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Abstract

This paper proposes a model that explains both recently documented facts about

the decline of disruptive innovation and the decline in productivity growth as the result

of large firms trying to monopolize technologies by poaching inventors from disruptive

activities. To come to this conclusion, the paper builds an endogenous growth model

with inventor labor markets on which firms can interact strategically. To inform

this model, I perform an event study of the effect of disruptive inventions on their

technology fields using PATSTAT (1980-2010). I document that technology classes

without disruption slowly trend towards incrementalism and that after a disruption,

more patents get registered and research becomes less incremental.

Keywords: general equilibrium, disruptive innovation, inventor labor markets, inno-

vation strategies, microeconometrics, general purpose technology

Classification: O12, O33, O41, J24, J42, J44
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1 Introduction

The paper proposes an endogenous growth model where firms’ decisions of what type

of innovation to pursue creates declining growth. I expand upon the recent empirical

findings on disruptive vs. incremental innovation and use these findings, together with my

own results, to inform my model. The principal contribution of the paper is to build an

endogenous growth model around the difference between radical/disruptive or incremental

innovation and the strategic decision that this poses on firms. I show that the efforts of

established firms to curtail threatening disruptive innovation determine the growth path

of the economy and that this scenario is consistent with the observed data.

To demonstrate this, I build upon Park et al. (2023) and Funk and Owen-Smith (2017)

to measure how disruptive an invention is from patent citation data. I construct an index

of how old the work is that citing patents reference. I.e. if a patent’s citing patents do

not reference older work, I deem it a disruptive innovation that spawns a new literature

unconnected to the past. I apply this measure to the international patent data collected by

the European Patent office (PATSTAT) between 1980 and 2010 and perform a matching

based event study to understand the effect of disruptive invention on technologies. I find

that disruptive inventions increase citations, patenting and the chance for a consecutive

disruption, but that the effect is decaying over time.

I construct an endogenous growth model which captures these features of disruptive

innovation. The actions of two types of firms drive the fate of the model economy: First,

there are disruptive firms. Disruptors do not sell any products, but try to invent a fun-

damentally different technology. They have to cover their research costs on the (perfect)

capital markets. Bill Gates and Paul Allen working in a garage to revolutionize home

computing were an archetypical disruptive firm. If disruptive inventors are successful,

they create a new producing firm with better production technology than that of any

currently existing producer. Producing firms, the second firm type, actually earn revenue

in the consumer market by selling a product. Producing firms improve their technology

incrementally in order to produce a product of higher quality.

Steady technological progress requires a mixture of both types of inventions: Disruptive

inventions alone never create a consumer product, only ever more advanced technologies.

Incremental inventions alone lead to a slowing rate of technology growth: As incremental

inventors strain against the limits of the underlying technology, the rate of technology

growth within each technology declines over time. This tension between disruption and

incremental growth is the central tradeoff in the model and how well the market economy

handles it determines economic growth.

Neither disruptive nor producing firms can conduct research on their own: Firms need

inventors to make inventions for them. Firms of both types hire incremental or disruptive

inventors on a search and matching labor market. Disruptive and incremental inventors

enter the economy and match with firms at fixed rates. The value of each firm is partly
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determined by the stock of inventors it has hired and those it can hire in the future. In-

cremental inventors are specialized in their current technology and cannot contribute to

other technologies. Thus, whenever a firm switches the technology underlying its prod-

ucts, it effectively loses all incremental inventors it has hired so far. Inserting this labor

market into an endogenous growth model enables the key findings with one assumption:

The search and matching labor market provides both an asset intrinsically linked to tech-

nologies (incremental inventors) and a way to protect this asset from being made obsolete

(by poaching disruptive inventors).

Successful producing firms can slow down technology disruption and overall technology

growth by hiring the inventors that disruptive firms would need to innovate. This is one

interpretation of the finding that being hired by large firms actually decreases inventor

productivitiy (Akcigit and Goldschlag, 2023). Technological progress depends not only on

investment in R&D, but also on overcoming this resistance. This sets this paper apart

from the rest of the endogenous growth literature, which views innovation as the result of

investment only. The longer a technology field has not been disrupted, the more of its dis-

ruptive inventors get poached, which decreases the chance for future disruption. To gauge

this effect of the aging of technology fields, I estimate the key parameters of this process

with the 1980-1995 portion of my data and then forecast the development of technology

using these parameters. I attribute 75% of the observed decline in disruptive innovation

to the ”aging” of technology fields without any model parameters (like the difficulty of

inventions) changing.

This paper speaks to the discussion around slowing technology growth, most notably

by reconciling a set of seemingly contradictory findings: TFP growth and scientific output

per researcher seem to decline, while firms hire an increasing number of researchers for

non-decreasing wages (Cowen and Southwood, 2019; Bloom et al., 2017). Likewise, the

scientific content of patents is declining (Arora et al., 2019), despite patents with more

scientific content being more valuable (Poege et al., 2019). Patents and publications have

also become less disruptive (Park et al., 2023; Funk and Owen-Smith, 2017). The model

reproduces all of these findings.

A large literature is concerned with the growing dispersion of firm level productivity

(Gal, 2017) and declining aggregate productivity growth (Gordon, 2016) throughout the

developed world. The literature discusses several different explanations for these phenom-

ena:

Akcigit and Ates (2019) argue that slowing technology diffusion is itself the most likely

source of slowing technology growth. Lucking et al. (2019) argue that technology diffu-

sion is still about as fast as it was in the 1980s. However, they do find that technology

diffusion was faster during the growth acceleration associated with IT in the 1990s. In

my model, growth is driven by disruptive innovation, while incremental inventions (and
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their diffusion) influence the level of economic activity. However, the model I present also

features an inventor-firm labor market, which can serve as micro-foundation for technology

diffusion in the endogenous growth model.

Another school of thought argues that ideas are getting harder to find and technology

growth thus slows down endogenously. Gordon (2016) makes this point. Bloom et al.

(2017) showed that more and more researchers are necessary to double e.g. computing

power or crop yields per acre. My paper takes this finding seriously, but offers an alter-

native interpretation: The very fact that firms invest so many resources in solving the

same problems using the same technologies indicates that they are engaged in incremental

innovation. Thus, the findings of Bloom et al. (2017) are troublesome because they show

a misallocation of inventive talent to incremental innovation with declining returns. Yet,

this does not necessarily mean that disruptive ideas are becoming harder to find.

The model explains these trends as outcomes of firms’ optimal research strategies:

Large firms’ profits depend on the fate of their specialty technology. Thus, they cling to

incremental innovation and undertake defensive measures to prevent disruption.

A fictitious social planner has to choose between incremental innovation and disrup-

tion. Which of the two he picks crucially depends on the weight that he puts on future

generations: A disruptive invention will increase economic growth long-term, but the ben-

efits will accrue to future inventors and future firms. In contrast, the current incremental

inventors and producing firms unambiguously lose after a disruptive invention. If the cur-

rent agents die before the growth increase from a disruptive innovation creates value, the

social planner cannot compensate them and the low-growth equilibrium with incremental

innovations is Pareto-optimal, even though it does not maximize GDP. If people in the

model live long enough, the social planner could use the additional GDP to compensate

the losers from a disruptive innovation.

My model is built on the framework of Akcigit and Kerr (2018), who assume that

firms are proficient in specific technology clusters. I understand technology clusters as

more than just one new product, they denote distinct technologies behind multiple indi-

vidual products, like ”telegraphy” or ”internal combustion engine”. Incremental inventions

within these clusters generate higher quality products. In departure from Akcigit and Kerr

(2018), firms cannot invent on their own and have to hire inventors specialized in a tech-

nology cluster on a search and matching labor market. The labor market for inventors in

each cluster corresponds to the results presented in the empirical chapter in Section 2.

My paper also speaks to a larger theoretical literature on market failures that misdirect

innovation. Firms under-invest in research that unlocks follow-up inventions, because they

cannot profit from the inventions other firms will make, as in Hopenhayn et al. (2006);
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Denicolò (2000); Scotchmer (1991). In general, firms can only appropriate a share of the

overall welfare increases that result from their inventions. Since this share is not constant

across inventions, firms over-invest in inventions where they can appropriate a high share

of the returns (Bryan and Lemus, 2017). In the model presented here, producing firms can

only appropriate the returns from incremental innovation, which drives aggregate behavior.

Beyond the theoretical literature, there is substantial empirical support for the mo-

nopolization of research fields, which is conceptually adjacent to the proposed model:

Thompson and Kuhn (2017) use patent races between firms to compare the first and

second research team and thus patent holders and followers. They find that patents pre-

clude competitors from follow-up innovation and make the winner of patent races more

dominant in the associated technology field. In the semiconductor industry, increased

patent protection seems to have led to defensive patenting instead of innovation (Hall

and Ziedonis, 2001). Across industries, the correlation between patent protection and

innovation is negative, which Bessen and Maskin (2009) explain by the negative effect of

patents on sequential inventions. This study extends the principal insights of this liter-

ature to a context of inventor-firm labor market matching in an endogenous growth model.

This paper also links into the literature around the documented rise of firm profits and

markups (Barkai, 2017; De Loecker and Eeckhout, 2017). The model predicts that firms

with high market power engage in qualitatively different R&D. Only small, competitive

firms invest in disruptive technology to – if successful – themselves become large firms

linked to a technology. After that, their research portfolio will become much more incre-

mental.

In a larger context, the paper relates to literature on the efficacy of the current sys-

tem to reward innovative firms. The theoretical and experimental literature suggests that

patents are not able to optimally steer the direction of innovation in general: If only a

finite number of research direction is available, firms race each other to the most lucrative

patents and incur wasteful parallel investment (Zizzo, 2002; Silipo, 2005; Breitmoser et al.,

2010). Both in the US (Jaffe, 2000) and Japan (Sakakibara and Branstetter, 2001), firms

do not react conclusively to substantial changes in patenting protection. Nevertheless, in

my model, the market failure can be corrected by policy interventions. Since technology

monopolists are misdirecting innovation, policy should break up existing monopolies and

prevent mergers and buy-outs of startups. Likewise, any policy that increases the trans-

ferability of inventor skills makes technology markets larger and thus harder to monopolize.

The remainder of the paper is structured as follows: Section 2 documents stylized

facts about disruptive vs. incremental innovation. Section 3 lays out the assumptions and

mechanisms of the model. Section 4 discusses the equilibrium behavior of the economy

and response to various policy interventions. Section 5 concludes the analysis.
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2 Stylized Facts

2.1 Literature on disruptive vs. incremental innovation

There is an active literature using firm level data to discuss the growth slowdown in de-

veloped economies. This research has generally concluded that there is a real slowdown in

productivity growth, not just a measurement issue (Syverson, 2017; Reinsdorf et al., 2016;

Antolin-Diaz et al., 2017). Gordon (2016) proposed that new (impactful) ideas are getting

harder and harder to find as more and more discoveries are made. He demonstrates this

by estimating the worldwide researcher productivity in a series of tasks, e.g. doubling the

number of transistors on a chip (Moore’s Law) or crop yields per acre. Andrews et al.

(2016) and Akcigit and Ates (2019) show that firm productivity dispersion has increased

at the same time.

Park et al. (2023) have documented a trend towards more incremental, less disruptive

research both in publications and patents. Poege et al. (2019) show that increased in-

crementalism decreases the economic value of patents: Patents connected to high quality

research through citations are roughly twice as valuable as other patents.

There is also substantial evidence that large firms – in contrast to small firms – lean

more towards incremental improvements of existing technology (Acemoglu et al., 2016;

Kerr et al., 2014; Kueng et al., 2014). The incentives that cause this behavior are also

well understood theoretically (Akcigit and Kerr, 2018).

From these results, I draw four different stylized facts that the model has to replicate:

1. Aggregate productivity growth is slowing down.

2. Researcher productivity measured for specific targets is declining.

3. Firms’ research is becoming more incremental.

4. Large firms’ research is more incremental than small firms’ research.

2.2 The PATSTAT Data

Patent data from across the world gathered in the PATSTAT database forms the basis

of my empirical strategy. This data contains the filing date of any patent application, a

description of the technology and the names of firms and inventors involved. The EPO

mostly relies on partner patent offices for digitization, so both coverage and the available

variables vary by country. For some participating countries, the data starts in 1850, how-

ever, coverage pre-WW2 is generally low. Patents from some countries are only available
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from a later date onwards: E.g., Japan enters the database in the mid-seventies. Around

the same time, coverage rates improve in general and the data can give a reliable picture

of worldwide patent activity. I start my analysis in 1980, when the data from the major

patent offices contains citations and coverage is satisfactory. Figure 1 shows the number

of patents over time for selected countries. Note that the stable or shrinking number of

national patents for EU countries is offset by a large increase in EU-wide EPO applications.

Figure 1: Overview over PATSTAT
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Notes: Number of patents in PATSTAT per region. The gray region marks the time period
of data used in the event study in Section 2.5.
Sources: PATSTAT (European Patent Office).

Importantly, PATSTAT does not contain unique firm or person identifiers. Instead,

it contains a character string written into the fields ”inventor” and ”applicant” on the

patent. In my empirical application, I avoid using individual or firm level indicators be-

cause of this problem (see Magerman et al. (2006); Toole et al. (2021); Li et al. (2019) for

a discussion of this issue).

PATSTAT contains detailed descriptions of patents’ content: Beside titles, abstracts

and patent texts, the EPO assigns one or more harmonized 8 digit IPC classes to every

patent. I use these IPC classes as analogous to technology fields in the theoretical section

of the paper. The EPO also groups patents for the same inventions together as families and

provides citations between patent families. I use these patent family citations to determine

how incremental or disruptive any given patent is and aggregate these measures to the

IPC-class level.
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2.3 Measuring patent ”disruptiveness”

To determine how disruptive specific technologies are, I follow the general strategy of Park

et al. (2023) and Funk and Owen-Smith (2017) and look at the citation patterns around

patent p. Both papers use two indices derived from the other citations of patents citing

patent p: If patents that cite p also cite the older literature that p is referencing, p did not

disrupt the technology. If however p starts a new literature that does not cite pre-existing

patents anymore, p is classified as disruptive. I simplify their exact specification by not

counting the citations between patent p, its cited patents and patents citing p. Instead, I

define the citation year gap CY G by observing the average filing year of the other citations

from patents citing p.

CY Gp =

∑C t̄o;c
Cp

− tp (1)

where p is the patent of interest, c indexes patents filed up to five years after patent p

and citing patent p. o indexes the other patents cited by c. t̄o,c is the average year of the

patents o cited by citing patent c and tp is the filing year of the original patent. Intu-

itively, the citing year gap CYG is the difference between the average year referenced by

the patents cited by the patent citing p. A positive number means that patents citing p on

average reference patents filed after the patent of interest p, i.e. they are referencing new

research instead of the old patents that p is based on. Thus, this measure intuitively is very

close to the original by Funk and Owen-Smith (2017). However, because it is essentially

continuous, it outperforms the original in small samples, where the fact that most patents

only have one or two citations really matters: Indices based on referenced patent count

only have a couple of values in practice, making their movements quite jumpy. I prefer

CY Gp as a measure since I follow ”disruptiveness” within (sometimes) small technology

classes, not the entire patent sample, unlike Funk and Owen-Smith (2017).

2.4 Aggregate Trends

To understand what drives the aggregate decline in disruptive research, I split the data

into different time consistent technology classes provided by PATSTAT. I create a balanced

panel of 75613 IPC classes from 1980 to 2010. Figure 2 reports the trend of CY G for all

technology classes. Most IPC classes mirror the aggregate downward trend: Patents filed

in 1980 get cited by patents that reference work on average roughly 1 years older than

the original patent. In 2010, the number has increased to roughly 6. Though most IPC

classes experience a decline in the CY G, the difference between the most disrupted and

the most incremental technologies is rising, with some IPC classes even exhibiting rising

disruptiveness as measured by the CY G during the 90s. A major factor in this is the

revolution in ICT technology: Of the 25 IPC classes with the highest CY G in 2010,

19 are categorized as telecommunications and 9 among those as ”transmission of digital

information”, 3 more are in ”computing and image processing” and another 2 are in
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”games (including video)”. The measure thus produces sensible results. Table (1) reports

summary statistics for the IPC class panel.

Figure 2: Aggregate Evolution of Disruptive Innovation
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Notes: Average CY G per technology class over time. CY G measures how disrupted a
technology is and is defined in (1) and discussed subsequently. In the aggregate over
all IPC classes, the measure declines from -1 to -6. The CY G of individual IPC classes
containing 50% of patents are contained in the dark gray area, the light gray area contains
the CY G of 90% of IPC classes. The aggregate behavior is not driven by outlier IPC
classes, declining CY G is widespread. However, some IPC classes maintain their average
disruptiveness, especially during the 90s. These are almost exclusively ICT-related.
Sources: PATSTAT (European Patent Office).

2.5 Effects of radical innovations

I define a disruption event as a patent with more than 100 citations and a CY G of larger

than 0, meaning that the citing patents refer to on average newer work than the original

patent, i.e. the patent has made older work obsolete and is very impactful. Such patents

are very rare (3347 in the sample): There is a double digit number of such patents per

year in the 80s and 00s and between 100 and 500 per year in the 90s, in concordance with

the overall time trends in disruption frequency discussed above.

To understand what happens after such a disruption event with the IPC class, I perform

an event study: I match IPC classes to never-disrupted IPC classes in the same year and

compare their evolution around the disruption event. Apart from exact matching on the

year, I perform Mahanalobis distance matching on the CY G of the four years prior to the

disruption as well as the number of patents in the IPC class. Table (1) reports summary

statistics for the two groups prior to matching as well as a comparison of the control and

treatment group together with significance tests.

After the matching procedure, I obtain a sample of 1747 disrupted IPC classes and

9



Table 1: Summary Statistics on IPC classes before and after Matching

Panel 1: Before Matching Panel 2: After Matching

Controls Disrupted Difference Controls Disrupted Difference

CY GT−1 -4.346 -0.477 3.869*** -2.445 -2.358 0.087*
(3.119) (1.850) (0.042) (1.355) (1.344) (0.046)

CY GT−2 -4.226 -0.567 3.659*** -2.256 -2.167 0.089*
(3.064) (1.890) (0.045) (1.377) (1.390) (0.047)

CY GT−3 -4.106 -0.592 3.514*** -2.132 -2.063 0.069
(3.014) (2.013) (0.048) (1.434) (1.453) (0.049)

CY GT−4 -3.984 -0.771 3.213*** -1.993 -1.947 0.046
(2.961) (2.025) (0.051) (1.458) (1.469) (0.050)

nrpatents 4.025 8.735 4.710*** 17.966 18.332 0.366
(12.920) (22.984) (0.152) (34.060) (35.113) (1.170)

nrcitations 20.004 67.807 47.803*** 138.213 143.128 4.916
(64.665) (142.815) (0.761) (202.185) (205.071) (6.890)

cohortT−1 20.179 41.625 21.446*** 132.501 136.995 4.493
(62.349) (110.791) (0.732) (168.863) (172.684) (5.779)

Observations 2,797,758 7,316 2,805,074 1,747 1,747 3,494

Notes: Unit of observation: harmonized IPC class first disrupted in year T . Standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. CY G measures how disrupted
a technology is and is defined in (1) and discussed subsequently. cohortT−1 refers to the
number of inventors that entered the IPC class in the year prior to the disruption. In the
population, disruptions happen in already much less incremental IPC classes, measured
by past CY G. Soon to be disrupted IPC classes are also larger, more cited and have
more inventors enter. After the matching procedure, the differences are controlled for. It is
worth noting that matching mainly works for larger, well cited IPC classes and the matched
sample reduces substantially.
Source: PATSTAT (European Patent Office).
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their nearest neighbor as a control. This is a substantial reduction from the previous 7316

disrupted IPC classes and is mainly due to the difficulty of finding matches for smaller,

less cited and already less incremental IP classes: The difference in CY G between un-

matched disrupted IPC classes and their potential control is large and does not allow to

find matches for all disrupted IPC classes despite the large number of potential candidates.

The event study itself is estimated using OLS

ytr;i =
r=15∑
r=−5

βtr tri +Θi + utr;i (2)

where Θi is a matched pair fixed effect for pair i, tri is relative time since the disruption

and y stands in for different outcome variables of interest. Specifically, I look at the

share of inventions that are categorized as ”disruptive” as a measure of the likelihood of

a consecutive disruption and CY G as a continuous measure of the ”disruptiveness” of

an IPC class. Figure 3 reports the results from (2). The matched pairs of IPC classes

behave nearly identically prior to the disruption. After the disruption, the probability

for a consecutive disruption increases markedly. The effect size of a 12% chance one year

after a disruption is substantial compared to the average probability of 5% per year. A

disruption also increases the citation year gap by 0.75 (Panel B), i.e. patents referencing

patents in the technology class now reference literature that is roughly 0.75 years younger.

After a disruption, the IPC class again begins to trend back towards incrementalism, in

accordance with Gordon (2016). The effect of consecutive disruptions (Panel C) is smaller

than that of the first disruption, but the general patterns remain. Panels D depicts the

evolution of the number of patent applications: Disrupted IPC classes grow in terms of

pure quantity, while undisrupted IPC classes shrink.

The results from this analysis present additional facts that the model should be able

to explain:

5. Technologies’ trend towards incrementalism is reversed by discrete, high impact,

disruptive inventions.

6. Disruptive inventions increase the likelihood for consecutive disruption.

7. The first disruption has the highest impact on the technology class.

3 Model

This section develops a tractable endogenous growth model that captures the stylized

facts discussed in Section 2. In this model, firms have to choose between disruptive and

incremental research, taking into account other firms’ decisions. The strategic interaction

occurs on the labor market for inventors, where firms poach each others’ inventors to pursue
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Figure 3: Effect of Disruption on IPC class
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research. The model builds on Akcigit and Kerr (2018), but adds directed innovation, an

inventor labor market and the strategic interactions caused by these.

3.1 Technology and product structure

Technology is differentiated into broad fields or disciplines like ”telecommunications” or

”electricity generation”. Each field corresponds to one product. Within each of these

fields, technology clusters denote distinct areas of knowledge like the clusters ”telegraphy”

or ”satellite communications” in the field ”telecommunications”. These clusters are areas

of expertise for individual inventors, who cannot be experts in whole fields or even all sci-

ences. Within each field, there are old obsolete clusters (”telegraphy”), a currently active

cluster (”satellite communication”) and as of yet still unknown future clusters.

Firms cannot conduct research on their own and have to hire inventors. The majority

of inventors are specialists who studied one specific technology cluster and are dedicated

to improving it further. Every invention these incremental inventors make increases the

product quality of their firm, but does not change the general technology structure. An

example of incremental inventors are the engineers who improve the internal combustion

engine. Incremental inventors no longer contribute to the economy if this technology

becomes obsolete. Because of this restriction, technology clusters play a large role in in-

ventors’ and firms’ calculations. Throughout the rest of the paper, I will use the words

cluster and technology cluster interchangeably.

Occasionally, major breakthroughs in a technology field create an entirely new, better

technology cluster within the same field. An example are current efforts to use hydrogen

or electric energy to power cars. Hydrogen or electric cars will then form another tech-

nology cluster within the broader field of ”vehicle construction”. Disruptive inventions

are proofs of concepts for better technologies: The first telegraph, the first power line or

the first electrical train were not viable consumer products, but demonstrated the feasi-

bility of the technology. Subsequent incremental innovations then create actual products

that can enter the market. Each cluster is better than the last one in the sense that it

enables more impactful incremental follow-up innovation: The quality improvement from

one incremental invention in a technology cluster is

∆q(c) = ωc (3)

where c denotes the number of the cluster. In the above example, an incremental inven-

tion that improves the telegraph would generate ω1 additional quality for the inventing

firm. An incremental improvement of the telephone would create ω2. Thus, parameter

ω > 1 determines how substantial the gains from disruptive inventions are: If ω = 1.20,

a telephone improvement would generate 20% more quality than a telegraph improvement.
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Clusters are indexed by their field and a running number c. Taking the field of telecom-

munication as an example, the telegraph might be c = 1, the telephone might be c = 2

and so forth. Slightly abusing notation, I will drop the index field for now, since all fields

in the model are symmetrical. Thus, the index is only relevant when aggregating over

the whole economy. In the following, capitalized variables denote aggregate variables (like

the probability for disruption in a technology field Λdis) and lower case letters describe

microeconomic variables (like the number of patents for firm f nrpatentsf ). Parameter no-

tations follow precedents in the literature whenever possible.

Within each technology field, there exists a continuum of disruptive inventors who aim

to create breakthroughs. These generate prototypes of future production technologies.

Whenever these firms are successful, a new technology cluster is born and the old cluster

becomes obsolete. Old incremental inventors can no longer contribute to products based

on the new technology, but disruptive inventors and firms can immediately work on dis-

rupting the new technology again. The disrupting firm also founds a new producing firm

which will use the newly created technology.

3.2 Research actors

The innovations described in Section 3.1 are pursued by four different actors: entrepreneurs,

incremental inventors, disruptive inventors and producing firms. Entrepreneurs enter each

technology field economy at constant rate ηe. Entering entrepreneurs, incremental inven-

tors and disruptive inventors match with each other and entrepreneurs each found new

incremental firms with random firm quality yf (drawn from a uniform distribution be-

tween 0 and 1). Entrepreneurs exit the economy at rate δ. When they do, the inventors

that are matched with them exit with them. This assumption simplifies the dynamics of

firm size, while inventors and firms still exit with probability δ.

Incremental firms match with incremental inventors and bargain about wages. They

also must decide whether they want to enter the inventor labor market for disruptive

inventors (to poach them and keep them from making disruptive inventions). There are

no costs associated with entering, since I abstract from vacancy creation in the baseline

specification. The patents that firms and incremental inventors jointly produce increase

the quality of the product in the associated research field. Demand and supply are such

that no matter which firm holds patents improving the quality of the product by ∆q, they

yield a revenue stream of ∆q∗π. The demand structure is a derivative of Akcigit and Kerr

(2018) and is discussed in detail in Section 3.5. In the baseline model, a firm’s incremental

inventors will become obsolete after a disruptive invention, but its patents will remain

functional for simplification. Therefore, patents earn their profit stream indefinitely and

are being valued at

V p(∆q) =
π

r
∗∆q (4)
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Incremental inventors enter each technology field at rate ηinc and draw a random

skill level xi from the uniform distribution between 0 and 1. Since the baseline model

has no vacancies, they then match with a random newly entering entrepreneur and will

receive no further matches after that. The match remains existant whether or not the

two potential partners work together and both sides can freely choose to stop or resume

working with each other. When not working for their matched firm, incremental inventors

do not produce any output. Incremental inventors exit the economy at rate δ due to their

matched firms exiting.

Disruptive inventors enter the field at rate ηdis, assumed to be much lower than ηinc.

They also draw their skill xi from the uniform distribution between 0 and 1. Like in-

cremental inventors, they match with a random firm which is searching for disruptive

inventors. In the same way as with incremental inventors, the match with ”their” firm

is stable and continues to exist no matter their current employment. However, unlike

incremental inventors, disruptive inventors do not produce anything when working for

an incremental firm and produce their actual output when not connected to a firm: In

that case, they will work on disrupting the current technology, succeeding at rate xi. If

the producing firm they matched with offers them a good enough wage, they no longer

try to disrupt the field. Without vacancies, incremental firms pay no costs to connect

to disruptive inventors, so the key question determining whether disruptive inventors sell

out is whether incremental firms want to pay enough to suppress disruptive inventions.

Disruptive inventors also exit the economy at rate δ due to their matched firms exiting.

With the above assumptions, the amount of (incremental) R&D is essentially fixed,

since the number of firms and incremental inventors is exogenous. This is because the

novel facts the model aims to explain concern the type of innovation performed, not how

much. Since the number of researchers is increasing globally and within countries, the

amount of research is not a likely explanation for the productivity slowdown.

Note that right after a disruption, each technology field looks the same, except for

a factor ωc: All disruptive inventors are working and no incremental inventors and no

producing firms exist (yet). Incremental inventors then enter at rate ηinc.

3.3 Inventor Firm matching

After an incremental inventor has matched with a producing firm, the two engage in Nash

bargaining. Since both can freely terminate and renegotiate the contract, they bargain over

the wage of the current period only. However, neither side has a credible outside option.

The inventor will not get additional matches and will thus be stuck negotiating with

the firm again. The firm might have additional matches with inventors, but rejecting the

match does not yield any additional match opportunities. The inventor produces πωcyfxi,

where π is the constant profits that can be expected from increasing productivity, ωc is the

productivity improvement of one incremental invention which depends on the index of the

current technology cluster c and yfxi is the rate at which new inventions are generated,

a function of firm quality and inventor skill. Since both outside options are 0, the entire
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output of the match is the surplus, which will be divided between firms and inventors

according to the bargaining parameter α:

w(xi) = (1− α)πωcyfxi (5)

In equilibrium, incremental firms and inventors will always work together to produce

patents, with the inventor i earning share (1−α) of the expected profits as wage and firm

f earning the remaining share of α.

Disruptive inventors entering the economy and meeting with a producing firm also

Nash bargain over the price. In contrast to incremental inventors, they have an outside

option, namely to disrupt the economy with probability xi. With this outside option, the

disruptive inventor will earn

f(xi) = xi ∗ E(V f (∆q = 0, yf ,Λ
dis =

ηdis

δ
, c = c+ 1)) (6)

where the value of the outside option depends on the skill of the inventor xi because it

determines the rate of his inventions. If the disruptive invention is successful, the inventor

will gain a new firm in the newly created cluster. This firm will have a patent portfolio of

∆q = 0, a randomly drawn firm quality yf , with all disruptive inventors active Λdis = ηdis

δ

and in the technology cluster one above the current one c = c + 1. In Nash bargaining,

the match will always be formed if surplus is positive, i.e. if the producing firm gains

more from stopping disruptive innovation than V dis
i (xi,Λ

dis), no matter the bargaining

parameter (Rogerson et al., 2005). The firm’s optimization determines whether it will

poach disruptive inventors.

3.4 Firm optimization

The incremental firm takes inventor behavior as given when maximizing its own value.

Each technology field is described by t, the time since the last disruptive invention. Since

the model is inhabited by masses of incremental firms and inventors, incremental invention

will follow the expected path due to the law of large numbers. At each point in t, any

field is described by

� Λinc(t), the rate of incremental innovations and also the output weighted number of

incremental inventors at time t

� Λdis(t), the rate of disruptive innovations and also the output weighted number of

disruptive inventors at time t

� Mf (t), the mass of firms in the field at time t

� c, the index of the current technology cluster, which will stay constant until a dis-

ruptive invention is actually made
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� ηinc, ηdis & ηe, the number of incremental inventors, disruptive inventors and en-

trepreneurs entering the field and matching with each other

New firms have obtained their matches exogenously. All firms have to decide whether or

not to pay the wages of incremental and disruptive inventors in order to actually work

with them. The value of a firm is derived from its stock of patents (V p
f (q)), its quality

(yf ), the stock of matches with which it can potentially work (xincf & xdisf ), the technology

cluster index c and the rate of disruptive inventions (Λdis(t)), which will determine for

how long it can expect to use these assets.

This yields the firm value function:

V f
f (q, yf , x

inc
f , xdisf ,Λdis) = V p

f (q) + V inc
f (yf , x

inc
f , xdisf , Xdis)

i.e. the value of a firm is derived from the sum of its patents and the value of its stock of

inventors. Note that the stock of patents (and its value) is not affected by any decision

the firm makes now: These patents will continue to return π∆q forever no matter what.

Hence the additive separability of firm value V f
f (q, yf , x

inc
f , xdisf ,Λdis).

I conjecture that the value of a firm’s stock of inventors is a linear function of ωc and

yf , since all patent quality gains are multiplied by these factors and firms pay wages as a

fraction of their expected profits from these quality gains.

The firm maximizes the value of its inventor matches by maximizing

rV inc
f (yf , x

inc
f , xdisf , Xdis) = α

π

r
∗ ωcλinc

f − w(λdis
f )

−(Λdis + δ)V inc
f (yf , x

inc
f , xdisf , Xdis) + V̇ f

f (q, yf , x
inc
f , xdisf ,Λdis) (7)

The firm can decide on λinc
f and λdis

f . The first term describes the firm’s gains from

incremental inventors, already net of the wages paid to these inventors as per equation

(5). The second term in the first lines describes wages paid to disruptive inventors, which

depend on how many of the matched inventors the firm actually wants to hire, paying

at least their outside option as described in equation (6). The second line contains the

risks of operations: the rate of agent exit δ, which will force the termination of the firm,

and the rate of disruptive inventions Λdis. The last term represents the change in value

over time (due to changes of the macro parameters). In the baseline model, the firm will

trivially always hire matched incremental inventors, so λinc
f = yf ∗ xi. In order to decide

whether to hire disruptive inventors, the firm has to maximize equation (7), taking into

account that Λdis =
∫
f λ

dis
f . Taking the derivative with respect to λdis

f and rearranging,

one gets the first order condition in terms of yf , the research quality of the firm

ysklerosis =
γ ∗ ω ∗ V inc

f (yf = 1, xincf , xdisf , Xdis = ηdis

δ )

V inc
f (yf = 1, xincf , xdisf , Xdis)

(8)

where the nominator represents the value of a new firm in the next technology cluster

(i.e. the return to a disruptive innovation) and the denominator represents the value of a
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firm in the current technology cluster.

Equation (8) yields the parameters under which the model will adhere to the ob-

served data: Recall from Section 2 that the rate of disruptive inventions jumps up after

a disruptive invention but begins to fall again immediately. After a disruptive invention,

Xdis = ηdis

δ , which will simplify equation (8) to

ysklerosis = γ ∗ ω (9)

i.e. firms that have a research quality higher than γ ∗ω will immediately start to poach

inventors. If the disrupting inventor gains a large advantage in the newly created technol-

ogy cluster γ or if the research productivity gain from disruption ω is large, only higher

quality firms of the current cluster will find it profitable to poach disruptive inventors. If

the product of both parameters is high enough, no firm will find it profitable to poach and

the rate of disruption will stay at its initial level indefinitely. In this case, no endogenous

productivity growth slowdown will occur.

In the baseline labor market, only newly entering disruptive inventors match with

poaching firms. They match with exactly one firm (if such a firm exists) and a match will

be formed. The exact wage the disruptive inventor earns depends on the research quality

of his match and the time since the last disruption (since incremental inventor stocks

become more valuable over time as more disruptive inventors get poached and the risk

declines). Since all newly entering inventors get poached if ysklerosis < 1, the equilibrium

stock of actually disrupting inventors declines with rate δ, with which active disruptive

inventors leave the economy but do not get replaced.

This yields

Λdis(t) =
ηdis

δ
e−δt

Λinc(t) =
1

2

ηinc

δ
(1− e−δt) (10)

as the equilibrium arrival rates of disruptive and incremental patents as a function of

the time since the last disruption: The stock of disruptive inventors decays at rate δ

because new inventors get poached and current inventors exit the economy. In contrast,

incremental inventors were all forced to exit with the disruptive invention and are now

entering again at rate ηinc. The stock of incremental inventors accumulated this way then

also decays at rate δ.

3.5 Consumer Demand, Patent Value and Static Profits

Throughout the previous discussion, I assumed that patents yield a steady stream of prof-

its equal to a constant π times the quality increase that each patent represents.

This assumption can be microfounded in a number of ways, most notably as in Akcigit

and Kerr (2018). In their model, firms sell their products to a love-of-variety final goods

sector and profits only depend on product quality and exogenous demand and cost param-
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eters. As is standard in these settings, firms compete against the (appropriately weighted)

average product in the market and not any specific firms. For the baseline specification of

this paper, I present a close derivative of this model where I increase the role of technology

clusters and introduce technology fields.

I also present an alternative specification of consumer demand that also leads to prof-

its linear in quality in appendix (A). This is to emphasize that the specifics of demand

do not drive my conclusions and labor markets are tractable enough so that they can be

inserted in different GE-models. This alternative justification of linear profits is based

on a Salop circle demand framework. In this framework, every firm competes against

specific firms (its neighbors on the circle), which opens up the possibility to extend the

model for strategic interactions between individual firms, not only all firms in a submarket.

Consumers are part of a representative household and derive logarithmic utility from

consuming a final good (Y ) in continuous time. This final good is the numeraire good.

U =

∫ ∞

0
e−rt ln(Y (t))dt

Consumers are impatient and discount with factor r. They neither face a tradeoff between

leisure and consumption, nor do they experience inequality. Households evenly share in-

come from all sources between their members.

A final goods industry produces the consumption good from labor and a variety of

intermediate inputs and sells it to consumers. The industry produces according to

Y (t) =
1

1− β
Lβ
c (t)

∫ 1

0
qβj z

1−β
j dj (11)

where qj is the quality of good j, zj is its quantity and Lc(t) is the labor expended in final

goods production. If all product qualities are fixed, the production function exhibits con-

stant returns to scale in labor and intermediate inputs. With increasing product qualities

qj , the production function exhibits increasing returns to scale.

Each product j corresponds to a technology field. To become a producing firm for

product j, firms enter the current frontier technology cluster in that field and hire inven-

tors.

The economy contains a mass 1 of production workers which I will call technicians.

Technicians have undergone vocational training and cannot become inventors. However,

they can contribute to the production of any good, regardless of the specific technology.

Since all technicians are perfect substitutes and firms’ research quality does not matter

for production, no matching is necessary. There is a perfectly competitive spot market for
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technicians’ labor without search costs.

The final goods industry is a price taker, consisting of a multitude of small competing

firms. Hence, its inverse demand for any one intermediate good is

pj = Lβ
c (t) ∗ q

β
j ∗ z−β

j

The price that the final goods industry is willing to accept for variety j of the intermediate

good increases as more technicians work in the final goods industry Lc(t) and the quality

of the variety becomes higher. If the final goods industry buys a higher quantity zj , the

acceptable price declines.

In each of these intermediate goods sectors j, producing firms compete to satisfy this

demand. They produce intermediate goods using labor:

zfj = lfj ∗ q̄

Firms use one unit of labor to produce one unit of an intermediate good of average quality.

As is standard in the literature, these firms compete in a two-stage Bertrand game: In

stage one, every firm decides whether it wants to incur an arbitrarily small set-up cost ϵ

to be able to produce. In stage two, all remaining firms engage in Bertrand competition.

Since the result of Bertrand competition will be that only the firm with the highest quality

produces, only this firm will incur the cost ϵ and it will be the monopolist in the second

stage of the game.

A single monopolist with a given product quality will set the profit maximizing price

and produce quantity

z∗j = qj ∗ Lc(t)(
(1− β)q̄

w
)
1
β (12)

Importantly, demand for the monopolist’s products depends on the amount of labor em-

ployed in the final goods industry since production workers process the intermediate inputs.

The mass of small firms in the final goods sector will optimize their labor and inter-

mediate goods intake and through this set the wage rate. Optimizing equation (11) with

respect to labor and inserting the equilibrium on the intermediate goods market (equation

12) gives the optimal wage as

w = ββ(1− β)1−2β ∗ q̄ (13)

i.e. the final goods industry will adjust its labor demand to achieve a wage rate as a mul-

tiple of the average quality q̄ in the economy. The precise multiple is dictated by labor’s

output elasticity β. This behavior is optimal because the supply of intermediate varieties

is itself a function of Lc(t) (equation 12).
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Producing firms make the important decisions in the model, since their decisions about

hiring inventors will determine technological progress and dynamic equilibrium. However,

their downstream decisions have no dynamic component: Labor input, quantity sold and

price can be adjusted at any point in time. Taking into account that the final goods

industry will always fix the wage rate (equation 13), the optimal quantity decision for a

producing firm gives equilibrium profits as

π∗
mon = Lc(t) ∗ (1− β) ∗ ββ(1− β)1−2β (14)

Thus, a monopolist’s profits are a linear function of quality and (from the viewpoint of

the firm) an exogenous factor called π throughout the rest of the paper.

So far, this framework is deviating from the setup in Akcigit and Kerr (2018) in

two ways: First, I introduce technology fields, equate them with products and prohibit

producing firms from creating disruptive inventions. Together, these changes mean that

producing firms no longer face a general threat of disruption from firms throughout the

whole economy. Instead, only a distinct set of disruptive inventors within their own tech-

nology field pose a threat to producing firms.

Second, there are now multiple producing firms within one technology cluster. As in

Akcigit and Kerr (2018), incremental inventions increase product quality, but I now have

to make some assumptions about how producing firms split the revenues and how this is

affected by new inventions. To keep the model tractable, I will assume that incremental

inventions are unique, non-substitutable and additive. Hence, a producing firm that makes

an incremental invention will not necessarily displace the current best product as in most

ladder models, but just gain ωc product quality. I assume that all producing firms within a

technology cluster then pool all their patents to create the best possible product and split

the revenues from selling that product according to the quality contribution that each firm

was able to make with its patents. Since all inventions are unique and non-substitutable,

market power lies with whoever holds each individual patent, who can make a take-it-or-

leave-it offer to the pool of the other firms. Thus, each producing firm can extract the

value of its patents, no matter which firm will actually produce.

Using the HJB, the value of the firm’s patent portfolio is:

V (∆qf ) =
∆qfπ

r
(15)

The value of the patent portfolio of a firm thus only depends on the impatience to consume

r and ∆qf , the quality improvement that this patent portfolio makes possible. For sim-

plicity, patents do not expire. Importantly, the value of a patent portfolio is independent

of the number of researchers in any firm.
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This assumption is unusual insofar as the typical quality ladder model would assume

that a successful incremental invention creates a product one step above the currently

existing one. Instead, in my model, an invention represents a quality improvement that

any firm in the cluster could in principle use to improve their product. If the firm is

not currently producing, it can license the invention to the currently producing firm to

increase the quality of their product further.

3.6 Technological Progress

Technological progress in the economy is twofold: Incremental inventions improve the

average quality of the products in the economy and ultimatively increase the utility of

consumers. Disruptive progress increases the value of future incremental progress and

ensures long term growth: Without disruptive innovation, the economy still grows as new

incremental inventions increase quality, but growth as a percentage of GDP declines be-

cause incremental inventions can only create linear growth.

Each technology field faces a chance of disruption Λdis, upon which a new, more

valuable technology cluster emerges. The rate of disruptive inventions is declining as

more and more disruptive inventors get poached by producing firms (10). For any specific

technology field, this creates a saw blade like graph of the rate of disruption depicted in

Figure 4a.

In the steady state growth path, the number of technology fields with any specific rate

of disruption Nf ield(Λ
dis) is stable, which keeps both the aggregate rate of disruptions

and the rate of incremental inventions constant. Note that Λdis
field fully characterizes a

field, since it is monotonely dependent on t (time since last disruption), as is Λinc
field. Λ

dis
field

or t both define the type of a field.

In the steady state, the inflows into any type must equal the outflows. Since fields that

are disrupted move to Λdis
field(t = 0) and tfield increases linearly for all other fields. This

translates to the differential equation −Nfield(tfield) ∗Λdis
field(tfield) = Ṅfield(tfield), which

is solved by

S(Λdis
field(tfield))

!
= eΛ

dis
field(tfield)

1
δ (16)

where S(Λdis
field(tfield)) denotes the share of fields that are in state Λdis

field(tfield): The

stability condition enforces a certain distribution. The number of fields in each state

depends on the total number of fields. The steady state distribution of types requires that

the number of fields per Λdis
field(tfield) increases the higher Λdis

field(tfield) is: fields’ rate of

disruption declines over time, but this requires no disruption for a longer time period, so

the share of fields that get to this point has to become smaller if the economy is supposed to

be in equilibrium. In contrast, the rate of exit decreases the difference between incremental
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Figure 4: Simulation result for example economy

(a) Example evolution of one sector (b) Example evolution of simulated economy
with 2000 sectors

Notes: Example of a simulated economy in Equilibrium. Panel (4a) depicts the evolution
of the expected rate of disruption in two technology fields. Sector A experienced several
disruptive inventions. Sector B did not make a disruptive invention and thus experiences
continuously declining chances of future disruption. Panel (4b) depicts the simulation
result for the entire economy: The solid black line denotes the number of disruptive
inventions at each point in time for a simulated economy with 2000 sectors. The dotted
line denotes the theoretically expected number. As disruptions become less frequent, the
aggregate rate of quality growth in the economy slows down until linear growth is reached
in the steady state. Sources: Own simulations.

and disruptive fields: The stock of disruptive inventors and thus the rate of disruptions

declines with rate δ as time goes on, so a high δ means that fields change their state more

slowly.

At each point of this distribution of fields, fields get disrupted with Λdis
field(tfield). The

number of these disrupted fields has to add up to N(η
dis

δ ) to ensure that the distribution

remains unchanged. Integrating over equation (16) yields

e
ηdis

δ
∗ 1
δ

!
= (

ηdis

δ
− δ)δ ∗ e

ηdis

δ
1
δ (17)

The left side represents the number of newly disrupted fields to maintain the stable

distribution, while the right side represents the inflows from all states (including t = 0,

i.e. fields that get disrupted again immediately). Clearly, equation (17) is only fulfilled

for ηdis
!
= δ2 + 1. Since both are unrelated continuous parameters, this is never the case

exactly. Thus, the economy has no steady growth path except a corner solution: In the

steady state equilibrium, disruptive innovation is 0, while all incremental inventors work.

4 Explanatory Power of the Model and Policy Implications

The model suggests a decomposition of the overall decline in disruptive innovation into

the effect of changing model parameters (e.g. the number of disruptive inventors entering

the economy ηdis) and the endogenous slowdown poaching of disruptive inventors. Note

that the model predicts a stable profile of the probability of disruptive innovation as a
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function of the time since the last disruptive innovation. As long as parameters are stable,

this profile remains unchanged, but the average ”age” of technology fields changes (see

section 3.6). To decompose the overall evolution of the rate of disruptive innovations, I

estimate the age profile in the data before 1995, i.e. I regress

Ddis =
t=15∑
t=0

β ∗ Φage
field (18)

where Φage
field is a dummy variable encoding the age of the technology field (i.e. the number

of years since its last disruption). This estimates the expected probability of disruption

in any field, given its age. I then use equation 18 to predict the number of disruptions

in the economy, using the observed ages of technology fields after 1995. Figure 5 shows

the result of this exercise: The model expects a significant decline in the number of

disruptive inventions just from the aging effect: With the rate of disruptive inventions in

1995, the average age of the technology fields in the economy is expected to grow. This

alone decreases disruptive innovation further in the future as incremental firms poach more

disruptive inventors. While sum sectors get disrupted, this is not enough to keep the rate

of disruption constant in the economy. This effect explains roughly 75% of the observed

decline in responsiveness between 1995 and 2010. To counteract this trend, the social

planner would have to intervene in the economy.

The economy presented in the baseline specification has several major decision points,

only some of which the market economy handles efficiently.

First, there is the demand of the final goods sector for intermediate products to turn into

the final consumer product. The economy has a fixed number of products defined by how

many technology fields there are and all of them are produced in equilibrium. However,

the quantity produced is smaller than in the optimum because of the monopoly power of

intermediate goods producers. This inefficiency depresses output by a fixed share, but has

no impact on equilibrium growth rates.

Second, intermediate goods producers have to hire incremental inventors to improve their

product. Producers hire all incremental inventors. So, there is no inefficiency in this di-

mension.

Third, disruptive inventors work on disrupting the economy and get poached by produc-

ing firms to prevent this. The market economy weighs the costs of disruptive inventions

against the entry costs for producing firms: A successful disruptive inventor is not able to

appropriate all the benefits from his invention as profits because other entrepreneurs can

enter the new technology cluster that he has created. Producing firms bear all costs from

disruption and receive none of the benefits, thus they have a strong incentive to prevent

disruption. A social planner that maximizes the utility of representative households makes

a very different calculation: He weighs the value of getting inventors empowered by the

disruptive invention in the future against the costs of losing all current inventors. Firms

do not make this calculation since the value of the future inventors that other firms will

get does not factor into their profits. It is apparent that a social planner might even arrive
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Figure 5: Decline in Disruption predicted by the Model
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Notes: Graph shows the evolution of the rate of disruptions in IPC classes with more than
50 patents per year over time. The solid line refers to the observed share of disrupted IPC
classes in every year. The dashed line is the predicted rate of disruptions from estimating
equation (18) on the pre-1995 data and predicting the rate of disruptive inventions given
the IPC class ages structure in the economy. The model predicts a decline of 50% between
1995 and 2010 while the actual decline is roughly 65%. Thus the model explains the
majority of the decline without assuming changes in e.g. how hard technologies are to
find.
Sources: PATSTAT (European Patent Office).

at the same conclusion as the market economy if the discount rate is sufficiently high:

Empowering future inventors takes longer to pay off than current incremental inventions.

This highlights an important point about the tradeoffs involved in the decision about

which type of research to pursue: Increasing long run economic growth in this model

requires unambiguously hurting the current generation. The currently living incremental

inventors and firms have a vested interest in slowing economic growth. Fast productivity

growth through disruption does not benefit them, but the inventors and firms who will

enter the newly created cluster. A social planner might want to solve this via transfers, but

even that might not work: The current stock of incremental inventors is made obsolete,

temporarily decreasing GDP. While it will eventually be rebuilt and growth will increase,

many incremental inventors and firm owners that were hurt by the disruption will already

have left the economy. Effectively, the current generations prefer to increase the level

of economic activity through incremental inventions at the cost of economic growth. Of

course, the linear technological progress of incremental improvements is still progress, but

it means that the growth rate of the economy will continuously decline.

The arrival rate of disruptive inventions in the economy is determined by equation (9).
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I.e. if the social planner can raise the value of a newly founded firm in the next cluster or

decrease value of the most productive current firms, he prevents the poaching of disruptive

inventors. In the model, this can be affected through three parameters:

γ gives the productivity of the producing firm founded after a disruptive invention.

This parameter captures how much of the disruptive invention the original inventing firm

can appropriate. Increasing this value increases the incentives for disruptive inventions

and makes poaching more expensive. Many countries support disruptive (and incremental)

inventors in incubators etc. to ensure that as many of these potential firms are as successful

as possible, both through cash injection but also through transferring business knowledge

etc. These activities are however only beneficial insofar as they change the ratio between

the value of disruptive and incremental innovation.

ymax is the highest firm quality in the economy. If this quality is below ω ∗ γ, no firm

will find it profitable to poach disruptive inventors and the economy remains on the high

growth equilibrium. However, it should be noted that high firm quality dispersion benefits

incremental innovation, so changing this parameter incurs clear costs.

ω captures the gains from disruptive innovation and is conceptually mostly a technology

parameter. There are no downsides to having as high of an ω as possible, but of course

only if the economy still actually performs disruptive innovation.

Another route that is currently not modeled explicitly is to decrease the ability of large

producing firms to poach disruptive inventors. An easy step in this direction would be

to restrict startup acquisitions significantly. There is an active literature on the questions

of whether startup acquisitions are welfare enhancing (Cabral, 2018; Piazza and Zheng,

2019). My paper offers an additional argument for prohibiting such acquisitions.

Income in the economy is derived from the wages of technicians, the profits of firms

and the wages of incremental and disruptive inventors. As in the base model of Akcigit

and Kerr (2018), the revenue of producing firms within each technology field/product is

constant. Of that revenue, a fixed share goes to incremental inventors to pay for labor

input into production. The remainder pays the rents of firms and their investments into

inventors.

5 Conclusion

As productivity growth is declining across frontier economies, it is urgent to understand

firm innovation as a determinant of productivity development. The main contribution

of the paper is to build an endogenous growth model around the difference between radi-

cal/disruptive or incremental innovation and the strategic decision that this poses on firms

which produces declining aggregate growth. This model fits empirical data on innovation,

both from other studies and estimated in the empirical part of the paper using global

patent data between 1980 and 2010 (PATSTAT). In the model, firms have to build a
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portfolio of specialized inventors to do research on a search and matching labor market.

With these inventors, firms improve technology and their product incrementally. However,

such firms are invested in existing technologies and are threatened by disruptive inventions

that might make ”their” technology obsolete. However, firms can use the inventor labor

market to poach disruptive inventors and mitigate this threat. Over time, incremental

firms prevent an increasing share of technology disruption and become even more valu-

able, increasing the costs of disruption further. In aggregate, the economy stagnates due

to a lack of technology disruptions.

The model describes the situation found in empirical work well: Section 2 documents

stylized facts about incremental vs. disruptive inventions. These are partly collected from

previous work: Funk and Owen-Smith (2017) and Park et al. (2023) have documented that

research is becoming more incremental and less disruptive. Poege et al. (2019) and Akcigit

and Kerr (2018) have grouped patents into incremental improvements and more radical

innovation using the quality of scientific literature linked to the patent and the citations

from other firms. Both have found that more ambitious patents are more valuable to the

applicant. Despite that, firms’ research has become more incremental (Arora et al., 2019).

Firms produce more and more patents with an increasing number of researchers, whose

productivity is falling, yet whose wages do not decrease (Cowen and Southwood, 2019;

Bloom et al., 2017). To supplement these results from the literature, I estimate an event

study to understand how technology fields respond to disruptive inventions. Technology

fields after a disruptive invention have a higher chance for successive disruptions while

more patents are filed and patents garner more citations. However, the effect is decaying

over time. Technology fields without disruptive inventions continuously decline in both

relevance and the chance for future disruptions.

My model offers a reinterpretation of this finding: Inventors are technology experts

and cannot work in any field. Firms that pursue incremental innovation are thus linked

to certain technologies through their inventor portfolio. Disruptive inventions that make

technologies obsolete or rearrange the technology structure of the economy are thus threats

these firms have to manage. The inventor labor market gives these firms the possibility to

poach disruptive inventors and prevent disruptive inventions. This is optimal for the firms,

but causes declining growth: Creating exponential growth with incremental improvements

is getting harder and harder. As a result, there is a troublesome misallocation of inventive

talent to incremental innovation with declining returns.

To achieve these results, the paper also makes a technical contribution by demonstrat-

ing how an elementary search and matching labor market can be inserted into a general

equilibrium model without greatly increasing its complexity. Given that the equilibria in

search and matching models are most often found through numerical simulation (Rogerson

et al., 2005; Hagedorn et al., 2017), this represents a significant step in its own right.

The model implies several levers for policy intervention: On the one hand, increasing
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the value of searching for disruptive inventions in the form of innovation prizes, support

for innovative startups (through incubators etc.) or increasing the base number of dis-

ruptive inventors through education all make it more costly for incrementally innovating

firms to poach. On the other hand, directly interfering with the poaching of disruptive

inventors by e.g. preventing established firms from buying startups will increase long term

growth. In my model, acquisitions change what type of research is conducted, which can-

not be counteracted by a potential increase in research activity through acquisitions as

controversially discussed in Cabral (2018); Piazza and Zheng (2019); Naidu et al. (2018).

Appendices

A Alternative Demand Specification

This section describes a completely different demand system that nevertheless gives the

same result of profits being a linear function of quality. The purpose of this section is

to demonstrate the flexibility of the inventor labor market setup and to showcase a setup

in which firms have direct competitors which could be used for model extensions with

strategic interactions between firms. To avoid confusion with the baseline specification, I

will index firms f and consumers con in this section.

Consumers derive utility from a generic numeraire good a that represents consumer

goods with low research content. In addition, they derive utility from satisfying a contin-

uum of their needs located on a Salop circle of circumference 1. The needs on this circle

are more advanced and can only be fulfilled with research intensive products. Needs that

are located closer to each other are more substitutable. E.g., a section of the circle might

represent different modes of transportation, while another section might signify entertain-

ment. In the transportation section, one point might represent short distance trips for one

person, another point might represent longer commutes and a more distant point might

be intercontinental travel. Crucially, these are general needs and not existing products.

The utility function of consumer con is

Ucon =
∏
n

xβn ∗
qf

dn→f(n)
∗ a1−β

con (19)

Utility comes from the amount of goods purchased (xn) for each need, from the quality of

the products (qf ) for each need and from the distance between this need and the product

that the consumer actually bought (dn→f(n)). Since each point on the circle represents

a need and not a product, consumers have to search for the best product to meet any

specific need. The Cobb-Douglas utility function implies that consumers spend a fixed

share of their income on research intensive goods, spread equally over their continuum of

needs. In effect, consumers assign a constant budget to any of their needs n on the circle.
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There is only a finite number of firms, each of which produces exactly one product. Firms

and thus also products will be indexed with f . Firms have to position themselves on the

circle and will attract customers intent on satisfying their needs in the vicinity. E.g. a

firm might decide to rent out bicycles suited for short distance trips. However, this firm’s

product might also be the best option for longer commutes if the bike has a high quality

(e.g. an electric engine), if there are no competing products in the vicinity (e.g. because

the only other transportation firm is an airline), or if the firm is charging a comparatively

low price.

Consumers will buy a firm’s product multiple times: They will search for the best offer

for any one of their needs. E.g., consumers will search for the best firm for short trips and

then again search for the best firm for commutes. The success of a firm f depends on for

how many of these different needs it can make the best offer. Consumers are indifferent

to a product of double the quality which is twice as far away from the desired variety.

The quality and quantity of variety v are complements and the consumer derives utility

from their joint consumption. Thus, the lower the price of the research intensive good,

the more the consumer can buy, which again makes the quality of the research intensive

good more useful to him.

From the viewpoint of firms, each need n is a separate winner-takes-all market of equal

size I ∗ β. How many of these markets a firm wins determines its revenue and size. Firms

will always be able to control the markets closest to them because quality is divided by

the distance of the firm to the market
qf

dn→n . Thus, any firm can offer infinite utility in the

market at its location. Demand for the product of firm f is determined by the marginal

market nm;f ;f+1, i.e. the market where consumers are just indifferent between product f

and f + 1 of the neighboring firm.

qf
dnm;f ;f+1→f

∗ ( 1
pf

)β =
qf+1

dnm;f ;f+1→f+1
∗ ( 1

pf+1
)β (20)

Additionally, product f competes with product f − 1 on the other side of f . The number

of markets that firm f can capture depends on the quality of its product (qf ) and the

pricing and location decisions of its competitors.

In static equilibrium, firm f has to take the quality of its product as given. It first sets

prices and then positions itself on the circle, considering the fixed quality of its competi-

tors. Firm f will have to take the quality of all firms into account when setting prices,

anticipating that the prices it sets will affect where its competitors position themselves.

E.g., consider a bicycle, a car and a train company all competing for markets in the

transportation sector. The car company has to do research to increase the quality of the

cars it can produce, set a price and then decide whether it would like to compete for short-

distance inner-city trips with bicycles or for long-distance traveling with trains. Setting a
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low, competitive price will induce both the bicycle and the train competitor to move more

into their specific niches, as will having a high quality product.

Thus, every firm owner has to position the firm taking all other variables as given.

Solving equation (20) for the number of markets firm f captures to its left (against firm

f − 1) and to its right (against firm f +1) yields the profits the owner of firm f can reap:

πf = I ∗ β
qf

pβf
[
pβf−1dnm;f−1;f→f−1

qf−1
+

pβf−1dnm;f−1;f→f−1

qf−1
](1− mc

pf
) (21)

Given that the firm owner has already set prices, maximizing profits now comes down to

maximizing the number of markets that the firm can capture: The markup
pf
mc is given.

Note that the firm owner conceptually could influence dnm;f−1;f
by moving firm f closer

to firm f − 1 and taking its markets.

The markets that f and f + 1 capture between them have to sum up to the distance

between the two firms, so the profits of firm f can be expressed only in exogenous variables

and the strategy choices of its competitors:

πf = I ∗ β[df→f+1

qf

pβf
qf

pβf
+

qf+1

pβf+1

+ df→f−1

qf

pβf
qf

pβf
+

qf−1

pβf−1

](1− mc

pf
) (22)

where the term in brackets denotes the markets won by firm f : df→f+1 is the distance

between firm f and its competitor f + 1. The two firms split the markets between them

according to the ratio of the attractiveness of their products

qf

p
β
f

qf

p
β
f

+
qf+1

p
β
f+1

. In the same way,

firm f and firm f − 1 share the markets between them. From equation (22), it is clear

that there is no Nash equilibrium if firm f − 1 and firm f + 1 have different qualities and

prices: Firm f will always move to the firm that offers the stronger product. However,

Salop circles do not have Nash equilibria in general. An equilibrium is only possible if

firms take the location reaction of their competitors into account.

Consider the reactions of firm f + 1 to the actions of firm f . Because firm f + 1 can

freely move on the circle, its profits must be independent of f . Otherwise, the firm will

costlessly move to a different part of the circle. Firm f + 1 will react to any price and

quality changes of f to restore this indifference.

∂πf+1

∂lf
= 0 = −

qf+1

pβf+1

qf

pβf
+

qf+1

pβf+1

+
∂lf
∂lf+1

qf+1

pβf+1

qf

pβf
+

qf+1

pβf+1

−
∂lf+1

∂lf

qf+1

pβf+1

qf+1

pβf+1

+
qf+2

pβf+2

+
∂lf+2

∂lf+1

qf+1

pβf+1

qf+1

pβf+1

+
qf+2

pβf+2

(23)

which yields
∂lf+1

∂lf
=

∂lf+2

∂lf+1
= 1 as the solution: If firm f moves 0.1 units closer to firm

f + 1, f + 1 will also move 0.1 units towards f + 2. Firm f + 1 can do this because it
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expects firm f +2 (and f +3, f +4,...) to do the same, restoring the original positioning.

Now consider the case where firm f has set a higher price. Again, firm f + 1 cannot

profit from that, since otherwise firms from other parts of the circle would move to the

spot of firm f + 1:
∂πf+1

∂pf
= 0. Thus,

∂df→f+1

∂pf
= −βp−β

f ∗

qf

pβf
qf

pβf
+

qf+1

pβf+1

(24)

I.e., by increasing its price, firm f captures a slightly smaller share of the markets between

f and f + 1. f + 1 then moves closer so as to exactly maintain the number of markets

it captures itself. Two firms share the markets between them according to the ratio of

the attractiveness of their products. So when f becomes less attractive because of price

increases, firm f + 1 has to move closer to shorten the distance between the two firms. If

the price of product f was already high, f only has a tiny share of the contested markets

and additional price increases only require small changes in location. Even though this

movement lowers its profits, firm f + 1 has to do this to protect itself against other firms

moving into the resulting gap.

Equations (23) and (24) imply that the utility of the marginal consumer between two

firms is constant across the economy. Intuitively, this follows more or less directly from the

free movement condition: Since the profits of firm f depend directly on its own quality,

its price and the utility of the marginal consumers it can still capture (21), it stands to

reason that one spot on the circle cannot have marginal consumers with higher utility,

since firms would otherwise move there. Thus, I denote the sum of the utility of the two

marginal consumers of each firm as C. C is a competition parameter describing how low

firms have to set prices to stave off competing firms. It rises with how many firms of a

given quality are in the economy.

Mathematically, inserting C into equation (21), firm profits are

πf = IβDf − IβD
(1+ 1

β
)

f [C]
1
β q

−1
β

f

mc

β
(25)

where Df denotes the number of captured markets, i.e. the number of markets for which

the product of f is the best product. Firms earn Iβ per captured market, but the costs of

servicing these markets increase non-linearly, because lowering prices forces a firm to serve

its already captured markets with more produce or leave revenue on the table. Equation

(25) takes into account that firm f expects its neighboring firms to keep their profits and

thus the fractions in equation (21) constant. Thus, if f increases its price, f expects the

other firms to move closer, tightening competition compared to equation (22). Likewise,

if firm f decreases its price, it expects to cater to additional markets partly because its
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direct competitors move away and partly because its products become more attractive.

Maximizing equation (25) yields

pf = (1 +
1

β
)mc (26)

for the optimal price: Firms charge a fixed markup over marginal costs depending on the

demand parameter β, which denotes how long additional quantity still generates value

for the customers for any given variety. If additional quantity does not lead to much

additional utility, firms cannot gain many customers by lowering prices and charge a high

markup.

Given this pricing behavior, customers search for the best product for each different

variety. This yields the number of varieties serviced by each firm as

Df = qfβ[
1

(1 + β)mc
]β[C] (27)

Serviced markets are a linear function of a firm’s quality, given that every firm charges the

same price, regardless of its quantity. The number of markets served reacts more strongly

to quality if the marginal costs are small, so that the costs of serving additional markets do

not matter so much. The effect of the demand parameter β is more ambiguous, because a

high β raises the costs of servicing a new market (because consumers demand more goods),

but also means that consumers spend more in each market. Firms leverage their quality

to service more markets, not to raise their prices. Since the circumference of the Salop

circle is finite, this is a predatory strategy: High quality firms push out their competitors.

Since only the number of served markets rises with quality, profits are also linear in

quality:

πf = Df ∗ Iβ ∗ 1

1 + β
= qf [

β

(1 + β)mc
]β[C]Iβ

1

(1 + β)
(28)

Every firm faces the same marginal costs and charges the same price, thus profits in every

market are the same (Iβ ∗ 1
1+β ). Profits per market are higher if β increases, because con-

sumers allot a higher budget to each need. This is partly counteracted because a higher β

also means that consumers draw more utility from the quantity that firms produce, which

harms firms: Since consumers value lower prices, firms try to steal each others’ markets

by lowering prices. Yet, the higher overall spending for the research intensive good prevails.

Equilibrium requires that the whole circle is serviced, i.e.
∑

Df = 1. This allows

to solve for the equilibrium value of competition strength [C] = 1∑
qf f

(1 + β)βmcβ. The

strength of equilibrium competition is rising in the sum of all qualities of active firms: Since

every firm captures markets on the Salop circle in relation to their quality, if there are

more high quality firms, every firm has to receive a smaller number of markets. Marginal
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costs lower the competition each firm feels, because higher marginal costs decrease the

incentive for each firm to spread out over multiple markets. Given the level of competi-

tion, firms can cater to qf ∗
∑

qf
−1
f markets. Consequently, every firm makes profits of

qf ∗
∑

qf
−1
f Iβ(1 + β)−1.

The economy is closed by the labor market and the market for the numeraire good.

The economy produces the numeraire good with the fixed amount of labor L with the

technology of all firms
∑

qf . Thus, the research intensive sector increases the productivity

of the numeraire sector. Since the numeraire sector is competitive, its whole revenue is

earned by its laborers. Thus, the equilibrium income in the economy is

I =
∑

qfL(1 + β) (29)

i.e., the labor income from the numeraire sector plus the profits from the firms in the re-

search intensive sector. Labor income increases the higher the productivity of the economy

and the more labor L households supply. The higher β, the higher the profit share of the

economy, as well as nominal income for a given productivity level. However, a higher β

would also lead to higher prices for the research intensive good, so real income is not rising.

Given this nominal income level, the profit of any given firm is

πf = qf ∗ β (30)

and thus is only a function of a firm’s product quality qf and the constant parameter β.

However, potential entrants do not only care about current conditions, but are motivated

by potential future profits. Thus, the number of firms in equilibrium is determined by

future prospects for quality improvements through research.

Within a cluster currently at the technology frontier, i.e. a cluster that is the best in

its field, patents improve the product quality of firms and thus represent a steady stream

of profits for the firm that holds them. The value of a patent

V (pc) = ωc ∗ β

r
(31)

is a function of parameters of the model and thus fixed. It rises with c, as patents in

more advanced clusters create more quality (parameter ω determines the strength of this

effect). The value of a patent also rises in β, which governs the markups of firms and the

amount of money consumers spend on the research intensive good.

Given this value of patents, the value of an inventor is the stream of patents he repre-
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sents. The value of the inventor portfolio of all firms with a given quality yf is thus

Vf (N
c
i (yf , xi, t

e
c)) =

∫ 1

0
(V (pc)yfxi(1− e−tec)

2η

δr
dxi = yfVf (N

c
i (yf = 1, tec)) (32)

I.e. the value of the patent portfolio of firms is increasing in yf because high quality firms

produce more patents with the inventors they have. The value of a firm’s patent portfolio

increases as long as the current technology cluster is still on the edge and additional in-

ventors are still entering the cluster.

A potential entrant does not have an inventor portfolio, but expects to hire inventors

in the future. The value of this stream is dependent on the research quality yf the entrant

will draw.

Vf (yf ) =
1

Nf (y)

∫ 1

0
(ηxi ∗ Vf (yf ;xi) dxi

1

r + Λdis
= yfVf (yf = 1) (33)

The stream of inventors matched with firms of quality y is shared between all firms of that

quality 1
Nf (y)

. Again, the value of the stream of hires is increasing in yf because a higher

quality firm gets more patents out of each hire. If the value of a patent in the technology

cluster V (pc) is higher, firms value the stream of inventors they will hire more. The share

of profits flowing to the firm makes future inventors more valuable, too. The likelihood

of disruptive inventions decreases the value of future inventors: If a disruptive invention

occurs, new inventors will not enter the now obsolete cluster of the firm. The stream of

hires will dry up.

Whenever a new technology cluster is created (and only then), new firms can enter.

New firms entering the economy do not yet have inventors or patents. However, entrants

gain access to the inventor labor market and will hire inventors and produce patents in

the future. Firms pay an entry fee fe to become experts in a technology cluster propor-

tional to ωc: The more disruptive inventions were necessary to form the cluster, the more

sophisticated the technology is and the more setup is necessary. In equilibrium, the ex

ante expected value of future hired inventors must equal this setup cost. Thus,

Nf = η
2

9
fe

β

r

α

r + δ

1

r + Λdis
(34)

Since entrants draw a quality yf randomly from a uniform distribution between 0 and 1,

there is an equal mass of entrants (and firms) at every quality Nf (y). The expected value

of entry declines as more firms enter, because a higher number of entrants compete for a

fixed number of graduates. However, the value of entry is independent of patents or the

inventors already in the cluster. Hence, firms will enter as soon as the disruptive invention

creates the cluster and drive the expected returns from entering down to the entry fee fe.
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Some firms will ex post regret entering: They draw a bad research quality and do

not make enough profits to recoup their entry costs. Using equation (33), ex post profits

are 3yffe. Thus, all firms that draw a quality of 1√
3
= 0.58 or worse will not recoup fe.

These firms will not exit, since there is no continuous cost of operation apart from inventor

wages. Thus, such firms will participate in the search for inventors and hire those with

which they can recover at least some part of their entry fee.

B Numerical Simulation with High Λ

This appendix details the result of a simulation of the model economy where Λdis is much

higher than the sum of the interest rate r and the separation rate δ. For this purpose,

Λdis(0) is set to 50%, the interest rate to 5% and the separation rate to 5%. 50% is clearly

too high for the rate of disruptive technology change, as it would imply that every second

sector of the economy is disrupted every year, making incremental inventors obsolete.

Nonetheless, even under these extreme conditions, the qualitative results of the model

hold:

Figure 6: The graph shows the average rate of disruptive inventions throughout the whole
economy for δ = r = 0.05; Λdis(0) = 0.5.

While the economy converges to the non-disruptive equilibrium much slower (100 is

the simulated time in the main paper), the qualitative path is very similar to that of the

economy where the parameter restriction holds.

A closer look at the expected change in the disruptive rate makes clear why this is the

case (Figure 7): Even with these extreme assumptions, the expected change in the rate of

disruption is only positive when the risk of a disruptive invention in the technology field

is already very low, only to converge to 0 from above.

Clearly, an equilibrium where technology fields with increasing and decreasing rates of

disruption cancel each other out in the aggregate is not achievable for all plausible values
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Figure 7: The expected change in the arrival rate of disruptive inventions for a sector.
The rate is expected to go down when it is high and to slightly increase when it is already
very low. However, if no disruption happens, the expected change approaches 0 as the
rate of disruption becomes zero itself.

of Λdis(0).

C Extension: Vacancies and Unemployment

New inventors search for firms’ open vacancies. In contrast to the standard search and

matching labor market model, I assume that new inventors enter the labor market, imme-

diately find a match among the available vacancies and that unmatched inventors have to

leave the economy because they lose their connection to recent developments. The research

avenues that are represented by vacancies also become superseded by new approaches if

they do not match. This reduces the complexity of the labor market, because the mass

of unemployed inventors does not matter for the equilibrium anymore, since they cannot

contribute to the economy. This simplifying assumption eliminates two state variables

from each field’s inventor labor market: the number of unmatched vacancies and the num-

ber of unmatched inventors. This assumption leads to the same steady state outcome,

but the path towards that steady state is much more tractable. Figure (8) describes the

path towards labor market equilibrium after a disruptive innovation for both specifications.

How many vacancies firms will create in this setting depends on the value of obtaining

an additional inventor. This value is determined by the number of patents the new inven-

tor will produce and by how much the firm has to pay to the inventor.
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V. Denicolò, Two-Stage Patent Races and Patent Policy, SSRN Scholarly Paper ID 235286,

Social Science Research Network, Rochester, NY, 2000.

S. Scotchmer, Standing on the Shoulders of Giants: Cumulative Research and the Patent

Law, Journal of Economic Perspectives 5 (1991) 29–41.

K. A. Bryan, J. Lemus, The direction of innovation, Journal of Economic Theory 172

(2017) 247–272.

N. Thompson, J. M. Kuhn, Does Winning a Patent Race Lead to More Follow-On Innova-

tion?, SSRN Scholarly Paper ID 2899088, Social Science Research Network, Rochester,

NY, 2017.

B. H. Hall, R. H. Ziedonis, The Patent Paradox Revisited: An Empirical Study of Patent-

ing in the U.S. Semiconductor Industry, 1979-1995, The RAND Journal of Economics

32 (2001) 101–128.

J. Bessen, E. Maskin, Sequential innovation, patents, and imitation, The RAND Journal

of Economics 40 (2009) 611–635.

S. Barkai, Declining Labor and Capital Shares, Working Paper (2017). Tex.ids= barkaiDe-

clining2017a, barkai declining 2017.

J. De Loecker, J. Eeckhout, The Rise of Market Power and the Macroeconomic Implica-

tions, Working Paper 23687, National Bureau of Economic Research, 2017.

D. J. Zizzo, Racing with uncertainty: a patent race experiment, International Journal of

Industrial Organization 20 (2002) 877–902.

D. B. Silipo, The Evolution of Cooperation in Patent Races:Theory and Experimental

Evidence, J Econ 85 (2005) 1–38.

Y. Breitmoser, J. H. W. Tan, D. J. Zizzo, Understanding perpetual R&D races, Econ

Theory 44 (2010) 445–467.

A. B. Jaffe, The U.S. patent system in transition: policy innovation and the innovation

process, Research Policy 29 (2000) 531–557.

38



M. Sakakibara, L. Branstetter, Do Stronger Patents Induce More Innovation? Evidence

from the 1988 Japanese Patent Law Reforms, RAND Journal of Economics 32 (2001)

77–100. Tex.ids= sakakibaraStronger2001a, sakakibara stronger 2001.

C. Syverson, Challenges to Mismeasurement Explanations for the US Productivity Slow-

down, Journal of Economic Perspectives 31 (2017) 165–186.

M. B. Reinsdorf, D. M. Byrne, J. G. Fernald, Does the United States have a productivity

slowdown or a measurement problem?, Brookings Papers on Economic Activity 1 (2016)

109–182. Tex.ids= reinsdorfDoes2016a, reinsdorf does 2016.

J. Antolin-Diaz, T. Drechsel, I. Petrella, Tracking the Slowdown in Long-Run GDP

Growth, The Review of Economics and Statistics 99 (2017) 343–356.

D. Andrews, C. Criscuolo, P. Gal, The Best versus the Rest: The Global Productivity

Slowdown, Divergence across Firms and the Role of Public Policy, OECD Productivity

Working Papers 5 (2016).

D. Acemoglu, U. Akcigit, D. Hanley, W. Kerr, Transition to Clean Technology, Journal

of Political Economy 124 (2016) 52–104. Publisher: The University of Chicago Press.

W. R. Kerr, R. Nanda, M. Rhodes-Kropf, Entrepreneurship as Experimentation, Journal

of Economic Perspectives 28 (2014) 25–48.

L. Kueng, M.-J. Yang, B. Hong, Sources of Firm Life-Cycle Dynamics: Differentiating

Size vs. Age Effects, 2014.

T. Magerman, B. Van Looy, X. Song, Data Production Methods for Harmonized Patent

Statistics: Patentee Name Harmonization, SSRN Scholarly Paper ID 944470, Social

Science Research Network, Rochester, NY, 2006.

A. Toole, C. Jones, S. Madhavan, PatentsView: An Open Data Platform to Advance Sci-

ence and Technology Policy, SSRN Scholarly Paper ID 3874213, Social Science Research

Network, Rochester, NY, 2021.

X. Li, G. Xu, L. Jiao, Y. Zhou, W. Yu, Multi-layer network community detection model

based on attributes and social interaction intensity, Computers & Electrical Engineering

77 (2019) 300–313.

R. Rogerson, R. Shimer, R. Wright, Search-Theoretic Models of the Labor Market: A

Survey, Journal of Economic Literature 43 (2005) 959–988.

L. M. B. Cabral, Standing on the Shoulders of Dwarfs: Dominant Firms and Innovation

Incentives, 2018.

R. Piazza, Y. Zheng, Innovate to Lead or Innovate to Prevail: When do Monopolistic

Rents Induce Growth?, Working Paper 19/294, IMF, 2019.

39



M. Hagedorn, T. H. Law, I. Manovskii, Identifying Equilibrium Models of Labor Market

Sorting, Econometrica 85 (2017) 29–65.

S. Naidu, E. A. Posner, G. Weyl, Antitrust Remedies for Labor Market Power, Harvard

Law Review (2018) 536–601.

40


	Introduction
	Stylized Facts
	Literature on disruptive vs. incremental innovation
	The PATSTAT Data
	Measuring patent "disruptiveness"
	Aggregate Trends
	Effects of radical innovations

	Model
	Technology and product structure
	Research actors
	Inventor Firm matching
	Firm optimization
	Consumer Demand, Patent Value and Static Profits
	Technological Progress

	Explanatory Power of the Model and Policy Implications
	Conclusion
	Appendices
	Alternative Demand Specification
	Numerical Simulation with High 
	Extension: Vacancies and Unemployment
	Bibliography

