1,y = B. Therefore, the consumer surplus equation of this chapter can be
derived as follows:

*2 * ok *2
q1° +2Bq195 +q o x sk
i - i =

(12 + 264173 + 05> — 27e1 — 2q3¢2) (14)

N —

Corollary 7. For the consumer, the higher the recycling rate of the product, the more benefits the
consumer can get, and the consumer surplus increases.

Corollary 7 shows that the higher the collection rate, the more favorable the increase
in consumer surplus. The optimal price of product 1 in Model AN is easily obtained
AN _ B=Blan+(1+B)cm+2e1—A(M1+BAs)
P = 4
opN . opsN . . o
get 55— < 0 (i = 1,2) and 5 <0 The first-order condition of the retail price in
Model AN with respect to the collection rate shows that the retail price of the product
decreases as the collection rate increases. The higher the product collection rate, the lower
the retail price and the increase in consumer surplus. Therefore, for Model AN, the higher

and P?N = %(HN + ¢ + €2 — AAy). It is easy to

62



Processes 2023, 11, 1426

the collection rate, the higher the consumer surplus. In Model BN, the retail price of
(2+B) (3—2B)an+(2+B)cm+ (4—B)e1—A(2A1+BA2)
2(4—p°)
(2+B)(3—2B)an+(2+B)cm+ (4= )e2—A(BA1+2A5)
2(4—p%)
. . . . opEN opEN . .
collection rate for the optimal retail price are 73— < 0and J3— <0 (i=1,2). Itis easy to
know that the higher the product collection rate, the lower the retail price of the product.
For consumers, it is possible to purchase the remanufactured product at a lower retail price,
which results in more benefits to consumers and an increase in consumer surplus. Therefore,
for Model BN, the higher the product collection rate, the higher the consumer surplus.

product 1 is pBN = , the retail price of product

. The first order derivative of the

2 is pgN =

6. Conclusions

In this paper, we examine the tradeoffs between different recycling strategies and
blockchain adoption in a collector-led remanufacturing supply chain. The manufacturer has
private demand information and has two different recycling strategies: in-house collection
by the manufacturer or external collection by collector 2. There are four models for the
recycling strategies and blockchain adoption: (1) Scenario A with no blockchain (Model
AN); (2) Scenario B with no blockchain (Model BN); (3) Scenario A with blockchain (Model
AB); (4) Scenario B with blockchain (Model BB). By comparing four models, we examine
supply chain members’ preferences for collection formats and blockchain adoption. The
main findings of this paper are as follows.

First, our study investigates the effect of the collection rate on the equilibrium solutions
in different models. The unit transfer prices decrease with the increase in the collection rate
in the four models. The selling quantities of product 1 are monotonically increasing in the
collection rate A; and decreasing in the collection rate A,. Similarly, the selling quantities of
product 2 increase with A, and decrease with A;. Product 1 and product 2 compete with
each other in the same market, and competitors” high collection rates are not conducive
to their own selling quantities and profits. Collector 1’s (Collector 2’s) expected profits
are increasing in A1 (A2) only when the coefficient of collection investment costs is lower
than a threshold value. The manufacturer’s expected profits are increasing in the two
collection rates when external collection exists (Scenario B). However, In Scenario A, the
manufacturer’s expected profits are increasing in A, only when the coefficient of collection
investment costs is lower than a threshold value.

Based on the above findings, there are some discussions and implications for this study.
Product 1 and Product 2 compete with each other in the market; collectors do not want
competitors’ collection rates to increase. However, it is not that the higher the collection
rate of its own products, the higher its own profit value. Collectors need to make a cost
investment in recycling channels. Only when the coefficient of collection investment cost is
lower than a threshold value can a higher product collection rate increase the collectors’
profits. Therefore, it is necessary for collectors to consider the improvement of product
collection rate and control the cost of collection investment. For the manufacturer, the higher
the product collection rate under external collection mode, the better the benefits. However,
the manufacturer needs to control the cost of collection investment while considering
increasing the collection rate of product 2 under in-house collection.

Second, we compare the differences in the equilibrium solutions of different models.
The unit transfer prices and the selling quantities of product 1 in Scenario B are higher
than in Scenario A. Moreover, the unit transfer prices and selling quantities of product
1 and product 2 with blockchain are higher than that without blockchain. However, the
selling quantities of product 2 in Scenario B are lower than in Scenario A. Both collector 1
and collector 2 are willing to adopt blockchain in the remanufacturing supply chain. In
the case of no blockchain, collector 1 is always inclined to the manufacturer to introduce
external collection by collector 2. However, collector 1 prefers Scenario B with blockchain
only when demand variance and the coefficient of variance are larger than a threshold
value (i.e., V > Vg and r > rg). The manufacturer’s decision on in-house collection and
external collection depends on the coefficient of collection investment costs. Only when the
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coefficient of collection investment costs exceeds a certain value with/without blockchain
will the manufacturer choose external collection; otherwise, the manufacturer prefers in-
house collection. The manufacturer may choose to implement the blockchain when the
demand variance is less than a certain value.

The findings of the second part have some inferences and implications. Collectors
are looking to introduce blockchain technology to record information about remanufac-
tured products. Not only can they gain accurate demand information value, but they
can also obtain greater sales from blockchain technology that improves consumer trust in
remanufactured products. However, the manufacturer is willing to introduce blockchain
technology only when the variance of demand is smaller than a threshold value. Therefore,
we recommend that the remanufacturing supply chain jointly introduce blockchain tech-
nology when the variance of demand is small so that a win-win situation can be achieved.
In the case of blockchain, the manufacturer and collector 1 prefer external collection only if
both the variance indicator of demand and the coefficient of collection investment costs
meet a certain range.

Finally, our research expands the theoretical perspective and provides practical guid-
ance. This study reveals the impact of demand randomization and blockchain technology
on recycling strategies in a collector-led remanufacturing supply chain and enriches the
theoretical research on the impact of uncertainties on the remanufacturing supply chain’s
operation decision. At the same time, it also provides a practical guide for the introduction
of blockchain technology in the remanufacturing supply chain.

Furthermore, this paper has several limitations, which can be considered for future
research. First, this study does not distinguish between new and remanufactured products.
In some situations, remanufactured products do not meet the same quality standards as
new products. Thus, it would be possible to study the scenario of remanufactured products
that are differentiated in the future. Second, we assume that all participants are risk-neutral
under uncertain demand and do not take into account their risk attitudes. The risk attitudes
of heterogeneous players may vary in practice. Third, the product collection rate was not
set as a decision variable in this study. In fact, product recovery rates are not fixed constants.
Considering making the collection rate a decision variable is also a direction for future
research. In the future, the above issues may prove to be interesting.
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Appendix A

Proof of Proposition 1. In Model AN, given the transfer price, taking the first-order
condition of 74N with respect to q; and g, respectively. Then, we can get the optimal
response function: g1 = ((1— B)(an —cm) +&1 — Bea + (A — by)Ay — ,BA/\Z)/Z(l - B).
The collector 1 has no full of demand information, so taking E[g1] into the E[714;"]. Based
on the first-order condition 9E[m4lN ] /ob; =0, we get the equilibrium outcomes b{!V,

gfN, and g5'N. Then we can get E[r141"] and E[n4}]. Taking the first-order condltlon of
AN
equilibrium outcomes with respect to A1 and Ay, respectively, we have: aSTZ = Zﬁ )\Al <0;
OE[g{N OE[gN A .
a[% I _ 4(1éﬁ2) > 0; a[ilz I (15 ) < 0. Since (ay — cm)(1 — B) > ABA;y, then
BN _ —((1=p)(an—cu)=pA2) oLl _ g  OElEN] _ A2
= f;A% 2 < 0. And —2 o <0 ok = a0 We
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setky = A(l*ﬁ)(ﬂN*Cm)+A2()\1*/5/\2),then%}\II@IN] = 2\ (ko — k). When (i)k > ko, M <0;

8A1(1-4%)
(ii)k < ko, M > 0. For the manufacturer, g;’?fN} = (1_5)A('l’\’8_(01’”_)};§2()\1 ﬁM) > 0 and
2A1 4+3 m)+0%((4—-342) A —BA OE[miN
we set k] = a=p)( ﬁ)(aé\;q;;:\z();r 52()( ) 1),then ;[37)?;4] = 2¢Ay(k; — k). When
(k> ki, aE[”M L < 0; i)k < ki, aE[”M IS 0.0

Proof of Proposition 2. Given the transfer price, taking the first-order condition of 75N
with respect to q; and g, respectively. Then, taking the optimal expected response functions
of g1 and g, into the collectors’ profit functions, we get E[r5)'] and E[nE)]. Then, we have
the first-order condition with respect to b; and by, and letting the derivative be zero, we

OE[mRY] _ __biAf 4+ MA=p)lan—cn)+(A—b)M —B(A—br)da) _
have oby 2(1-p%) 2(1-p%)
OE[mRY] _ 1A + Ao ((A=p)(an—cm) —B(A—b1)Mi+(A=br)A2) _
o T 2(1-p?) 2(1-p2) o

Then we can get the optimal transfer prices b?N and b5N. Taking 65N and bEY into the
optimal response functions of 41 and g, we can get the optimal selling quantities 4N and g5V
Taking the optimal decision Variables into the supply chain members’ expected profits, we can

get E[BN], E[7BN] and E[nBN]. Taking the first-order condition of equilibrium outcomes
with respect to A1 and A,, respectively, we have: % = —(@- ﬁ)(zaﬁ);”h)f en)=pAa) ),
% — ﬁ <0; 35’)2\1 — % <0; athN ((1*ﬁ)(2(+4ﬁj;ﬂzh)fA%Cm) ﬂA/\l) <OaE[lh ] _
R > O T = aeem < O R = mhaem < O aEa[qu;N] =

(2-F*)A > 0. Define k, = A=) (=P 2+P) an—em)+A(2M —Fh—pha)) and for collec-

2(1-p)(4—p%) 247 (1-B2) (4—p2)*
OE[mR}'] BAABEN

tor 1s expected profit, the first-order condition is as follows: —574-= = — A < 0

BN
and aE[n’“ < 0(ii)k < ko, g;l“] > 0.

=2M (kz — k) When (i ( )k > ky,
A(2—p2) AobPN
222(1-p2)(4-p?)

BN _ BN
condition is as follows: aE‘.[g’fZ] = @ Zf)?ibzﬁz)

8E[7rR2 ]

aE[nm ]
IAq

and for collector 2’s expected profit, the first-order
oE [nR2 ]

Similarly, define k3 =

> < 0 and = 2/\2(’(3 — k) Thus,
BN
when (i)k > ks, < 0; (ii)k < ks, > 0. For the manufacturer, we have aEg T 7

A(1=B) (2+B)* (an —cm) +42 ((4-3p*) 11— B*12) 315[7r _ AQ-p)2+p) (an— Cm)+A2((4 36%) Ao~ /33/\1)

2(1-p2)(4-2)° A2 2(1-p2)(4-2)°
Because Ay > Ay > #ml > BAp and (4-3B%) — B = (1-B)2+B)* > 0, we
R 0. 2(4—362) A2 > (14 F2) A2 > 28M1 and (4 — 362) A2 — BA1 > 0, 50 we
> 0.0

OE[mRY]
oo

have
aE[nM ]

get

Proof of Proposition 3. Similar to Model AN, given the transfer price, taking the first-order
condition of 74# with respect to g1 and g, respectively. Then, we can get the optimal
response function: q; = ((1—B)(ap —cm) + &1 — Bea + (A —by1)Ay — BAA,) /2(1 — B?).
Note that collector 1 has accurate demand information, so taking the optimal response func-
tion of g into collector 1’s profit function. Based on the first-order condition
an{ng /ob; = 0, we get the equilibrium outcomes b{'8, g8, and ¢2'5. Then we can get
E[r4B] and E[7{}P]. Taking the first-order condition of equilibrium outcomes with respect
to A and A, respectlvely, we have (ag —¢y)(1 — B) > (an —cm)(1 — B) > ABA, and

aEa[i{fB] = (=f )(”sz\‘;'”) —PAN aEa[ﬁf;B] = ﬁ 2 < 0. The first-order condition of E[q{B]
1
and E[¢g58] in Model AB are the same as Model AN.
OE[naB] A((1— —p)+A(A—BA FE[mE]  A(1- m)+A2(A—BA
a)\];l _ _ BA(( ﬁ)(ai(ligz) (M=PM)) 0 and a/\zlvf _ AQ-p)(ap (Cl )/3) (M—pra) <
i — AA=p)ap=cm)+AA =pAy)) _ 28(1-B)(4+3p) (ap—cm)+A%((4-3B7) A2~ A1)
Define ky = g)‘l(lfﬁz) 1-P22)) and ks = 290 (1= F7) ,
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we have aE[nﬁlB] = 2Aq (kg — k) and [ = 2¢pAy(ks — k), when (i)k > ky,

(i1)k < ks, aE[nm] > 0; when (i) k > ks, aE[”M] <0, (ii)k < ks, aE[ﬂM > 0.0

allsid
a)\l < O,

Proof of Proposition 4. Similar to Model BN, given the transfer price, taking the first-
order condition of 758 with respect to g1 and ¢y, respectively. Then, taking the opti-
mal response functions of g1 and g, into the collectors” profit functions, we get the first-
order condition with respect to by and by, and letting the derivative be zero, we have:

omgt _ M M((-p)(ap—cn)+ter—pea+(A-—bi)M—p(A=bo)ha) _
Wby~ T 2(1-pY) 2(1-p7) N
IRy _bAs 1 22((A=B)(ap—cm) tea—per—B(A-b)M+(A=b)ds) _
b, 21-47) 21-p2)

Then we can get the optimal transfer prices b?® and bPB. Taking bP® and b5® into the
optimal response functions of g1 and g, we can get the optimal selling quantities g% and
q%B. Taking the optimal decision Variables into the supply chain members’ expected profits,

we can get E[7BP], E[BE] and E[nBP]. Taking the first-order condition of equilibrium out-
comes  with  respect to A; and Ay, respectively, we  have
9E[b"] _ —((1=B)(2+) (ap—cm) —pAA2) < 0. CEbT) . ___ B
oA (4—p2)A1 ’ 9Az 4=p)N
aEa[iéjB] = —(47/2%) PP aEa[iézB] = (-8 )(Zz;ﬁ )/(;Z; ;’"Hﬁ AM 0. The first-order condition
of E[¢qFB] and E[¢5P] in Model BB are the same as Model BN.
OE[rRf) _ _ AA(A=P)4P)(ap—cn)+AM=—FM=pl2)) _ o aE[n 31 _ _AA(A=p) @B ap—cn)—A(BAatph=2Ms)) _ g
2 (1-p2)(4—p2)" M (4-F2)"(1-p%) '
Define
k. — 82=F) (A=) 2+p)(ap—cn +A(2A1—ﬁ2A1—ﬁAz)) and ko — 2C=F) (A=) 2+)(ap—cn) ~A(F*A2+pA1—2M) )
° 201 (1-p) (4=p)" ’ 25 (1-p2) (4—p7)° ’
we have O] 2)1 (kg — k) and M = 2A5(k; — k), when (i)k > k lalus <0
N 1("%6 2\rA7 ’ 6/ oA ’
(i) < ko, 2] > 0; when (i) k > ks, BE[”M] <0, (if)k < kr, 2E72) > o,
IE[mBB]  A(1-B)(2+PB)*(ap—cm)+A%((4— 3/32)/\1 B12)
o 2(1-2) (4-?)° ’
OE[mEP] _ A(1-P)(2+p)* (a5~ cm)+A2((4 3F2)Aa—pM)
o 2(1-2) (4-p2)°

According to the proof of Proposition 2, we have (4 3/32))t1 B2Ay, > 0 and
(4 —3B%)A2 — B°Aq > 0. Therefore, we have aE[nM] > 0 and [ 0.0

Proof of Corollary 1. Comparing Model BN and Model AN, Model BB and Model AB, the
differences of the optimal transfer price and selling quantities are

2 _Rr2
PN = b0 = FOSRIEEN) > 0, Elgf] — Elaf™] = BElE] > 0

E[5N] - Elgg™] = E3E[g8™N] < 0, EBPP] - Elbf®) = LE[47] > o,
ﬁZ

ElqP] — Elg{"] = £5E7") > 0, E[95"] - Elgs®] = =3 E[g5") < 0.0

Proof of Corollary 2. Define Xo = (4—B)(1—B)(2+ B)(ap —cm) + (8 —3p%) AN, —
AAyB8(6 — B?). By comparing Model BN and Model AN, Model BB and Model AB, the
differences of the collector 1’s expected profit are
Ap (4—B2)BBN ((4—B)(1—B) (2+B)( m)+(8—=3B%)AA; —BAA, (6—B2
E[nBY] — E[rdN) = B2U-p)i" (0-pa-p (1ﬁﬁ2a)n(f4 Cﬁz) (8-367) AN —pAN2 (6-F7))
— 2 2 2 _ _ B2 BB
Ele)— ) - (AP PR pecause s > 2 and
(8 —38%) — B(6 — B?) > 0, we have (8 —3B2)A; — BA2(6 — %) > 0and Xy > 0, thus we
B2 g2
have E[7BN] — E[n4]] > 0. For Model BB and Model AB, we define ry = %
when (1)r < ro, we have E[n5F] — E[nRf] < 0;

ha(2-F)EPP)Xg

and Vy = BA—B) (21 B)P—p2(6—P) (2—p2)’
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2)r > rgand V > V), we have E[nBB] — E[n4B] < 0;r > ryand V < Vj, we have
R1 R1
E[nB] — E[n£B] > 0.0

Proof of Corollary 3. Define
X1 = (1244B = 362) (1= B)(2+ B) (an — cur) + (6 — B2) (4 — 362) Az — (4+ P?)BAA,,

Xo = (1 B)(2-+ F)(12+ 4~ 36) (ap — ) + (6 ) (4~ 37) e — (44 )iy ks = L L LA

2 bBB
Xo = ((6-F) (2 ) (4362 + f4+ F))V, and ky — REFIBEE
2(1-p2) (4—
By comparing Model BN and Model AN, Model BB and Model AB, the differences of the
manufacturer’s expected profit are E[niN] — E[ngN] = ¢A3(k — kg) and
E[mir] — Elmif] = A3 (k — ko).
Because

A > Ay > #ﬁ/\l > BA1, 12 +4B — 382 > 0and (6 — B2) (4 —382) > (B? +4),

we have (6 — p?) (4 3[32)/\2 — (B +4)BA; > 0. Thus, we have X; > 0 and X, > 0.
When(1)k>k8, (BN — E[74N] > 0; k<kg, [BN] — E[m4N] < 0. (ii) k > ko, we have
E[7BB] — E[{{f] > 0; k > ko, we have E[nEF] — E[n5F] < 0. O

Proof of Corollary 4. Comparing Model AB and Model AN, Model BB and Model BN, the
differences of the optimal transfer price and selling quantities are
E[p4B] — bAN = (asfaZNA)l(lfﬁ) > 0, E[bBB] — BN = (ap—an)(1-B)

(2-B)M ’
E[bBB] _ bBN (ﬂB(*ﬂN))(;*ﬁ) >0, E[qi‘l ] — [ql N = ﬂé@ ﬂﬁzxs >0,
E[q48] — E[gyN] = e in @8 > o, E[gBB) — E[gPN] = jpttsii s >
Elg2"] - Ela2"] = it > 0-O

Proof of Corollary 5. Define
Xs = (ap —an)(1 = B)(2+ B)((1 = B)(2+ B)(ay +ap — 2cm) — 2A(B?A1 + PA — 2A1)) and
Xe = (ap—an)(1—B)(2+P) ((1 —B)2+ B)(ap +an — 2¢cm) — ZA(ﬁAl —2Ay + ﬁz)\Q)).
By comparing Model AB and Model AN, Model BB and Model BN, the differences of the
collectors’” expected profit are
2 _ —_B)((1— _ _
E[mf®] — E[n4N) = (r+p2)V+(ap—an)(1 /3)(;1(1 f;(zu)wlv 2em)+28(M—pA2))
BB BNy _ (B +(24+B)*) VX
E[T[RZ] E[TERZ ] 2(1,‘52)(,4+‘32)2

Since ap + any — 2¢ > 2(any — cm) > 0, we have X5 > 0 and Xg > 0. Thus, we have
E[mgf] — E[mR)'] > O and E[nR3] — E[mg)] > 0.0

(B2+r(2+p)*)V+Xs5
2(1-p2) (—4+42)"

>0 E[T[Rl] E[nlgi\]]

Proof of Corollary 6. Define
Xy = (ap —an)(1 = B)(5+3p)(ap + an — 2cm) +28(ap — an)(1 = ) (A1 + (4 +3B)A2)
and X7 = Z(HB — LIN)(l — IB)(Z + ‘B) (613 +an —2cm + A(A] + )\2))/

— X
Vi = s 20 V2 = (g

By comparing Model AB and Model AN, Model BB and Model BN, the differences of

— _5p24 p4
the manufacturer’s expected profit are E[n{f] — E[nEN] = X S(Zi)ﬁ(zl;(ffﬁ;ﬁ 14 and
Xy—3(r+p*)V .

E[m}8] — E[ ;gv] = % When (i) V < Vi, E[npf] — E[my¥] > 0; V > W,
E[nff] — E[m{i]N] < 0. (i) V < V,, E[nBF] — E[xBN] > 0; V > V,, E[nBF] — E[zBN] < 0.
O

Proof of Corollary 7. Taking the first-order condition of the collection rate for the consumer sur-
plus in Model AN and Model BN, respectively, are as follows: aCSIN = A0-P )(”Nm(ci”);A)z(Al ),
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acsIN _ 2(1-p?)(an—cm+AAs) +Ax(4=B2)EN  5esDN  (1-B)(2+B) Alan —cm) +A7((4-3p2) M —F°A2)

oAy 16(1—p?) 7 4(1-p2)(4-p2)° ’
aCcSPN  (1-B)(2+B)*Alan—cm)+02((4-3F2) A2 —BPA1) .
S = 4121_&)(4_/52)2 2. Since Ay > Ay > BA > BAy and

4—3p% > B2 we have (4—3B%)A; > B°A; and (4—3B%)A, > B?Ay. Therefore, we

can obtain a%i?’ >0, agiiN >0, a%i?N > 0, and a%iZN > 0. Taking the first-order condi-
tion of retail prices with respect to A; and A,, respectively, we have: agilN = —% <0,
agfj = _% <0 ag)zf\‘: = -3 <0 aapf]N = _46132 <0, a&ﬁj - _2(4;5}/32) <0
%:—z(fiﬁ<0,and%:—ﬁ<0.ﬂ
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Abstract: The receding globalization has reshaped the logistics industry, while the additional pressure
of the COVID-19 pandemic has posed new difficulties and challenges as has the pressure towards sus-
tainable development. Achieving the synergistic development of economic, social, and environmental
benefits in the logistics industry is essential to achieving its high-quality development. Therefore,
we propose a data-driven calculation, evaluation, and enhancement method for the synergistic de-
velopment of the composite system of economic, social, and environmental benefits (ESE-B) of the
logistics industry. Based on relevant data, the logistics industry ESE-B composite system sequential
parametric index system is then constructed. The Z-score is applied to standardize the original index
data without dimension, and a collaborative degree model of logistics industry ESE-B composite
system is constructed to estimate the coordinated development among the subsystems of the logistics
industry’s ESE-B system. The method is then applied to the development of the logistics industry in
Anhui Province, China from 2011 to 2020. The results provide policy recommendations for the coor-
dinated development of the logistics industry. This study provides theoretical and methodological
support for the sustainable development aspects of the logistics industry.

Keywords: data-driven; logistics industry; composite systems; synergy; sustainability

1. Introduction
1.1. Background

Currently, the world is experiencing the largest changes in a century [1]. Further, the
“second generation” open policy with regulatory convergence at its core has triggered a
new round of global economic and trade rules games, and the global pattern is showing
an evolutionary trend of accelerated multipolar development [2]. Given the reshaping
of the global value chain, how can the logistics industry (LI) develop itself? In today’s
international multilateral environment, sustainable development should take precedence
and the LI should achieve the synergistic development of economic, social, and environ-
mental benefits (ESE-B) for sustainable development. As a link between production and
consumption, the LI plays an important role in supporting and guaranteeing the regional
economic development process and has become a new driving force for economic growth
and social development [3]. For example, the LI provides a large number of employment
opportunities and creates tax revenue but, at present, while the LI is playing an increasing
role in promoting regional economic development, its negative impact on the ecological
environment and society is also becoming increasingly obvious, and the rapidly developing
LI will inevitably produce a series of environmental problems such as increased waste
emissions, aggravated air pollution and increased energy consumption, as well as increased
traffic accidents and noise pollution. For example, the average energy consumption of
China’s LI over 2009-2019 accounted for 8.44% of the total energy consumption [4].
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Therefore, in the context of global sustainable development, it is the goal and motiva-
tion of this article to define the synergistic development of economic, social and environ-
mental benefits of the logistics industry, evaluate the level of their synergistic development,
realize the synergistic development of economic, social and environmental benefits of the
logistics industry, propose suggestions for the government and practitioners to enhance
the synergistic development of economic, social and environmental benefits of the logistics
industry, and promote the sustainable development aspects of the logistics industry.

1.2. Research Ouverview

Achieving the synergistic development of economic, social, and environmental ben-
efits of the logistics industry is essential to achieving its high-quality development [3,4].
Synergetics, founded by the German physicist Haken, is the study of the way in which
subsystems within open systems work in concert and interact with each other to evolve
the system from disorder to order [5,6]. The idea of sustainable development was first
introduced in the World Conservation Strategy in 1980 and has since become a common
worldwide effort [7]. Sustainable development chiefly alludes to ensuring that develop-
ment of the population, economy, resources, society, and surrounding conditions, as well
as the overall human development, does not deprive future generations of good living
conditions [8-10]. Many studies on the synergistic development of the logistics industry
are centered on the synergy with other industries; therefore, the literature mainly covers
the following aspects [11-13].

(1) Research on synergistic development of logistics industry

Scholars have mostly studied the coordinated development of the logistics industry
with other industries. For instance, Gordon et al. considered that the productive service
industries, including logistics, play an important role in the development of manufacturing
industry [14]. Hu and Shu [15] studied the coordinated development of the LI and agricul-
tural ecosystem, and the path selection for the coordinated development of agricultural
logistics so that the ecosystem can be optimized. Liang and Gu [16] studied the level of
synergistic development between agriculture and LI in China from 2010 to 2019 and its
temporal trends, and measured the correlation between the two industries using a gray
correlation model to explore the key factors affecting the synergistic development of the
two industries. Scholars likewise focused on the coordinated development of the LI and
the regional economy, with Klaus [17] arguing that the logistics expenditure of a country
is proportional to its national economic wealth, finding that, with the increasing global
integration, logistics has become the basis of wealth. Chen et al. [18] studied the coordi-
nated development paths of logistics and the economy in metropolitan cities based on the
coordinated development theory. The academic research on the relationship between the
LI and economic system and other industries has achieved fruitful results, thus confirming
that the LI and other industries, as well as the regional economy, can promote each other
and develop together. However, there are fewer studies on the synergistic development of
the subsystems within the logistics industry.

With increased financial globalization, deepening environmental degradation, and
overexploitation of assets and energy, all modern logistics activities can have positive or
bad impacts on the ecological surrounding conditions [19], and the relationship between
LI and the environment is gradually becoming a research hotspot. Liu et al. [20] used
data from 42 Asian countries between 2007 and 2016 to demonstrate that logistics perfor-
mance is significantly related to environmental degradation. Zhou [21] took the regional
“logistics-ecological environment” composite system as research object, and based on the
synergy theory, studied the coordinated development of regional logistics and ecological
environment from the perspective of low carbon. Evangelista [22] studied the environmen-
tal performance of third-party logistics service companies and proved that these companies
assume a critical part in reducing carbon emissions and improving the ecological execution
of logistics. Overall, the studies on the relationship between the LI and environment have
concluded that the LI and environment can develop in a mutually supportive manner.
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However, the studies treat the environment as an independent system, which cannot reflect
the environmental impact of the logistics industry, and does not consider the social impact
aspect of the logistics industry.

(2) ESE-B synergy evaluation study in the logistics industry

When scholars study system coordination relationships, they generally construct
evaluation index systems, collect data, and then use models to evaluate these systems. In
constructing an evaluation index system, the LI is generally considered from the input-
output perspective, the logistics economy from the growth level and foreign trade, and the
logistics environment from pollution and carbon emissions [23-25]. These indicators do
not fully reflect the benefits generated by the logistics industry, or are not closely related to
the development of the logistics industry, and do not take into account the environmental
factors such as resource utilization and energy consumption directly generated by logistics
activities, not to mention the social factors. In terms of research methods, most studies
used coupled coordination degree and composite system synergy models to study the
coordinated development of two or more systems. Yu and Yin [26] studied the ESE-B of
urban public transportation infrastructure using a coupled coordination degree model and
investigated the influence of three benefits on its coordinated development level using a
panel regression model. Li et al. [27] studied the growth and environmental impacts of
green logistics performance in One Belt, One Road Initiative countries during 2007-2019
using least squares and generalized method of moments. There are also several other
representative methods, such as data envelopment analysis to measure the low-carbon
efficiency of LI [28,29] and the energy value approach to study the sustainability of logistics
systems [30]. These methods have been proven to be better methods for studying synergistic
relationships through theoretical and practical validation; however, development of more
scientific measures for evaluating synergistic relationships is the direction of future research.

Based on these studies, scholars have each put forward policy recommendations to
help increase the coordinated development of the LI and the economy or the environment,
such as carrying out logistics infrastructure development, strengthening technological
innovation, and creating a favorable environment [31,32].

1.3. Limitations of Prior Studies

In general, the extant research on coordinated development issues related to the
LI has achieved clear results and has established a decent starting point for the study
of the LI complex system, but due to the different perspectives and depths of scholars’
understanding, the existing research needs further improvement as follows.

(1) Most extant studies focus on the coordinated relationship between two systems: LI
and ecological environment/regional economy/other industries, ignoring the social
system. Further, most of them treated the ESE-B as independent systems instead of a
single complex system; therefore, the research on LI's ESE-B composite system needs
to be expanded.

(2) In the construction of the ESE-B index system, the selected indicators are not compre-
hensive or not closely related to the development of the LI, and environmental factors
such as resource utilization and energy consumption directly generated by logistics
activities are not considered, so that the constructed index system cannot reflect well
the essence and characteristics of the ESE-B composite system of the LI. As such, there
is a need to accurately construct the LI ESE-B composite index system.

(38) The CSSDM is generally utilized, which has laid a good foundation for this paper, but
it is a challenge to measure and evaluate the synergy development level of LI's ESE-B
composite system scientifically and accurately. To this end, we construct a data-driven
LI's ESE-B composite system synergy degree model.

Therefore, our research objectives are: (1) to take the logistics industry as a total system
and study the economic benefits, social benefits, environmental benefits and coordination
of this total system; (2) to scientifically and objectively construct evaluation indicators for
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the ESE-B composite system of the logistics industry; (3) to scientifically and accurately
measure and evaluate the level of synergistic development of the ESE-B composite system
of the logistics industry using a data-driven approach, and on this basis, to propose targeted
countermeasures and suggestions.

1.4. Manuscript Structure

This study adopts the composite system synergy model to study the ESE-B composite
system of the LI and then considers Anhui Province as a case study. The evaluation
index system of LI's ESE-B composite system is constructed, and the orderliness of ESE-B
subsystems and the composite system synergy of LI in Anhui Province are evaluated and
improved by collecting and calculating basic data on Anhui Province from 2011 to 2020.
The remainder of this paper is organized as follows. The subsequent segment presents
the way(s) of doing things, which introduces the data-driven methodological processes of
data collection, data handling, data modeling and application. The third segment presents
the case study, which estimates the level of coordinated development of the LI's ESE-B
composite system in Anhui Province, China, and evaluates and seeks to enhance the
coordinated development level. The final section offers the conclusions from the study.

2. Materials and Methods

To evaluate and improve the synergistic development level of LI's ESE-B composite sys-
tem more objectively, comprehensively, and accurately, this section introduces the methods.

2.1. Method Flow

We promote the synergy of the ESE-B of LI, to achieve more efficient and sustainable
development. Evaluating the relationship between these three systems from the systems
theory viewpoint and formulating relevant policies from the worldwide optimization per-
spective are pressing requirements for SDLI research. However, the LI's ESE-B composite
system includes multiple data types. As such, we need to determine how to apply effective
models to quantify, assess, and recognize numerous pointers and whether the proposed
strategy proposals can really uphold related government navigation. These conundrums
present research challenges. To meet this difficulty and ameliorate the coordinated de-
velopment of LI's ESE-B composite system, this paper proposes a data-driven method
for measuring, evaluating, and enhancing coordinated development level of LI's ESE-B
composite system. We collected economic, social, and environment-related data for LI,
while data processing entailed turning the original data into measurement data in the
evaluation index system [33]. The methodology is also depicted in Figure 1.

Data driven Research contents and method Research Objective
Data e  Economic benefits Subsystem Establishing logistics
llection »e  Social benefits Subsystem » industry ESE-B composite

coflectio . Environmental benefits Subsystem system index system
Data ¢ Ehlﬁ”'late price Cha"ges influence Original data is processed
processing *|®  Emission coefficient method | as the measurement data
. z-score normalization method
. Composite Systengl Synergy Model Measure and evaluate the
Data A logistics industry ESE-B
modeling “1 | composite system synergy
degree
Suggestions on promoting
Method . Pu(ti forward. couillltennehasllires the logistics industry
. L. » and suggestions through the » ESE-B composite system
application above analysis P Y

synergy degree

Figure 1. Research process.
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The first step, data collection, is mainly to collect economic, social and environmental
related data on the LI, including LI's cargo turnover, added value, energy consumption,
carbon emissions, etc.

The second step, data processing, is to process the original data into the measurement
data in the evaluation index system, including the elimination of price fluctuations, the
conversion of standard coal, the use of z-score for standardization processing, etc.

The third step, data modeling, is to construct the composite system synergy model
and correlation analysis model, including analyzing the sequential parameters, orderliness
and synergy of the 3 subsystems of economic benefits, social benefits and environmental
benefits of LI.

The fourth step, data application, is to put forward targeted policy recommendations
to promote the coordinated development of an ESE-B composite system based on the
research results.

2.2. Sequential Parametric Index System

In the related literature, the LI is characterized as three parts: transportation, ware-
housing, and postal industry. Since these three parts comprise over 85% of the gross value
added of the LI [34], there is a certain reliability in adopting this definition. The review’s
motivation is to analyze the coordination relationship of the LI’s ESE-B composite system
according to the principle of covariance. The ordinal parameter is a parameter variable that
influences the evolution direction of the system and characterizes the degree of ordering of
the system; as long as the ordinal parameter is controlled, the development direction of
the entire system can be grasped [35]. However, the selection of different indicators will
produce different results of the ordinal parameter calculation. As such, the scientific and
reasonable selection of indicators becomes key to the accuracy of the sequential parame-
ter calculation results, which requires that the selected indicators should conform to the
connotation and reflect the characteristics of sequential parameters. On the basis of the
meaning of SDLI, referring to the existing research results on LI's coordinated development
and guided by the sustainable development and green logistics theories, the typical order
parameter index that can represent the ESE-B composite system of the LI is selected. We
also construct a coordinated development index system of LI’s ESE-B composite system
consisting of a subsystem layer (ESE-B), element layer (input, output), and index layer. This
evaluation index system considers the LI as a total system, and its system coordination
degree and the orderliness of each subsystem reflect the SDLI level, being an accurate
definition of the SDLI [13].

The assessment indexes of the LI's economic subsystem mainly contain the amount of
investment in fixed assets and the added value of LI [36]. Compared with previous research
indicators, this study adds “Internet broadband access port” [37] to reflect the information
input of LI, because the input of information technology is necessary.

The evaluation indexes of LI’s social subsystem mainly reflect the contribution and
harm of the LI to the society, among which LI’s added value and vehicle tax revenue are
significant parts of the public economy, while t the freight turnover is LI's commitment
to freight transportation. In this study, the indicator of “vehicle and vessel tax revenue”
was added to reflect LI's contribution to the society, and the number of traffic fatalities and
property damage were added to reflect the LI’s harm to the society [38].

LI's environmental subsystem mainly measures the effect of the LI's development on
the ecological environment from two aspects: pollution and governance. The unfriendly
effect of LI through CO; emissions on the environment is climate warming, as LI's exhaust
gas emissions will pollute the environment. The number of deaths and property loss
in traffic accidents and road traffic noise reflect LI's adverse impact on society, which is
also a new indicator added here based on previous studies [9,21]. The details are shown
in Table 1.
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Table 1. The index system of LI's ESE-B composite system.

Subsystem Sequential Parametric Indicator Layer Properties References
LI Investment in fixed assets (billion yuan) E11 Positive 9]
Economic Number of cargo vehicles (million units) E12 Positive [9]
Benefi Internet broadband access ports (million) E13 Positive [7]

enefits
subsystem Cargo turnover (billion ton kilometers) E14 Positive [21]
S Value added of logistics industry (billion yuan) E15 Positive [21]

Logistics industry contribution rate (%) E16 Positive [21]
LI Logistics network mileage (million km) E21 Positive [13]
Social Human resource input (10,000 peo.pl.e) E22 Pos%t%ve [13]
Benefits Total wages of urban personnel (billion yuan) E23 Positive [38]
Subsystem Vehicle tax revenue (billion yuan) E24 Positive [38]
S, Number of traffic fatalities (persons) E25 reverse [38]

Traffic accident property damage (million yuan) E26 reverse [38]
I Energy consumption (million tons of standard coal) E31 reverse [7]
Envi Electricity consumption (billion kWh) E32 reverse [13]

nvironmental . . o o
Benefits Greening coverage ra.te. of built-up area (%) E33 Positive [21]
Subsystem Carbon emissions .(I'I‘IIHIO.H .tons) E34 reverse [7]
S Exhaust gas emission (million tons) E35 reverse [7]

3 Road traffic noise (decibels) E36 reverse [9]

2.3. Data Sources and Processing

(1) The data in Table 1 were predominantly acquired from the China Energy Statistical
Yearbook, China Statistical Yearbook, and Anhui Statistical Yearbook for
2012-2021 [39,40]. To eliminate the price ups and downs effect, price-related fac-
tors, for example, property damage and vehicle charge were switched over completely
to real values, with 2011 as the base period.

(2) LI's carbon emissions in Table 1 were calculated according to the carbon emission
factors of 17 energy sources in the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories, and then calculated by the amount of energy consumed by the LI [41].
LI's exhaust gas emissions in Table 1 were determined by the emission factor method,
drawing on EPA, AP-42, and Beijing emission factors [42] The emissions of NOX,
PM10, PM2.5, SO, of the LI in Anhui Province from 2011 to 2020 were measured by
the emission factor method in the light of the primary energy consumption of the
LI in the energy balance sheet. Finally, the exhaust gas emissions were obtained by
summing up and the missing energy data in 2020 was filled in by interpolation.

(3) Standardized data processing.

The standardization of raw index data is intended to transform raw index data into
dimensionless index measurement values. Data standardization methods include, for ex-
ample, min-max standardization or the z-score method. The z-score can reflect the original
data values more accurately, so this paper uses it for standardization [43], as follows:

X =4 " 1)
n
_ ? 1 Xii
x; - Ee @
. — 2
5. — 4 Ei=(Xij — X)) 3
] n—1

where X;‘]- is the normalized data, Xl-]- the raw data, Y]- the mean of Xl-]-, and S i the standard
deviation of X;;.
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2.4. Data Modeling

The complex system synergy model can scientifically calculate the level of complex
system synergy and is now widely used to analyze the dynamic synergy evolution of a
system [20,44]. We also use it to measure the dynamic synergy level of LI's ESE-B complex
system as follows.

(1) Orderliness of sequential parameters

LI’s ESE-B composite system can be expressed as S; = {51, 52, S3}, which represent
the three subsystems of ESE-B, respectively. The order parameter of each subsystem is
e = (e]-1,ej2,ej3 ...... e]-n), where j =1, 2, 3, and n > 1 denotes the number of sequential
parameters of each subsystem. aj; <e;; < f;,i=1,2,3...... n. To ensure the stability of
the system, aj; and B;; are the upper and lower limits of ordinal parametric components
eji [41]. Each ordinal parametric component’s orderliness is:

uileji) = % ej; is a positive indicator

(4)

uileji) = ﬁ];— ej ¢j; is a negative indicator

From Equation (4), p;(e;i) € [0, 1]; the larger the value is, the greater is the contribution
of indicator ej; to the ordering of the subsystem.

(2) Subsystem orderliness

The degree of subsystem order reflects the sum of the contribution of all components of
order parameter variables ¢; to subsystem S;. The orderliness of the environmental benefit
subsystem Sj reflects the contribution of ordinal variables E31, E32,- - - ,E36 to subsystem
S3. It can be obtained by integrating each y;(ej;). We use the more accurate geometric mean
method to synthesize the orderliness of each subsystem, y;(e;) [45,46]:

©)

where y;(ej) € [0,1]; the larger ;(e;) is, the greater is the contribution that e; makes to the
orderliness of subsystem S; and the higher is the degree of the subsystem orderliness, and
vice versa.

(3) Composite system synergy model
For a given initial moment to, let the degree of subsystem S; order be
y? (¢/),j = 1,2,...,k when the overall development of the composite system evolves

to the moment t;; at this point, the degree of subsystem S; order is yjl- (e]-), j=12...,k
Then, the coordination degree of composite system C(t) is [47]:

; 1/k
TT[ut(e) = 0 (ey) ] ] (6)

]

C(t) = e.l

mlﬂ {ll E’ 1/[? }
where 6 =
[t ep) () 20]

In Equation (6 ; ej) — u; 9(e ) is the change in the magnitude of subsystem S; from to

toty, and u]t (ej) — u? (¢j) €l- 1 1]. As C(t) € [—1, 1], the larger the value is, the higher the
degree of composite system coordinated development is, and vice versa. The significance
of the introduction of parameter 6 is that only condition u; (ej) — u? (ej) >0,V €[1,k], and
the synergy degree of the composite system is positive. If in the [ty, t;] time period, the
increase in the orderliness of one subsystem is larger and the increase in the orderliness of
some other subsystems is smaller or even decreases, the coordinated development state of
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the entire complex system is bad or not coordinated at all, as shown by C(t) €[—1, 0]. In
this study, the LI ESE-B composite system has three subsystems. Thus, k = 3 and Equation
(6) can be written as [48,49]:

C =03/ [y (er) — u(en)] - [ (e2) — u(e2)] - [t (e3) — u(es)] )

From the literature, there are two algorithms for Equation (6): one takes the same
moment as the base period and the other takes the neighboring moments as the base period.
The two algorithms provide useful ideas for the comprehensive analysis of the composite
system synergy; specifically, the first one can well reflect the long-term evolution trend of
the composite system and the second one can better reflect whether the composite system
is in a stable state of synergistic evolution. As such, we use two methods to measure
the LI's ESE-B composite system synergy. At present, most countries and international
organizations generally use the same and adjacent base period synergy degree classification
standard [50], as shown in Figure 2.

Same ba:e period Adjacent base period
Coordination Coordination Status

[~1.0~0.0) Seriously non-synergistic Coordination Coordination Status
[0.0~0.4) Non-synergistic [~1.0~0.0] Non-synergistic
[0.4~0.6) Mildly non-synergistic [0.2~0.4) Low synergistic
[0.6~0.8) Basic Synergies [0.4~0.6) Moderate Synergies
[0.8~0.9) Good Synergies [0.6~0.8) Highly Synergies
[0.9~1.0) Quality Synergies

Figure 2. Evaluation criteria for the synergy degree: same and adjacent base periods.

LI's ESE-B composite system synergy model can explore the synergistic development
of LI's ESE-B and the classification of the coordination level can precisely define the level of
coordination development, which is an important insight for the design of countermeasures
to promote LI's synergistic development and indicates the direction of the SDLL

2.5. Data Optimization for Decision Making Applications

In the context of the increasingly prominent contradiction between the economic
development, resource shortage, and social demand of LI, promoting the synergistic devel-
opment of ESE systems of LI is of great practical importance to enhance the SDLI. Since
the ESE-B of LI are considered comprehensively, an index system containing these three
subsystems is proposed here. Due to the multiple sources of data for the LI composite
system, this paper puts into use a data-driven approach. The study thus aims to apply a
data-driven method to precisely measure, evaluate, and identify the synergistic develop-
ment level of the LI's ESE-B composite system, as well as to propose strategy proposals in
view of the quantitative evaluation results and give a premise to decision making for LI
specialists and chiefs. The specific applications are shown in Figure 3 below.

In the first step, the data related to the LI's ESE-B composite system are collected and
the database established. As indicated by the standards of data accessibility and scientificity,
the ESE-B composite system index system is constructed from three aspects, covering the
ESE-B of LI This step represents the extraction and organization of data.

In the second step, the raw data are standardized using the Z-score method, so that the
raw data are all converted to dimensionless values; that is, the indicators are all at the same
quantitative level and can be used for comprehensive measurement. This step represents
the conversion of the data to make them comparable.
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Data-driven research on the coordinated development of
economy-society-environment complex system in logistics industry

Data collection, database construction and
index system construction
Data dimensionless
z-score method .
processing
v v
D Upper and lower limit Sequential parametric
?la method d orderliness Case
Driven ¢ ‘ study
Geometric averaging > Subsystem orderliness
method -
Composite system ESE Composi
synergy model d System Synergy
]

¢

Policy suggestions on promoting the logistics
industry ESE composite system synergy degree

Figure 3. Data application diagram.

In the third step, the ordinal covariates orderliness is calculated using the upper
and lower bound method, and the geometric mean method is applied to calculate LI's
orderliness of ESE-B. This step represents the processing of standardized data to measure
the contribution degree of ordinal covariates to the orderliness of subsystems.

In the fourth step, LI's ESE-B composite system synergy model is constructed, LI's
ESE-B composite system synergy degree is calculated, and the coordination degree among
LI’s subsystems is evaluated. This represents is the modeling of the data, being used to
solve the realistic problem of the synergy of LI's ESE-B.

In the fifth step, in view of the data-driven quantitative estimation and assessment
results, the research conclusions are drawn and the shortcomings in LI's development
identified; based on these, strategy proposals are proposed to promote the synergistic
development of LI's ESE-B. This step represents the sublimation of the data and the
presentation of the data modeling results to derive policy recommendations based on data.

Through the above data application, we can realize the measurement, evaluation. and
optimization improvement of LI's ESE-B composite system synergy and provide theoretical
and methodological support for the SDLL

3. Case Study

Using the above research method, the study is carried out using the example of LI's
ESE-B in Anhui Province, China. Section 3.1 presents the case background, Section 3.2
shows the data results calculated by using the above research method, and Section 3.3
provides suggestions to promote the synergy of LI's ESE-B complex system in Anhui
Province based on the results.

3.1. Background

Anhui Province, as shown in Figure 4, is located in East China, connecting Jiangsu
Province and Zhejiang Province to the east, Hubei Province and Henan Province to the
west, Jiangxi Province to the south, and Shandong Province to the north. It is not only
a national comprehensive transportation hub, but also a deep hinterland of the Yangtze
River Delta region. The LI of Anhui Province has been developing well. In 2020, the total
revenue of LI in Anhui Province was 495 billion yuan, increasing by 2% compared with
the previous year. The ratio of total social logistics cost to GDP was 14.7% [13], being
lower by 0.2 percentage points compared with the previous year, which was the same
as the national level. In 2021, the total social logistics in Anhui Province maintained a
steady growth, reaching 8.08 trillion yuan, with a year-on-year increase of 15.1% and being
5.9 percentage points higher than the national value. LI's added value was 98 billion yuan,
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with a year-on-year increase of 13.9%. The pace of transformation and upgrading is also
accelerating. However, Anhui Province, as a latecomer in the Yangtze River Delta region,
still requires improvements in terms of the ecological operation mode of LI and social
impact. Therefore, through measuring, evaluating, and enhancing LI's ESE-B composite
system in Anhui Province, this paper proposes policy recommendations to promote the
coordinated development of LI's ESE-B composite system in this province in light of the
appraisal results. This is of incredible importance to advance the SDLI of Anhui Province.
However, this case study is restricted to Anhui Province only, and it can only be used
as a reference by other provinces and cities. The condition underlying this case study
is the uncoordinated development of ESE-B complex system of the logistics industry in
Anhui Province.

1.2 1.2 1.2 1.2 1.2

0.8 ? 0.8 0.8 0.8 08
0.6 0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2 0.2

1.2 12 1.2 1.2 12

08 = 08 0.8 08 = 08
06 06 0.6 0.6 0.6
0.4 0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2 0.2
1.2 12 12 12 12

0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4

0.2 0.2 0.2

Figure 4. Orderliness of sequential parametric indicators of ESE-B composite system.

3.2. Data Analysis Results

(1) Normalized values of sequential parameters

For the collected LI ESE-B composite system index data in Anhui Province, standard-
ized values were calculated using Formulas (1)-(3) (i.e., the z-score method), as shown in
Table Al. See Appendix A.

(2) Orderliness of sequential parametric indicators

In this study, when calculating the orderliness of subsystem sequential parametric
indexes, we use our own comparison method to set the lower limit of the index threshold
as the minimum value and the upper limit as the maximum value of the same index.
It is expressed as 1.01 times of the minimum and 1.01 times of the maximum values,
respectively. According to Equation (4) and the data in Table A1, the orderliness of the
sequential parameter indicators of the LI’s ESE-B composite system in Anhui Province is
calculated, as shown in Figure 4.

From Figure 5, the overall orderliness levels of the sequential covariates are low, but
most of them show an upward trend from 2011 to 2020; the cargo turnover (E14), human
resources input (E22), road traffic noise (E36) show an upward and then downward trend;
the contribution rate of the LI (E16) and traffic accident property damage (E26) show a
downward and then upward trend. In general, the degree of orderliness is improving.
However, energy consumption (E31), electricity consumption (E32), carbon emissions (E34),
and exhaust gas emissions (E35) show a decreasing trend, which means that these sequential
parameters are areas that need to be improved (i.e., the orderliness of environmental benefits
needs to be improved).
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Figure 5. Orderliness of logistics industry ESE-B subsystems and synergy of composite systems.

(3) Calculation results of the orderliness and synergy degree

According to Equation (5) and the data in Figure 5, the orderliness of the ESE-B
subsystems of LI in Anhui Province during 2011-2020 are calculated, with 2011 as the base
year. The coordination degree of the same and adjacent base periods of LI's ESE-B composite
system in Anhui Province from 2012 to 2020 is calculated according to Equations (6) and (7),
as shown in Figure 5.

Based on a single system, in terms of the economic efficiency of a subsystem, order-
liness was only 0.012 in 2011 and reached 0.755 in 2020, with an average annual increase
of 6.19%. Except for the decline in 2017 compared with 2016, the rest of the years showed
an uptrend. The justification for this is that the orderliness of the LI’s contribution (E16)
decreased in 2017, because the country and provinces and cities began to promote the con-
struction of ecological civilization and comprehensively deploy the green and low-carbon
development of LI; as a result LI began to focus on environmental benefits, and relatively
speaking, the economic development speed decreased. However, after two or three years of
coordinated development, the economic benefits subsystem orderliness began to increase
in 2018 [51]. The orderliness of social benefits was only 0.011 in 2011 and reached a peak
of 0.877 in 2020, with an average annual growth of 8.66%, which shows that the LI of
Anhui Province is relatively good in terms of social benefits. However, the orderliness of
social benefits can be improved even further if human resource input is increased. The
environmental benefit orderliness shows an opposite trend to those of economic and social
benefits, being 0.575 in 2012, reaching the minimum of 0.051 in 2018, and increasing to
0.139 in 2020, which indicates that the LI in Anhui Province has begun to pay attention
to environmental protection, actively adopt new technologies and equipment, change the
previous rough development mode, and gradually move toward a new logistics mode of
green and collaborative development.

Based on the overall trend, between 2012 and 2020, the synergy (using the same base
period) of LI's ESE-B composite system in Anhui Province showed a decreasing trend year
by year, reaching a minimum value of —0.655 in 2020, indicating a serious non-synergistic
state. At the same time, the synergy degree of LI's ESE-B composite system in Anhui
Province shows a jump forward with insignificant increase, except for 2013 when it reached
a moderate synergistic evolution. The rest of the analyzed years are alternating between
non-synergistic evolution and low synergistic evolution. This indicates that the synergy
degree of LI's ESE-B composite system in Anhui Province needs to be improved, as does
the stability degree. According to the order degree of each subsystem, the main reason for
the serious non-synergy of LI's ESE-B composite system in Anhui Province is that the order
degree of the environmental benefit subsystem has been decreasing in almost all years and
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the improvement of the environmental protection capability of the LI is the top priority in
this province at present.

(4) Calculation results of two-synergy degree of each subsystem

From Figure 6, the synergy of LI's ESE-B subsystems in Anhui is relatively stable in the
same base period; basically, the synergy of two subsystems (economic and social benefits)
increased year by year, but the synergy of two subsystems (environmental benefits and
other subsystems) is not only negative, but also decreased year by year, which caused
the synergy of the ESE-B composite system to decrease year by year. The synergy of LI's
ESE-B subsystems in Anhui shows a repeated trend of “rise—fall” in the adjacent base
period, which also causes the synergy of the ESE-B composite system to show almost the
same characteristics. This indicates that the development of the environmental efficiency
subsystem and other subsystems of the LI in Anhui Province is non-synergistic, which
hinders the improvement of synergy, and indicates that environmental problems need to
be solved urgently.

1 0.3

— U1-U2 Ul-U3  wem U2-U3 C(t) — U1-U2 ul-u3 — 2-U3 C(1)
0.8 0.25
0.6 0.2 ‘
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0.2
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2012/ 2013 zull 20150 201' I)I 20. 2019 2020
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Same base period Adjacent base period

Figure 6. Synergy degree of two-two subsystem of logistics industry ESE-B.

3.3. Policy Recommendations

The synergistic development LI's ESE-B is of extraordinary and useful importance for
sustainable development. The measurements and evaluation in Anhui Province from 2011
to 2020 continue to decline and the synergy degree within each subsystem varies and is
unstable. The following suggestions are proposed to promote the coordinated development
of LI's ESE-B complex system from three aspects: policy, intelligent systems, and energy,
respectively. We thus propose the following countermeasures:

(1) Formulate corresponding LI policies to promote the coordinated development of ESE-B

LI's ESE-B composite system relies upon the increase of each subsystem order degree
and the order parameter. From the calculation results, problems arise due to the order de-
gree decline of the environmental benefit subsystem. The synergy degree of the composite
system is declining overall. Therefore, the government should give full play to its guiding
role and formulate comprehensive policies for the development of the three aspects of the
LI (ESE-B) to provide a solid policy platform for the synergistic development of LI's ESE-B
complex system.

(2) Promote the modernization of the LI and the development of intelligent logistics

The average orderliness of LI’s social benefit subsystem in Anhui Province from 2011
to 2020 is 0.48, which is greater than those of the economic and environmental benefit
subsystems, but the property loss from traffic accidents in the social benefit subsystem first
decreased and then increased during 2011-2020, reaching the lowest value of 0.0739 in 2012.
This result is mainly attributed to the lack of in-depth application of logistics information
technology. As such, the construction of intelligent logistics is imperative. Anhui Province
should establish a data processing center based on big data and cloud computing [51]
to integrate the resources of the logistics operation process from the three aspects of
supply, demand, and supervision to achieve the optimal fit of each subsystem in LI's ESE-B
composite system.
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(3) Optimize the energy structure of the LI and enhance environmental orderliness

The orderliness of LI’s environmental benefit subsystem in Anhui Province is much
lower than that of the economic and social benefit subsystems, with an average value of
only 0.29, and it plays a decisive role in the synergy with other subsystems and in the total
system. Achieving carbon neutrality is a common development goal worldwide, meaning
that environmental benefits are still something to which Anhui Province needs to continue
to pay attention. The LI in Anhui Province should expand the application of new energy
and clean energy such as electricity and natural gas; develop multimodal transportation
and other ways to optimize transportation; support, cultivate, and introduce specialized
and low-carbon logistics enterprises; promote the diversification and clean transformation
of energy consumption in the LI; establish waste emission standards for the LI; force a
low-carbon transformation; and promote the ecological development of the LL

3.4. Discussion

Comparison with existing literature [21,22]: the present paper makes the following
contributions. First, it constructs a more comprehensive evaluation index system of LI's ESE-
B composite system from the viewpoint of synergy theory, systems theory, and input-output.
Further, considering the three benefits of LI provides a more systematic and scientific
approach. Second, the data-driven approach and the CSSMD are used to systematically
and comprehensively consider the development of LI and more objectively quantify and
evaluate the level of LI's ESE-B composite system synergy development. This approach
provides a scientific decision-making framework for relevant subjects and practitioners.
Finally, to achieve sustainable development, we propose targeted countermeasures and
ideas to advance the synergistic development of LI's ESE-B composite system, which is of
practical significance. However, the proposed method may not yield the obtained results
in other provinces, cities or at other times, and the results require further temporal and
spatial scaling.

Combining the findings, we can draw three management insights as follows:

First, to promote LI's ESE-B synergistic development according to the point of view
of systems theory and overall optimization, we cannot depend on a single part of a larger
system. Instead, it is necessary to bring into full play the back and forth support of the
three parts of larger systems to effectively help increase the SDLI.

Second, with social, economic, and technological development, the foundation of a
data-driven estimation and assessment method for the collaborative development of LI's
ESE-B composite system can bring into full play of the advantages of each subsystem to
achieve complementary strengths and weaknesses and collaborative development. As
such, we can more effectively serve local government decision-making and local related
enterprise management.

Finally, the synergistic development of LI's ESE-B composite system is crucial to pro-
moting the sustainable development of the region and it is additionally important for the
public authorities and significant divisions to mutually advance the joining and improve-
ment of every subsystem and to understand the profoundly interacting and synergistic
advancement of LI's ESE-B composite system.

4. Conclusions

Improving the coordinated development level of LI's complex system is important to
ensure sustainable development and the SDLI is one of the important ways to protect the
environment, save resources, and benefit society in today’s world. To deal with the above
research difficulties, this paper presents a data-driven research method and optimization
countermeasure suggestions based on the data-driven coordination of LI's composite
system, drawing on the exploratory thoughts of [52,53]. This approach has both theoretical
and practical significance.

The theoretical significance of this study is as follows. (1) It enriches the connotation
of the LI composite system index system and constructs a three dimensional index system
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of the ESE-B of the LI from the input-output perspective. When constructing the index
system, social factors such as traffic property loss and road traffic noise and environmental
factors such as carbon and waste emissions are considered. (2) Based on the data-driven
theory, the composite system synergy model is used for analysis and the assessment
results are accurate and objective, better reflecting the degree of interdependence and
interaction among the ESE-B of the LI. (3) The internal mechanism of the economic, social,
and environmental development of LI is explained from the synergy perspective, which
improves the theoretical framework for the synergistic development of the LI's ESE-B. The
practical significance of the results can be summarized as follows. (1) This study provides
a quantitative basis for measuring, evaluating, and identifying the coordination level of
the LI's ESE-B complex system. (2) It also provides reference for promoting the SDLI.
(3) Finally, it offers new research ideas to researchers and policy makers in the LI field. This
is also the innovation of this paper. The method may be used in the future to study the
coordinated development of economic, environmental and social benefits of the LI and
promote the future role of LI policies in supporting sustainable development.

The elements involved in LI’s ESE-B composite system are complex, and the study of
the synergistic development of each subsystem is complex. Hence, this study is not without
limitations. (1) With the development of economy and society, the LI's composite system
will include more elements. In future research, it is necessary to further make the index of
the composite system more complete and accurate. (2) Further, the data capacity needs to
be expanded to improve the representativeness of the sample by including more provinces
and cities, as well as a longer sample period. (3) Finally, the mechanisms influencing the LI's
complex system coordination need to be further explored. More effective countermeasures
and suggestions need to be proposed to improve the coordination level, in support of
regional sustainable development.
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Appendix A

Table Al. Sequence parameters standardized values of ESE-B composite system.

Year E11 E12 E13 E14 E15 El6 E21 E22 E23 E24 E25 E26 E31 E32 E33 E34 E35 E36

2011 —1.676 —-1.127 —1.407 —1.827 —0.901 1.326 —1.664 —1.890 —1.781 —1.452 1.056 —-0.913 —-1.989 —-1.207 —1.314 —2.486 —2.318 0.678
2012 —1.435 —1.142 —1.092 —0.811 —0.786 1.100 —1.051 —1.807 —1.530 —1.199 0.521 2.688 —1.347 —1.047 —1.864 —0.963 —0.977 —0.059
2013 —0.944 —0.842 —1.034 1.055 —0.686 0.871 —0.706 0.192 —0.639 —0.949 0.345 0.595 —0.765 —0.929 —0.999 —0.428 —0.458 —0.796
2014 —0.328 —0.517 —0.985 1918 —0.530 0.407 —0.681 0.090 —0.052 —0.588 0.169 0.229 —0.039 —0.808 0.024 0.189 0.131 —2.270
2015 0.085 —0.443 0.001 —0.378 —0.537 —0.667 —0.170 0.283 —0.097 —0.252 0.201 —0.110 0.101 —0.432 0.024 0.240 0.463 —0.501
2016 0.601 —0.217 0.301 —0.012 —0.489 —1.381 0.247 0.519 0.177 0.058 0.201 —0.037 0.302 0.051 0.417 0.340 0.564 1.120
2017 0.641 0.198 0.630 0.384 —0.402 —1.912 0.469 0.968 0.671 0.717 0.529 —0.506 0.805 0.420 0.810 0.750 1.088 1.415
2018 0.651 0.832 1.108 0.661 0.681 0.085 0.686 1.076 1.001 1.212 0.002 —0.610 1.007 0.855 1.046 0.998 1.148 0.383
2019 1.057 1.337 1.210 —0.494 1.884 0.283 1.074 0.790 1.294 0.955 —0.182 —0.679 1.070 1.401 1.204 0.774 0.598 0.236
2020 1.347 1.920 1.269 —0.497 1.765 —-0.112 1.797 —0.221 0.955 1.498 —2.841 —0.657 0.857 1.694 0.653 0.586 —0.240 —0.206
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Abstract: Silver is an important industrial raw material, and the price of silver has always been
a concern of the financial industry. Silver price data belong to time series data and have high
volatility, irregularity, nonlinearity, and long-term correlation. Predicting the silver price for economic
development is of great practical significance. However, the traditional time series prediction models
have shortcomings, such as poor nonlinear fitting ability and low prediction accuracy. Therefore,
this paper presents a novel hybrid model of CNN-SA-NGU for silver closing price prediction, which
includes conventional neural networks (CNNs), the self-attention mechanism (SA), and the new gated
unit (NGU). A CNN extracts the feature of input data. The SA mechanism captures the correlation
between different eigenvalues, thus forming new eigenvectors to make weight distribution more
reasonable. The NGU is a new deep-learning gated unit proposed in this paper, which is formed by a
forgetting gate and an input gate. The NGU’s input data include the cell state of the previous time,
the hidden state of the previous time, and the input data of the current time. The NGU learns the
previous time’s experience to process the current time’s input data and adds a Tri module behind
the input gate to alleviate the gradient disappearance and gradient explosion problems. The NGU
optimizes the structure of traditional gates and reduces the computation. To prove the prediction
accuracy of the CNN-SA-NGU, this model is compared with the thirteen other time series forecasting
models for silver price prediction. Through comparative experiments, the mean absolute error
(MAE) value of the CNN-SA-NGU model is 87.898771, the explained variance score (EVS) value is
0.970745, the r-squared (R?) value is 0.970169, and the training time is 332.777 s. The performance of
CNN-SA-NGU is better than other models.

Keywords: NGU; self-attention; CNN; silver prediction; deep learning

1. Introduction

In recent years, investors began to notice silver, and silver investment has become
a means of financial management. Silver remains an essential part of financial markets,
often playing dual roles as an investment product and an industrial metal. However, the
epidemic has recently affected the economy, resulting in volatile silver prices. Therefore,
accurate prediction of silver prices is significant to economic development.

Silver price prediction is a time series problem [1], which predicts the possible future
price of silver according to the actual price data of the silver market. The change in
silver price is relevant to the formulation of laws, the development of the world economy,
political events, investors’ psychology, etc. These factors lead to the fluctuation of the
price of silver, which makes it difficult to accurately predict silver price [2,3]. Traditional
machine learning methods, such as decision trees [4], support vector machines (SVM) [5],
and genetic algorithms [6], are applied to time series data prediction. However, there are
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problems with all of these approaches, such as poor processing of special values in time
series data and the poor nonlinear fitting ability of data [7]. As technology develops, more
and more deep learning methods are applied to time series prediction. Deep learning
algorithms can better fit the changes of nonlinear time series data [8].

The importance of different feature data is different in the actual training process.
Because different eigenvalues have different influences on the prediction results, some
important eigenvalues should be given greater training weight in the training process [9,10].
The SA mechanism is added to the silver price forecasting model, which can select a small
number of important eigenvalues from feature data. The process of selecting is reflected in
the calculation of the weight coefficient. The greater the influence of characteristic data on
prediction results, the bigger the weight coefficient. The weight coefficient represents the
importance of feature data. After introducing the SA mechanism, it is easier to capture the
interdependent features among different characteristic data, thus improving the sensitivity
of the model to important eigenvalues [11].

The NGU includes the forgetting gate and the input gate. The forgetting gate deter-
mines how much cell state from the previous time is retained in the current cell state. The
input gate determines how much input data at the current time can be saved to the current
cell state. The input data of each gate include the hidden state of the previous time, the
cell state of the previous time, and the input data of the current time. The forgetting gate
and the input gate learn the experience of the previous time to process the input data of
the present time, which improves the prediction accuracy of the model. The Tri conversion
module processes the data of the input gate, which significantly changes the output data
value and alleviates the problems of gradient disappearance and gradient explosion.

Therefore, this paper presents a new neural network model to predict the closing
price of silver. The CNN-SA-NGU time series prediction model is constructed by a CNN,
SA mechanism, and NGU. The CNN processes the input data and extracts the features
of the data. The SA mechanism is used to compute the importance of different feature
data. Additionally, the important features are assigned larger weight coefficients so that the
weight distribution is more reasonable. The NGU is used to forecast the silver closing price.
To certify the validity of CNN-SA-NGU, this model is compared with the prediction results
of Prophet, support vector regression (SVR), multi-layer perceptron (MLP), autoregressive
integrated moving average mode (ARIMA), long short-term memory (LSTM), bi-directional
long short-term memory (Bi-LSTM), gated recurrent unit (GRU), NGU, CNN-LSTM, CNN-
GRU, CNN-NGU, CNN-NGU, CNN-SA-LSTM, and CNN-SA-GRU. The innovations and
main contributions of this paper are as follows:

(1) This paper presents a new neural network NGU, which includes a forgetting gate and
an input gate. The input data of each gate includes the hidden state of the previous
time, the cell state of the previous time, and the input data of the current time. The
NGU learns the previous moment’s experience to process the current moment’s input
data, which improves the prediction accuracy of the model. The Tri data conversion
module in the NGU alleviates the problems of gradient disappearance and gradient
explosion. The NGU has a simple structure and few parameters to be calculated, so
the training time is short. The NGU is mainly used to predict time series.

(2) In the silver price prediction experiment, the SA mechanism is applied to the model,
which can improve the unreasonable distribution of weights and facilitate the gate
unit to learn the law of silver price data.

(3) This paper presents a new silver price forecasting model: CNN-SA-NGU. Under
the same experimental conditions and data, the silver price forecasting results of
CNN-SA-NGU are better than other models.
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2. Related Work

Yuan et al. [12] predicted the gold future price using least square support vector
regression improved by the genetic algorithm. The SVR is unsuitable for large data sets.
Additionally, when time series data sets have noise, the problem of overlapping target
classes will occur. Aksehir et al. [13] put forward a prediction model of the Dow Jones
index stock trend based on a CNN, which achieved good results in predicting stock trends.
The study showed that the CNN algorithm performed well in extracting data features.
However, the performance of the CNN is poor on small data sets [14].

Chen et al. [15] put forward a new model combining SVM and LSTM. This model
used entropy space theory and price factors that may affect the gold price to predict the
gold price. The experimental results show the price prediction of gold is good. There are
too many parameters in the LSTM, leading to much calculation [16]. Combined LSTM and
CNN can enhance the prediction of gold volatility [17]. By inputting time series data into
the convolution layer, the features of data can be extracted better.

E et al. [18] presented a combination technique based on independent component
analysis (ICA) and gate recurrent unit neural network (GRUNN), called ICA-GRUNN,
to forecast the gold price. ICA is a multi-channel mixed signal analysis technology. The
original time series data are decomposed into virtual multi-channel mixed signals by
variational mode decomposition (VMD) technology. Comparative experiments show that
ICA-GRUNN has higher prediction accuracy.

The attention mechanism was applied to image classification for the first time and
achieved good results [19]. In 2017, the Google machine translation team abandoned
recurrent neural networks (RNNs) and CNNs. The team implemented the translation
task only using the attention mechanism, achieving an excellent translation effect. The
attention mechanism can effectively capture the semantic relevance between all the words
in context. To pursue better performance, Liu et al. [20] proposed a model based on a
weighted pure attention mechanism. The authors introduced weight parameters into the
artificially generated attention weight and transferred attention from other elements to
key elements according to the setting of weight parameters. If the attention mechanism is
not applied, long-distance information is weakened. The attention mechanism can give a
higher weight to the feature data, which significantly influences the prediction results.

SA is also called intra-attention. Kim et al. [21] proposed a SAM-LSTM prediction
model based on SA, which is composed of multiple LSTM modules and an attention
mechanism. The SA mechanism gives different weight information to different parts of
the input data. The change point detection technique is used to achieve the stability of
prediction in the invisible price range. Finally, the model’s effectiveness in cryptocurrency
price prediction is impressive. To solve the problem that a fully connected neural network
cannot establish a correlation for multiple related inputs, SA is used to make the machine
notice the correlation between different parts of the data. After introducing SA, it is easy to
capture the long-distance interdependent features in sentences. Wang et al. [22] presented
a sentence-to-sentence attention network (S2SAN) using multi-threaded SA and carried
out several emotion analysis experiments in specific fields, cross-fields, and multi-fields.
Experimental results show that S2SAN is superior to other advanced models. Li et al. [23]
improved the existing SA with the hard attention mechanism. The addition of the SA
mechanism improves the autonomous learning ability of the model. The improved SA fully
extracts the text’s positive and negative information for emotion analysis. The improved
SA can enhance the extraction of positive information and make up for the problem that
the value in the traditional attention matrix cannot be negative. An RNN or LSTM needs to
be calculated in sequence. For long-distance interdependent features, many calculations
are needed to connect them. The farther the distance between features, the less likely it
is to capture effectively [24]. SA connects any two words in a sentence directly through
one calculation. Therefore, the distance between long-distance dependent features is
shortened [25].
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3. Models
3.1. SA

The SA mechanism determines the weight coefficients of different eigenvalues by
calculating the relationship between different eigenvalues of a piece of data. Additionally,
the SA mechanism obtains new eigenvectors by recalculating. The new eigenvector takes
more information into account and assigns higher weight coefficients to the eigenvalues
that significantly influence the prediction results. The SA mechanism is beneficial to the
NGU'’s prediction of the silver closing price. The principle of the SA mechanism is shown
in Figure 1.

bl

Figure 1. The principle of the SA mechanism.

An encoder encodes the feature data and the eigenvector a' of the eigenvalue is
obtained by nonlinear operation. The eigenvector is multiplied by the weight matrices of
w1, w*, and w? obtained by training to obtain query vector, key vector, and value vector,
respectively. The calculation formulas are shown in (1), (2), and (3), respectively.

g =u-a 1)
K =wk.a 2)
ot =w’al (3)

where ¢’ is a query vector with the i-th eigenvalue; k' is the key vector of the i-th eigenvalue;
o' is the value vector of the i-th eigenvalue. wf, w*, and w” are the parameters obtained
by model training. 4; is the eigenvector obtained by the encoder operation of the i-th
eigenvalue.

a;j is the similarity between the i-th and the j-th eigenvalues. The query vector of the
i-th eigenvalue is multiplied by the key vector of the j-th eigenvalue, and the inner product
of the two vectors is obtained. d is the dimension of the i-th eigenvalue key vector. After
each element of the vector a' divides by \/d, the variance distribution becomes 1. Therefore,
the gradient value in the training process remains stable. The formula for calculating 4;; is
shown in (4). o
g -k

Vd
where K/ is the key vector of the j-th eigenvalue.

a; j s the weight coefficient between the i-th and the j-th eigenvalues. The weights
between the i-th and other different eigenvalues need to be normalized to obtain their

)

Llij =
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similarity. After the weight coefficients are normalized, the sum of the weight coefficients
is 1. The calculation formula for calculating a; j is shown in (5).

S exp(ajj)
! Z?:Oexp(aij)

Q)

where exp(al-]-) represents the exponential operation of e for 4;;. 2;1:0 exp(aij) is the sum of
the exponential power of e of all a;; to obtain the sum of the weight coefficients of different
eigenvalues. The weight coefficient vector of the i-th eigenvalue is obtained by division
operation.

b' is the output of the SA layer. The weight coefficient vector a j of the i-th eigenvalue
is multiplied by the v’ vector of the i-th eigenvalue to obtain the eigenvector. As the input of
the NGU, b’ improves the model’s sensitivity to important eigenvalues, thus improving the
accuracy of forecasting the closing price of silver. The formula for calculating b’ is shown
in (6).

b= Z aj; - o' (6)

3.2. NGU

Based on the in-depth study of the principle and structure of LSTM [26,27] and
GRU [28,29], a new gated unit (NGU) is proposed in this paper. The NGU has a simple
structure, including a forgetting gate and an input gate, and adds a Tri module. The
structure diagram of the NGU is shown in Figure 2.

/Forget Gate @

Crf L 1l G

!
ST
4 Transform
al/ | e
1 // it
Input Gate
hi- L‘ hy

\J J

Figure 2. NGU structure diagram.

The function of the forgetting gate in the NGU determines how much cell state
information can be kept from the previous time to the current time. The input data of the
forgetting gate include the cell state of the previous time, the hidden state of the previous
time, and the input data of the current time. The forgetting gate processes the input data
through the sigmoid function, thus outputting the operation value. The sigmoid function’s
output value determines how much cell state information is retained from the previous time
to the current time. The output value of the sigmoid function is 0 ~ 1, 0 means completely
discarding the cell state at the previous time, and 1 means completely retaining the cell
state from the previous time to the current time. The calculation formula of the forgetting
gate is shown in Formula (7).

fr= U(wfh‘htfl +Wee Xt +Weec, |+ bf) @)
where o represents the sigmoid activation function, h;_; represents the hidden state at

the previous time, x; represents the input data at the current time, c;_; represents the cell
state at the previous time, and by is the bias vector. wy;,, wg,, and wy. correspond to the
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weight vectors obtained by training h;_1, x¢, and ¢;_1, respectively. The purpose of network
training many times is to continuously adjust the values of these parameter vectors.

The function of the input gate in the NGU determines how much input data x; can
be saved to the cell state at the current time. The input data of the input gate include the
cell state of the previous time, the hidden state of the previous time, and the input data of
the current time. The input gate processes the input data through the sigmoid function,
thus outputting the operation value. The sigmoid function’s output value determines how
much input data x; is retained in the cell state at the current time. The calculation formula
of the input gate is shown in Formula (8).

it = o(wi-hy—1 + Wiy Xt + WicCr—q + b;) 8)

where b; is the bias vector; wj,, w;, and w;, correspond to the weight vectors obtained by
training h;_1, x¢, and ¢;_1, respectively.

The input gate sigmoid function outputs data after the Tri conversion module operation
as the output data to conduct output. After the input data are operated by the sigmoid
function, the output result is between 0 and 1. When the input data of the sigmoid function
is (—oo, 5) or (5, =), the small variation of function value easily causes the problem of
disappearing gradient, which is not conducive to the feedback transmission of deep neural
networks. After the output data of the sigmoid function are processed by the tanh function,
the output value will change significantly so as to improve the sensitivity of the model
and alleviate the problem of gradient disappearance. The Tri calculation formula of the
conversion module is shown in Formula (9).

Tri = tanh(i;) )

The cell state c; at the current time is the product of the output value of the forgetting
gate and the cell state at the previous time plus the output value of the Tri module. The
calculation of the cell state at the current time includes the cell state at the previous time. By
learning the cell state at the previous time, the input data at the current time is processed by
using the experience of historical data processing. The learning ability and nonlinear fitting
ability of the NGU are improved. The formula for calculating c; is shown in Formula (10).

¢t = frcp1 + Tri (10)

The calculation formula of the hidden state /; at the current time is shown in Equa-
tion (11).
hy = tanh(c) (11)

where I; is also the current output of the NGU.

3.3. CNN-SA-NGU

The integral structure of the CNN-SA-NGU model for silver closing price prediction
is shown in Figure 3.

Data preprocessing layer: Delete the data not needed for training (including trade_date,
duplicate data, invalid data, and so on) in the original data set. Standardize the data in the
data set, and convert the data of different specifications to the same value interval so as to
reduce the influence of distribution difference on model training.

CNN layer: By convolution operation on the input data, the data’s characteristics are
extracted. The output of the CNN layer is passed to the SA layer as new input data.

SA layer: By calculating the feature data transmitted from the CNN layer, the weight
coefficients are allocated, and new feature vectors are obtained.

NGU layer: This layer learns the law of silver price change and predicts silver’s closing
price.

Output layer: Through the inverse normalization operation of the data output from
the NGU layer, the silver price prediction results of this model are output.
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4. Experiment
4.1. Experimental Environment

The hardware environment and software environment of this experiment are shown
in Table 1.

Table 1. Experimental environment.

Environment Type Project Name Value
Operating system Windows 11
Hard . CPU Intel i7-12700H 2.30 GHz
ardware environment Memory 16GB
Graphics card RTX 3070Ti
Development tools PyCharm 2020 1.3
. Programming language Python3.7.0
Software environment Basic platform Anaconda4.5.11
Learning framework keras2.1.0 and TensorFlow 1.14.0

4.2. Data Acquisition

In this experiment, the silver futures trading data of the Shanghai futures exchange
from 5 January 2015 to 30 November 2022 are selected as experimental data. A total of
1925 pieces of data were collected. All the data collected in this experiment are obtained
from the third-party data interface of the Tushare website, which is a data service platform.
Silver futures price data are shown in Table 2.

Table 2. Silver futures price data items.

Trade_Date Open High Low Close Change Settle Vol Oi
5 January 2015 3498 3516 3478 3507 -17 3500 51379800 41042000
6 January 2015 3490 3566 3462 3554 54 3517 219997200 45015800
7 January 2015 3544 3596 3530 3554 37 3556 186587600 40197400
8 January 2015 3540 3578 3537 3548 -8 3558 143412200 41246400
9 January 2015 3568 3586 3544 3555 -3 3562 141589000 40017000

The trade_date in the table indicates the opening time; the open represents the silver
opening price; the high represents the highest silver price; the low represents the lowest
silver price; the close represents the silver closing price; the change represents a rise or
fall in value; the settle represents the settlement price; the vol represents volume; the oi
represents operating income.

We select the S&P 500 index (SPX), the Dow Jones industrial average (US30), the
Nasdaq 100 index (NAS100), the U.S. dollar index (USDI), the gold futures (AU), Shanghai
stock index (SSI) as factors affecting silver price. The original data of silver price impact
factors are shown in Table 3.

Table 3. Original data of silver price impact factors.

Trade_Date SPX US30 NAS100 USDI AU SSI
5 January 2015 2000.63 17362 4102.8999 11648 242.15 3350.519
6 January 2015 2026.38 17590 4155.8999 11655 24445 3351.446
7 January 2015 2060.1299 17881 4236.8999 11684 245.25 3373.9541
8 January 2015 2041.88 17720 4207.6001 11690 244.5 3293.4561
9 January 2015 2041.88 17720 4207.6001 11633 245.15 3285.4121
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4.3. Data Preprocessing

The silver price data selected in this paper come from the trading data of Shanghai
futures trading. The Shanghai futures exchange suspends trading on Saturdays and
Sundays and on corresponding Chinese legal holidays. Therefore, there is no silver trading
data on the corresponding date. SPX, US30, NAS100, USDI, and AU, which affect silver
prices, are international market trading data. The legal working days of international
exchanges are different from those in China. Therefore, there will be silver trading data on
a certain day, but there are no corresponding impact factor data. For the missing impact
factor data of a certain day, take the average value of the data of the previous day and the
previous two days to fill in the missing data value. If the impact factor’s trading data of
a particular day exist, but the silver trading data do not, the impact factor’s trading data
will be deleted. The first duplicate data will be deleted when two experimental data are
duplicated. If invalid trading data exist, they will be deleted.

The trade_date has no training significance in the original data, so the column data
are deleted. In the original data of silver, the sample values of different characteristics
are quite different. When the features have different value ranges, it will take a long time
to reach the optimal local value or the optimal global value when the model is updated
by the gradient. Data standardization refers to scaling the original data to eliminate the
dimensional difference of the original data. That is, each index value is in the same quantity
level to reduce the impact of excessive differences of orders of magnitude on model training.
Z-score normalization is used for preprocessing the original data. After the standardization
of the data, all the feature data sizes are in the same specific interval. Therefore, it is
convenient to compare and weigh the characteristic data of different units or orders of
magnitude and accelerate the convergence of the training model.

In this experiment, the first 1155 data are selected as training data, 385 data from
1155 to 1540 are used as verification data, and the remaining 385 data are used as test data.

4.4. Model Parameters

In this paper, the parameters of different models are determined by using the grid
search method. By comparing the performance results obtained from different parameters,
the optimal parameter combination is finally determined. In this experiment, fourteen
models are compared. The important parameters of the fourteen models are shown in
Table 4.

Table 4. Model parameters.

Model Layer Parameters
Prophet Prophet interval_width = 0.8
SVR SVR kernel = ‘linear’, epsilon = 0.07, C =4
MLP MLP activation = “tanh”
ARIMA ARIMA dynamic = false
LSTM LSTM activation = “tanh’, units = 128
Bi-LSTM Bi-LSTM activation = “tanh’, units = 128
GRU GRU activation = ‘tanh’, units = 128
NGU NGU activation = “tanh’, units = 128
ConvlD filters = 16, kernel_size = 3,
CNN-LSTM LSTM activation = ‘tanh’, units = 128
Conv1D filters = 16, kernel_size = 3,
CNN-GRU GRU activation = “tanh’, units = 128
ConvlD filters = 16, kernel_size = 3,
CNN-NGU NGU activation = “tanh’, units = 128
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Table 4. Cont.

Model Layer Parameters
Conv1D filters = 16, kernel_size = 3,
CNN-SA-LSTM SA initializer = “uniform’,
LSTM activation = ‘tanh’, units = 128
Conv1D filters = 16, kernel_size = 3,
CNN-SA-GRU SA initializer = “uniform’,
GRU activation = ‘tanh’, units = 128
Conv1D filters = 16, kernel_size = 3,
CNN-SA-NGU SA initializer = “uniform’,
NGU activation = ‘tanh’, units = 128

4.5. Model Comparison

To certify the validity of the CNN-SA-NGU, the prediction results of this model are
compared with those of other models. The evaluation indexes of the experiment are MAE,
EVS, R?, and training time. The results show that the CNN-SA-NGU is better than other
models. The experimental results are shown in Table 5.

Table 5. Experimental results.

Training Time

2

Model MAE EVS R (t/s)
Prophet 176.829765 0.899582 0.864999 73.432
SVR 182.038698 0.928241 0.903835 50.824

MLP 190.168172 0.848885 0.837680 5.598
ARIMA 168.655063 0.907159 0.907148 24.946
LSTM 116.539392 0.940564 0.940126 450.684
Bi-LSTM 119.670333 0.941758 0.941239 1306.247
GRU 118.748377 0.939636 0.936895 334.112
NGU 103.960158 0.955276 0.953869 278.847
CNN-LSTM 113.772953 0.956882 0.944692 398.622
CNN-GRU 108.031883 0.947018 0.944206 272.832
CNN-NGU 97.277688 0.965663 0.963685 253.501
CNN-SA-LSTM 102.664546 0.954118 0.952839 428.042
CNN-SA-GRU 97.424566 0.960515 0.957547 328.642
CNN-SA-NGU 87.898771 0.970745 0.970169 332.777

(1) Comparison of Prophet, SVR, ARIMA, MLP, LSTM, Bi-LSTM, GRU, and NGU

The fitting degrees of traditional machine learning algorithms SVR, ARIMA, and MLP
in silver price prediction are only 0.903835, 0.907148, and 0.837680, respectively, which are
poorer compared with other deep learning models. Traditional machine learning methods
have poor nonlinear fitting ability. The processing of special values in data sets is not good
enough, which leads to poor prediction results of the silver closing price. LSTM, Bi-LSTM,
and GRU are variants of the RNN. The structure of the NGU is simple, and the training
parameters are few, so the training time is greatly shortened. NGU learns the experience
of the previous time to process the input data of the current time, which improves the
prediction accuracy of the model. The Tri conversion module behind the NGU input gate
changes the output value to alleviate the gradient disappearance and gradient explosion
problems. The fitting degree of the NGU is 0.013743 higher than LSTM and 0.016974 higher
than GRU. In terms of training time, NGU is 171.837 s faster than LSTM. NGU is 55.265 s
faster than GRU. The comparison between the true values and the predicted results of
Prophet, SVR, MLP, ARIMA, LSTM, Bi-LSTM, GRU, and NGU is shown in Figure 4.
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Figure 4. Comparison of true values with Prophet, SVR, ARIMA, MLP, LSTM, Bi-LSTM, GRU, and
NGU prediction results.
The CNN extracts the features of silver data and outputs the convolution results to the
NGU for learning. Through the convolution of the CNN layer, we can better extract the
features from the original data. It is beneficial to the learning of the NGU and improves
the model’s prediction accuracy. After the convolution operation, the NGU directly learns
the feature data without learning the rules from the original data. It shortens the training
time to a certain extent. The CNN is combined with LSTM, GRU, and NGU to form a
new silver forecasting hybrid model. The prediction results of CNN-LSTM, CNN-GRU,
and CNN-NGU are much better than those without the CNN. The fitting degree of CNN-
NGU is 0.009816 higher than the NGU. The comparison between the true values and the
predicted results of LSTM, GRU, NGU, CNN-LSTM, CNN-GRU, and CNN-NGU is shown
in Figure 5.
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Figure 5. Comparison between true values and predicted results of LSTM, GRU, NGU, CNN-LSTM,
CNN-GRU, and CNN-NGU.

(2) Comparison of CNN-LSTM, CNN-GRU, and CNN-NGU

The prediction fitting degree of CNN-NGU is 0.018993 higher than CNN-LSTM and
0.019479 higher than CNN-GRU. CNN-NGU's training time is 145.121 s faster than CNN-
LSTM. The comparison of prediction results of CNN-LSTM, CNN-GRU, and CNN-NGU

models is shown in Figure 6.
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Figure 6. Comparison of true values with CNN-LSTM, CNN-GRU, and CNN-NGU prediction
results.

The SA mechanism processes the feature data after the convolution of the CNN
convolution layer. The SA layer determines the importance of different feature data by
calculation. The characteristic data that have a great influence on the prediction results
are given a larger weight factor. Feature data with less influence on prediction results
are given smaller weight factors. Through the treatment of SA, different eigenvalues are
given different weight factors. By reassigning different weight coefficients to different data,
the subsequent gated unit can learn which data have a greater impact on the prediction
result. It is beneficial to NGU to learn so as to better predict the closing price of silver.
The fitting degree of CNN-SA-LSTM is 0.008147 higher than CNN-LSTM, and the MAE
value is 11.108407 lower. The fitting degree of CNN-SA-GRU is 0.013341 higher than
CNN-GRU, and the MAE value is 10.607317 lower. The fitting degree of CNN-SA-NGU is
0.006484 higher than CNN-NGU, and the MAE value is 9.378917 lower. The comparison
between the true values and the predicted results of CNN-LSTM, CNN-GRU, CNN-NGU,
CNN-SA-LSTM, CNN-SA-GRU, and CNN-SA-NGU is shown in Figure 7.
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(8) Comparison of CNN-SA-LSTM, CNN-SA-GRU, and CNN-SA-NGU

Among the three models of CNN-SA-LSTM, CNN-SA-GRU, and CNN-SA-NGU,
the performance of CNN-SA-NGU is the best. The fitting degree of CNN-SA-NGU is
0.01733 higher than CNN-SA-LSTM and 0.012622 higher than CNN-SA-GRU. The training
time of CNN-SA-NGU is 95.265 s shorter than CNN-SA-LSTM. The true values are com-
pared with the predicted results of CNN-SA-LSTM, CNN-SA-GRU, and CNN-SA-NGU
models, as shown in Figure 8.
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Figure 8. Comparison of true values with CNN-SA-LSTM, CNN-SA-GRU, and CNN-SA-NGU
predictions.

4.6. Generalization Ability of Model

CNN-SA-NGU model has good generalization ability. It shows good performance in
silver price prediction and is suitable for forecasting other time series data such as ETFs,
gold futures, and stocks. The following experiments are carried out with gold futures and
Shanghai stock composite index data. The experimental results of forecasting gold futures
prices are shown in Table 6. The experimental results of forecasting the Shanghai stock
composite index are shown in Table 7.

Through the above two tables, we can see that the CNN-SA-NGU model has good
generalization ability.

Table 6. The experimental results of the forecasting table of gold futures prices.

Training Time

2

Model MAE EVS R (t/s)
Prophet 7.328386 0.889623 0.849623 61.752
SVR 5.767165 0.935615 0.915764 45.185

MLP 7.012249 0.901912 0.861166 9.969
ARIMA 6.757669 0.941629 0.898242 28.905
LSTM 4.871939 0.942918 0.939975 479.996
Bi-LSTM 4.855796 0.944959 0.943941 1098.907
GRU 4.736281 0.946534 0.944854 323.123
NGU 4.814574 0.972503 0.955799 279.747
CNN-LSTM 4.625511 0.962245 0.951108 465.302
CNN-GRU 4.528336 0.959778 0.953008 306.796
CNN-NGU 4.032819 0.971674 0.966912 257.907
CNN-SA-LSTM 4.264018 0.960852 0.956380 483.592
CNN-SA-GRU 4.185553 0.959046 0.959038 374.097
CNN-SA-NGU 3.628549 0.972574 0.971670 367.560
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Table 7. The experimental results of forecasting the Shanghai stock composite index.

Training Time

2
Model MAE EVS R (tls)
Prophet 47.545572 0.902315 0.901356 63.558
SVR 31.234645 0.959948 0.958887 36.740
MLP 40.541882 0.942551 0.933907 8.011
ARIMA 39.251600 0.955644 0.955076 25.791
LSTM 28.944838 0.968379 0.967678 466.249
Bi-LSTM 28.409177 0.969849 0.968916 1327.013
GRU 27.071643 0.971395 0.970907 304.327
NGU 26.573712 0.979191 0.975161 290.925
CNN-LSTM 28.279052 0.977564 0.972431 489.508
CNN-GRU 25.767393 0.978223 0.975720 273.203
CNN-NGU 23.452398 0.979790 0.979602 256.740
CNN-SA-LSTM 27.767957 0.979228 0.978946 495.647
CNN-SA-GRU 25.957919 0.983123 0.980307 386.600
CNN-SA-NGU 22.639894 0.984826 0.984815 377.040

5. Discussion

Compared with ten other silver price prediction models, the performance of the CNN-
SA-NGU is the best. Compared with SVR, MLP, LSTM, and GRU, the NGU presented in
this paper has a better performance in MAE, EVS, R?, and training time. Adding a CNN to
the model improves the ability to extract feature data. The SA layer is added to the model
to redistribute the weights of different feature data. It is beneficial for NGU learning. The
NGU learns from the previous training experience to deal with the input data at the current
time, which improves the nonlinear fitting ability of the model. The CNN-SA-NGU model
can achieve higher prediction accuracy for the following reasons:

(1) The NGU uses the original learning experience fully to enhance the processing ability
of the input data at the current time, thus improving the nonlinear fitting ability
of the model. The Tri conversion module changes the range of output value by
processing the output data of the input gate, thus alleviating the problems of gradient
disappearance and gradient explosion.

(2) With the addition of the SA mechanism, the feature data that significantly influence the
prediction results can be well identified. The SA mechanism reallocates the weights
of different feature data through calculation. Additionally, a higher weight factor is
assigned to the feature data, which benefits the NGU’s learning.

(3) By adding the CNN convolution layer, the model’s feature extraction ability is im-
proved. The hidden features between data can be mined by the CNN.

6. Conclusions

This paper presents a novel hybrid model of CNN-SA-NGU for silver closing price
prediction. The CNN convolution layer solves the problem of incomplete feature data
extraction in traditional models to some extent. After introducing the SA mechanism, the
relationship between different feature data can be learned, thus increasing the sensitivity of
the model to feature data. The structure of the NGU is simple, and the training parameters
are few, greatly reducing the training time. The Tri conversion module of the NGU deals
with the output data of the input gate, which ameliorates the problems of gradient disap-
pearance and gradient explosion. NGU fully learns the experience of the previous time
and deals with the input data at the current time, which improves the model’s nonlinear
fitting ability and improves its prediction accuracy. The comparative experiments show
that the performance of CNN-SA-NGU is better than other models, but the model has the
shortcoming of not fitting some extreme values in the data set well.

Our future research directions are as follows:
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2 AU gold futures
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5 EVS explained variance score

6 GRU gated recurrent unit

7 GRUNN gate recurrent unit neural network

8 ICA independent component analysis

9 LSTM long short-term memory

10 MAE mean absolute error

11 MLP multi-layer perceptron

12 NAS100 Nasdaq 100 index

13 NGU new gated unit

14 R2 r squared

15 RNN recurrent neural network

16 S2SAN sentence-to-sentence attention network
17 SA self-attention

18 SPX S& P 500 index

19 SSI Shanghai stock index

20 SVM support vector machine

21 SVR support vector regression

22 US30 Dow Jones industrial average

23 UsDI U.S. dollar index

24 VMD variational mode decomposition
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Abstract: The automobile industry is the pillar industry of the national economy. The good operation
of the automobile supply chain is conducive to the sustainable development of the economy and
social economy. In recent years, the popular research of automotive supply chain disruption risk
management has been widely of concern by both business and academic practitioners. It is observed
that most of the literature has focused only on a particular journal or field; there is a distinct lack
of comprehensive bibliometric review of two decades, of research on automotive supply chain
disruption risk management. This paper delivers a comprehensive bibliometric analysis that provides
a better understanding not previously fully evaluated by earlier studies in the field of automotive
supply chain disruption risk management. We used the 866 journal article during the period between
2000 and 2022 from the WOS database as sample data. Highlights research topics and trends, key
features, developments, and potential research areas for future research. The research problems we
solved are as follows: (1) Over time, how does the research in the field of automotive supply chain
disruption risk management progress? (2) Which research areas and trends are getting the most
attention in the field of automotive supply chain disruption risk management? (i) to recognize the
scholarly production; (ii) the most productive authors; (iii) the most productive organization; (iv)
the most cited articles; and (v) the most productive countries. (3) What is the research direction of
automotive supply chain disruption risk management in the future? Also discusses the shortcomings
of literature and bibliometric analysis. These findings provide a potential road map for researchers
who intend to engage in research in this field.

Keywords: automotive supply chain disruption; supply chain resilience; disruption risk; bibliometric
analysis; co-citation analysis

1. Introduction

As an industry indispensable to the national economy, the automobile industry has
developed into a strategic leading industry with high interconnectivity and a long industrial
chain. It is easy to evaluate both the software and hardware strengths of a country from
the automobile industry. From an economic perspective, automobile supply chain risk
management can benefit all supply chain participants. The supply chain of automobile
enterprises includes production links such as raw material supply, parts manufacturing,
vehicle production, and assembly, and jointly completes various tasks in the whole life
cycle of automobile products such as procurement, production, sales, and service. With the
increasing complexity of the technical and production links of the automobile commodity
chain, it stands to reason that the automotive supply chain should be more elastic. A series
of “supply interruption” events of auto parts manufacturers show that as supply chain
risks emerge, automobile supply chain management has become increasingly difficult.
Without effective risk management, it is hardly possible to see the automobile supply chain
operate normally. Therefore, we need to have an in-depth discussion on the risks brought
by supply disruption to the automotive supply chain.
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Affected by COVID-19 and other emergencies, the development of the supply chain
of the automobile industry slowed down, stirring a wide concern over the stability and
continuity of China’s manufacturing supply chain. According to a McKinsey & Company
consulting report, the Chinese manufacturing sector contributes more than 35% to the
world, and the contribution rate of the automobile industry is as high as 75%. According
to customs data, in 2019, China’s top five exporters of automobiles and their key parts
and components are: the United States, Japan, Mexico, Germany, and Russia. Auto
manufacturing in four of the five exporting countries is mired in production due to COVID-
19. Chinese parts manufacturers “supply disruption” directly led to many foreign car
production enterprises being in a state of suspension. Due to its globalized industrial
characteristics and supply chain system, the automobile industry suffered the most serious
impact caused by COVID-19 among the secondary industries. The COVID-19 pandemic
is comparable to a magnifying glass, helping us to clearly realize that in the automotive
industry, there are shortcomings during the current supply chain system construction, i.e.,
less toughness with more flexibility.

For the automobile industry, the development of its supply chain is characterized by
regionalization, localization, and antiglobalization. In the global supply chain, participating
countries gradually quit the supply chain; as a result, the upstream and downstream
countries become less cooperative in production, causing the breakup of the supply chain.
The resultant supply shock will lead to the reduction of the production capacity of each
country. Anti-globalization can resist the risk of a global supply chain “a ripple effect on
the whole body”.

To help activate the new energy vehicle industry, in recent years, many countries
have emphasized energy conservation and emission reduction, and have issued a number
of support policies and subsidy policies to help produce and market more new energy
vehicles. In addition, as unceasing progress has been made on clean energy technology
and commercialization has bn a mainstream, hydrogen energy and fuel cell industries are
also setting off a commercial upsurge around the world. At the same time, many local
governments have clearly issued corresponding hydrogen energy subsidy policies. With
the new energy vehicle expanding and the rise of the hydrogen energy vehicle industry,
there is a big difference between the production of new energy vehicles and traditional
vehicles, which is bound to tremendously affect the parts supply chain of the traditional
automobile industry.

Taking the vehicle parts supply chain as an example, from the perspective of the vehicle
industrial chain, these impacts will directly affect the fuel vehicle powertrain and vehicle
manufacturing and maintenance industries. Compared with traditional fuel vehicles,
electric vehicles are much simpler in respect of structure. Electric vehicles have no engines,
and many original auto parts disappear. Consequently, the related industrial chain suffered
a serious impact, directly changing the pattern of the traditional automobile industry.

Automobile commodity is one of the typical producer-driven commodity value chains,
each car has about more than 30,000 parts. In the automotive industry, parts manufacturing
and supply in the supply chain are different. For complex components, there are complex
supply relationships between different parts enterprises and different vehicle enterprises.
For auto parts products, its supply chain is operated under a strict grade system, and
its suppliers are divided into one, two, and three, forming a pyramid structure of the
multi-level division of labor. The OEMs are at the top of the pyramid, and the first-tier
suppliers directly supply products to the OEMs, forming a direct cooperative relationship
between the two sides, and the second-tier suppliers provide products to the first-tier
suppliers. First-tier suppliers can control the manufacturing right of the core system, first-
tier suppliers have strong competitiveness in a specific field, and first-tier suppliers lack
core competitiveness due to their large number. In addition, the current expansion of
automobile parts production enterprises is leading to changes in the structural relationship
between “vehicle manufacturers” and “first-tier suppliers” in the pyramid structure, mainly
reflected in the thinning automobile parts suppliers. With the deepening of the group of
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auto parts enterprises, the auto industry will form an hourglass structure, that is, a few
enterprises monopolize the production of a certain part, and provide it to many enterprises.
Suppliers of different levels have different positions in the supply chain of automobile
enterprises, and they have different risk resistance abilities. These risk factors are bound to
affect the resilience characteristics and resilience ability of automobile supply.

At present, for the automobile supply chain interruption risk identification, in a
broad perspective, supply chain risk is defined as the occurrence of unexpected events (or
conditions) at the macro or micro level, adversely affecting any part of the supply chain,
leading to failures or violations at the operational, tactical or strategic levels [1]. Based on
this perspective, the risks of the supply chain can be divided into two types: macro risk
and micro risk. Macro risks are adverse and relatively rare external events or phenomena
that may have a strong negative impact on an automobile company or its supply chain
(e.g., unexpected shocks such as COVID-19); Micro risk refers to relatively periodic events,
directly from the internal activities of the enterprise or the relationship between partners in
the supply chain network (e.g., supply shortage, supply quality, supply delay, etc.).

From a narrow perspective, through combing the existing literature, supply chain risk
can be summarized as external risk, time risk, information risk, financial risk, supply risk,
operation risk, and demand risk.

External risks. External risk refers to the risk from outside the supply chain, mainly
caused by economic, social political, or geographical reasons. These include fire accidents,
natural disasters, economic downturns, external legal problems, corruption, and cultural
differences [2-5]. These risks are more threatening and may directly or indirectly cause
disruptions to the supply chain. For example, Hansen et al. found that recessions changed
market demand and financial policy [6], and even broke the relationship between supply
and demand [7].

Time risk. Time risk refers to delays in supply chain activities [8]. Failure to meet target
time requirements can lead to risks in information, operations, demand, and supply chain
performance. Manavazi et al. demonstrated that delays in the procurement of materials
and equipment are often a major cause of cost overruns in construction projects [9]. Angulo
et al. demonstrate that time-related risks can cause dissatisfaction among all partners in the
supply chain. For example, information delays may disrupt communication among supply
chain members [10]. Delays in delivering products to customers can cause the partner to
go bankrupt [11], Late payment, however, leads to more disputes in all parts of the supply
chain [12].

Information risk. Information risk refers to the risk caused by poor communication, the
complexity of information infrastructure, information distortion, and information leakage
in each link of the supply chain [13-15]. For example, excessive inventory investment,
poor customer service, large revenue loss, wrong capacity planning, ineffective shipping,
etc. [16].

Financial risk. Financial risks include inflation, interest rates, currency fluctuations,
and the requirements of stakeholders [17-19]. This type of risk creates price volatility in
supply activities, operational planning, labor disputes, demand changes, and supply chain
disruptions. For example, inflation leads to rising prices, which irritate consumers, who
then blame producers, which is one reason for changing demand [20]. In terms of interest
rates, Zhi believed that with the increase of interest rates, the increase in fees charged by
banks for corporate loans will reduce the ability of customers to buy products and services
and increase demand risk, a phenomenon that will lead to price fluctuations in supply
activities [21]. In addition, currency fluctuations have an impact on output and prices [22].
Yeo and Tiong’s requirement for stakeholders is also a financial risk. Stakeholders par-
ticipate in the daily operations of the enterprise, influence key decisions of operational
planning activities, and have the right to supervise the selection of suppliers [23].

Supply risk. Supply risk is related to upstream activities in the supply chain [24].
Examples include: bankruptcy of suppliers, price fluctuations, unstable quality and quan-
tity of inputs, etc. [8,25]. These risks can lead to the failure of the delivery of goods or
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services to the purchasing company, and the subsequent risk of goods propagation affects
the downstream of the supply chain [26].

Operational risk. Operational risk refers to supply chain disruptions caused by prob-
lems within the enterprise organization, such as design and technological changes, acci-
dents, and labor disputes [2,4,27]. The study of Williams et al. shows that design change
will increase the production cost of enterprises, and technological change will destroy
business activities, resulting in a decline in the expected return on investment. However,
this study did not clarify the mechanism of device influence [28]. David pointed out that
employees taking more than three days off may affect employees’ ability to perform their
daily duties, affecting supply chain stability [29].

Bibliometric method combines mathematical and statistical methods to summarize
the research status of related topics and a specific research field, and mainly analyzes the
research status, research hotspots, and research trends. Zhou et al. used VOS viewer, Sci2
and Cite Space to explore the publication trend, author and journal distribution, research
topics, and hot spots of the research topic of the green supply chain, and predict the research
frontier. However, it can be seen from its research that the factors considered have certain
limitations [30]. Fan and Stevenson conducted a systematic review of the existing literature
on supply chain risk management and proposed a new and comprehensive conceptual
framework for supply chain risk management [31]. Moosavi et al. found through biblio-
metric analysis that blockchain technology can not only improve the transparency and
traceability of supply chain management, but also improve the efficiency and information
security of supply chain management. The application of blockchain technology in supply
chain management is relatively lacking, and there are great research opportunities in future
research [32]. Iftikhar et al. used bibliometric analysis and systematic review methods to
review the relevant literature on technology innovation, data innovation, and supply chain
resilience, in order to timely review the key research clusters, the evolution of research
over time, the knowledge trajectory and the research methodology development in this
field. The bibliometric method can effectively analyze the current research situation in the
research object field, but in this study, the research team’s application of the bibliometric
method is still not deep enough [33]. Roblek et al. applied bibliometric methods to explore
the overall development trend and importance of agile related to management and orga-
nization [34]. In order to track the research frontiers and hot spots of closed-loop supply
chains, Guan et al. used visualization software VOS viewer and Cite Space for analysis. A
descriptive analysis was first conducted to identify trends in the number of publications,
major journals, top authors, and regions. A thematic cluster analysis was then performed
to identify the research areas. Subsequently, hot issues and research trends are summarized
based on co-keywords, clustering, and co-citation analysis. “Game theory” and “remanu-
facturing” are new trends in closed-loop supply chain research. “Dual channel”, “quality”
and “circular economy” have become hot topics. Although this research has achieved
the summary of the current situation of supply chain tracking research, it has not made
effective prediction and put forward effective suggestions for its development trend [35].

In summary, many researchers have studied automotive supply chain disruption
risk management from multiple perspectives, but it is not clear how the research on
automotive supply chain disruption risk management develops. We do not know the
evolution characteristics of the research topics in this research area, and these questions
deserve our further exploration. These subjects are worth exploring in depth because they
provide clues to how this field of research will develop in the future. In view of the lack
of in-depth research on the risk management of automobile supply chain disruption, we
designed the present study to identify the research hotspots and future development trends
in this field. To do so, we conducted a bibliometric analysis of automotive supply chain
disruption risk management and performed a qualitative analysis of the results.

This paper mainly discusses these research questions as follows: (1) What are the
most representative articles, the number of articles published in top journals, the co-cited
articles, and the authors in the field of automotive supply chain disruption risk research?
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(2) Which organizations, institutions, and countries contribute to the research of automotive
supply chain disruption risk? (3) What are the main research clustering topics? (4) What
are the future research trends and research hotspots in the field of automotive supply
chain sustainability?

The rest of this paper is organized as follows: Section 2 presents the data source and
search methodology. Section 3 presents the results of the bibliometric analysis and science
mapping. The analysis includes the most representative scientific production, journals,
authors, countries, institutions, and organizations. The science mapping shows the citation
analysis, by articles, authors, and terms. Section 4 includes a discussion of the research,
findings, analysis, and implications of the scientific research on the relevant aspects of
automotive supply chain disruption risk management. Section 5 provides the conclusions,
limitations, and future research concludes the paper.

There are two innovative points in the study. First, the study learned about the
interruption management of the automobile supply chain in recent years through liter-
ature measurement, and then analyzed the interruption risk of the automobile supply
chain through the results of literature measurement, without providing corresponding
suggestions for the development and management of the automobile supply chain.

2. Data Source and Methodology

For the collection of article information, the source of data is very important. We used
SCI, SSCI WOS and EI databases as sources of scientific literature. Web of Science (WOS)
is one of the important database platforms for obtaining global academic information,
including more than 20,000 international authoritative and influential academic journals,
covering social sciences, humanities and arts, natural sciences, engineering and technology,
and other disciplines. The database is considered the most trustworthy and thorough
source of data [36,37] and is frequently used in bibliometric research on the progress and
evaluation of various scientific fields [38].

SCI database is currently the most authoritative large-scale multidisciplinary compre-
hensive retrieval tool in the world, so it is regarded as one of the main source databases of
foreign literature. In the SCI database, the search term is limited to “auto supply chain”
and “supply chain interruption risk”, the language is “English”, the publication year is
limited to “after 2000”, and the document type is “Article”. Under this condition, a total of
1024 documents are screened.

The SSCI WOS database mainly includes SSCI journal papers. The research takes
WOS as the search source, takes “auto supply chain”, “supply chain interruption risk”
and “risk management” as the search keywords, limits the search language to “English”,
and sets the document type to “article” and “review”. In order to obtain more effective
supply chain information, the research selects the time node when the auto industry starts
to develop as the initial search time, so set the time span = “2000-2022’, Databases = “WOS
Core Collection’. A total of 1003 articles were retrieved.

The search time for this study began on 7 January 2023. After searching in the WOS
database, a total of 1084 literatures were obtained. All the screening was conducted in one
day to prevent data bias resulting from daily database updates. This is just a preliminary
simple screening. Considering the defects in the retrieval technology, we will filter and
clean the original literature data by means of manual screening to remove irrelevant and
duplicate literature data. Finally, a total of 866 articles are selected as sample data for
further detailed analysis.

The dataset we obtained includes important information such as author, title, year,
journal source, affiliation, abstract, etc. The dataset was managed in Excel, and we used
version 5.7R2 of the Cite Space software for bibliometric visualization analysis [39].
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Number of Publications

3. Current Status of the Field of Automotive Supply Chain Disruption Risk Management

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Next, this part focuses on the research status of the field of automotive supply chain
disruption risk management, including the trend of the number of published articles,
publication types, top journals, etc.

Figure 1 shows the number of publications and citations from 2000 to 2022 in the field of
automotive supply chain disruption risk management. The overall trend of the publications
follows an exponential growth (y = 0.2409x? — 1.4415x + 8.9311; R? = 0.9) after mathematical
exponential adjustment. The result accords with a price curve and it demonstrates that
the field of automotive supply chain disruption risk management has received increasing
attention. Similar verifications are also presented in other literature [40,41]. In addition,
from 2000 to 2011, the growth rate of the number of published articles was relatively flat.
Since 2012, the number of articles published has increased significantly. Especially after
2015, the number of articles published showed a sharp upward trend. The reason may be
that the Tohoku earthquake in March 2011 temporarily shut down Japan’s auto industry,
forcing European and North American manufacturers to halt production because their
inventories in Japan had been depleted. Goldman Sachs estimates that Japanese carmakers
are losing $200 millionm a day. A one-third drop in global daily car production has led to
a total global loss of five million vehicles, against a planned loss of 72 million in 2011 (a
loss of about 7%), and months of stagnation in the global car industry’s supply chain. As
well, floods in Thailand disrupted supply chains for electronics and auto parts. In 2012, an
explosion at a major Ford supplier, Evonik, disrupted production. In order to improve the
competitive advantage of the automotive supply chain, the research topic of automotive
supply chain management has been widely discussed by many researchers. Therefore,
more and more scholars focus on how to reduce the disruption risk of the automotive
supply chain after these emergencies. In terms of the number of citations of articles, the
number of citations has continued to rise. Since the data statistics of this study are up to
26 August 2022, the number of citations in Figure 1 shows a downward trend in 2022. It
can be seen that more and more researchers have been involved in the study of automotive
supply chain disruption risk in recent years.
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Figure 1. Number of publications and citations from 2000 to 2022.
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According to the results reported in Table 1, the top 20 journals published about
40% of the total number of articles in the field of automotive supply chain disruption risk
management. The Journal of Cleaner Production ranked first, with 56 papers published.
This journal plays an important role in the display of research results in the field of Auto-
motive Supply Chain Disruption risk management. Then, the top five remaining journals
are International Journal of Production Economics, International Journal of Production
Research, Supply Chain Management-An International Journal, Production Planning &
Control. The top five journals account for about 20% of the total publications.

Table 1. Top 20 journals in the field of Automotive Supply Chain Disruption risk management.

Rank Journal Total Percentage Cumulative
Number (%) Percentage (%)
1 Journal of Cleaner Production 56 4.77% 4.77%
2 International Journal of Production Economics 54 4.60% 9.37%
3 International Journal of Production Research 53 4.52% 13.89%
4 Supply Chain Management-An International Journal 37 3.15% 17.04%
5 Production Planning & Control 35 2.98% 20.02%
6 Sustainability 29 2.47% 22.49%
7 International Journal of Operations & Production Management 26 2.22% 24.71%
8 Computers & Industrial Engineering 25 2.13% 26.84%
9 Benchmarking-An International Journal 21 1.79% 28.63%
10 Industrial Management & Data Systems 17 1.45% 30.08%
11 Journal of Manufacturing Technology Management 16 1.36% 31.44%
12 Journal of Operations Management 15 1.28% 32.72%
13 International Journal of Logistics Management 14 1.19% 33.91%
14 European Journal of Operational Research 13 1.11% 35.02%
15 IFAC Papers OnLine 13 1.11% 36.13%
16 Business Strategy and the Environment 12 1.02% 37.15%
17 IFIP Advances in Information and Communication Technology 12 1.02% 38.17%
18 IEEE Transactions on Engineering Management 10 0.85% 39.02%
19 International Journal of Productivity and Performance Management 10 0.85% 39.87%
20 Procedia CIRP 10 0.85% 40.72%

The number of citations of a paper can indicate the research contribution and impor-
tance of the paper. According to the results reported in Table 2, Vickery et al. published
the title of the effects of an integrative supply chain strategy on customer service in the
Journal of Operations Management in 2003 and financial performance: an analysis of direct
versus indirect relationships, which has been cited 691 times [42]. Zhu et al. published in
the Journal of Cleaner Production in 2007 titled Green supply chain management: pres-
sures, practices, and performance within the Chinese automobile industry, has been cited
637 times [43]. In 2011, published in the Journal of Operations Management, the contingency
effects of environmental uncertainty on the relationship between supply chain integration
and operational performance [44], Structural investigation of supply networks: A social
network analysis approach published in the Journal of Operations Management [45], It
can be seen that in the beginning, scholars mainly focused on the theoretical analysis of
automotive supply chain operation. With the continuous changes and development of the
automotive industry, scholars have also changed their research perspectives to supplier
selection, green supply chain, supply chain optimization, and other aspects.
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Table 2. Top 20 most cited articles in the field of Automotive Supply Chain Disruption risk management.

Rank Article Titles Year Source Title Cited by
The feffects of an 1r}tegratlve supply chain strategy on customer Journal of Operations
1 service and financial performance: an analysis of direct versus 2003 691
S . . Management
indirect relationships
5 Green supply chain management: pressures, practices, and 2007 Journal of Cleaner 637
performance within the Chinese automobile industry Production
Gaining from vertical partnerships: Knowledge transfer, .
. : . . - Strategic Management
3 relationship duration, and supplier performance improvement 2003 561
. . : Journal
in the US and Japanese automotive industries
The contingency effects of environmental uncertainty on the .
. . . . Journal of Operations
4 relationship between supply chain integration and 2011 556
. Management
operational performance
A comparison between Fuzzy AHP and Fuzzy TOPSIS Applied Soft
5 : . 2014 : 458
methods to supplier selection Computing
Structural investigation of supply networks: A social network Journal of Operations
6 . 2011 365
analysis approach Management
Supplier evaluations: communication strategies to improve Journal of Operations
7 . 2004 365
supplier performance Management
8 Sourcing by design: Product complexity and the supply chain 2001 management science 357
An empirical analysis of supply chain risk management in the International Journal of
9 o 2011 . . 323
German automotive industry Production Economics
An integrated green supplier selection approach with analytic International Journal of
10 . . . 2015 : . 319
network process and improved Grey relational analysis Production Economics
Transportation
The influence of green practices on supply chain performance: Research Part E:
11 2011 o 284
A case study approach Logistics and
Transportation Review
International Journal of
12 Supply chain flexibility and firm performance—A conceptual 2005 Operations & 281
model and empirical study in the automotive industry Production
Management
13 Incorporating sustainability into supply management in the 2007 Journal of Cleaner 268
automotive industry—the case of the Volkswagen AG Production
Intuitionistic fuzzy-based DEMATEL method for developing Expert Systems with
14 . . . 2015 L 257
green practices and performances in a green supply chain Applications
Defining the concept of supply chain quality management and International Journal of
15 . . . . . 2005 . . 251
its relevance to academic and industrial practice Production Economics
16 Greening the’autor.notlve supPly chain: a 2007 Journal of Cleaner 238
relationship perspective Production
A system dynamics model based on evolutionary game theory
. e Journal of Cleaner
17 for green supply chain management diffusion among 2014 . 226
. Production
Chinese manufacturers
Designing an integrated AHP-based decision support system Expert Systems with
18 . . o 2016 L 194
for supplier selection in the automotive industry Applications
Green innovation adoption in automotive supply chain: the Journal of Cleaner
19 . 2015 . 185
Malaysian case Production
. e . International Journal of
Environmental management system certification and its Operations &
20 influence on corporate practices Evidence from the 2008 P}; oduction 183
automotive industry
Management
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4. Bibliometric Analysis
4.1. Influence of Authors

Figure 2 presents the analysis of co-authorship in the field of Automotive Supply Chain
Disruption risk management by Cite Space software. It shows the mutual cooperation
and correlation between different authors. Among them, the authors with the highest
correlation are mainly the following groups: The first group is MB Frazer, MS Kerr, WP
Neumanm, RW Norman, RP Wells; The second group is Lin Zhou/Fulin Zhou/Yandong
He/Yun Lin/Xu Wang; The third group is LC Brown/Dm Gute/Hj Cohen/Amc Desmars;
The fourth group is Fabio Sgarbossa/Alena Otto/Alessandro Persona/Martina Calzavara;
The fifth group is Hamzeh Soltanali/ Abbas Rohani/Jose Torres Farinha; The sixth group
is Shukriah Abdullah/Nor Kamaliana Khamis/Jaharah Ghani. From the above results, it
can be seen that a large number of scholars currently use space software to analyze the
risk of disruption in the automobile supply chain and propose management strategies
accordingly. In addition, according to the correlation evaluation in Figure 2, there is a
significant correlation between a large number of authors, which indicates that most of
the authors have a consistent main direction in the study of automobile supply chain
disruption risk.
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Figure 2. Author cooperation network in the field of automotive supply chain disruption risk management.

4.2. Affiliation Statistics and Analysis Countries, Institutions, Organizations

According to the national distribution of the number of papers published, the coun-
try with the largest number of papers is the United States (Figure 3). So far, a total of
162 papers have been published on the subject of automotive supply chain disruption risk
management. It accounted for 18.7% of the total number of published papers. The second
is Germany, which has published a total of 77 articles on the subject of automotive supply
chain disruption risk management, accounting for 8.9%. Next is China. So far, a total of
62 articles have been published on the subject of automotive supply chain disruption risk
management, accounting for 7.2%. The top ten countries accounted for 67.2% of the total
number of published papers. In addition, from the distribution of papers published in
Figure 3, it can be seen that the research related to the risk of automobile supply chain
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disruption is mainly concentrated in some countries. As shown in Figure 3, the number of
papers published in the United States, Germany, China, India, Canada, and other countries
accounts for a large proportion, which further indicates that the automobile industry in the
above countries has developed more rapidly, increasing the number of scholars’ research
samples. Therefore, in this study, we will focus on the contents of papers from the United
States, Germany, China, India, Canada and other countries, and use the method of literature
measurement to summarize the risk of automobile supply chain interruption, so as to put
forward universal risk management opinions.
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Figure 3. Number of countries” publications in the field of Automotive Supply Chain Disruption risk
management.

According to the statistics of the number of papers published by each country, it can be
seen from the results reported in Figure 4 that the United States ranks first with 162 papers
published and shows the strongest centrality, with a centrality index of 0.38. In second
place is Germany with a centrality index of 0.22, and in third place is China with a centrality
index of 0.18. In addition, the number of published papers in the United Kingdom, France,
Italy, Canada, Iran and other countries is above 35, and their centrality is above 0.15. The
cooperative research among these countries is relatively sufficient, and they can use each
other’s resources to conduct cooperative research and jointly contribute to the research on
automotive supply chain disruption risk. At the same time, according to the published
statistical results of the papers in Figure 4, the development status of each country can be
further analyzed in depth, and the risk factors of automobile supply chain interruption can
be proposed from the national level. However, from the differences in the central evaluation
results of various countries, it can be seen that most of the current research is still based on
the United States. Therefore, if it is necessary to put forward the risk management strategy
for domestic automobile supply chain disruption, the follow-up research still needs to focus
on the domestic development status.
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Figure 4. Countries working together in the field of automotive supply chain disruption risk management.

The United States, Germany, the United Kingdom, and China represent the study
groups with the highest correlations. The institutions or universities with the most pub-
lished articles are all located in the United States. At the top of the top 10 is Univ Michigan,
which has published 11 papers. Univ Michigan’s research on automotive supply chain
risk management is relatively mature and widely recognized. Tied for second place are
Islamic Azad Univ, Tech Univ Munich, and Chinese Acad Sci, all of which have published
seven papers. Among the remaining top 10 institutions, Univ Waterloo, Politecn Torino,
and Urmia Univ Technol each published six papers. Chongqing University, Charles Univ
Prague, and Tech Univ Kosice each published five papers. The number of articles published
by the top 10 universities and institutions accounts for 10% of the total number of articles
published by all institutions worldwide. The remaining 90% are publications with between
one and four articles per institution.

Among the many research institutions, Univ Waterloo, Univ Toronto, McMaster Univ,
Univ Western Ontario, Inst Work and Health and NIOSH have the strongest cooperative
research ability and the strongest correlation. By sharing teaching resources and scientific
research results, they promote research collaboration between institutions and achieve sig-
nificant research results in the field of automotive supply chain risk management. This was
followed by Univ Tehran Med Sci, Islamic Azad Univ and Cranfield Univ, Also available are
Urmia Univ Technol, Allameh Tabatabai Univ, Univ New Haven, Birla Inst Technol & Sci,
Michigan State Univ. Further analysis from Figure 5 shows that the cooperation network of
research institutions is relatively simple, only some universities and research structures are
designed, and there are few studies in which enterprises participate. At present, there are
more theoretical research works than practical ones in the research of automotive supply
chain risk management. There is not a stable core research group in the study of automotive
supply chain disruption risk management, which needs more researchers to participate in
and carry out more in-depth research in this field. According to the research, the reason
why theoretical research is more than practical research in the current research is that the
communication between various research institutions is mostly online academic discussion,
so the importance of offline practice is ignored. Therefore, under this background, the
research will be based on the current theoretical research situation of the risk management
of automobile supply chain interruption, and will be carried out with practice as the core
of the follow-up research.
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Figure 5. Institutions working together in the field of automotive supply chain disruption risk
management.

Based on the sample data collected in this paper, Cite Space software was used to
detect the strongest citation bursts on research institutions to identify active institutions
in automotive supply chain disruption risk management research in a specific period.
According to Figure 6, it can be seen that the research field of automotive supply chain
disruption risk management has been the focus of the following top 15 institutions since
2000, among which the first institutional mutation in 2001 was related to Inst Work &
Hilth, Univ Waterloo and Univ Toronto. In 2002, scholars at Univ New Haven paid great
attention to the field of automotive supply chain disruption risk research. In 2003, Michigan
State University began to focus on the research perspective on the disruption risk of the
automotive supply chain. Among the top 15 institutions are research institutes in the
United States and China. The reason may be that the development level of the automobile
manufacturing industry in China and the United States is at the forefront of the world, and
it is easier for scholars to start with the industry with certain development advantages in
their own countries. By collecting research data and materials and using research methods,
the development of the automobile industry is becoming better and better.

4.3. Keyword Analysis

To fully understand the history and development of automotive supply chain dis-
ruption risk management research, we used Cite Space software to visually analyze the
keywords of the papers in the sample data and identify the research hotspots in this field.
Figure 7 shows the network visualization of the keyword co-occurrence map from 2000 to
2022. With the continuous progress and development of the automotive industry, automo-
tive supply chain risk management has gradually become an important strategic means to
promote the core competitiveness of automotive enterprises. The node size in Figure 7 is
proportional to the frequency of the keyword.
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Top 15 Institutions with the Strongest Citation Bursts

Institutions Year Strength Begin End 2000—2022
Inst Work & HIth 2000 1.52 2001 2022
Univ Waterloo 2000 1.66 2001 2022
Univ Toronto 2000 1 52000 202
Univ New Haven 2000 1.66 2002 2022
Michigan State Univ. 2000 1.44 2003 2022
Ohio State Univ 2000 1.82004 2022
Univ Western Ontario 2000 1.6 2005 2022
Lund Univ 2000 1.62 2009 2022
MIT 2000 1.56 2012 2022

Islamic Azad Univ 2000 1.92 2015 2022
Birla Inst Technol & Sci 2000 1.53 2016 2022
Chonggqging Univ 2000 1.522016 2022
Urmia Univ Technol 2000 2.08 2017 2022
Tech Univ Munich 2000 1.89 2017 2022
Univ Michigan 2000 1.7 2018 2022

Figure 6. Top 15 institutions with the strongest citation bursts.
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Figure 7. Network visualization of keyword co-occurrence analysis.

In the research of automotive supply chain risk management, the most important
keyword is automotive industry (102), risk (81), performance (73), model (64), design (50),
strategy (47), safety (39), reliability (39), simulation (38) and optimization (35). In general,
the research in this field mainly involves supply chain performance improvement, supply
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chain operation, supply chain optimization and simulation, and supply chain sustainable
development, indicating that with the increasing market competition between enterprises,
researchers are trying to improve the level of automotive supply chain disruption risk
management through the above methods. It makes the automobile enterprises maximize
their profit while maximizing the cooperation and synergy effect among enterprises, re-
alizes the optimal development path of the automobile supply chain system, and helps
and promotes the sustainable development of the automobile enterprises in a benign
competitive environment.

5. Citation Analysis and Reference Co-Citation Analysis

Ivanov et al. have made the most prominent contribution in the field of supply chain
disruption risk research, He and his research team applied mathematical programming,
simulation, control, and fuzzy theory methods to study the dynamics of complex networks
in production, logistics, and supply chains, exploring supply chain structure dynamics and
control, with an emphasis on global supply chain design and disruption considerations,
distribution planning and dynamic rescheduling, among others [46—48]. Kamalahmadi et al.
were cited seven times [49]. Zimmer et al. were cited five times. Zimmer et al. developed a
model combined with the fuzzy AHP method to effectively evaluate the supplier selection
of the German automobile industry in the global supply chain [50]. Munir et al. were cited
five times.

Munir et al. explored the relationship between supply chain integration and supply
chain risk management to improve supply chain operation performance, and studied the
mediating role of supply chain risk management between supply chain integration and
enterprise operation performance. The study shows that SCM plays a partial mediating
role between internal integration and operational performance, and a fully mediating role
between supplier and customer integration and operational performance [51]. Govindan
et al. were cited five times [52]. Tomlin was cited four times. Tomlin believed that the ratio
of supplier uptime to disruption frequency is the key factor of the optimal strategy. By
comparing different types of suppliers, the author proposes a hybrid procurement strategy
to alleviate the supply disruption risk of automobile enterprises [53]. Fan and Stevenson
were cited four times. Fan and Stevenson conducted a systematic literature review on
supply chain risk management, mainly including risk identification, risk assessment, and
risk detection [31]. The network of the co-cited reference in the field of automotive supply
chain disruption risk management is shown in Figure 8. It can be seen from the reference
network diagram in Figure 8 that in the current research, the discussion is mainly based on
the previous research, that is, the discussion on the risk of interruption of the automobile
supply chain is still more traditional. For this reason, the research believes that the main
research directions of the risk of automobile supply chain interruption can be screened out
by analyzing the number of references cited in the past, providing theoretical support for
the follow-up research.

Analyzing the keywords in the title and abstract and performing cluster analysis
can help to determine the research trend of this topic. In order to identify the hot topics
in the research field of automotive supply chain disruption risk, Cite Space was used
to visually analyze the dynamic evolution path of research topics in this research field.
The horizontal line in Figure 9 represents the change in research hotspots over time. The
number one theme was supply chain resilience (#0) which exploded around 2001. This
shows that there may have been many disruption risk events in the automobile industry
around 2001, and the research on the improvement of supply chain resilience in this field
began to attract the attention of scholars. Then, the clustering themes are respectively:
network design (#1), game theory (#2), stochastic demand (#3), supply chain coordination
(#4), green supply chain (#5), supply chain performance (#6), disruption management (#7),
mixed integer programming (#8), risk management (#9). Green supply chain (#5), supply
chain performance (#6), and disruption management (#7) may be the research direction
that scholars focus on recently.
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Figure 8. Network of the co-cited reference in the field of automotive supply chain disruption risk
management.
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Figure 9. Timeline view of reference clusters in the field of automotive supply chain disruption risk
management.
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Supply chain resilience (#0): The word Resilience first comes from the concept of
resilience in engineering. Its meaning is “returning to the original state”, which refers to
the ability of an object to recover to its original state after deformation under the action of
external forces, namely “engineering resilience”. In 1973, Holling, a Canadian ecologist,
applied the idea of resilience to ecology for the first time and put forward the concept of
“ecological resilience”, which considered the ecosystem as a dynamic system with multiple
stable states, overturning the traditional ecology view that the ecosystem has a single
equilibrium state [54]. Since then, scholars’ research on resilience has gradually spread
from natural ecology to ecology, engineering, economy, and society. Alberti believed that
resilience is the ability of a system to absorb and resolve changes before restructuring
after a series of structural and process changes [55]. Rose believed that resilience is the
inherent adaptive ability of individuals or enterprises to avoid potential losses in the face of
disasters. It is usually expressed in two types, one emphasizing its inherent characteristics,
and the other emphasizing its adaptive characteristics [56]. With the continuous infiltration
of the concept of resilience, resilience has been given connotation interpretation in different
fields and dimensions [57]. Quang and Hara proposed that supply chain resilience can
be measured by five key dimensions, including: supplier performance, internal business,
innovation and learning, customer service, and finance [58].

Although the focus of research in different fields is different, the relevant research on
the connotation of comprehensive resilience generally believes that the most basic meaning
of resilience is the ability of the system to resolve external shocks and maintain its main
functions when crises occur.

Network design (#1): In view of the discussion of supply chain structure in the
existing literature, Cox et al. studied the concept of supply chain management by focusing
on the linear relationship between buyers and suppliers. While this approach is useful
for understanding the relationship between buyers and suppliers, it does not capture the
complexity of a firm’s strategy, which relies on a larger network of firms that are embedded
together to form a complex network [59]. Croxton [60] and Carter [61] have shown that
the supply chain is a complex network that exhibits a similar organizational pattern to
other network types. The company’s “supply network” includes the connection with direct
suppliers and customers and the connection between subsequent suppliers and customers,
which is essentially a recursive relationship.

In addition, the researchers also explored the connections between the layers of the
supply chain network. Kito et al. used the data in the Mark Line database to construct the
supply chain network of Toyota Motor, and the study determined that the layered structure
of Toyota was “barrel shaped”, which was contrary to the pyramid structure assumed
before. However, the authors also did not find the topology to be scale-free [62]. Brintrup
et al. studied the automotive industry to explore robustness properties. While these studies
discussed part of the topological structure features, the study did not evaluate the dynamic
nature of these relationships [63].

Game theory (#2): Existing research mainly uses game theory to solve the following
two problems:

1. Delay in quick response. Xiao et al. by delaying the final assembly of finished products
until the actual demand is observed, can effectively avoid losses and risks caused
by overproduction under the inventory-based production strategy. However, in the
future with limited capacity, the producer must assemble part of the finished product
in advance to maximize its own profit [64]. Liu et al. considered the impact of a
supplier’s delivery delay on the demand of end customers, established a supply
chain ordering model considering delivery delay based on repurchase contract, and
analyzed the sharing of delivery delay risk and demand risk [65].

2. Mechanism and compensation contract mechanism. In the supply chain environment
with uncertain demand, distributors, and retailers have convenient conditions to
get close to the market and customers, and can truly understand the whole market
demand. If the manufacturers in the upstream of the supply chain can take incen-
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tives and compensation measures to stimulate the sales of distributors and retailers
and eliminate their worries, not only can distributors and retailers obtain more prof-
its [66], but manufacturers’ profits will also increase; on the other hand, incentives
and compensation measures taken by manufacturers to achieve benefit sharing and
risk sharing can maintain a good cooperative relationship among members of the
supply chain, increase the elasticity of the supply chain, and reduce the occurrence
of disruption risk. The commonly used incentive and compensation strategies are:
wholesale price discounts, revenue-sharing strategies, buyback strategies, quantity
flexibility contracts, reward and penalty strategies, lead time adjustments, order

options, etc. [67].

Stochastic demand (#3): In the supply chain system, uncertainty is common due to the
complexity of the supply chain network structure and the interaction between enterprises
in the supply chain. These uncertainties come not only from the uncoordinated operation
between internal suppliers and manufacturers, but also from the external environment
such as natural disasters, policies, and regulations. Uncertainty will be transmitted step
by step with information flow, logistics, and capital flow, and ultimately affect the overall
operation and profitability of the supply chain.

There are many and mixed factors affecting demand, and the reasons for random
demand are as follows: the operation mode and organizational structure of each member
enterprise in the supply chain are different, and the way to deal with problems in the
cooperation process is different. If not handled properly, the interests of some member
enterprises can not only be guaranteed, but also cause vicious competition and other bad
situations, and the needs of customers can not be met at all [68]; The opacity of market
information. There are many factors that affect the quantity demanded, which also makes it
difficult to predict the quantity demanded, thus leading to the deviation of the demand [69];
Supply chain members amplify demand information step by step based on maximizing
their own interests [70]; The occurrence of an emergency. Emergencies are the product
of the complexity and uncertainty of the supply chain system. The particularity of the
automobile supply chain structure determines that it is more fragile and has a weak ability
to resist the risk of emergencies [71].

Supply chain coordination (#4): Adhikari et al. considered that different enterprises in
the supply chain have different risk resistance capabilities, and set up different risk-sharing
mechanisms to improve the profitability of enterprises. At the same time, they designed
joint pricing and order quantity decisions, and finally designed a two-way repurchase sales
rebate punishment contract to coordinate the supply chain [72].

Some research works put forward that members of the supply chain share risks to
promote good cooperation among the member enterprises in the supply chain. Obviously,
insufficient supply can not fully reflect the characteristics of the automobile supply chain
network only from the perspective of supply chain equilibrium. Therefore, it is particularly
critical to improve the elasticity and stability of the automobile supply chain, reduce the
damage of risks to the automobile supply chain network, and effectively prevent the
occurrence of risks [73]. The Ivanov team presented the results of a simulation study that
revealed some new research on the impact of COVID-19 on global supply chain risk. The
specific features that frame epidemic outbreaks as a distinct type of supply disruption risk
are first clarified. Secondly, the coronavirus and supply chain optimization software are
used as examples to demonstrate how simulation-based methods can be used to examine
and predict the impact of the outbreak on supply chain performance. The main observation
of the simulation experiment is that important factors for risk propagation include lead time,
the speed of epidemic spread, and the duration of upstream and downstream disruptions
in the supply chain [74-76].

Green supply chain (#5): For the research on the green supply chain in the field of
automotive supply chain research, the design of a reverse recycling network is the most
discussed research issue. Many countries have introduced policies to minimize waste after
vehicle scrap, which has led to a special focus on reverse supply chain research in the
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automotive industry in product design, electrical and electronic equipment, and battery
industries. Mansour and Zarei proposed a network design and mathematical formula
for recycling ELVs from the perspective of manufacturers to obtain maximum economic
benefits and fulfill relevant legal provisions. The model focuses on establishing optimal
locations for collection centers and demolition personnel, as well as material flows between
facilities [77].

Zach proposed the EV recycling network design and its mathematical model [78]. Min-
imization of the total cost of the system including the costs of setting up the network and
transportation was aimed in the model. Jonrinaldi and Zhang proposed an integrated pro-
duction and inventory control model for supply chains containing multiple products. They
considered 3PL providers collecting used products from end customers and dismantling
used products [79].

Supply chain performance (#6): The occurrence of supply chain risk will have a
significant impact on supply chain performance [80,81]. Different risks have different
attributes and different impacts on supply chain performance. For example, Rice and
Caniato proposed that core risks related to product processes may directly affect the day-
to-day operations of the supply chain, and that these risks have a high probability of
occurring but a lower impact on supply chain performance than external supply chain
risks [82]. External supply chain risks, on the other hand, are rare but can disrupt supply
chain activities directly or indirectly (e.g., the shutdown of Hyundai Motor in South Korea
due to COVID-19). The interruption of information, finance, time, and other factors may
have a serious impact on the supply chain process (especially the supply, manufacturing,
and downstream links) [1]. Quang and Hara constructed a hypothetical model of the
relationship between risk and supply chain performance. The core of the model is three
core risks related to product process: supply risk, operation risk, and demand risk, which
have a direct impact on supply chain performance [58]. Thun and Hoenig pointed out
that the impact of internal and external supply chain risks on supply chain performance is
significantly different [83]. Altay and Ramirez studied the impact of natural disasters on
enterprises, analyzing the impact of more than 3500 natural disaster events (including fast-
occurring natural disasters such as typhoons, floods, and earthquakes) on the performance
of more than 100,000 enterprises, including financial leverage, total asset turnover, and
operating cash flow [84]. Bergmann et al. believed that the excessive consumption of these
natural resources leads to the escalation of climate change, and this exogenous risk can
further significantly affect the operation and financial performance of organizations [85].

For the research on the relationship between operational risk and supply chain per-
formance, most of the existing studies believe that the successful implementation of the
organizational strategy has a positive role in promoting supply chain performance [86],
however, the research on interruption risk management has not received enough attention.
Cuthbertson identifies the broader consequences of failing to manage risk effectively. These
include not only financial losses, but also reduced product quality, damage to property and
equipment, loss of reputation in the eyes of customers, suppliers, and the wider public, and
delivery delays [87]. Based on the background of promoting the safe and efficient flow of
goods, Bueno et al. proposed a system dynamics model to analyze the impact of the spread
of disruption risk caused by terrorist acts on the performance of global supply chains [88].

Disruption management (#7): Wagner et al. studied the data of several automobile
enterprises, discussed the differences between just-in-time sequential delivery and other
delivery concepts of automobile manufacturing enterprises, and then proposed a method
to improve supply chain resilience based on JIS [89].

The problem of supply chain disruption management is studied. The supply chain
dynamic simulation model is considered as a suitable method to observe and predict the
changing behavior of the supply chain over time. On the basis of the original model, Torabi
and Sadghiani et al. added additional dynamic characteristics to simulate the impact of
risk on supply chain performance [90,91]. Most of the existing studies use discrete event
simulation methods [92,93], some researchers choose to use heuristics to study supply chain
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optimization problems [94], and several studies also use methods based on multi-agent
simulation [95,96]. Few studies have incorporated supply chain simulation studies into
simulations and transportation disruptions during epidemic crises [97]. In the study of the
impact of disruptive events on supply chain performance, Klibi and Ivanov et al. believe
that adding some parameter conditions that change according to time dependence in the
model will be more conducive to simulation model calculation [98,99]. In addition, Li
and Pavlov et al. analyze detailed control policies based on various financial, customer,
and operational performance indicators [100,101]. The simulation model considers log-
ical and stochastic constraints such as disruptions, stochastics of inventory, production,
procurement, and transportation control policies, and stepwise capacity degradation and
restoration [102-105]. Simulation studies play an important role in model simulation stud-
ies because they involve time-varying parameters, duration of recovery measures, and
capacity degradation and recovery. The advantage of simulation is that it allows for further
optimization studies by extending complex problems through time-varying situational
behavior in the system.

Mixed integer programming (#8): Spengler et al. focused on the MILP model of
product recycling in the steel industry [106]. Munoz et al. argue that in the present
work, LCA was used to evaluate an existing automotive component, a plastic facade
panel, and compare it with a recyclable prototype panel based on a compatible polyolefin
design. From an environmental point of view, LCA has proven to be a very useful tool
for validating redesigned automotive components; Moreover, it allows one to identify
not only the benefits of increased recyclability, but also the improvement of other stages
of the life cycle. From this case study, some recommendations are made for companies
in order to design eco-friendly components for automotive interiors [107]. Zarei et al.
proposed a mathematical model in which new vehicle distributors are responsible for
ELV collection, and they use joint potential facilities for distribution and collection. The
effectiveness of the GA-based model and solution method is verified by generating several
test problem instances [108]. Ozceylan and Paksoy proposed an integrated, multi-echelon,
multi-period, and multi-part MILP model to optimize production and distribution plans
for CLSC networks. They presented computational results for many scenarios [109]. Farel
et al. proposed a mathematical model for an ELV glazing recycling network including car
manufacturers, dismantlers, shredders, collection and transportation facilities, and glass
treatment facilities [110].

Risk management (#9): Through the literature review, the existing research mainly uses
the fault tree analysis method for supply chain risk assessment research [111], risk matrix
method [112], fuzzy comprehensive evaluation method [113], and other methods. Kolotzek
et al. used the analytic hierarchy process to rank 11 indicators from the perspectives
of political risk, demand increase, and supply decrease to evaluate the supply risk of
manufacturing enterprises [114]. Abdel et al. constructed an evaluation index system
considering demand, supply, environment, and business risks, and introduced the ideal
solution similarity order preference technology TOPSIS method to evaluate supply chain
risks [115]. In addition, some studies use probability theory and survey methods to evaluate
supply risk. For example, Vilko and Hallikas used probabilities and losses to characterize
supply risk and assessed the risk of multi-modal supply chains [116]. Defining demand as a
probabilistic parameter, Nooraie and Mellat Parast constructed a multi-objective approach
to assess supply risk [117].

In addition to the overall assessment of risk factors, existing studies also discuss
the causal relationship between risk factors in the supply chain. Shin used quantitative
methods to map the causal relationship between supply chain security risks [118]. Studies
have found that quantitative methods have limited interdependence ability to compare and
distinguish risks, such as the petri net model [119], and coupled with a lack of quantitative
data or inappropriate model parameters, quantitative methods do not always work [120].
Therefore, in the existing literature, such as explanatory structural modeling [121] and
Bayesian networks are used to evaluate causality in supply chain risk. Among them, when
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using the Bayesian network to analyze the risk of a supply chain system, it can identify
the causal relationship between the key factors and the final result, so it is recognized by
the majority of researchers. Bayesian networks can effectively combine statistical data
and subjective judgment and model in the absence of data. Bayesian network is widely
used in supply chain risk management. The existing research mainly focuses on solving
specific problems in supplier selection, supplier evaluation, and selection, and most of the
research problems only focus on some specific problems, such as: automotive enterprise
parts supplier selection and evaluation problem, Boeing Company, and supply evaluation
problem [122].

By analyzing the keywords in the references, we can more accurately understand the
main research contents and directions in the previous research, and also provide technical
support for the follow-up research. In addition, according to the frequency of keywords
in the existing relevant literature, it is of great significance to analyze the resilience of
automobile supply chain disruption risk, and is also the focus of the follow-up work.

6. Research Gaps and Future Research Opportunities

The above research results provide a theoretical basis for this paper, and prove the
importance of research on risk management and resilience improvement strategy of the
supply chain of automotive enterprises. However, there are still some deficiencies in the
existing research results, and the detailed analysis is as follows:

(1) Research on supply chains in the automotive industry is insufficient. The existing
literature provides relatively comprehensive studies and discussions on manufac-
turing supply chains from the aspects of supply chain performance, supply chain
linkages, re-source sharing games, and supply chain linkage risks. However, there is
little literature specific to the automotive supply chain.

(2) Research on supply chain risk and resilience in the automotive industry is insufficient.
Existing studies focus mainly on the degree of resilience of the regional spatial network
structure and the factors affecting the resilience of the network structure of industry
clusters. Most research on supply chain resilience has focused on exploring the factors
affecting supply chain resilience. Few studies have integrated supply chain, risk, and
resilience to explore supply chain resilience in the automotive industry and analysed
the impact of risk factors on resilience. There is a lack of conceptual models linking
supply chain risk management and performance management.

(8) Research on resilience assessment in the automotive supply chain needs to be ex-
panded. An overview of relevant studies shows that most of the existing studies
generally start from the resilience structure, select a centrality index to examine the
state of the network based on the analysis of statistical characteristics of the network,
such as order distribution, cluster coefficient, and mean path length, and assess the
resilience of the studied object. Supply chain resilience is rarely characterized by indi-
cators such as supply chain performance, but rather by a comprehensive examination
of the degree of supply chain re-silience from holistic and multi-layered factors.

7. Conclusions

In this paper, we systematically review the literature on automotive supply chain
disruption risk management research. We used Cite Space software to analyze and visualize
the number of journal papers, core authors, research institutions, source journals, research
hotspots, and future development directions of automotive supply chain disruption risk
management research. The main findings are as follows:

First of all, in the past 20 years, the number of publications related to the topic of
automotive supply chain disruption risk management increased steadily, which grew from
five related publications in 2000 to a peak number of 105 in 2021. This indicates that research
on automotive supply chain disruption risk management had attracted increasingly more
attention from society and scholars. The influential works, their authors, and the existing
and emerging research clusters/themes are identified.
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Second, at present, automotive supply chain disruption risk management research has
not formed a stable core author group, but has formed core research institutions and core
research journals.

Third, “The effects of an integrative supply chain strategy on customer service and
financial performance: an analysis of direct versus indirect relationships” published by
“Journal of Operations Management” is the most cited paper among the 866 documents.
Furthermore, reference co-citation analysis presented ten clustered groups and the lit-
erature of each cluster might provide potential future research opportunities regarding
automotive supply chain disruption risk management. These research contents will bring
useful inspiration to managers of automotive manufacturing companies, and supply chain
management-related scholars and help them in their future work and study in supply
chain-related management and research work.

Finally, there are some limitations that need to be addressed in future work. The
data source was collected from the core collection of WOS, which may cause deviations
in the results of bibliometric analysis. We could extend the data source to include more
publications about the field of automotive supply chain disruption risk management such
as ProQuest Dissertations and Theses. Moreover, although we could obtain objective
results about the field of automotive supply chain disruption risk management based on
bibliometric analysis, some underlying reasons for these results are not explained. Some
social science research methods, such as expert interviews, could be employed in the future
to address this limitation.
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Abstract: This study aims to examine how the bilateral matching decision making of manufacturing
enterprises that are seeking partners in the manufacturing supply chain can be improved by taking
into consideration evaluation criteria for organizational quality-specific immunity. This study con-
structs an evaluation indicator system to measure organizational quality-specific immunity based on
immune theory. The system’s evaluation criteria are based on the key components of organizational
quality-specific immunity. We also construct bilateral matching evaluation and decision-making
models using interval-valued hesitant fuzzy information and bidirectional projection technology
(BMIHFIBPT). The interval-valued bilateral fuzzy bidirectional projection technology is applied to
solve a combination satisfaction and matching optimization model. Empirical analysis is carried
out to assess both the supply and demand sides of representative manufacturing enterprises in the
manufacturing supply chain, match the main supply and demand bodies of two subjects, and help
manufacturing enterprises select the optimal cooperation partners. The empirical analysis results
indicate that the bilateral matching evaluation and decision-making models based on BMIHFIBPT
can overcome the lack of information to some extent and help solve interval-valued hesitant fuzzy
decision-making problems. In turn, the models can provide a basis for manufacturing enterprises to
effectively select the best cooperation partners and conduct bilateral matching decision making in the
manufacturing supply chain area that supports organizational quality-specific immunity.

Keywords: bilateral matching decision making; interval-valued hesitant fuzzy information; bidirectional
projection technology; organizational quality-specific immunity

1. Introduction

Today’s increasingly fierce and complex competitive environment poses unprece-
dented challenges to manufacturing enterprises” development. Quality plays a vital role in
staying competitive. Quality management thus not only offers many benefits for enterprises
but also involves huge security risks [1]. In recent years, the quality management problems
of manufacturing enterprises have become increasingly prominent. Many well-known
manufacturing enterprises have experienced quality crises and faced criticism by the public
and media. Takata Airbags had an issue with an abnormal gas generator rupture. After the
incident came to light, more than 60 million vehicles globally were affected and recalled.
The recall incident brought huge losses to Takada, which declared bankruptcy in June 2017.
In 2016, Samsung was caught in the “Battery Gate” incident. Within a month of the release
of the Galaxy Note7 mobile phone, more than 30 explosions and fires occurred due to
battery defects. Samsung permanently stopped production and sales of the Galaxy Note7,
and the event became one of the most shameful events in the company’s history. Quality
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management problems cause serious economic losses for manufacturing enterprises, affect-
ing in turn the survival and development of other manufacturing enterprises in the supply
chain.

Quality is key to manufacturing enterprises’ survival. There are many manufacturing
enterprises in the manufacturing supply chain. These enterprises mainly select partners
based on features of quality, for example, their ability to jointly complete quality tasks
and performance in the manufacturing supply chain [2-5], maintain resilience [6-11],
strengthen quality management practice and sustainability [12-19], achieve sustainable
development [20,21], and promote green quality management and green technology inno-
vation [22-25]. Organizational quality-specific immunity is the comprehensive embodiment
of the organizational quality of a manufacturing enterprise in the manufacturing supply
chain [26-35]. The stronger the organizational quality-specific immunity of a manufacturing
enterprise, the easier it is for that enterprise to be selected as a partner.

Therefore, in view of the importance of evaluating organizational quality-specific
immunity, this study uses immune theory as an entry point to construct relevant evaluation
criteria. We introduce bidirectional projection technology to the bilateral matching decision-
making method and consider both the supply and demand sides. We use data from the
cooperation partners of representative manufacturing enterprises in the manufacturing
supply chain as the interval-value hesitant fuzzy information. This study further carries
out bilateral (two-sided) matching decision making according to the proposed evaluation
criteria for organizational quality-specific immunity. The process involves applying in-
tegration methods to create bilateral matching decision-making models that incorporate
interval-valued hesitant fuzzy information and bidirectional projection technology (BMIH-
FIBPT). The resulting bilateral matching decision-making models and methods will provide
the foundation basis for effective selection of partners in the manufacturing supply chain
based on organizational quality-specific immunity, providing practical guidance as well as
scientific contribution to the field.

2. Literature Review
2.1. Bilateral Matching Decision-Making Models and Methods

Bilateral matching decision making is closely related to management science, and
various types of bilateral matching decision-making models and methods are widely used
in the field of management science and engineering, mainly in the fields of human resources
management, price and material management, e-commerce management, enterprise opera-
tion management, and risk investment management [36—43]. However, limited relevant
empirical research has applied the various types of bilateral matching decision-making
models and methods to the supply chain quality management and supply chain operation
management fields. The models and methods available to support bilateral matching
decision making mainly stem from models and methods related to emerging technology,
operational optimization, statistical and artificial intelligence, simulation, and bilateral
matching based on the specific preference information of the bilateral subjects [36—43].

Several representative emerging technology models and methods are as follows [36—43]:
two-sided matching decision models based on advantage sequences, two-sided matching
game analysis methods, two-sided matching models based on the matching efforts of a
bilateral platform, two-sided matching decision-making methods based on triangular in-
tuitionistic fuzzy number information, intuitionistic fuzzy two-sided matching methods
considering regret aversion and matching aspiration, two-sided game matching meth-
ods with uncertain preference ordinals, decision-making models and methods based on
two-sided matching dynamic games, and decision-making methods for stable two-sided
matching based on linguistic preference information.

Several representative models and methods for operational optimization, statisti-
cal and artificial intelligence, and simulation are as follows [44—46]: intuitionistic fuzzy
two-sided matching models, multi-objective stable matching methods with distributional
constraints, and dynamic matching methods with unknown preferences.
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Several representative models and methods for bilateral matching based on specific
preference information from bilateral subjects are as follows [47-50]: network visualization
of stable matching methods, dynamic two-sided matching methods based on uncoordi-
nated preference information, multiple decision-making matching models based on the
characteristics and circumstances of two-sided (bilateral) subjects, and strict two-sided
matching methods based on complete preference ordinal information.

2.2. Organizational Quality-Specific Immunity

Quality accidents are not uncommon. Such issues reveal not only a regulatory mecha-
nism with loopholes but also an imperfect quality management system. In the process of
business development, quality accidents are the “symptoms” of enterprises with a quality-
related disease, and enterprises infected by that disease will soon see their competitiveness
drop, at the very least. The quality management departments and quality management
personnel in an enterprise constitute the quality management immune system of an en-
terprise. Their function is to prevent disease from occurring in the enterprise, perpetually
maintaining the enterprise’s health, and to provide proper treatment the moment the en-
terprise starts to fall sick. Seeking out and eliminating “quality accident-inducing factors”
is an effective means by which the quality management immune system can prevent an
enterprise from getting sick.

Lv and Wang [51-53] were the first to apply immune theory to organizational manage-
ment. Their work explores organizational adaptability and has led to inspiring results about
general organizational immunity from the perspective of immunization [54]. They assert
that organizational immunity consists of specific immunities and non-specific immunities.
Specific immunities, which emerge as the organization establishes key behaviours, help to
prevent “viruses” in the enterprise [55]. At the heart of general organizational immunity,
i.e., perhaps the most important element in determining the rise or fall of an enterprise, is
organizational quality [56]. Organizational quality-specific immunity, in turn, is fostered by
specificity, adaptability, initiative attributes, and the characteristics of acquired cultivation
and fostering nurture. These features enhance the efficiency and learning effectiveness
of the immune system, saving immune response time if the issue arises again, essentially
immunizing the enterprise. The main components of organizational quality-specific im-
munity are thus quality monitoring and cognition, quality defence, quality memory, and
immune homeostasis. These components complement each other, allowing for coordinating
development in the formation of an orderly dynamic benign cycle [57].

Existing empirical studies on organizational quality-specific immunity have drawn
on relevant theoretical analysis frameworks and conceptual framework models to con-
duct data surveys, questionnaires, interviews, statistical investigations, and case studies.
Luca et al. [58] point out that quality management is becoming an increasingly important
factor in determining an enterprise’s level of economic and technological development.
Improving quality is an urgent need for enterprises seeking to survive and develop in
the current competitive environment. Luca et al. also note the key success factors for
implementing quality improvement measures and propose a performance measurement
system to evaluate those factors. Kaynak and Hartley [59] and Tari et al. [60] confirm that
quality management practice has a significant positive impact on the product quality and
operational efficiency of the company. In biological and immune theory, each time the
organism completes the immune response, its immune cells are enhanced; the organism
is thus preserved by immunological memory. Considering organizational quality man-
agement from the perspective of immune theory, when an enterprise faces a threat to
organizational quality due to internal abnormalities or changes in the external environment,
its immune system should identify and respond to the threat and then commit the event to
memory; doing so ensures that, next time, the enterprise can mobilize available resources
in a timely and reasonable manner to remove similar risks or harm, ensuring healthy and
sustainable development [61].
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Wang et al. draw on the theory of medical immunity to study the adaptability of
enterprises. They divide the concept of organizational immunity into two dimensions: non-
specific immunities and specific immunities. Non-specific immunities are determined by
three major components: organizational structure, institutional rules, and company culture.
Specific immunities, in comparison, are determined by organizational monitoring and
surveillance, organizational defence, and organizational memory [61]. Li et al. [62] propose
the product quality management model for supply chains based on the characteristics
and mechanisms of the biological immune response. With the biological immune system
as a parallel, their supply chain quality management model has four stages: immune
recognition, learning, memory, and immune effects. Based on that model, the quality
identification mechanism and control methods are effective. Passing through the supply
chain thus has a positive effect on ensuring product quality and safety.

Liu et al., Shi et al., and Dai and Ding [63-68] indicate that just as organizational
quality-specific immunity is at the core of general organizational quality immunity, the
latter is at the core of overall organizational immunity. In summary, they find that orga-
nizational quality-specific immunity has three main components: organizational quality
monitoring and cognition; organizational quality defence, clearance, and repair; and orga-
nizational quality memory and immune self-stability. They propose a path towards quality
performance improvement based on empirical analysis of the factors that affect quality
defect management from the perspective of immune theory. Wang and Li [54], also on the
basis on immune theory, consider enterprises’ immune recognition ability and use it as a
mediator variable to construct a multi-media model. They use the resulting AMOS model
to analyse the influencing factors of and risks to immunity to enhance enterprises” ability
to resist breaches of immunity. In summary, research has indicated that an enterprise’s
intrinsic ability to recognize risks to its own survival is equivalent to an immune system’s
ability to recognize threats to the body’s health. Dai and Ding [68] draw on the basic ideas of
immune theory in their analysis of the relationships between organizational immunity and
the internal control of an enterprise. Based on their findings, they design an internal control
evaluation indicator system and construct an evaluation model, which has broadened the
research thoughts in the field.

Scholars have expressed concern about the application of immune theory in the field
of quality management. The scope of its application remains very limited, and the existing
research has not been in depth. At present, the domestic and international investment in
the effort to understand quality management as an artificial immune system is insufficient.
Few independent empirical analyses have focused on fusing the concept of organizational
immunity with quality management. Theoretical and empirical research and evaluations
of organizational quality management and organizational quality-specific immunity are
relatively rare. Further, no studies have specifically used organizational quality-specific
immunity to determine evaluation criteria in conjunction with integration methods and
bilateral matching decision-making models based on BMIHFIBPT to solve the problem, on
both the supply and demand sides, of matching manufacturing enterprises for cooperation.

3. Evaluation Indicator System Construction of Organizational
Quality-Specific Inmunity

Organizational quality-specific immunity reduces quality fluctuation and quality loss,
addressing present and potential quality problems. Metaphorically, it can fight a stubborn
disease, eliminate the virus, and generate the antigens to protect quality, in the longer term
ensuring the re-activation and effectiveness of quality-protecting antibodies. Considering
the function of organizational quality-specific immunity, and based on the relevant theories
and previous literature review [63-68], the present study selects the following compo-
nents for its evaluation indicator system: organizational quality monitoring and cognition;
organizational quality defence, clearance, and repair (both hard and soft features); and
organizational quality memory and immune self-stability. These components correspond
to the respective scales and evaluation indicators shown in Table 1.
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Table 1. Evaluation indicator system for organizational quality-specific immunity.

Construction Dimension Scales and Evaluation Indicators

External environmental monitoring of
organizational quality
Internal environmental monitoring of
Organizational quality monitoring and cognition organizational quality
Internal activities and behaviour
monitoring of organizational quality
Value judgement
Cognitive motivation (intrinsic
motivation, extrinsic motivation)
Cognitive diversity

Leadership
Employee participation
Supplier relationship management
Customer request

Organizational quality
defence, clearance, and

Organizational quality repair of soft features

defence, clearance,

and repair Organizational quality Product design
defence, clearance, and Process management
repair of hard features Statistical control and feedback
Learning
Record
Organizational quality memory and immune Summary
self-stability Save

Spread and diffusion

Communication control and supervision

4. Bilateral Matching Decision-Making Models Based on Interval-Valued Hesitant
Fuzzy Information and Bidirectional Projection Technology (BMIHFIBPT)

In recent years, multi-criteria decision making has been widely used in the field of
economic and management [69-79]. Bilateral matching decision making is an important
branch of multi-criteria decision making. In bilateral matching (two-sided matching), two
subjects (with different finite sets) are matched by a specific algorithm to each other in
order to achieve the satisfaction of both parties [80-84]. At present, bilateral matching
decision making is becoming an important component of management decision theory.
Many economic and management activities entail matching one or more members of two
groups, such as the matching of venture capital parties with start-ups [85-87]. Roth [88]
first proposed the concept of bilateral matching in a study of marriage matching, in which
Roth analyses actual cases of bilateral matching. Bilateral matching decision-making theory
has since received extensive attention from scholars. Fan and Yue [17] consider the highest
acceptability order of bilateral subjects and propose a strict bilateral matching decision-
making method based on the complete preference information. Chen et al. [8§9] examine
the dynamic matching decision-making problem based on uncertainty preference sequence
information. On the basis of the theory of constructing the ordinal deviation, they apply
the evidence fusion method to solve the problem with the help of uncertainty preference
sequence information.

However, because the evaluation information of both subjects is uncertain, and because
the decision-making environment and situation are complex, the subjects’ preference
information is often hesitant, fuzzy, and vague [90]. Therefore, how to overcome the
lack of decision-making information is a problem worthy of attention. Interval-valued
hesitant fuzzy sets have excellent expressive advantages in dealing with hesitant fuzzy
information [90]. The present study therefore utilizes interval-valued hesitant fuzzy sets
and bidirectional projection technology to measure fuzzy information and effectively
solve the problem of bilateral matching decision making. The bilateral matching decision-
making method used in this study firstly deals with the interval-valued hesitant fuzzy
preference information. It then adopts the bidirectional projection technology to obtain
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the vector projection formed by different intervals. The TOPSIS method is also used to
obtain the closeness of match, which can express the preference of both subjects. Finally, the
optimization model is constructed. We then incorporate the closeness into the optimization
model to solve the problem.

In our hesitant and fuzzy environment, sets A,(p =2,3,...,m) and B;(q =2,3,...,n)
represent manufacturing enterprises in the manufacturing supply chain. Manufacturing
enterprises in these sets all want partners in the supply chain. Manufacturing enterprises
inset Ay(p =2,3,...,m) want to select a partner with suitable partners in the scope of set
B;(q=2,3,...,n). SetXlsanon—emptyset suchthat R = {(x, gr(x;))|x; € X,i=1,2,...,n}
refers to interval-valued hesitant fuzzy sets (IVHFSs) in X. gr(x;) refers to 1nterva1—va1ued
hesitant fuzzy elements (IVHFEs). The element x is from the scope of X, which belongs to the
membership degree of R. [ is the number and quantity of elements in interval-valued hesitant
fuzzy elements. Manufacturing enterprises in set A,(p = 2,3,...,m) in the manufacturing
supply chain present interval-valued hesitant fuzzy preference evaluation information for
the potential partners (manufacturing enterprises in set B;(q = 2,3, ..., n)). That information
forms interval-valued hesitant fuzzy preference matrix G = |gj;| e Correspondingly,
the potential partners (manufacturing enterprises in set B;(q = 2,3, ...,n) present interval-
valued hesitant fuzzy preference evaluation information for manufacturing enterprises in
set Ay(p =2,3,...,m), and that information forms interval-valued hesitant fuzzy preference
matrix H = |h; J [84-100].

(1) The construction of bilateral matching decision-making models of partners of manu-
facturing enterprises based on BMIHFIBPT integration methods

The main model construction principles, procedures, and steps of the bilateral match-
ing decision-making models of partners of manufacturing enterprises based on BMIHFIBPT
integration methods are as follows [84-100]:

The interval-valued hesitant fuzzy decision matrix is normalized by the obtained
interval-valued hesitant fuzzy information and assembled by the bidirectional projection
method to ensure scientific and effective results.

Assuming G’ = [¢';j] _  asastandardized interval-valued hesitant fuzzy decision

matrix, the positive and negative ideal fuzzy elements are ¢* = (gir, g;r,. o gl+) and
8 =(8,,8 .8 ) respectively.

L+ + + +

g+ (gllgz,"',gb [ T /71 } [72 /’)/121 ]//[r)/lL /,)/IU }>)

= (< [maxyh,maxyY], max'ylz,max'ylz] , [maxy}j,maxyY] )
1<i<m 1<i<m 1<i<m 1<i<m 1<i<m  1<i<m

g_:(gl,gz,”‘,gl ):(< h/% r’)’%l ]1[7% /Y%I ]//[’YIL /’)’lu }>)

= (< [miny5,minyY], [minyh,minyj], - - -, [miny},miny ] @)
1<i<m 1<i<m 1<i<m 1<i<m 1<i<m 1<i<m

Letg, andg g be two interval-valued hesitant fuzzy elements after standardization (IVHFE),
SO gP = (< [72]/)\5]]/ [7}1;2/ /\;112]/ Tty [,)/;L;l/ A;;Il] >)/ and gq = (< [’)’51,/\511], [’)/52, )\;’[2},
, [’Ygl, )t{sll] >). Then, the correlation coefficients of gp and g, are:

Crvure(hp, hyg)

Krvure(8p, 8q) 3)
\/EIVHFE p) X \/EIVHFE(hq)
where:
1
Crvare(hp, hg) = EZ; ’Ypi’Ygi + 7%‘7%) 4
=
E h Ly U2 5
vare(hp) = 22[(7,91) + (7pi) ] ©)

i=1
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s AL : L L
minvy;” = mln(")/qi - ’ypi ’

Ervure(h

! 2
2 ’Yqz ’Yqi) ] (6)

I\)M—‘

The vector formed by the interval-valued hesitant fuzzy elements g, and g, are:
hyhg = (< [minvy], maxy{'], [miny5, maxy5], - -, [miny}, maxy}'] >) (7)

where:

),i=1,2,---,n.

L L L
), andmaxy; = maX(\vqi = Ypils

u
- ’)/pi

u
- r}/pi

Let the interval-valued hesitant fuzzy element be g’, the positive and negative ideal
interval-valued hesitant fuzzy elements be ¢*, ¢~, and the positive ideal interval-valued
hesitant fuzzy element and negative ideal interval-valued hesitant fuzzy element be g*¢~.
The positive and negative ideal interval-valued hesitant fuzzy elements and interval-valued
hesitant fuzzy elements form the vector g'¢™, ¢’¢~. Then, the bidirectional projection
formed by ¢'¢” ongtg™ is:

Is~&'|Kivure(g~ 8,87 ¢")
_ Cvmre(g 88 8h) ®)
Ervure(§8™)

|
09 0q
T
I

The bidirectional projection formed by ¢*¢~ on ¢'g™ is:

Plé gﬁ =18 8" |Kvure(§ 8", 8's")
Crvure(s— 8" 8's") ©)
Ervure(g's™)

Based on the closeness formula of TOPSIS and other methods, the interval-valued
hesitant fuzzy information is further assembled effectively, and the following formula is
constructed: ]

—
P rh nt

— (10)
Prh e + Pt

Thus, the principal matching closeness matrices of two-sided subjects D4 = [a;;]
and Dg = [b;]  for matching are constructed.

mxn

(2) The optimization solution of bilateral matching decision-making models of partners
of manufacturing enterprises based on BMIHFIBPT integration methods

The main principles, procedures, and steps of the optimization solution of bilateral
matching decision-making models of partners of manufacturing enterprises based on
BMIHFIBPT integration methods are as follows [84-100]:

The bilateral matching decision-making optimization model is constructed based

on the principal matching closeness matrices of two-sided subjects D4 = [a;] . and
Dp = il
n a,]Jrh,/
maxZ = Zl > A(5) + (1= A)/aij X bijlx;
m l ]
s.t. Y xijgl,i:1,2,~~~,n (11)
=1
N ]
Z xij S 1/]: 1/2/"' ,m
i=1

where Xij is the 0-1 variable, Xij = 0 indicates that the two subjects do not match, and
x;j = 1 indicates that the two subjects match each other. A is the adjustment parameter,
0 < A <1, and the value of A is determined by the specific needs of the actual problem.
A =0and A = 1 indicate that the actual problem satisfies the preference consistency and
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complementarity, respectively. In this study, the combination of satisfaction matching
analysis method is used to solve the optimization model.

a;j + by;
cij = M=) + (1= A) Jay x by, A € [0,1] (12)

(3) The processes of the bilateral matching decision-making model of partners of manu-
facturing enterprises based on BMIHFIBPT integration methods

The processes of the bilateral matching decision-making model of partners of manu-
facturing enterprises based on BMIHFIBPT integration methods are as follows [84-100]:

Step 1: Based on the matching subjects” preference information, obtain the interval-
valued hesitant fuzzy decision matrices G = [g;;] and H = [h;j] _  respectively.

Step 2: Use the optimistic criterion or the pessimistic criterion to consistently process
the interval-valued hesitant fuzzy decision matrices G and H and arrange the order of
the elements to obtain the normalized interval-valued hesitant fuzzy element matrices
G' = Ig]. a0 H' = [,

Step 3: Apply Equations (1) and (2) to construct the positive and negative ideal fuzzy
elements ¢*,¢~ and i, h~ according to the normalized interval-valued hesitant fuzzy
element matrix.

Step 4: Use Equations (8) and (9) to calculate the bidirectional projection matrices G} =

—o! — ot 1 _
[(Pr;;)ﬁ}mxn’ Gy = [(Prg,g‘i )ij]mxn/ and H = [(PrZ,ZQU} H; = [(PrZ’hlf)ij]
respectively.

Step 5: Use Equation (10) to calculate the closeness and obtain the closeness matrices
Da= [aif]mxn and Dp = [b’j]mxn’

Step 6: Use Equation (11) to obtain the matching degree matrix C = [c;;] . and
further construct the optimization model.

Step 7: Use Lingo software to solve the optimization model and analyse the results to
obtain bilateral matching decision-making schemes.

In summary, the bilateral matching decision-making model to help manufacturing
enterprises choose partners based on BMIHFIBPT integration methods is shown in Figure 1.

7
nxm nxm

Step 1 Making out preference information and the interval-valued hesitant fuzzy decision matrices

|

Step 2 Consistently processing the interval-valued hesitant fuzzy decision matrices and arranging the order of the
elements to obtain the normalized interval-valued hesitant fuzzy element matrices

!

‘Step 3 Constructing the positive and negative ideal fuzzy elements ‘

v

‘Step 4 Calculating the bidirectional projection matrices ‘

v

‘Step 5 Calculating the closeness and obtaining the closeness matrices ‘

v

‘Step 6 Obtaining the matching degree matrix and constructing optimization model ‘

v

Step 7 Solving the optimization model and analyzing the results to obtain bilateral matching decision-making
schemes

Figure 1. Process flow chart.

5. Empirical Analysis

Quality management is the key means to ensuring the manufacturing supply chain
continues to develop steadily. Therefore, as the main actors in the manufacturing supply
chain, manufacturing enterprises place great emphasis on quality management in the
production and operation management scope. With good quality management, products
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will satisfy customers and core competitiveness will improve, and the cooperation and
partnerships among enterprises will become closer and closer. However, to achieve satis-
factory matching results and make optimal decisions, managers must be able to identify
the most mature enterprises, namely, those enterprises that have established and operate
an organizational quality-specific immune system. In turn, managers must also be able
to achieve bilateral matching between their own enterprise and these parties. To serve
this aim, the present study selects 11 large-sized manufacturing enterprises in the eastern
region of China as the evaluation targets. The selected manufacturing enterprises have a
quality management system certification, are good at constructing immunity mechanisms
to deal with quality risk events, and display an organizational quality-specific immunity
performance that has placed them in leading positions in the same industry. The rep-
utation, product market share, assets, profit, competitiveness, finances, production and
operation management performance, rank, and scale of all these enterprises are typical
and representative. All 11 manufacturing enterprises are state-owned and state-holding
enterprises over 20 years old. We selected and invited 80 managers of the 11 manufacturing
enterprises in total. All the managers have a master’s degree; have been working in a
position in manufacturing enterprises for more than 20 years; and are familiar with quality
management, production operation, and management of enterprises.

We collected data by extensive on-site questionnaire distribution, field interviews, and
survey investigations. There are seven large-sized manufacturing enterprises (A1, A, Az, A,
As, Ag, A7) and four other large-sized manufacturing enterprises (By, By, B3, By). All 11 man-
ufacturing enterprises are seeking partners in the manufacturing supply chain with the
aim of forming long-term cooperation relationships and close partnerships in the quality
management scope. All the enterprises are also core actors in the same supply chain. Based
on the organizational quality-specific immunity components (i.e., organizational quality
monitoring and cognition; organizational quality defence, clearance, and repair, both soft and
hard features; and organizational quality memory and immune self-stability), the evaluation
indicator system for organizational quality-specific immunity is constructed. We use organi-
zational quality-specific immunity to determine the evaluation criteria. Based on immune
theory, organizational quality-specific immunity is the focus of the benchmarking reference
system, decision-making scale, and basis. Organizational quality-specific immunity, as dis-
cussed above, is vital to both the supply and demand sides of manufacturing enterprises in
the manufacturing supply chain. Therefore, it must be a central consideration in selecting
optimal partners and in bilateral matching decision making.

The organizational quality-specific immunity components of the selected manufac-
turing enterprises are organizational quality monitoring and cognition; organizational
quality defence, clearance, and repair (soft and hard features); and organizational quality
memory and immune self-stability. Both parties completed a preference evaluation of
the above evaluation indicators. Namely, all 80 senior managers of the manufacturing
enterprises filled out the evaluation survey items and on-site evaluation questionnaires on
their decision making with interval-valued hesitant fuzzy information and decision-making
preferences according to the evaluation criteria of organizational quality-specific immunity.
In the process of preference evaluation, the subjects’ preference information was often
hesitant, fuzzy, and vague. By processing the interval-valued hesitant fuzzy information,
we determined the best-matched manufacturing enterprises, i.e., the enterprise pairs with
optimal cooperative and coordination potential.

Step 1: According to the preference information presented by both subjects, the
interval-valued hesitant fuzzy preference matrices G = [g;]  and H = [h;j] are

mX nxm
obtained, as shown in Tables 2 and 3.
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Table 2. Interval-valued hesitant fuzzy preference matrix 1.

B, B, B; By

A {]0.3,0.4],[0.6,0.8]} {]0.1,0.3],0.5,0.6] } {[0.3,0.5]} {[0.5,0.7],[0.8,0.9]}
A, {]0.5,0.6]} {[0.1,0.2],[0.4,05]}  {[0.2,04],[0.5,0.6],[0.7,08]}  {[0.4,0.5],[0.5,0.8]}
As {[0.1,0.3],0.3,0.6]} {[0.3,0.4],[0.5,0.6]} {[0.2,0.3],[0.4,0.6]} {0.3,0.5],[0.6,0.8]}
Ay {[0.4,0.6],0.8,0.9]} {[0.2,0.3],0.5,0.7]} {[0.2,0.3],0.6,0.8]} {0.5,0.6],0.8,0.9]}
As {]0.1,0.3],[0.2,0.4]} {[0.7,0.8]} {[0.1,0.2],[0.5,0.7]} {0.3,0.5]}

Ag {[0.3,0.4],[0.7,0.9]} {[0.4,0.7]} {[0.6,0.7],[0.7,0.9]} {[0.2,0.4],(0.7,0.8]}
Ay {[0.2,0.3],[0.5,0.6]} {0.3,0.5],0.8,0.9]} {[0.3,0.4]} {[0.5,0.7]}

Table 3. Interval-valued hesitant fuzzy preference matrix 2.

Ay Ay As Aq
By {[0.4,0.5),(0.7,0.8]} {[0.2,0.6]} {[0.6,0.7]} {0.1,0.3],[0.4,0.5],[0.7,0.9]}
B, {]0.3,0.4],[0.6,0.8]} {]0.1,0.2],[0.5,0.9]} {[0.3,0.8]} {]0.1,0.4],[0.5,0.7]}
B3 {[0.1,0.2],[0.4,0.6]} {[0.2,0.4],[0.6,0.7]} {[0.2,0.5]} {[0.1,0.2],[0.4,0.5],[0.5,0.7]}
By {]0.3,0.5],[0.6,0.9]} {]0.1,0.4],[0.5,0.7]} {0.6,0.7]} {]0.5,0.6],[0.8,0.9]}
As As Ay
By {[0.2,0.3],0.5,0.6]} {[0.3,0.6]} {]0.1,0.2],[0.3,0.4],[0.5,0.6] }
B, {0.1,0.4],[0.7,0.8]} {[0.7,0.8]} {[0.2,0.3],[0.5,0.7]}
Bs  {[0.1,0.3],[0.4,0.5,[0.8,0.9]} {[0.2,0.5]} {[0.5,0.6],[0.7,0.8]}
By {[0.2,0.4],[0.6,0.7]} {]0.6,0.9]} {[0.3,0.5],[0.8,0.9]}

Step 2: By consistently processing the lengths of the matrices G and H, we arranged
the order of the elements (this study uses the optimistic criteria to process the length) to
obtain the normalized interval-valued hesitant fuzzy element matrices G’ = [¢’ ijl .., and
H'=[n'y] . ,asshownin Tables 4 and 5.

Table 4. Interval-valued hesitant fuzzy preference matrix 3.
By B, Bs By
A {[0.3,0.4],[0.6,0.8]} {[0.1,0.3],[0.5,0.6]}  {[0.3,0.5],0.3,0.5],[0.3,0.5]} {[0.5,0.7],0.8,0.9]}
A, {[0.5,0.6],[0.5,0.6] } {[0.1,0.2],[0.4,05]}  {[0.2,0.4],[0.5,0.6],[0.7,0.8] } {]0.4,0.5,[0.5,0.8] }
As {]0.1,0.3],[0.3,0.6]} {[0.3,04],[0.5,06]}  {[0.2,0.3],0.4,0.6],[0.4,0.6]} {]0.3,0.5],[0.6,0.8]}
Ay {[0.4,0.6],[0.8,0.9]} {[0.2,0.3],[0.5,0.7]}  {[0.2,0.3],[0.6,0.8],[0.6,0.8]} {0.5,0.6],[0.8,0.9]}
As {]0.1,0.3],[0.2,0.4]} {j0.7,0.8],(0.7,08]}  {[0.1,0.2],[0.5,0.7],0.5,0.7]} {[0.3,0.5],0.3,0.5]}
Ag {[0.3,0.4],[0.7,0.9]} {[0.4,0.7),[04,0.7]}  {]0.6,0.7],(0.7,0.9],[0.7,0.9]} {[0.2,0.4],(0.7,0.8]}
Ay {[0.2,0.3],[0.5,0.6]} {[0.3,0.5],[0.8,0.9]}  {[0.3,0.4],(0.3,0.4],[0.3,0.4]} {[0.5,0.7],0.5,0.7]}
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Table 5. Interval-valued hesitant fuzzy preference matrix 4.

Ay A, As A,
B, {[0.4,0.5],[0.7,08]}  {[0.2,0.6],[0.2,0.6]} {[0.6,0.7)} {[0.1,0.3], [0.4,0.5], [0.7,0.9]}
B, {[03,0.4],(0.6,08}  {[0.1,02],[0.5,09]} {[03,0.8]} {[0.1,0.4],0.5,0.7], [0.5,0.7]}
B, {[0.1,0.2],[0.4,06]}  {[0.2,0.4],[0.6,0.7]} {[0.2,0.5]} {[0.1,0.2], [0.4,0.5], [0.5,0.7]}
B, {[0.3,0.5],[0.6,09]}  {[0.1,0.4],[0.5,0.7]} {[0.6,0.7]} {[0.5,0.6],[0.8,0.9], [0.8,0.9]}

As Ag Az

B {[0.2,0.3],[0.5,0.6], [0.5,0.6]} {[0.3,0.6]} {[0.1,0.2],[0.3,0.4], [0.5,0.6]}
B, {[0.1,0.4],[0.7,0.8], [0.7,0.8] } {[0.7,0.8]} {[0-2,0.3],[0.5,0.7], [0.5,0.7]}
B, {[0.1,03], [0.4,0.5], [0.8,0.9]} {[02,05]} {[05,0.6],(0.7,0.8], [0.7,0.8]}
By {[0.2,0.4],0.6,0.7], [0.6,0.7]} {[0.6,09]} {[0.3,0.5],(0.8,0.9],[0.8,0.9]}

Step 3: We use Equations (1)—(7) to construct positive and negative ideal fuzzy elements
¢",¢  and h't, h™, respectively, according to the normalized interval-valued hesitant fuzzy
element matrix:

g™ = ({]0.5,0.6],[0.8,0.9]}, {[0.7,0.8],[0.8,0.9] }, {[0.6,0.7], [0.7,0.9],
0.7,0.9]}, {[0.5,0.7],[0.8,0.9]})

¢ = ({[0.1,0.3],[0.2,0.4]},{[0.1,0.2], [0.4,0.5]}, {[0.1,0.2], [0.3,0.4],
0.3,0.4]},{[0.2,0.4],0.3,0.5] })

[
ht = ({[0.4,0.5],]0.7,0.9]},{[0.2,0.6], [0.6,0.9]}, {[0.6,0.8]}, {[0.5,0.6],
%

[ [ ,0.8,09],
0.8,0.9]},{[0.2,0.4],[0.7,0.8],[0.8,0.9]}, {[0.7,0.9]}, {[0.5,0.6], [0.8,0.9],
[ [ ]
[

]
0.8,0.9]})

]

]

h— = ({[0.1,0.2],[0.4,0.6]},{[0.1,0.2],[0.2,0.6] }, {[0.2,0.5] }, {[0.1,0.2],[0.4,0.5],
[0.5,0.7]},{[0.1,0.3],[0.4,0.5],[0.5,0.6] }, {[0.2,0.5] }, {[0.1,0.2], [0.3,0.4], [0.5,0.6] })
Step 4: We use Equations (8) and (9) to calculate the bidirectional projection ma-
trices G* = [(Pr_ 31,6 = (P8 )], and H} = [(Prl1) gl o H =
U mxn

8§ &, 8'gt
-t
(P, 1) ij}nxm respectively.

[ 0.419 0.097 0.215 0.543 T
0.404 0.071 0.425 0.295
0.130 0.223 0.234 0.304
Gy 0.625 0.166 0.455 0.516

0.016 0.665 0.283 0.083

0.503 0.388 0.812 0.295
| 0.244 0.430 0.123 0.331

[ 0.608 0.716 0.782 0.063 T
0.550 0.721 0.713 0.511
0.644 0.720 0.806 0.510
0.283 0.695 0.684 0.212
0.656 0.400 0.749 0.535
0.589 0.620 0.081 0.427

L 0.636 0.594 0.792 0.451

0.389 0.185 0.519 0.113 0.080 0.105 0.023
0.283 0.230 0.354 0.161 0.356 0.409 0.255
0.179 0.306 0.267 0.124 0.206 0.283 0.594
0.354 0.251 0.519 0.620 0.229 0.398 0.622

Hy
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0.212 0.354 0.283 0.585 0.422 0.453 0.707
0.424 0.350 0.285 0.594 0.286 0.354 0.682
0.426 0.400 0.354 0.620 0.316 0.453 0.567
0.300 0.447 0.705 0.319 0.402 0.353 0.392

Step 5: We use Equation (10) to calculate the closeness and obtain the closeness

matrices Dy = [a;]  and Dp = [b;] .

[ 0.408 0.119 0.216 0.896 T [ 0.647 0.403 0.296 0.541 T

0.423 0.090 0.373 0.366 0.343 0.397 0.433 0.360

0.168 0.236 0.225 0.370 0.657 0.554 0.430 0.424

D, = 0.6880.193 0.400 0.709 | Dy = | 0.1620.213 0.167 0.660

0.024 0.624 0.274 0.134 0.159 0.565 0.395 0.363

0.461 0.385 0.910 0.409 0.188 0.536 0.385 0.530
L 0.277 0.420 0.135 0.424 | | 0.0320.272 0.512 0.613 |

Step 6: We use Equation (11) to obtain the matching degree matrix C = [¢;j] _ and
further construct the optimization model.

[ 0.514 0.219 0.253 0.696 T
0.381 0.189 0.402 0.363
0.3320.362 0.311 0.396

n = | 0.3340.203 0.258 0.684
0.062 0.594 0.329 0.221
0.294 0.454 0.592 0.466

L 0.094 0.338 0.263 0.510

Step 7: We bring the matching degree matrix # into the optimization model (11),
further solving and obtaining the optimization model with the help of Lingo software:

Xn1=1X12=0,X13=0,X14=0,X01 =0,X00 =0,X3 =0,X04 =0,X31 =0, X320 =0,X33 =0,X34 =0,Xyg =0
Xp=0,X3=0,X4=1,X51=0,X5p =1, X535 =0,X54 =0, X1 =0, X2 = 0, X3 =1, Xe4 = 0, X771 = 0, X7 =0,

X753 = 0, X74 = 0.

The results are as follows: Aj <> By, A4 <> By, As <> By, Ag <> B3, and for the
manufacturing enterprises Ay, A3, and Ay, there are no suitable manufacturing enterprises
to match.

6. Conclusions and Discussion
6.1. Conclusions

Decision-making science has undergone continuous development and improvement
and is now widely used in many different fields. This study, taking immune theory as a
starting point, has applied decision-making science to the organizational quality manage-
ment field in the context of manufacturing enterprises. The study constructs an evaluation
indicator system for organizational quality-specific immunity. The components of organiza-
tional quality-specific immunity act as the evaluation criteria. This study further integrates
interval-valued hesitant fuzzy information and bidirectional projection technology into
bilateral matching decision making, constructing the bilateral matching evaluation and
decision-making models based on interval-valued hesitant fuzzy information and bidirec-
tional projection technology (BMIHFIBPT). To use the interval-valued hesitant fuzzy evalua-
tion information to solve the combination satisfaction and matching optimization model, we
apply the score formation of left interval value and right interval value, the interval-valued
hesitant fuzzy preference, the interval-valued hesitant fuzzy decision-making matrices, the
interval-valued hesitant fuzzy elements and closeness, and the interval-valued bilateral
fuzzy bidirectional projection technology. We conduct empirical analysis to reflect the sup-
ply and demand sides of representative manufacturing enterprises in the manufacturing
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supply chain, match the main bodies of two parties and subjects, and help manufacturing
enterprises achieve optimal bilateral matching. The empirical analysis results indicate that
bilateral matching decision-making models that incorporate interval-valued hesitant fuzzy
information and bidirectional projection technology (BMIHFIBPT) via integration methods
can offer the following: a bilateral matching evaluation and decision-making process for
both supply- and demand-side partners; interval-valued hesitant fuzzy evaluation and
decision information; and bidirectional projection technology, which possesses the con-
sistency, feasibility, operability, and rationality to solve the interval-valued hesitant fuzzy
decision-making problems. Thus, this study provides a basis for manufacturing enterprises
in the manufacturing supply chain area to effectively select the best partners based on orga-
nizational quality-specific immunity. Bilateral matching evaluation and decision-making
models and methods are embedded to provide a reference for manufacturing enterprises
to make optimal decisions. These models and methods offer effectiveness, accuracy, robust-
ness, and convenience in selecting the optimal supply-demand matching relationships,
determining coordination and cooperation partners on the basis of organizational quality-
specific immunity, and achieving satisfactory matching evaluation and optimal coupling
decisions by operating the organizational quality-specific immune system.

6.2. Discussion

Bilateral subjects usually give vague, fuzzy, and hesitant preference information [90].
This vague, fuzzy, and hesitant ambiguity emerges in the process of bilateral matching
decision making as well [89-94]. The ability to deal with vague, fuzzy, and hesitant ambi-
guity in bilateral matching decision making has important theoretical value and practical
significance. Using the methods and models of the relevant literature [36—43], consistent
empirical research results and bilateral matching decision-making results were obtained.
Compared with existing studies [44-50], the present study offers the following advantages
due to its research methods and models: First, the bilateral matching decision-making
models and the methods based on interval-valued hesitant fuzzy information and bidi-
rectional projection technology are different from the bilateral matching decision-making
models and methods based on complete preference order information, which effectively
help determine the evaluation criteria of organizational quality-specific immunity. The
bilateral matching decision-making methods based on interval-valued hesitant fuzzy infor-
mation and bidirectional projection are determined by the interval-valued hesitant fuzzy
information given by the subjects; these methods build on existing methods [44-46]. After
processing the length of the interval-valued hesitant fuzzy decision matrix and arranging
the order of elements, the normalized interval-valued hesitant fuzzy element matrix is
obtained, and the positive and negative ideal fuzzy elements are constructed. The bidi-
rectional projection value matrix is calculated using bidirectional projection technology,
and reference is made to TOPSIS. The TOPSIS method is used to calculate the closeness
and obtain the closeness matrix. The satisfaction and matching optimization model is thus
solved, and the best solution is obtained. Through empirical analysis, this study indicates
that the bi-level and bidirectional projection decision-making method with interval-valued
hesitant fuzzy information and bidirectional projection technology can solve the problem
of matching enterprises on both the demand and supply sides based on organizational
quality-specific immunity components. The method, in other words, can select optimal and
sustainable partners for representative manufacturing enterprises in the manufacturing
supply chain on the basis of organizational quality-specific immunity. The research results
show that bilateral matching evaluation models can be achieved using integration methods
and bilateral matching decision-making methods that incorporate interval-valued hesitant
fuzzy information and bidirectional projection technology based on a biological perspective
and an empirical point of view.

With the help of analogy, we can use immune theory to map the operations of or-
ganizational quality management and, as a result, generate an understanding of how to
achieve organizational quality-specific immunity. There is potential for further application
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of interval-valued hesitant fuzzy information in decision-making problems in the field of or-
ganizational quality management. The results of the present empirical analysis in the field
of organizational quality management drew on immune theory, which offers new ideas and
methodological systems. The organizational quality-specific immunity evaluation criteria,
based on the results, can also inform theoretical frameworks to help manufacturing enter-
prises effectively select partners based on organizational quality-specific immunity with a
view to forming close and long-term relationships in the manufacturing supply chain.

6.3. Research Limitations and Prospects

This study is only a preliminary exploration of the application of interval-valued
hesitant fuzzy information and bidirectional projection technology to find optimal partners
for manufacturing enterprises in the manufacturing supply chain based on organizational
quality-specific immunity. The proposed bilateral (two-sided) matching decision-making
models that incorporate interval-valued hesitant fuzzy information and bidirectional projec-
tion technology via integration methods are only evaluation instruments; they are only part
of an approach for the selection of optimal partners of manufacturing enterprises. While the
models will ensure the suitability of two partners, the models do not offer an explanation
in terms of other partners and subjects in the manufacturing supply chain. The original
data on which the models are based were mainly derived from the subjective responses of
manufacturing enterprises’ managers gathered via on-site questionnaire distribution, field
interviews, and survey investigations. In future research, we will carry out longitudinal
tracking in order to obtain longitudinal tracking time series data with the aim of combining
objective data with subjective data for the models and methods. Incorporating objective
data, as well as introducing more partners and subjects of manufacturing enterprises in
the manufacturing supply chain, will further improve the proposed bilateral matching
decision-making models based on the evaluation criteria of organizational quality-specific
immunity.
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Abstract: Artificial intelligence-based hardware devices are deployed in manufacturing units and
industries for emission gas monitoring and control. The data obtained from the intelligent hardware
are analyzed at different stages for standard emissions and carbon control. This research article
proposes a control-centric data classification technique (CDCT) for analyzing as well as controlling
pollution-causing emissions from manufacturing units. The gas and emission monitoring Al hardware
observe the intensity, emission rate, and composition in different manufacturing intervals. The
observed data are used for classifying its adverse impact on the environment, and as a result
industry-adhered control regulations are recommended. The classifications are performed using
deep neural network analysis over the observed data. The deep learning network classifies the
data according to the environmental effect and harmful intensity factor. The learning process is
segregated into classifications and analysis, where the analysis is performed using previous emission
regulations and manufacturing guidelines. The intensity and hazardous components levels in the
emissions are updated after the learning process for recommending severe lookups over the varying
manufacturing intervals.

Keywords: artificial intelligence hardware; data classification; deep learning; emission control;
industrial manufacturing

1. Introduction

Artificial intelligence (AI) hardware is the most used in various fields to enhance the
efficiency and reliability of systems. Al hardware is also used in industries that reduce
latency and workload in production. Industries require various Al hardware to improve
performance [1-3]. Al-based hardware is utilized for emission monitoring and reducing
hardware computation costs and maintenance charges. Industries emit certain gases and
components during production. Emission monitoring is a complicated task to perform in
industry management systems [4]. Al hardware is commonly used in monitoring systems
so as to decrease the energy consumption range in the computation process. The emission
monitoring system identifies the exact emission ranges from industries to provide feasible
information for environmental protection [5-7]. Important factors, components, patterns,
and principles of industries are detected based on Al hardware. Al technology-based
hardware is commonly used in monitoring systems that detect industries’ sources and
range of emissions [8]. Artificial neural network (ANN) and support vector machine (SVM)
algorithms are generally used in Al hardware that identifies the emission level from both
companies and industries [9,10].

Data analysis is crucial in every field that provides necessary information for further
processes. Logistics and strategic techniques are implemented in management systems to
analyze data [11]. Information and details are stored in a database that provides feasible
data for analysis and detection processes. Al hardware is employed in data analysis to
discover new patterns and features of data [12-14]. Al techniques and algorithms are
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used in AI hardware to reduce complexity and latency of the analysis process. Al-based
hardware detects necessary factors and data principles, decreasing the energy consumption
range in the computation process [15]. Big data analytics (BDA) is widely used for analysis
processes in various industries and hospitals. Al hardware-based data analysis finds the
actual data required to perform a certain task in an application [16]. Important patterns
and features contain details about data that enhance the efficiency and performance of
analysis systems. Behavioral- and activities-based data are also identified by Al hardware
that handles a huge amount of data using the analysis process. Data analytics tools based
on Al are also used in data analysis systems. As a result, both significance and reliability
are increased in data management systems [17,18].

Machine learning (ML) algorithms and techniques are used for emission data analysis
in industries. Real-time emission data analysis is a difficult process to perform in industries.
ML techniques reduce computation time and also the range of energy consumption [19].
In addition, ML techniques maximize accuracy in detection and prediction processes,
improving the systems’ efficiency. The random forest (RF) algorithm is normally used in
emission data analysis systems [20]. RF detects the exact intensity level of carbon emissions
of industries. The RF algorithm extracts the patterns of emission ranges to gather necessary
information for data analysis systems. Both renewable and non-renewable emissions are
analyzed by RF, which reduces complexity in the further detection process [21]. The artificial
neural network (ANN) algorithm is also used for emission data analysis. ANN scrutinizes
the datasets of the database based on certain features and patterns. ANN increases the
reliability and mobility of data analysis systems [22]. The deep reinforcement learning
(DRL) algorithm is used for emission control measures in the industries. DRL trains the
data which are required for control policies. DRL also detects the impact of emission on the
environment, which produces relevant data for the environment management process [23].

2. Related Works

Tao et al. [24] introduced a channel-enhanced spatiotemporal network (CENet) for
industry smoke emission recognition. Supervision information and patterns are required
to detect the exact smoke emission level of industries. The loss function is used here
for detection of essential characteristics and features. It also reduces the latency and
energy consumption range in computation. The introduced CENet achieves high emission
detection accuracy, enhancing the production efficiency in industries.

Fiscante et al. [25] proposed a new detection method that determines the atmospheric
trace gases using hyperspectral satellite data. The main aim of the proposed method is to
measure the actual gases that are emitted by industries. Unsupervised sparse mixing gases
cause various environmental problems. Temperature and pressure of environmental data
are collected, which provide feasible information for the detection process. The proposed
method increases detection accuracy, thereby, improving industrial systems’ performance.

Guo et al. [26] designed a global meta-analysis for greenhouse gas (GHG) emissions
in nitrogen fertilizer (NF) applications. The NF increases crops’ cultivation and product
range as well as it maximizes overall cultivation. Crop production emits a huge amount of
GHG into the environment. NF-based crop production reduces the GHG emission range in
the environment. Experimental results show that the proposed meta-analysis identifies the
actual GHG emission ratio, which provides necessary data for emission control policies.

Sikdar et al. [27] have developed a deep learning approach for classification and
damage-resource detection. A convolutional neural network (CNN) algorithm is employed
to classify damages which are based on certain patterns and principles. The feature extrac-
tion technique in CNN brings out the important features from scalogram images. Acoustic
emission (AE) is also detected by CNN, which reduces false alarm rates in industries. The
developed approach maximizes accuracy in damage resource detection, increasing the
systems’ efficiency and reliability.

Choi et al. [28] presented a machine learning (ML)-based classification model in urban
areas. The proposed model mainly aims to recognize odor sources and content in urban
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areas. Odor-causing substances and materials emit gases and smoke that cause certain
environmental problems. A decision tree (DT) is used in the classification model that
identifies the source of the odor. The proposed DT model achieves high accuracy in
detection and classification, enhancing the application’s significance and effectiveness.

Tacchino et al. [29] developed a multi-scale model for steam methane reforming
reactors in industries. The finite element method (FEM) is used here to detect the gas and
pressure range of gas emissions from industries. FEM divides the resultant gases into their
types based on features and patterns collected by reactors. The multi-scale model validates
the actual gas range which is emitted by industries. Compared with other models, the
proposed model increases accuracy in emission detection.

Tuttle et al. [30] proposed a nonlinear support vector machine (SVM)-based NOx
emission prediction model. Both spatial and temporal features are detected from the
database, which leads to the production of optimal information for further prediction.
Furthermore, an artificial neural network (ANN) is also used to identify features about
NOx emission details. As a result, the proposed SVM model achieves high accuracy in
NOx emission prediction, enhancing the industries’ efficiency and product range.

Sun et al. [31] introduced a VIIRS thermal anomaly data-based detection method for
heavy industries. The main aim of the proposed method is to detect the air pollution
emission range of the industries. Industrial management systems gather air quality, gas
emission, energy charges, and spatiotemporal features. Spatiotemporal patterns provide
relevant data which are required for the emission detection process. The introduced method
increases detection accuracy, reducing the computation and further processing complexity.

Ju et al. [32] proposed a new atmospheric pollutant emission prediction method
for industries. Quantification results of pollutant emission standards (QRPES) are used
in the paper to produce the necessary information for the proposed prediction method.
In addition, machine learning (ML) techniques such as random forest regression (RFR)
and support vector regression (SVR) are used in the emission prediction process. As a
result, the proposed method maximizes accuracy, improving industries” performance and
efficiency levels.

Sun et al. [33] designed a mechanism that results in reduction and verification, valida-
tion, and accreditation (VV&A) for NO emission prediction. Computational fluid dynamics
(CFD) is availed to predict the structure and environment of polluted areas. CFD reduces
both time and energy consumption range of computation, thereby, enhancing the systems’
efficiency. CFD also reduces the error ratio in prediction, maximizing the industries” pro-
duction. Experimental results show that the proposed method predicts the accurate level
of NO emission and atmospheric temperature of the industries.

Milkevych et al. [34] developed a matched filter for gas emission measurement in
a dairy cattle field. Data synchronization was performed to identify the exact emission
ratio of gases in cattle fields. Cattle field emits a huge amount of greenhouse gases into
the environment that causes various problems. The main aim of the proposed approach
is to detect the methane emission range from the cattle fields. The proposed approach
maximizes prediction accuracy, reducing cost and latency in the computation process.

Martinez et al. [35] proposed a new prediction method for quantity surfactants in
the environment using fluorescent spectroscopy measurements. The actual goal of the
proposed method is to detect the textile wastewater range. Excitation—emission second-
order data are used to reduce the latency in classification and identification processes. The
proposed method decreases the wastewater content by providing feasible information
to control policies. The proposed method improves both the efficiency and reliability
of industries.

Lee et al. [36] introduced an industrial energy system model for industries. The pro-
posed model is mainly used to reduce the emission range into the environment. Technology
learning is developed to identify the relationship among spillovers that produce optimal
data for the prediction process. Characteristics, features, and patterns of data are ana-
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lyzed for the emission detection process. The proposed energy system model increases the
industry’s effectiveness, robustness, and production levels.

Ren et al. [37] discussed the probability density function control to investigate the
controller design methods where the random variable for the stochastic processes was
adjusted to follow the desirable distributions. Once the relationship between control
inputs and outputs PDF is expressed, the control aim can be defined as determining the
control input signals which would modify the system output PDFs to trail the pre-specified
target PDFs.

Zhang et al. [38] proposed the non-Gaussian stochastic distribution control (NGSDC).
Through the influence of data science, the performance has been elevated leading to
improved industrial artificial intelligence. Stochastic distribution control has been fur-
ther established by recently concentrating on the data-driven design and multi-agent
system. This article summarizes the most recent published outcomes in the last 5 years of
stochastic distribution control work in modelling, controls, fault diagnosis, filtering, and
industrial applications.

3. Proposed Control-Centric Data Classification Technique

In the proposed technique, intelligent hardware devices were used to compute a
data analysis for monitoring and controlling the emission gas at different stages using
artificial intelligence (AI). The data are requested from the Al-based intelligent hardware
and analysis is performed to control emission as well as carbon control through the CDC
technique. According to controlled emission, gas refers to emissions produced by the
industry at various stages from the intelligent hardware within the devices that is frequently
monitored and analyzed. In addition, there are some causes for the occurrence of emission
gas identified in the industry based on natural disasters. Therefore, the Al hardware
simultaneously observes the emission rate, intensity, and composition of the gas. The
emission monitoring is also performed at various manufacturing intervals. In Figure 1, the
CDCT is illustrated.
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Figure 1. Working Process of Control-centric Data Classification Process.

This data analysis of previous emission regulations and manufacturing guidelines has
been modified to current improvable regulations and guidelines for controlling emission
gas produced by the industry. In addition, the Al-assisted intelligent hardware analyzed for
controlling pollution caused by emission gas and carbon release from the manufacturing
units at various time series are also analyzed. The important factors in this technique,
namely, intensity, emission rate, and composition of the gas and emission, are observed
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continuously from the manufacturing units in a sequential manner. The gas and emis-
sion occurrences are identified in the Al hardware at different manufacturing intervals
depending upon emission and carbon control for each production at various time series.
After identifying emission gas from the industry, it is analyzed based on intensity and
composition. The observed data are utilized for segregating the adverse impact of emission
gas on that environment, and the industry-adhered control regulations are recommended
for further processing. The data from day-to-day functions, activities, and production
are performed by the Al hardware. For the benefit of the industry, data are recurrently
analyzed through deep neural network learning for reducing emissions and gas. Therefore,
the learning process is responsible for data classification through harmful intensity and
adverse environmental effects identified from the industry emissions using previous emis-
sion regulations and manufacturing guidelines for confining gas and emission occurrence.
The learning process is classified for data classification, and where the analysis takes place
based on control regulations and adverse environmental impact. The observed data are
analyzed by a reliable system employed in several industries and manufacturing units. The
proposed data classification technique aims to improve control regulations and manufac-
turing guidelines for identifying high-emission intensity and hazardous components in
the gas. Emissions are updated after the performance of deep learning leading to different
recommendations as well as lookups over various time series. A feedback loop is set up as
the part of the system in which the system’s output is utilized as input for future operations
in industrial manufacturing.

4. Emission Control Recommendations

Emission and gas sensors are used for sensing information from the Al hardware
setup in the manufacturing units for monitoring and controlling adverse impact as well as
high intensity. The data classification was performed to analyze the factors as observed
from the current instance by the Al hardware monitoring. During emission occurrence, the
considerable features in this research article correlate with the Al hardware process. The
study focuses on the hardware monitoring of the industries and manufacturing units. It
analyzes if the emission takes place or not in that environment and identifies the industry
emission as Industryg,,. The probability of industrial gas and emission occurrence is
identified using CDCT and it can be expressed as:

Em~Y(1—Em)™!

Indust = 1
P( naus rl/Em) tS(RI I, C) ( )

where the condition t5(R, I, C) can be expressed as:

1 1
t(R, I, C) :/ Em~'(1— Em) 'd-Em )
0
The considerable factors in industry emission, R, I, and C are computed as:

R 2

R = @ [Eimp - (Eimp) - (Hint)Z} 3)
1—E; 5
I= (I_Imltmp) |:Eimp - (Eimp) - (Hint)z] 4
2
R+ (Eimp) 2

C= ((Hmt)Z) {Eimp - (Eimp) - (Hint)z} ®)

In the above Equations (1) to (5), the variables R, I, and C represent emission rate,
intensity, and composition observed from the individual manufacturing units at different
time intervals, t;, respectively, where Hj,; and Eimp denote the high emission volume (in-
tensity) and adverse environmental impact addressed by the industries and manufacturing
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units. Hj,; indicates the highest level of gas and emission intensity based on its mean
values and E;;, is the hazardous components (chemical) level in the emission. The values
of Hj; and Ej;,, are required as explained in Equations (6) and (7).

Hiyy = (6)

2(R—1+C) [R+I+C+2]2
R+I+C+2 RxIxC

4{(R—I)2(R+I+C) —C(R+1+z)}
C(R+I+2)(R+1+3)

Here, the observed data from the manufacturing units are analyzed at different emis-
sion stages, and carbon occurrences are identified using placed sensors and Al hardware.
Al hardware can monitor these data to reduce pollution-causing hazardous gas and emis-
sions. The values of H;;,; and Eimp were estimated for different time series. The Al hardware
is reliable in providing precise data about the actual source of energy from the environment
within the devices/machinery. Several data analysis techniques were used to analyze the
machinery’s intelligence hardware at different time series. The time-series data observation
process is portrayed in Figure 2.

B,-‘_ %’ / F:imp
Monitoring R || 1| C |m—p O 4 8
Hardwares o ! &\o \
Monitoring Dates D s ® I h
¢ @

Low Density

@)

Eimp =

Impactless

Figure 2. Time-Series Data Observation Process.

The time series data observation is instigated from the monitoring process to the
classification. The R, I, and C in t; are classified as H;;; and low intensity for which
the impact is validated. In this t;, the D, performs classification V R such that Eimp for
all Hj,; is identified. This is required for Industryg, regulation and emission control
(Figure 2). The performance of artificial intelligence hardware is monitored and analyzed
through the CDCT technique in the particular industrial environment. The proposed
technique is classified into two processes, namely, control regulation and environmental
impact. Based on the control regulations, the data are observed to analyze and identify
harmful intensity and adverse environmental effects after prolonged control regulations
and manufacturing guidelines for time series. Instead, the observed data are analyzed and
the resultant pollution is measured. Similar time emission occurrence in manufacturing
units is identified through Al hardware. After the analysis, the adverse impact on the
environment and industry-adhered control regulations is recommended and classified for
emission rate, intensity, and composition measure. This classification process is performed
through a deep neural network to reduce the chance of causing emissions and pollutions in
industries and manufacturing units. The data classification is performed on any specific
artificial intelligence hardware for recognizing harmful intensity and environmental impact
in that machinery. The proposed technique uses deep neural network learning to focus on
such factors in various manufacturing intervals.
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Dc represents the continuous data classification analysis at different manufacturing
intervals. The actual energy observed from sources A is also analyzed for successive big
data classification which is expressed as:

Ag = D¢ — Hint * Ejmp 8

= argZHint(ts) + Eimp(ts) \ D¢ (9)

As per Equations (8) and (9), the harmful emission intensity and adverse environmen-
tal impact are controlled through some control regulations and manufacturing guidelines.
The objective of controlling harmful intensity in all D € Ag is defined in the equa-
tion. In this technique, the time series is divided into three instances based on control
regulations and guidelines, i.e., emission rate (Eg), emission intensity (Ej), and emis-
sion composition (Ec) from the pursuing manufacturing instance. The final estimation
ts = Eg + Ej + Ec is performed for measuring emission rate and intensity in the industry
for gas and emission monitoring and control using Al hardware. If i represents the number
of machinery in that manufacturing unit, then Ec = (i X t;) — E is the discrete instance
for identifying emissions in this industry, and the required data is to be classified and
recommended. Through deep learning, let Er(E R), Cr( E;),and Br(Ec) represent the control
regulation-based data classification processed at differentts intervals. Therefore, H;,; and
Ejmp are identified in all Al hardware-assisted industries and manufacturing such that:

(ixts)

C/(Er) = o AgV Hipyy =0 (10)
imp
Such that,
R+T1xt
(e = BEE) e ap vy, 20 a1)
imp
and,
R+I+C
Cr(Ec) = (E,i)fs :Dc+ Ag, VHiyy =1 (12)
imp

Equations (10)-(12) compute the actual gas and emission observed from the industries
and manufacturing units in the current instances and are recommended with data classifi-
cation. Now, based on the control regulations as in the above equations, Equation (8) is
re-written as:

: Hint
Dc(ts) = [Cr(ER) — Er(EI) + Br(Ec)] =(ixts): Ap — ——: Eimp *x Ag (13)

In Equation (13), the continuous data classification of Eg + E; 4 Ec € t; is to be again
estimated for identifying the first H;;;; and E;;,, in specific industries or manufacturing units.
This is computed to identify high-volume emissions that occur in industry which is based
on control regulations using deep neural network analysis. The correlating time series,
control regulation, and environmental impact analysis using the available observed data
from the Al hardware is processed through a deep learning paradigm. For this instance,
the sequence of i € C,is expressed as:

Ex+Ec—E (1 - #)iilEimwi
i(6) = (1- RS R e 09
1 Hmt

Equation (14) compares the current control regulations with the previous emission
regulations and guidelines for precise data analysis. Therefore, based on the data classifica-
tion, the deep learning process is performed to gain the final output for the H;,; # 0 case.
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The regulation implications (yg,), (1g,), and (jig.) for sequential data classification and
analysis at the first level are given as:

= r(Er) 15
HEx Zzets [i + AE(t)]ts (19
o Er(ER)' Er(EI
M= o i+ Ap()], [~ Hod, 1o
JE Br(ER). Ey(EI) Ey(EC) ts (17)

" T i+ (O] {1 = i(t)] — Eimp

Equations (15)—(17) estimate the modified control regulations observed and are rec-
ommended for updating the regulations and guidelines based on the current tools and
hardware process with the previous emission regulations. In this first level, data classi-
fication is the serving input for the regulation implication for reducing emissions in the
industry. Figure 3 presents the learning for classifying Af.

l'lintqeo

=P De(ty)

- Hip =0 | Celi)
imp

Factors Classifications Ag

Time-
Series
t+1

Figure 3. Learning for Classifying Actual Energy Observed from Sources Afg.

The learning for Af relies on two different classifications, i.e., G, and H;,; as presented
in Figure 3. The pre-classification for H;,; and E;;,, are verified for Eg, Ec, and Ej over
the f5. This classification extracts H;,;; = 0 (or) H;;,;; # 0 across i; the i is validated for Ag.
In this output, the D.(t;) or C, (i) is the extracting process. If the system gives D,(t;) as
the output then regulations are performed; otherwise, classification is performed. The
consecutive deep learning for analyzing the harmful intensity of industrial gas and emission
helps to identify the adverse impact on the environment through control regulations
and manufacturing guidelines. This deep neural network analysis is discussed in the
following section.

5. Control Regulation Recommendation Using Learning

In the deep neural network analysis, the control regulations are segregated into
classifications, and further analysis is performed to update the regulations and guidelines
for the current instance. The deep learning identifies high harmful intensity of the industry
leakage through data segregation or classification. In the article, important factors are
measured for reliable system processing. The emission rate can be measured for different
stages through conventional procedures. However, the government protects these emission
occurrence regions if high emission composition and intensity lead to severe hazards
in those surroundings. The emission rate intensity and composition are sequentially
analyzed and monitored using deep learning to reduce emissions from the industries. The
proposed technique considers the severe lookups over the varying manufacturing intervals;
thus, the control regulation and environmental impact are analyzed. The computation of
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the intensity and hazardous components levels in the emission is represented as E%; the
hardware processor is computed in Equation (18) between actual energy and Al

IxC
L_ |
E- = 3, (18)

where the harmful intensity value and high components level are identified in the manufac-
turing unit, the industrial process and manufacturing will be halted, and the government
will protect the surrounding with effective control regulation. The previous emission
regulations and manufacturing guidelines were also analyzed to modify the current regula-
tions for controlling emissions from the manufacturing units. Industries” harmful intensity
and chemicals are monitored, carefully handled, and processed. The control regulation
recommendation process is illustrated in Figure 4.

Implication

s g S G I
-~ A BRI e ieellsGex @ @ @ e
70, » E) St HoE ‘
§ {ER)  Cy(Ep Cr(Eo) Sequence
D, Independent Regulation R
ontrol Regulation
(ty) )
o - I el

o—

[ | oiz 70
Previous Regulation _

Figure 4. Emission Control Regulation Recommendation.

The D, is used for independent regulation for i with new implications. This is used
for G, V Eg, E; and Ec such that D, is further instigated. Therefore, the D,(t;) as in
Equation (13) is required for y; the y is independent for Eg, Ej, and Ec. The (ts+1) is
required for Ag classification for preventing i(C,) mismatch and hence E! is validated.
Therefore, the new control regulations are implied for which i is validated using the
intelligent hardware (Figure 4). In particular, the contrary process is analyzed using
deep neural network learning to control emissions from the industry. If an occurrence
is identified for any instance of emission, then the harmful intensity and environmental
impact of that manufacturing unit is predicted so that it can be protected with the control
regulations. Hence, the data classification and high emission intensity occurrence in the
manufacturing units leads to dangers and proper recommendation and control regulation
helps to control emissions and pollution produced by the industries. The gas and emission
rate and level of the industry and manufacturing units are monitored sequentially to
maximize control regulations and manufacturing guidelines. Based on this learning, less
emission intensity and composition increase the product manufacturing and also improve
recommendations through data classification. Hence, the pollution and emission-causing
damages are reduced. Therefore, control regulations and manufacturing guidelines are
used to maximize industrial performance.

6. Performance Assessment

This section presents the analysis of industrial emission-based environmental impact
using the data from [39]. A series of emission information has been observed in a specific
power plant industry under 1 h variation. The information from 11 artificial hardwares are
obtained at 36,733 instances for 5 years. The data classification is represented in Figure 5.
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Figure 5. Emission Data Classification.

From this data set, the CO and NO, emissions are jointly analyzed for their impact on
the environment. The variations such as pressure difference (5), emission rate (1 h), and the
E.(Noy or CO or both) are extracted for analysis. The first analysis is presented for E¢, E;
and Eg for Ec = NOx and E¢c = CO between 2011 and 2015 (Figure 6).
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Figure 6. Emission rate Eg for carbon monoxide C, and nitric oxide NOy.
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The emission rate is classified as the minimum data, including the maximum value in
a 24 h observation from an electric power plant. The (Ib/hour) value varies for different
years (2011 to 2015), so they are classified using pressure, humidity, and intensity. The
production increases the intensity and generates emission across different demands. Based
on this intensity, the Ey is estimated using the pressure difference (mbar), as presented in
Figure 7.
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Figure 7. Emission Intensity E; for Carbon Monoxide Co and Nitric Oxide NOy.

The variables considered in Figure 5 are used for identifying the min and max intensi-
ties. Compared with Eg, the Ey increases the variation when Ep is higher (uneven/less)
when compared with the previous years. Therefore, as the years increase, the production
increases as the Eg and E| for Ec = Cp and NOx. The Ej;;;, for the different years (2011 to
2015) of Co and NOy is presented in Table 1.
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Table 1 values are computed according to the observed and correlated values. For
the distinguishable (mbar) and (mg/m?) the E. determines the Ejy,, over the tg. As t; is
continuous, then the Ec for detecting Nox or Co or both is consistent. The E;;,), is the joint
detection of Co and NOx over the impact estimated as the range exceeding the actual level
(Table 1). Based on these features, the actual C, is presented in Figure 8.

The analysis for the recommendation and implications that is different from the
previous regulations is presented in Figure 8. The implied regulations are optimal for
confining the emissions across various industrial processes. The process implications are
performed for confining H;,; over Ag. In this confining, classifications are prominent
over the available data in which the adverse impact is measured. Depending on the
environmental impact and regulation policies, control measures are provided. Therefore,
the distinguishable sequences provide further recommendations over the ug,, ur,, and
jg. independently. These implications are regular for controlling E- (Figure 8). Table 2
presents the sequence from Hj,; to E L (high) for which regulations are required.

Table 1. Adverse Environmental Impact E;;,;, for Carbon Monoxide Co and Nitric Oxide NOx.

E. Years R Variation I Variation Eimp (%)
2011 0.231 —0.058 3.57 —1.04 12.63
2012 1.89 —0.064 4.12 —0.95 15.47
Co 2013 2.36 +1.25 4.69 1.58 21.36
2014 4.59 +1.36 5.23 212 19.47
2015 7.96 +1.47 5.41 2.62 28.31
2011 70.558 —0.1 4.365 —0.51 17.64
2012 75.25 —0.095 5.46 —0.31 28.63
NOx 2013 81.25 1.56 6.53 0.15 32.54
2014 90.47 2.56 6.85 0.46 38.25
2015 92.498 3.04 7.62 0.8 41.63
2011 13.61 —~1.34 3.061 —0.23 11.28
2012 25.14 —0.58 4.63 —-0.15 15.36
Co+ NOx 2013 36.14 -0.12 6.98 1.69 21.58
2014 52.98 1.58 7.47 2.58 32.56
2015 70.28 2.72 8.74 3.1 46.25

The recommendation using Hj,; and ELis analyzed as given in Table 2. The H;,;
over the different i is presented as dots in which the green denotes the lesser impact and
red denotes the higher impact. Based on the available C, (reccommended), the EL is con-
fined. However, this is verified using further D, and, therefore, the recommendations
are strong over the available sequences (Table 2). Unlike the above discussion, the fol-
lowing section briefs about the comparative analysis using classifications, data analysis,
recommendation rate, effect identification, and analysis time. The methods OC-SVM [30],
CTRP [31], and QRPES [32] are added in this comparative analysis study along with the
proposed CDCT.
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Figure 8. Deep Learning based Data Classification C, and Regulation Implication # Analysis.

Table 2. Analysis of Sequence from H;,; to H;,; with Recommendation.

H;,t % Sequence EL C, Classifications Recommendation Rate
5 o000 00 } 37.76 6 85 0.295
10 o000 00 } 38.25 3 25 0.254
15 o000 00O } 40.25 4 69 0.241
20 [r0o000 0@ } 39.65 7 75 0.33
25 0000 0@ } 41.25 8 98 0.348
30 o000 00 } 45.21 12 162 0.472
35 00000 } 43.64 1 9 0.193
40 {fr0o000 0 } 47.58 3 25 0.201
45 (o000 0O } 46.89 8 98 0.348
50 (o000 0 0 } 48.92 11 136 0.385

7. Classification

In Figure 9, the emission gas leakage from the industries and manufacturing units
is identified through considerable factor values of Al-based hardware processing. It is
analyzed for improving the recommendation rate. The emission intensity and composition
value is continuously monitored to reduce environmental effects. The industry-adhered
control regulations are created to protect humans from the harmful intensity and environ-
mental impact. Depending upon the control regulations and manufacturing guidelines
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using deep neural network learning, the data classification is performed to segregate the
adverse impact on the environment at different manufacturing intervals. The learning
process updates the control regulations with the current data observation condition and
Hjyt and E;y, are analyzed with previous emission control regulations to enhance the data
analysis and the recommendation rate. The emission rate modified due to high intensity
and composition over the varying manufacturing intervals can be observed in this data
analysis for industry emission occurrence in identification and monitoring. This emission
occurrence is addressed using deep neural network analysis and regulation implication
for achieving successive data classification, preventing harmful intensity. Therefore, the
emission rate from the industry is analyzed for any complexity occurrences, preventing
high data classification due to regulation implications.
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Figure 9. Emission Data Classifications.

8. Data Analysis

The control regulations and manufacturing guidelines are recommended for the
industry based on the harmful intensity and composition used in those manufacturing
units. The recommendation ensures the emission control can be classified based on the
adverse impact on the environment as represented in Figure 10. The data analysis is
performed with observed industrial information for analyzing and controlling emission
and pollution caused by the industry. The emission rate is analyzed with some control
regulations at different intervals for the first input data. The observed data are analyzed to
provide precise recommendations for that manufacturing unit and then Ec = (i x t5) — Ej
is computed for individual industries. This proposed technique satisfies high classification
and environmental impact identification by measuring the specific industry’s emission
rate, intensity, and composition. In this analysis, continuous monitoring and observation
are performed in manufacturing units and industries to reduce the harmful intensity and
adverse environmental impact on those surroundings. This impact can be addressed
through deep neural network learning until new control regulations are updated for
maintaining an accurate measure of emission rate, intensity, and composition used in
manufacturing units, preventing harmful intensity. Therefore, the data analysis is high in
this proposed technique with the recommended precision.
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Figure 10. Emission Control Data Analysis.

9. Recommendation Rate

This proposed control-centric data classification process achieves a high recommenda-
tion rate for gas and emission monitoring. The analysis relies on Al hardware observation
with control regulations (refer to Figure 11). Based on the harmful intensity and environ-
mental impact of industry emissions identified at different manufacturing intervals, time
series is performed for classifying its adverse impact. The data classification is processed
for monitoring industry and manufacturing units wherein the industry-adhered control
regulations are recommended. The observed data from industry and classifications are
analyzed to identify the environmental impact due to high harmful intensity. The high
emission intensity is identified from the manufacturing units using the accumulated data
and calculated emission rate using the deep neural network at different time intervals.
The adverse environmental impact is identified through control regulations for controlling
the gas and emissions in the industry to enhance the recommendation and classification.
The control regulation and manufacturing guidelines are updated with previous emis-
sion regulations depending upon other factors in the proposed technique. Therefore, the
recommendation rate is high, and the effect identification also increases.
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Figure 11. Recommendation Rate for Gas and Emission Monitoring.

10. Effect Identification

This proposed technique satisfies high-effect identification of individual manufactur-
ing units and industrial information working under control regulations and guidelines that
aid in monitoring Al hardware for providing reliable recommendations (refer to Figure 12).
The harmful intensity and environmental impact is mitigated to classify the data for analyz-
ing and controlling emissions due to high intensity and hazardous components used in the
particular industry. This impact is addressed through deep learning and control regulation
implications for reduced emissions of gas and carbon output. The data classification is
processed between the time series. The control regulations are performed to identify the
adverse environmental impact through the condition t; = Eg + Ej + E¢. It is performed
to measure emission rate and intensity of the industry. The data classification and rec-
ommendation are performed within control regulations and manufacturing guidelines of
the specific industry resulting in some implications. From the different manufacturing
intervals, the Al hardware performance data are observed for measuring the considerable
factors in that industry so as to achieve high-effect identification.

162



Processes 2023, 11, 615

Effect Identification

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Observation Interval (Hr)

95 | —=—0C-SVM /
—e—CTRP k/'
90 | —*— QRPES N
1| ——cbcT \
S 85- \ \/
/
= 804 y
g A
B 75-
: \
w
70- / -\ /
/ \. o
654 '——l\.___./-

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Classifications

Figure 12. Effect Identification for Individual Manufacturing.

11. Analysis Time

In this proposed technique, the data analysis time is less than other factors for moni-
toring and analyzing the industrial information for controlled emission and carbon control.
Reliable Al hardware processing is maintained for better standardization in a specific indus-
try using previous control regulations and manufacturing guidelines. The computation of
emission rate, intensity, and composition for preventing harmful intensity and environmen-
tal impact from the industry D¢ € Ag is determined. The data analysis and monitoring
of the machinery or devices are sequentially performed using control regulations for time
series emission control. The regulation implication is validated for the current instances.
Based on the regulation implication for classified data along with previous regulations and
guidelines, deep learning is employed to prevent complexity in identifying emission gas
leakage. The proposed technique analyzes the intensity and hazardous component levels
of the emissions. They are updated after the deep learning process for recommending
severe lookups in manufacturing units for data analysis achieving less analysis time as
represented in Figure 13. Tables 3 and 4 present the summary of the above discussion.
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Figure 13. Data Analysis Time of Industrial Monitoring and Analysis Process.

Table 3. Overall Comparative Summary (Observation Intervals).

Metrics OC-SVM CTRP ORPES CDCT
Classification (%) 55.18 69.47 83.88 94.597
Data Analysis (/Interval)  0.887 0.904 0.936 0.9594
Recommendation Rate 0.265 0.326 0.419 0.4685
Effect Identification 71.7 79.86 88.29 95.122
Analysis Time (s) 8.02 6.18 3.85 2.376

Observations: The proposed technique maximizes classification, data analysis, recommendations, and effect
identification by 12.54%, 10.28%, 13.18%, and 15.17%, respectively. It reduces the analysis time by 10.08%.
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Table 4. Overall Comparative Summary (Classifications).

Metrics OC-SVM CTRP ORPES CDCT
Data Analysis (/Interval)  0.885 0.910 0.937 0.9658
Recommendation Rate 0.234 0.321 0.414 0.4698
Effect Identification 71.55 79.02 89.58 95.246
Analysis Time (s) 8.18 6.04 3.75 2.179

Observations: The proposed technique maximizes data analysis, recommendations, and effect identification by
11.03%, 14.68%, and 15.2%, respectively. It reduces the analysis time by 10.6%.

12. Conclusions

This article discussed the proposed control-centric data classification technique for
emissions control and regulation implications for industrial productions. This technique
focuses on cases where regulations are implied for controlling environmentally impact-
ing gases. The emission rate, intensity, and composition are segregated using artificial
intelligence hardware-based data measured at different intervals. Depending on the clas-
sification, the adverse impact is estimated in correlation with the actual regulations. In
this process, deep learning classification is deployed to identify the high intensity and
adverse impact of different gases. The classification at different levels is performed to
improve the regulation implications and the modified rule adherence of the industry in
pollution control and harmful emissions. The recommendations for industrial operations
and data analysis are identified from the Al hardware-sensed information for which the
regulation implications and monitoring are pursued. The proposed technique maximizes
classification, data analysis, recommendation, and effect identification by 12.54%, 10.28%,
13.18%, and 15.17%, respectively. Furthermore, it reduces the analysis time by 10.08%.
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Abstract: Stable development of strategic emerging industries promotes its industrial transformation
and upgrading, which has affected the development of not only the society and the economy but
also other fields, thereby having a great impact on employment. To measure the impact of structural
change of strategic emerging industries on employment in China, this paper constructs a regression
equation, in which the employment of strategic emerging industries is the dependent variable, while
the change direction of strategic emerging industry structure, the employment elasticity of strategic
emerging industries and the change speed of industrial structure are the independent variables. The
research results are as follows: (i) The change direction of strategic emerging industries is positively
correlated with employment. (ii) The employment elasticity of strategic emerging industries is
on the rise, and is positively correlated with employment. (iii) The speed of change of strategic
emerging industries is unstable, and is negatively correlated with employment. As a result, the
structural change in strategic emerging industries has played a role in promoting employment. The
government should recognize the impact of structural changes in strategic emerging industries
on China’s employment. By implementing the existing strategic emerging industry policies and
improving the external environment for the development of strategic emerging industries, the
strategic emerging industries will play the role of “innovation, growth and leadership” in economic
and social development.

Keywords: strategic emerging industries; industrial structure; employment effect

1. Introduction

In recent years, emerging industries have gradually become the main driving force
of global economic recovery and growth. Strategic emerging industries can promote
the progress and development of science, technology and society [1,2]. With the rapid
development of a new round of global scientific and technological revolution and industrial
transformation, strategic emerging industries have been highly valued by countries all
over the world. The United States and other countries have sought to accelerate the
development of strategic emerging industries in order to maintain their position at the
forefront of science and technology and maintain their advantages in global competition in
the future. Strategic emerging industries are gradually becoming the main driving force
promoting the development of the national economy [3]. Strategic emerging industries
can drive social development, change the environment and space in which humans live,
and create a considerable number of related industries and supporting facilities [4]. This
strategy has become a global trend of industrial development and an inevitable requirement
of optimal economic growth [5].

In October 2010, the State Council of China issued the Decision of the State Coun-
cil on Accelerating the Cultivation and Development of Strategic Emerging Industries
(http:/ /www.gov.cn/zwgk/2010-10/18/content_1724848.htm (accessed on 18 October
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2010)). The decision regards seven industries, namely energy conservation and environmen-
tal protection, new-generation information technology, biology, high-end equipment manu-
facturing, new energy, new materials and new-energy vehicles, as China’s strategic emerg-
ing industries. In November 2018, the Chinese government had identified nine major indus-
tries as strategic emerging industries according to its national conditions and global develop-
ment status, with the high-end equipment manufacturing industry as the core, the new gen-
eration of information technology industry as the support, and the energy conservation and
environmental protection industry, new materials industry and new energy vehicle industry
as the pilot (http:/ /www.gov.cn/zhengce /zhengceku/2018-12/31/content_5433037.htm
(accessed on 26 Novezmber 2018)). In November 2019, the guide catalogue for indus-
trial restructuring was issued by the national development and reform commission of
China, which clarified the goal and direction of the development of strategic emerging in-
dustries (https:/ /www.ndrc.gov.cn/fgsj/tjsj/cyfz/zzyfz/201911/t20191107_1201849.html
(accessed on 7 November 2019)). Therefore, it is necessary to actively cultivate and vigor-
ously develop strategic emerging industries, and promote the transformation of industries
for digitalization, networking and intelligence through the effective integration of tradi-
tional industries and strategic emerging industries [6]. Strategic emerging industries based
on major technological breakthroughs and development needs have become China’s new
competitive advantage and the decisive force to achieve leapfrog development [7,8].

Industrial structural change is one of the most robust features of economic
development [9]. The process of national or regional economic growth is the dynamic evo-
lution process of industrial structure from uncoordinated to coordinated, from lower-level
coordination to higher-level coordination, that is, the process of continuous optimization of
industrial structures [10]. With industrial structure adjustment, the share of agriculture,
manufacturing and service industries in employment has changed significantly. Employ-
ment has been a major concern in the growth and economic development of societies
and countries [11]. As an important parameter determining employment scale, industry
structure has the most significant influence on growing job employment. The strategic
emerging industrial structure refers to the development level of each specific strategic
emerging industry in a specific region and the proportional relationship among those
specific industries. The development and expansion of strategic emerging industries can
expand the scope of the economy, increase employment opportunities and create more
jobs. Compared with the change of traditional industry structure, the change of strategic
emerging industry structure has a greater impact on employment.

Strategic emerging industries paly a very import role in economic and social devel-
opment and are the main direction in the future [12]. Strategic emerging industries can
promote industrial transformation and upgrading as well as increase employment. In re-
cent years, changes in the structure of strategic emerging industries have had an increasing
impact on employment. However, most of the strategic emerging industries belong to the
high-tech industry, and changes in the structure of strategic emerging industries will have
uncertain effects on the growth of labor and employment. Some strategic emerging indus-
tries may have positive employment elasticity as a result of increased demand for their
products and services, resulting in increased employment. However, due to technological
advancements and automation, some strategic emerging industries may have negative
employment elasticity, reducing the need for labor. Therefore, it is of great theoretical and
practical significance to study the structural changes of strategic emerging industries and
increase the number of labor employment. This is conducive for promoting industrial
integration, development and optimizing the allocation of labor resources.

The main contributions of our research are as follows. Firstly, using real data, we
calculate and analyze the direction of the structural change, the employment absorption
capacity and the speed of change of the industrial structure in China’s strategic emerging
industries from 2009 to 2020. Secondly, we build a model to empirically analyze the
employment effect of the structural changes in strategic emerging industries. Thirdly,
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we empirically analyze the promoting effect of structural change of strategic emerging
industries on employment.

The structural arrangement of this paper is as follows. In Section 2, we provide a
literature review. In Section 3, we present research design that includes the mechanism of
action, puts forward the hypotheses, and the regression equation. The variables and Data
Sources are presented in Section 4. Section 5 gives the empirical results. Section 6 presents
the important conclusions of this paper.

2. Literature Review

The relationship between changes in industrial structure and employment has at-
tracted increasing attention. To explain why industry structural change impacts employ-
ment, many empirical research papers and models have been used to investigate this
problem. This research examines the characteristics of industry structural change and the
relationship between industrial structure upgrading and employment.

2.1. The Characteristics of Industrial Structure Change

Industrial structure refers to the composition of various industries and their propor-
tional relationship. The structural transformation of the process of workers transferring
from agriculture to other sectors is a significant feature of development [13]. The change of
industrial structure in a region is usually related to consumer demand, factor endowment
and technological progress. The upgrading of industrial structure depends on the up-
grading of factor endowment structure. The factor endowment structure mainly includes
natural resources, material capital, labor force, technology, infrastructure and system. Kang
and Lei [14] investigated the space-time evolution characteristics of industrial economy
in Central Asia from the perspective of industrial scale, structural rationality, industrial
competitiveness and industrial isomorphism, and pointed out that the industrial struc-
ture of Central Asian countries is becoming increasingly advanced, but there are certain
differences in this evolution characteristics.

Most scholars study the change of traditional industrial structures. However,
Gabardo et al. [15] underline that structural change cannot be restricted to the three broad
sectors but instead it covers the change in the structure of production and employment
between and within sectors as well. Lauri Hetemiki et al. [16] discussed structural changes
of the forest sector and the realistic contribution of the forest-based sector to the global
sustainability challenges. Duan [17] proposed a modeling method for evaluating the in-
fluence of industrial structure change on promoting coastal forestry economic growth
based on big data and piecewise sample autoregression feature decomposition models
and analyzed the influencing factors of industrial structure change and promoting the
economic growth of coastal forestry. Xie et al. [18] studied the change of China’s Marine in-
dustry structure through two indicators: industrial structure rationalization and industrial
structure promotion. Jin et al. [19] employed the added values of three land-sea industries
in the three marine economic circles of northern, eastern, and southern China to clarify
the evolutionary behavior of the industrial structure of these three circles on the land and
sea. Studying the characteristics of industry structural change can grasp the direction of
structural changes in strategic emerging industries and provide a basis for the analysis of
employment effects.

2.2. The Relationship between Industrial Structure Change and Employment

Scholars have examined the interplay between industrial structural change and em-
ployment from various perspectives. Although scholars’ views vary, they all agree that to
some extent, changes in industrial structure affect employment. One view is that upgrading
the industrial structure based on technological innovation can promote employment. The
change of industrial structure can promote employment in two ways: first, industrial
development needs to absorb labor force; second, the development of this industry can
promote the development of other industries, and then promote employment. Basile
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Rosanna et al. [20] used Italian labor data from 1981 to 2008 to study the impact of changes
in industrial structure on employment growth and concluded that the relationship between
industrial structure and employment structure is nonlinear. Chivu et al. [21] analyzed the
number and scale of industrial structure adjustment, industrial output structural change,
employment number and employee compensation in Romania. Zhang et al. [22] estab-
lished a spreadsheet-based analytical model to estimate the employment effects of the solar
PV industry among China’s strategic emerging industries during the period 2009-2015.
Monteforte [13] presented a dynamic dual economy model of structural transformation
and found that labor market institutions influence structural transformation because they
determine how quickly the urban sector can absorb labor from agriculture.

However, another view is that upgrading the industrial structure based on technologi-
cal progress will harm employment. Hong et al. [23] taken the Korean ICT industry from
1995 to 2009 as the research object to analyze the relationship between structural changes
and employment, and pointed out that unemployment growth occurred in the field of
information and communication technology manufacturing. Although the output of the in-
formation and communication technology manufacturing industry increased significantly,
the employment rate continued to decline. From the three dimensions of employment
elasticity, structural deviation and labor productivity ratio, Ding et al. [24] investigated
the degree of synergy between the three sectors, and found that the employment elasticity
of the three sectors presents different characteristics, and the third sector has the most
significant impact on employment.

Through a review of the literature on industrial structural change and employment,
we found the following three research shortcomings. Firstly, most theories developed
regarding the impact of industrial structural change on labor and employment are based on
the early stage of industrial development or on mature industries. Although these research
results have reference values and do provide some theoretical support for the research focus
of this paper, they are not fully applicable to the situation in China. Secondly, although
Chinese scholars have demonstrated the impact of industrial structural improvements on
labor employment, mainly focusing on economic growth, the wide range of industrial
structures, and the econometric calculations, their conclusions are disparate. Thirdly, the
scope of the existing literature is limited to primary industry, secondary industry and
tertiary industry, whereas scant attention is given to the effects of changes in strategic
emerging industrial structure on employment and on its industrial employment flexibility.

Strategic emerging industries are new, rapidly growing industries that are deemed
strategic for a country’s economic development and future competitiveness. These indus-
tries typically involve cutting-edge technologies, goods, and services, and they have the
potential to drive significant economic growth and job creation. According to our review
of the literature, there are few researches on the employment effect of structural changes
in strategic emerging industries. Strategic emerging industries are key areas to promote
industrial restructuring in China [25]. Stable employment is the top priority for us. The
research object of this paper is more targeted and time-sensitive, providing theoretical
support for future research in related fields.

3. Research Design
3.1. Mechanism of Action

The change of industrial structure is believed to be formed by the interaction of differ-
ent technological developments on the supply side and factors on the demand side [26].
The two classic components of industrial structural change are industrial structural ra-
tionalization and upgrading [27,28]. This involves the reallocation of production factors
(labor, capital and environment) among different sectors. Among those production factors,
labor resource is the most dynamic [29,30]. The development of strategic emerging indus-
tries can help transform the economic development model and realize the optimization
and upgrading of industrial organizations [31]. With the development of technology and
economics, the structure of strategic emerging industries is adjusting through dynamic
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Strategic emerging
industrial structure
change

development, and in the process, the forces of “creation and destruction” coexist, which
produces the mechanism of destruction and compensation in labor employment.

The employment destruction mechanism of structural changes in strategic emerging
industries involves the upgrading of the structure of emerging industries, in which labor-
intensive industries are gradually replaced by technology- and capital-intensive industries,
which reduces the demand for labor and causes structural unemployment. These changes
will reduce the demand for labor, which in turn will have a crowding-out effect on em-
ployment, namely, a destructive effect. These changes are reflected in the following four
aspects. First, in the process of changing the structure of strategic emerging industries, the
technological level will be improved, machines will replace the labor force, and production
will be increasingly automated and intelligently improved, which will reduce the demand
for labor and the number of jobs [32]. Second, the change of strategic industrial structure
changes the demand for labor force, which results in the lag effect and the decrease in em-
ployment. Third, the structural adjustment of strategic emerging industries will lead to the
continuous optimization and upgrading of industries and the improvement of management
levels, which will lead to a reduction of redundant personnel and a decline in employment.
Fourth, in the process of restructuring strategic emerging industries, institutional and policy
obstacles will appear, hindering the flow of labor between different industries, which will
also lead to a decline in employment.

To sum up, the process of the employment destruction mechanism involved in struc-
tural changes in strategic emerging industries is as follows (see Figure 1). The changes in
strategic emerging industrial structure will improve production technology, change job
demand, and improve the level of management so as to make production automatic and
intelligent; machines will replace the labor force redundant personnel will be cut; and
eventually, with the reduced demand and supply of labor, employment will decline.

Teehnolonical Production
echnologica automation
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L

Change in labor

E Effect of lag Reduced
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Figure 1. The formation process of the employment destruction mechanism of the changes in strategic
emerging industrial structure.

The employment compensation mechanism [33] underlying the change in strategic
emerging industries involves the creation of new products and emerging industries via
technological innovation, leading to changes in the number of strategic emerging industries
and the composition of the industrial structure. These changes, in turn, lead to the flow
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of production factors between different industrial sectors and to the transfer of labor and
drive the development of related industries. All these processes will increase the demand
for labor force and have a promoting effect on employment, that is, a compensation effect.
These changes are reflected in the following five aspects. We can summarize the formation
process of the employment compensation mechanism caused by the structural changes in
strategic emerging industries as follows (see Figure 2).

Strategic
emerging
industrial
structure
change

. Changes
Industrial ) eS8 Flow of labor
structural %n;mergmg P factors
rationalization WANSITY SRRIQTS
Technological New
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developed
\ 4
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Figure 2. The formation process of the employment compensation mechanism of the change in
strategic emerging industrial structure.

Firstly, the change in strategic emerging industries is accompanied by technological
progress and increased labor productivity, which promotes the flow of labor factors within
industries and among different industries. Thus, the reallocation of labor resources is
realized, and the amount of employment is increased. Second, in the process of upgrading
strategic emerging industrial structure, enterprises begin to develop new technologies in
order to increase their market share and generate advantages in the market, resulting in the
continuous improvement of the technological level of each industry [34]. This advancement
will bring new products and new industries, create new jobs, and increase the number
of people employed. Third, in the process of changing strategic emerging industries, the
newly generated industries have good development prospects and relatively high labor
productivity. Fourth, in the process of changing strategic emerging industries, the quality
of the labor force will change and human capital investment will increase, easing the
pressure of employment. This effect occurs because the rise of new industries results in
higher requirements for the quality of the labor force, requiring more highly educated and
skilled workers [35]. The demand for higher qualifications requires workers to extend their
education time and improve their basic skills in order to adapt to the changes in strategic
emerging industrial structure. This requirement for a more highly skilled labor force slows
the entry of workers into the 