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Abstract

We study random assignment of indivisible objects among a set of agents, when each

agent is to receive one object and has strict preferences over the objects. Random

Serial Dictatorship (RSD) satisfies equal treatment of equals, ex-post efficiency and

strategy-proofness. Answering a longstanding open question, we show that RSD is

not characterized by those properties – there are other mechanisms satisfying equal

treatment of equals, ex-post efficiency and strategy-proofness which are not welfare-

equivalent to RSD. On the other hand, we show that RSD is not Pareto-dominated by

any mechanism that is (i) strategy-proof and (ii) boundedly invariant. Moreover, the

same holds for all mechanisms that are ex-post efficient, strategy-proof and boundedly

invariant: no such mechanism is dominated by any other mechanism that is strategy-

proof and boundedly invariant.
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1 Introduction

Consider the problem of assigning indivisible objects among a set of agents – each agent is to

receive one object and has strict preferences over the set of objects. Further, while objects’

characteristics may include a fixed monetary payment, there are no additional transfers.

Problems like this arise in many real-life situations such as the assignment of on-campus

housing (where rents are fixed), organ allocation, school choice with ties in applicants’ pri-

orities, etc. Whenever several agents prefer the same object over any other, the indivisible

nature of objects, together with the absence of compensating transfers, will render any de-

terministic assignment unfair. For that reason, both theorists and policy makers have turned

to random assignments in such contexts.

To implement random assignments, a mechanism will have to elicit agents’ preferences

to then determine a probability distribution over deterministic assignments. Since eliciting

preferences over all possible lotteries is often impractical, agents are typically only asked

to report their preference ranking over objects – for example, school choice programs will

typically ask applicants to provide a list of schools, ranked from most- to least-preferred.

Crucially, given that preferences are private information, the design of random assignment

mechanisms has to take into account agents’ incentives to reveal their preferences.

Strategy-proofness makes truthful reporting a dominant strategy and thus should en-

sure that agents truthfully reveal their ordinal preferences over objects for any underlying

utility representation of preferences. Unfortunately, the literature on random assignment

mechanisms contains numerous impossibility results as soon as strategy-proofness and equal-

treatment-of-equals, as a minimal fairness requirement, are married with different ex-ante

notions of efficiency.1 Hence we will focus on ex-post efficiency and analyse constrained ex-

ante efficiency in a class of mechanisms satisfying certain properties. Furthermore, we will

consider situations where each agent needs to be assigned exactly one object. We will refer

to this as the acceptable domain, as agents either desire all objects (but cannot consume

more than one) or cannot unilaterally reject an assignment.

One of the most prominent procedures, frequently used in real life, is random serial

dictatorship (RSD): After ordering agents uniformly at random, the first agent gets to pick

their most preferred object and each subsequent agent gets to pick their most preferred among

all remaining objects. Besides being easily implementable, RSD satisfies many desirable

properties: (1) equal treatment of equals – any two agents with the same preferences obtain

identical random assignments ex-ante, (2) ex-post efficiency – for any realized ordering of

1Throughout ‘ex-ante’ is to be understood as before realizing the final deterministic assignment; this
corresponds to the term ‘interim’ used in mechanism design outside of the literature on random assignments.
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agents, the associated deterministic assignment is Pareto efficient, and (3) strategy-proofness

– no agent has an incentive to pick a less preferred object when it is their turn to choose.

Moreover, the procedure can be readily implemented as a direct mechanism where agents

report their ordering over objects and the procedure picks optimally on their behalf. In that

case strategy-proofness is satisfied in that it is a dominant strategy to report preferences

truthfully.

It has been an open question for more than two decades whether RSD is characterized by

these properties in terms of welfare, i.e., whether any mechanism satisfying (1)-(3) necessarily

yields the same individual random assignments as RSD.2 Our first main result invalidates

this conjecture—there exist mechanisms which satisfy equal treatment of equals, ex-post

efficiency and strategy-proofness, and for which for some preference profile and some agent,

her random assignment does not coincide with the one of RSD. In fact for some preference

profiles our constructed mechanism yields random assignments that Pareto dominate, in a

stochastic dominance sense, the ones arising under RSD. Hence, as preferences over objects

are strict, for any extension of preferences from objects to random assignments, all agent

prefer this random assignment (with strict preference holding for some agents). Thus, the

mechanism is not welfare equivalent to RSD.

In the mechanism constructed for our first main result, the random assignment of a given

object may depend on agents’ preferences over less preferred objects. This is disturbing as

strategy-proofness implies that an individual agent’s probability share for a given object does

not depend on their own preferences over less preferred objects. In contrast, RSD satisfies

(4) bounded invariance according to which the random assignment of any object x depends

only on agents’ preferences over objects which are preferred to x – changing the reported

ordering of less preferred objects does not affect the probability with which other agents

are assigned an object. Hence, for strategy-proof mechanisms, bounded invariance may be

viewed as a weak, object-wise, non-bossiness condition.

To the best of our knowledge, except for Deferred Acceptance (DA), all other mechanisms

considered in the literature as well as real-life mechanism used in practice satisfy bounded

invariance. For example, Probabilistic Serial, Immediate Acceptance and as well as the

Top-Trading-Cycles (TTC) mechanism are all boundedly invariant. Moreover, we show

that DA satisfies bounded invariance if and only if the underlying deterministic priority

structure ensures Pareto efficiency, adding to the main theorem by Ergin (2002) – hence DA’s

main weakness, the fact that it may lead to inefficient assignments, can be directly traced

back to instances where it violates bounded invariance. Further, we show that bounded

invariance plays a key role in another seminal contribution for deterministic mechanisms:

2Bogomolnaia and Moulin (2001) were able to prove this for the case of three agents and three objects.
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in the characterization of hierarchial exchange rules by Pápai (2000) reallocation-proofness

may be replaced by bounded invariance.

Our second main result is that no mechanism satisfying properties (2)-(4) is Pareto

dominated (in terms of first-order stochastic dominance) by a strategy-proof and boundedly

invariant mechanism. As an immediate corollary we find that RSD is not Pareto dominated

by any mechanism satisfying strategy-proofness and bounded invariance. It is important

to stress that our main result applies to any mechanism and is not exclusive to RSD. For

instance, in applications one might take into account affirmative action constraints with

respect to minorities or disadvantaged groups by not choosing certain orders of agents (where

majorities or advantaged groups come first in the order) and apply a weighted version of

RSD.3 Any such mechanism satisfies (2)-(4) and is therefore not Pareto dominated by any

strategy-proof and boundedly invariant mechanism. This addresses a question whether RSD

is constrained efficient in the class of strategy-proof mechanisms (where we impose bounded

invariance in addition), and provides a positive partial answer on the acceptable domain

to the long-standing open question by Zhou (1990) whether RSD is undominated in the

class of mechanisms satisfying (1)-(3) – our result does not impose (1) but instead imposes

(4). This is the first affirmative result for RSD in connection with ex-post efficiency and

strategy-proofness.

We connect our main results to the previous literature. Numerous contributions establish

the impossibility of strategy-proofness, envy-freeness and ex-ante efficiency. In the cardi-

nal framework, Zhou (1990) showed that no mechanism satisfies equal treatment of equals,

strategy-proofness and ex-ante efficiency (where the latter postulates always to choose a

random assignment which is not Pareto dominated in terms of expected utilities by any

other one). In the ordinal framework, Bogomolnaia and Moulin (2001) establish an analo-

gous impossibility result where envy-freeness is weakened to equal-treatment-of-equals. Nes-

terov (2017) shows that the impossibility persists when ex-ante efficiency is weakened to

ex-post efficiency (while maintaining envy-freeness).4 Shende and Purohit (2023) show that

strategy-proofness and envy-freeness are incompatible with unanimity5 (which they refer to

as contention-free efficiency), a significant weakening of ex-post efficiency. Further, Basteck

and Ehlers (2023) show that a strategy-proof and envy-free mechanism is ex-post unani-

mous with probability of at most 2
n

(where n is the number of agents). In other words, for

3For example, if there are several subgroups of agents, we may wish to randomize over orders in which
members of the groups alternate when ‘picking’ objects.

4Zhang (2019) proves a strong group-manipulability result, imposing ex-post efficiency and auxiliary
fairness axioms that are by themselves weaker than envy-freeness.

5Unanimity requires that whenever all agents consider a different object most-preferred, each should
receive their most-preferred object. In other words, whenever there is a unique Pareto efficient assignment,
it is chosen with probability one.
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any strategy-proof and envy-free mechanism there exist preference profiles where the unique

ex-post efficient assignment is chosen with probability of at most 2
n

(and inefficient assign-

ments are chosen with probability of at least 1 − 2
n
). This finding strengthens significantly

the incompatibility of strategy-proofness, envy-freeness and ex-post efficiency and provides

an exact upper bound for ex-post unanimity. Bogomolnaia and Moulin (2001) introduced

the probabilistic serial (PS) mechanism and show that it is envy-free and ex-ante efficient

(hence necessarily violates strategy-proofness). Bogomolnaia and Heo (2012) provide an

axiomatic characterization of the PS mechanism via ex-ante efficiency, envy-freeness and

bounded invariance.6

Furthermore, one might allow agents to rank certain objects unacceptable. If agents

may rank objects unacceptable and possibly receive no object, notions of efficiency have to

take into account the set of (un)assigned objects: a deterministic assignment is non-wasteful

if no agent prefers an unassigned object to her assignment. As a stronger requirement,

ex-ante non-wastefulness demands that if an agent prefers an object over another and is

assigned the less-preferred with positive probability, then the more-preferred object must be

assigned with probability one. Erdil (2014) established that there are mechanisms Pareto-

dominating RSD which are less ex-ante wasteful, which is a negative answer on the full

domain to a question first raised by Zhou (1990). Notably, the mechanism constructed in

Erdil (2014, Proposition 3) coincides with RSD on the acceptable domain, i.e., it does not

Pareto-dominate RSD for the domain where all objects are acceptable. His constructed

mechanism satisfies equal treatment of equals and strategy-proofness but violates bounded

invariance. Our second main result implies that any strategy-proof and boundedly invariant

mechanism, which dominates RSD on the full domain, must coincide with RSD on the

acceptable domain. In other words, Pareto improvements over RSD are only possible for

profiles where objects are classified unacceptable in a “certain” way.

The paper is organized as follows. Section 2 introduces random assignments, their prop-

erties and several prominent mechanisms. Section 3 constructs a mechanism which satisfies

equal treatment of equals, ex-post efficiency and strategy-proofness, and which is not welfare-

equivalent to RSD. Section 4 states our second main result pertaining to the constrained

efficiency of any mechanism satisfying ex-post efficiency, strategy-proofness and bounded

invariance. Section 5 considers bounded invariance for deterministic mechanisms in Pápai

(2000) and Ergin (2002). Section 6 provides implications of our second main result for tie-

breaking of weak priorities. Section 7 concludes. The Appendix contains the proofs of our

main results.

6Hashimoto et al. (2014) weakened bounded invariance to weak invariance in this characterization, a
property which is satisfied by any strategy-proof mechanism.
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2 Model

Let N = {1, . . . , n} denote the set of agents and O = {o1, . . . , on} denote the finite set of

objects. Throughout the main text we suppose |N | = |O| ≥ 3 and allow for unequal numbers

of agents and objects in the Appendix. Each agent i has strict preferences over O∪{i} where

i stands for being unassigned; let Ri denote the corresponding linear order7 and write Pi for

its asymmetric part (where xPiy is defined by xRiy and x 6= y). Let Ri denote the set of all

strict preferences of agent i over O ∪ {i} such that oRii for all o ∈ O, i.e., where all objects

are acceptable. Let RN = ×i∈NRi denote the set of all preference profiles R = (R1, . . . , Rn),

which we call the acceptable domain.

An assignment is a mapping µ : N → O ∪ N such that8 µi ∈ O ∪ {i} for all i ∈ N and

µi 6= µj for all i 6= j. Let M denote the set of all assignments.

An assignment µ is efficient under R if there exists no µ′ ∈ M such that µ′iRiµi for all

i ∈ N and µ′jPjµj for some j ∈ N . As all objects are acceptable and |O| = |N |, this implies

that no agent is unassigned under µ. Let PO(R) denote the set of all efficient assignments

under R. An assignment µ is weakly efficient under R if there exists no µ′ ∈ M such that

µ′iPiµi for all i ∈ N . Let WPO(R) denote the set of all weakly efficient assignments under

R.

Let ∆(M) denote the set of all probability distributions over M. Given p ∈ ∆(M), let

pia denote the associated probability of i being assigned a and refer to pi = (pia)a∈O∪{i} as

agent i’s (individual) random assignment. Let supp(p) denote the support of p. Then (i) p

is ex-post efficient under R if supp(p) ⊆ PO(R), and (ii) p is ex-post weakly efficient under

R if supp(p) ⊆ WPO(R).

For all i ∈ N , all Ri ∈ Ri and all x ∈ O∪{i}, let B(x,Ri) = {y ∈ O∪{i} : yRix}. Then

given any p, q ∈ ∆(M), pi stochastically Ri-dominates qi if for all x ∈ O ∪ {i},∑
y∈B(x,Ri)

piy ≥
∑

y∈B(x,Ri)

qiy.

A random assignment p stochastically R-dominates (or sd-dominates) another random as-

signment q if pi Ri-dominates qi for all i ∈ N . A random assignment is stochastic dominance

(sd)-efficient if there is no random assignment q 6= p that stochastically R-dominates it.9

Given two random assignments p and q, we say that p and q are welfare-equivalent if pi = qi

7Thus, Ri is (i) complete, (ii) transitive and (iii) antisymmetric (xRiy and yRix implies x = y).
8We will use throughout the convention to write µi instead of µ(i) for any i ∈ N .
9Bogomolnaia and Moulin (2001) refer to this as “ordinal efficiency”. It implies Pareto-efficiency with re-

spect to expected utilities for some von Neumann-Morgenstern-representations of agents’ ordinal preferences
over objects (McLennan, 2002).
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for all i ∈ N .10

A mechanism (or rule) is a mapping f : RN → ∆(M). Then f(R) denotes the random

assignment chosen for R, and fia(R) denotes the probability of agent i being assigned object

a. For i ∈ N , fi(R) denotes the tuple of assignment probabilities (fia(R))a∈O, and for a ∈ O,

fa(R) is defined accordingly as the tuple of probability shares with which a is assigned to

the various agents. A mechanism f sd-dominates another mechanism g, denoted as f �sd g,

if for any profile R the random assignment f(R) stochastically R-dominates the random

assignment g(R), and for some profile R̄ and i ∈ N we have fi(R̄) 6= gi(R̄). Further f

is sd-efficient if for all R ∈ RN , f(R) is sd-efficient under R. Similarly, we define ex-post

(weak) efficiency for a mechanism. A mechanism f is deterministic if for any profile R,

|supp(f(R))| = 1, i.e. the mechanism chooses one assignment with probability one.

Then f is strategy-proof if for all R ∈ RN , all i ∈ N and all R′i ∈ Ri, fi(R) stochastically

Ri-dominates fi(R
′
i, R−i). Strategy-proofness is equivalent to the requirement that for any

von Neumann-Morgenstern utility presentation compatible with a given ordinal ranking of

objects, submitting the true ordinal ranking maximizes an agent’s expected utility. Most real-

life mechanisms only elicit this ordinal information (instead of von Neumann-Morgenstern

utilities).

Furthermore, f is envy-free if for all R ∈ RN and all i ∈ N , fi(R) stochastically Ri-

dominates fj(R) (where in fj(R) the outside option j is replaced by i). If f(R) attaches

probability one to assignment µ, then this is equivalent to µiRiµj for all i, j ∈ N . Finally, f

satisfies symmetry (or more descriptively, equal treatment of equals) if for all R ∈ RN and

all i, j ∈ N , Ri = Rj implies fio(R) = fjo(R) for all o ∈ O.

Most properties are defined in terms of an agents’ random assignments. For a given set

of properties, we say that a mechanism f is unique in terms of probability shares, if for any

other mechanism φ satisfying this set of properties, f(R) and φ(R) are welfare-equivalent

for any profile R, i.e., if individual random assignments coincide. Below we introduce two

well-known mechanisms.

Let � denote a strict priority ranking over N and let Π denote the set of all strict

priority orders. Given �∈ Π, let f� denote the (deterministic) serial dictatorship (SD)

mechanism where agents are assigned their most-preferred among all available objects in

10Some papers directly define a bistochastic matrix (pia)i∈N,a∈O rather than a random assignment per
se, i.e., a convex combination of deterministic assignments. Nonetheless, corresponding random assignments
exist as any bistochastic matrix (pia)i∈N,a∈O can be decomposed as a convex combination of deterministic
assignments by the Birkhoff-von Neumann Theorem (Birkhoff, 1946). Abdulkadiroğlu and Sönmez (2003a)
observe that an ex-post efficient random assignment may be welfare-equivalent to a random assignment with
support contained in the set of inefficient assignments so that pi = qi for all i ∈ N does not imply p = q.
The latter also observed by Pycia and Troyan (2023) for RSD.
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order of their priority.11 Then the random serial dictatorship (RSD) mechanism is defined

by RSD(R) = 1
n!

∑
�∈Π f

�(R) for all R ∈ RN .

We omit the formal definition of the probabilistic serial (PS) mechanism12 and provide

an intuitive formulation instead: agents start eating, with uniform speed, from their most-

preferred object; once an object is exhausted, each agent eats with uniform speed from his

most-preferred among the remaining objects, and so on until all objects are exhausted. The

assignment probabilities of any agent in PS are simply the shares of objects the agent has

eaten over the course of this process.13

The literature widely discusses the tradeoff among these two mechanisms: on the one

hand RSD satisfies ex-post efficiency, symmetry and strategy-proofness but violates sd-

efficiency and envy-freeness while on the other hand PS satisfies sd-efficiency and envy-

freeness but violates strategy-proofness.

3 Ex-post Efficiency, Symmetry and Strategy-proofness

It has long been an open question, at least since Bogomolnaia and Moulin (2001) were able to

prove the statement for |N | = |O| = 3, whether random serial dictatorship is characterized

(in terms of welfare) by ex-post efficiency, symmetry and strategy-proofness. As we show,

this is not the case for five agents or more.

Theorem 1 For five agents or more, there exist mechanisms satisfying ex-post efficiency,

symmetry and strategy-proofness, which are not welfare-equivalent to random serial dictator-

ship.

We give an informal description of the main steps of the construction of such a mechanism

for five agents and five objects below. The starting point of the construction is inspired by

Erdil (2014, Proposition 3), and adapted to the acceptable domain in an inventive way.14

The detailed demonstration is relegated to the Appendix.

11For any R ∈ RN and i1 � i2 � · · · � in, i1 receives his most Ri1-preferred object in O (denoted by
f�i1 (R)), and for l = 2, . . . , n, il receives his most Ril-preferred object in O\{f�il (R), . . . , f�il−l

(R)} (denoted

by f�il (R)).
12For that, we refer the reader to Bogomolnaia and Moulin (2001); Bogomolnaia (2015) offers an alter-

native definition of PS, and Katta and Sethuraman (2006) extend PS to the domain where indifferences are
allowed.

13The PS-mechanism pins down individuals’ object assignment probabilities directly but can be decom-
posed as a convex combination of deterministic assignments by the Birkhoff-von Neumann Theorem (Birkhoff,
1946).

14Erdil (2014) considers random assignment with unacceptable objects where RSD may leave some objects
unassigned and shows that it is possible to assign them with higher probability without violating strategy-
proofness. Note that on the acceptable domain, his constructed mechanism coincides with RSD.
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First, we describe an alternative formulation of RSD. Namely, define the mechanism gi

where the four agents in N\{i} get to choose in random order like in RSD, while i is assigned

the residual object. Now randomizing over all such mechanisms gi, i ∈ N , with probability

1/5 gives us back RSD.

Second, we describe a mechanism which strictly sd-dominates g5 for agent 1 and yields

the same random assignments for agents 2, 3 and 4. Let R2, R3, R4 be as follows

R2 R3 R4

c c c

a b e

d d d

e e a

b a b

Objects d and e will play the role of leftover objects where it will be crucial for agents 2 and

3 to rank the same leftover object d above e and for agent 4 to rank e above d. Now for g5,

agent 1 does not get a, b or c for the orders 4− 2− 3− 1− 5 and 4− 3− 2− 1− 5 (where

any order has probability 1/24), i.e. at least with probability 1/12.

Now suppose R1 : ab . . ..15 Note that agent 5 gets object b for the orders 3− 1− 2− 4− 5

and 3 − 1 − 4 − 2 − 5, i.e. with at least probability 1/12. We will increase for agent 1 the

share of b by 1/12 (while keeping his share of a unchanged) and reduce for agent 5 the share

of b by 1/12, i.e. agent 1 will receive (18a + 6b)/24 in the new mechanism g1−5. Agents 2,

3 and 4 always get the same random assignment under g1−5 and g5, and agent 5’s random

assignment is the residual.

We verify that ex-post efficiency for g1−5 is preserved. This can be done by replacing

the efficient assignments on the left below with the efficient assignments on the right with

probability share 1/12 each. Let {d, e} = {x, y} and xP1y:(
1 2 3 4 5

x a b c y

)
+

(
1 2 3 4 5

a d c e b

)
→

(
1 2 3 4 5

b a c e d

)
+

(
1 2 3 4 5

a d b c e

)
.

Note that the first assignment is obtained for the orders 4−2−3−1−5 and 4−3−2−1−5,

the second one for the orders 3− 1− 2− 4− 5 and 3− 1− 4− 2− 5 (since agents 2 and 4

have opposite preferences over d and e), the third one for the orders 3 − 2 − 1 − 4 − 5 and

3− 2− 4− 1− 5, and the fourth one for the orders 4− 1− 2− 3− 5 and 4− 1− 3− 2− 5.

Indeed, we thus improve agent 1’s share of b by 1/12 whenever agent 1 prefers a over b

15We use this notation to write aP1bP1o for all o ∈ O\{a, b}.

9



and prefers both over d and e. In an analogous way, we improve agent 1’s share of a by 1/12

whenever agent 1 prefers b over a and prefers both over over d and e. Otherwise, whenever

the preferences of agents 2, 3 and 4 are not as above or agent 1 prefers d or e over a or b, let

g1−5(R) and g5(R) coincide.

One can verify strategy-proofness of g1−5. Obviously, agent 1 and 5 are treated differently.

In order to recover symmetry, we first permute the roles of agents 1, 2, 3 and 4 and obtain a

mechanism which treats those agents equally, and finally we may choose arbitrarily an agent

to be the last one to choose.16 In doing this for g5 we get back RSD but not for g1−5. For

instance, for R1 : abecd and R5 : edcab and (R2, R3, R4) as above, g5 gives a positive share

of e to agent 1 whereas g1−5 gives zero share of e to agent 1 (as his share of b is increased

by 1/12). Permuting the roles of agents and considering gi−j(R) and gj(R), we find that for

i = 5, j = 1 the two coincide as 5 does not rank a and b above d and e (as 1 did in g1−5(R))

while for {i, j} 6= {1, 5} we find that gi−j(R) and gj(R) coincide as either 1 or 5 is now

in the role of 2, 3, or 4 in g1−5(R) but does not rank c at the top. Considering the convex

combination of the permuted mechanisms agents 2, 3 and 4 get the same random assignment

and agent 5 is better off for the profile R and g1−5 (as his share of b is decreased by 1/12

and otherwise she gets the same random assignment. Thus, the constructed mechanism and

RSD are not welfare-equivalent as the random assignment for the constructed mechanism

stochastically R-dominates the one of RSD for all agents, i.e. agents 1 and 5 are ex-ante

better off while agents 2, 3 and 4 are indifferent.17

Furthermore, when there are more than five agents, the first four agents play the same

role as above and we let the remaining agents choose in a fixed order, and obtain the same

conclusions.

One can even recover neutrality by permuting the names of the objects. Hence, Theorem

1 remains true when neutrality is added. We also show that for this conclusion it suffices

to have at least five agents and at least five objects (but possibly with unequal numbers of

agents and objects). We establish all this in the Appendix.

We finish with the observation that in the above construction, we may ignore agent 5

and consider assigning five objects among four agents. Then the constructed mechanism

sd-dominates RSD, i.e. even though under RSD any agent is always assigned an object (or

RSD has size one), RSD might be sd-dominated when there are more objects than agents.

Erdil (2014) has studied in detail random assignment with outside options, i.e. where agents

may be unassigned and may prefer this to certain objects. He showed that RSD may be

16In fact, by permuting the roles of agents, we even ensure anonymity, see Appendix A.
17At the same time (i) there exists no profile for which RSD sd-dominates the constructed mechanism,

and (ii) agent 5 might be worse off for the constructed mechanism for the profile (R−5, R
′
5) with R′5 : bedca.
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sd-dominated where his constructed mechanism coincides with RSD when agents find all

objects acceptable, i.e. on the acceptable domain.

4 Non-Domination

In the constructed mechanism above, the random assignment of a certain object may depend

on preferences over less preferred objects.18 Hence, even though strategy-proofness ensures

that an agent’s probability share for a particular object is unaffected by changes to the order

in which they rank less preferred objects, such changes may still affect the probability shares

of this object for other agents. The following invariance condition, called bounded invariance,

rules out such effects and may therefore be interpreted as a weak object-wise non-bossiness

condition for strategy-proof mechanisms. It was first proposed by Bogomolnaia and Heo

(2012) who used it in conjunction with ex-ante efficiency and envy-freeness to characterize

the probabilistic serial mechanism.19

Definition 1 Given i ∈ N , Ri ∈ Ri and x ∈ O, let Ri(x) = Ri|B(x,Ri) denote the

restriction of Ri to the weak upper contour set of x. Now a mechanism f satisfies bounded

invariance (BI) if for all R ∈ RN , all i ∈ N , all R′i ∈ Ri and all x ∈ O, if R′i(x) = Ri(x),

then fx(R) = fx(R
′
i, R−i).

In other words, if agent i’s preference above object x remains unchanged, then the random

assignment of x remains unchanged.

Recall that a mechanism f sd-dominates another mechanism g if for any profile R the

random assignment f(R) stochastically R-dominates the random assignment g(R), and for

some profile R̄ and i ∈ N we have fi(R̄) 6= gi(R̄).

Theorem 2 On the acceptable domain, if a mechanism g satisfies ex-post efficiency, bounded

invariance and strategy-proofness, then no boundedly invariant and strategy-proof mechanism

sd-dominates g.

RSD satisfies ex-post efficiency, bounded invariance and strategy-proofness – hence, by

Theorem 2, RSD is not sd-dominated by any mechanism satisfying bounded invariance and

18For instance, for the above profile R agent 1 receives 1/12 more of object b under g
1−5
1 (R) compared

to g
5
1(R), i.e. g

1−5
1b (R) 6= g

5
1b(R). Now if we change R3 to R′3 : cba..., then for R′ = (R′3, R−3), we have

g
1−5
1 (R′) = g

5
1(R′). Then for the mechanism where we permute the roles of agents as above, call it h, we

have h1b(R) 6= RSD1b(R) but h1b(R
′) = RSD1b(R

′) (even though agent 3 kept unchanged his two most
preferred objects, i.e. R3 : cb . . . and R′3 : cb . . .).

19The set of all ex-ante efficient, strategy-proof, non-bossy, neutral, and boundedly invariant mechanisms
has recently been characterized by Alva et al. (2024).
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strategy-proofness. The same is true for weighted versions of RSD, i.e., where we attach

different weights to different orders of agents and apply SD. Such weights could take into

account minorities/majorities and (dis)advanted groups.20 Furthermore, in Theorem 2 ex-

post efficiency cannot be weakened to ex-post weak efficiency. For instance, the Random-

Dictatorship-cum-Equal-Division21 by Basteck and Ehlers (2023) satisfies ex-post weak effi-

ciency, bounded invariance and strategy-proofness, but is sd-dominated by RSD.

Several questions remain. First, does Theorem 2 remain true when we drop bounded

invariance as a requirement on the second mechanism, i.e., keep bounded invariance only for

the first mechanism, thus strengthening the implication? Second, could we drop bounded

invariance as a requirement on the first mechanism, weakening Theorem 2’s premise? Third,

is RSD characterized by ex-post efficiency, bounded invariance, strategy-proofness and sym-

metry?

We provide an outline of the proof of Theorem 2. As a basic step we show that for any

efficient deterministic assignment, any agent must rank his allocated object weakly above

some non-top ranked object. Then for a fixed object, say z, we count for any profile and

for any agent the number of non-top ranked objects below z, and consider lexicographic

minimization with respect to those numbers. If g sd-dominates f , then the set of profiles

where f and g differ is non-empty. Now in this set we choose a profile where object z is

ranked as low as possible with respect to the minimization outlined above and show that the

random assignment of z must coincide for f and g. Remaining in the set of profiles where

f and g differ and z is ranked as low as possible, we take another object, say y, choose a

profile where y is ranked as low as possible and show that the random assignment of y (and

z) is identical for f and g. Iterating we eventually exhaust the set of objects and obtain

that f and g coincide, which implies that the set of profiles where f and g differ was empty

yielding the final contradiction.

5 Bounded Invariance for Deterministic Mechanisms

Even though bounded invariance has been introduced for random assignment and has not

been explicitly considered for deterministic assignment, we show below that it plays a crucial

role for two seminal contributions in the literature.

20E.g., if objects are to be assigned to a set of agents comprised of two groups, one might consider orders
that alternate between members of the two subgroups and randomize within each.

21We omit the formal definition and refer to Basteck and Ehlers (2023). Informally, the mechanism works
as follows: any agent i is chosen with probability 1

n , then agent i picks his most preferred object and the
remaining objects are assigned uniformly among the other agents.
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5.1 Hierarchical Exchange

Pápai (2000) introduces and characterizes hierarchical exchange rules. Extreme cases are

the top-trading-cycles (TTC) rule where each agent owns one house (or object)22 and the

SD rule where houses are allocated in a certain order of agents. For the TTC rule each

agent points to his most preferred house and each house points to its owner, before trading

cycles are then executed iteratively. For the SD rule, the first agent to choose implicitly

owns all houses and picks his most preferred house, then the second agent implicitly inherits

all unassigned houses from the first agents and picks his most preferred house, and so on.

Hierarchical exchange rules give a precise formulation of those ideas by covering immediate

cases as follows: any house is owned by one agent, any agent points to his most preferred

house, and each house points to its owner. Then following the execution of trading cycles,

unassigned objects are inherited by agents who remain unassigned, and so on. We give a

formulation of hierarchical exchange rules based on Pycia and Ünver (2017).

A submatching on I ⊆ N is an injective function σ : I → O. A submatching allocates a

subset of houses to a subset of agents so that no two different agents obtain the same house,

i.e. σ(i) is the house matched with agent i ∈ N and σ−1(h) is the agent matched with house

h ∈ σ(I). The set of submatchings is denoted by S. For each σ ∈ S, the set of matched

agents is denoted by Iσ, and the set of matched houses is denoted by Hσ. We write Iσ for

N\Iσ and Hσ for O\Hσ.

Definition 2 An ownership structure is a collection of mappings

(cσ : Hσ → Iσ)σ∈S

where at submatching σ, the function cσ maps each unmatched house h to the unique un-

matched agent cσ(h) who owns it then, and the following (consistency) condition is satisfied:

for any σ, σ′ ∈ S such that σ ⊆ σ′, if i ∈ Iσ′ owns house h ∈ Hσ′ at σ (cσ(h) = i), then i

owns h at σ′ (cσ′(h) = i).

Hierarchical Exchange Algorithm:

Given an ownership structure (cσ)σ∈S , the algorithm starts with empty the submatching

σ0 = ∅, and in each round r = 1, 2, . . . it matches some agents with houses. Let σr−1 we

denote the submatching of agents matched before round r. If σr−1 /∈M, then the algorithm

proceeds with the following steps of round r.

22Throughout this subsection we often use the term house instead of object.
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Step 1: Pointing. Each house h ∈ Hσr−1 points to the agent who owns it at σr−1. Each

agent i ∈ Iσr−1 points to his most preferred house in Hσr−1 .

Step 2: Execution of trading cycles. A trading cycle is given by h1 → i1 → · · · → hk →
ik → h1 in which k ∈ {1, 2, . . .}, agent il ∈ Iσr−1 points at house hl+1 ∈ Hσr−1 , and house hl

points to il. Each agent in each trading cycle is matched with the house she is pointing to.

Step 3. Submatching σr is defined as the union of σr−1 and the set of newly matched

agent–house pairs. When all agents or all houses are matched under σr, then the algorithm

terminates and gives matching σr as its outcome. Otherwise we continue with round r + 1.

Now a rule is a hierarchical exchange rule if we can find an ownership structure such that

the outcomes of the rule and the above algorithm are identical.

Reallocation-proofness excludes the possibility that two individuals can gain by jointly

manipulating the outcome and swapping objects ex-post, when the collusion is self-enforcing

in the sense that neither party can lose by reporting false preferences in case the other party

does not adhere to the agreement and reports honestly.

Definition 3 A mechanism f is manipulable via reallocation if there exist R, i, j ∈ N and

R′i, R
′
j such that fh(R) = fh(R

′
h, R−h) 6= fh(R

′
i, R

′
j, R−ij) for h = i, j, and both fj(R

′
i, R

′
j, R−ij)Pifi(R)

and fi(R
′
i, R

′
j, R−ij)Rjfj(R). An assignment rule is reallocation-proof if it is non-manipulable

via reallocation.

The following property rules out manipulations of other agents’ assignments without

changing the agent’s own assignment. A deterministic mechanism f satisfies non-bossiness

if for any profiles R and (R′i, R−i) (where i ∈ N), fi(R) = fi(R
′
i, R−i) implies f(R) =

f(R′i, R−i).

We show the following basic implication, namely, strategy-proofness, non-bossiness and

bounded invariance imply reallocation-proofness.

Lemma 1 For deterministic mechanisms, strategy-proofness, non-bossiness and bounded in-

variance imply reallocation-proofness.

Proof. Suppose that f is manipulable via reallocation. Then by non-bossiness, we have

f(R) = f(R′h, R−h) for h = i, j. Thus, f(R) = f(R′i, R−i) = f(R′j, R−j). Let a = fi(R) =

fi(R
′
j, R−j), b = fj(R

′
i, R

′
j, R−ij) and c = fi(R

′
i, R

′
j, R−ij).

Since f is manipulable via reallocation, we have a = fi(R
′
j, R−j) 6= fi(R

′
i, R

′
j, R−ij) = c.

Hence, by strategy-proofness, aPic and cP ′ia. Furthermore, bPiaPic.

Let R′′i be defined as follows: R′′i ranks first B(Ri, a)\{a} according to Ri, then c, and

then all remaining objects according to Ri, i.e. R′′i : Ri|B(Ri, a)\{a}, c, a, · · · . Then by
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strategy-proofness, fi(R
′
i, R

′
j, R−ij) = c and fi(R

′
j, R−j) = a, we obtain fi(R

′′
i , R

′
j, R−ij) = c.

Thus, by non-bossiness, f(R′i, R
′
j, R−ij) = f(R′′i , R

′
j, R−ij).

But then fj(R
′′
i , R

′
j, R−ij) = fj(R

′
i, R

′
j, R−ij) = b 6= fj(R

′
j, R−j) contradicts bounded in-

variance as b ∈ B(Ri, a)\{a} = B(R′′i , c)\{c} and Ri|B(Ri, a)\{a} = R′′i |B(R′′i , c)\{c}. �

Note that Lemma 1 does not use efficiency but will be crucial for the main result of Pápai

(2000). Below we show replacing reallocation-proofness with bounded invariance yields the

same characterization of hierarchical exchange rules.

Theorem 3 The following are equivalent:

(i) f satisfies strategy-proofness, non-bossiness, efficiency and bounded invariance.

(ii) f satisfies strategy-proofness, non-bossiness, efficiency and reallocation-proofness.

(iii) f is a hierarchical exchange rule.

Proof. (i)⇒(ii): This follows from Lemma 1.

(ii)⇔(iii) follows from Pápai (2000, Theorem).

(iii)⇒(i): Suppose f is a hierarchical exchange rule. Then by (ii), f satisfies strategy-

proofness, non-bossiness and efficiency. Suppose f violates bounded invariance. But then we

must have a = fi(R) 6= fi(R
′
i, R−i) = b (as otherwise we apply non-bossiness to obtain the

desired conclusion). Thus, by strategy-proofness, aPib and bP ′ia. Now for some c ∈ B(Ri, a)

we have fc(R) 6= fc(R
′
i, R−i).

Using strategy-proofness, non-bossiness and Ri(c) = R′i(c), without loss of generality, we

may suppose that Ri : cab . . . and R′i : cba . . ..

But then for f under R and (R′i, R−i), agent i always points to c and is not allocated

any object before object c is allocated. As the pointing and the allocations/inheritances of

other agents are independent of i’s pointing before i is allocated his object, object c must be

assigned to the same agent under R and (R′i, R−i). �

Pycia and Ünver (2017) characterize trading cycles algorithms with ownership and bro-

kerage via efficiency, strategy-proofness and non-bossiness. Loosely speaking a broker owns

a house which she is only allocated if nobody else wants it (or in other words she is forbidden

to point to his owned house). Now by the above theorem, rules with a broker violate both

bounded invariance and reallocation proofness.23,24

23This can also be seen in the usual three agent-three object example where N = {1, 2, 3}, O = {a, b, c},
1 owns a, 2 owns b, 3 owns c, and agent 1 is a broker for a, i.e. 1 is not allocated a, and agents 2 and 3 want
a. For R1 : abc, 1 and 2 exchange objects (i.e. 2 gets a) and for R′1 : acb, 1 and 3 exchange objects (i.e. 3
gets a), which is a violation to bounded invariance.

24One may then wonder whether strategy-proofness, efficiency and bounded invariance imply non-
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We stress again that in the mechanism constructed for the proof of Theorem 1 ran-

domization does not give us back RSD. This in contrast to randomization of deterministic

mechanisms satisfying ex-post efficiency, strategy-proofness and non-bossiness which gives

us back RSD (Bade, 2020). Furthermore, as bounded invariance is preserved for weighted

versions for hierarchical exchange rules, Theorem 2 shows that any such weighted version

of hierarchical exchange rules is not sd-dominated by another strategy-proof and boundedly

invariant mechanism.

5.2 Deferred Acceptance

In certain applications objects are allocated according agents’ priorities – a priority order

for an object o is a linear order <o over N , and a priority structure is given by <= (<o)o∈O.

For priority-based object allocation, the two well known and studied mechanisms are

TTC and Deferred Acceptance (DA). TTC is the subclass of inheritance rules for which

inheritance depends only on <, i.e., for any σ and o ∈ Hσ, the <o-highest ranked agent in

Iσ owns object o. TTC is efficient and strategy-proof (but unstable) whereas DA is stable

and strategy-proof (but inefficient).25 This is the well-known stability-efficiency tradeoff in

deterministic assignment problems and depending on the application under consideration,

either TTC or DA is recommended, which was studied in detail for school choice by Ab-

dulkadiroğlu and Sönmez (2003b).

Deferred Acceptance Algorithm.

Let < be a priority structure and R be a preference profile.

Step 1. Let each agent propose to his most preferred object. Each object tentatively

accepts (if any) the highest priority-ranked agent among all proposals and rejects the rest.

Stop if no agent is rejected (and all (tentative) acceptances become the outcome), and

otherwise continue with Step 2.

Step r. Each rejected agent proposes to the next most preferred object (to which he

has not proposed yet). Each object tentatively accepts (if any) the highest priority-ranked

agent among all proposals and tentative acceptance, and rejects the rest. Stop if no agent is

rejected (and all (tentative) acceptances become the outcome), and otherwise continue with

Step r + 1.

bossiness. This is not the case which we show in the Appendix using an example from Svensson (1999,
p.563).

25An assignment µ is stable for R and < if there does not exist an agent-object pair (i, x) such that xPiµi

and either x is not assigned to any agent or for µj = x we have i �x j, i.e. i has higher priority than j to
be assigned x.
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Definition 4 A priority structure < contains a cycle if there exist distinct a, b ∈ O and

distinct i, j, k ∈ N such that i �a j �a k and k �b i. The priority structure is acyclic if it

does not contain any cycle.

Ergin (2002) has shown that acyclicity characterizes the priority structures for which DA

is efficient meaning that the efficiency-stability tradeoff disappears for DA. Below we show

that equivalently bounded invariance is crucial for DA to be efficient.26

Theorem 4 Let < be a priority structure and consider the associated DA mechanism. The

following are equivalent:

(i) DA satisfies bounded invariance.

(ii) DA satisfies efficiency.

(iii) DA satisfies non-bossiness.

(iv) < is acyclic.

Proof. (i)⇒(iv): Suppose that < contains a cycle, say 1 �a 2 �a 3 and 3 �b 1. Let

O = {a, b, c, o1, . . . , on−3} R1 : bac . . ., R2 : acb . . ., and R3 : abc . . . and Ri : oi−3 . . . for

i 6= 1, 2, 3. We have (where i 6= 1, 2, 3) DA(R) =

(
1 2 3 i

a c b oi−3

)
and DA is inefficient

(as agents 1 and 3 would prefer to swap their assigned objects). Now let R′3 : acb . . . and

we obtain (where i 6= 1, 2, 3) DA(R′3, R−3) =

(
1 2 3 i

b a c oi−3

)
, a violation to bounded

invariance as DA1(R) = a = DA2(R′3, R−3) and both R3 and R′3 rank a at the top. Thus, <

must be acyclic.

(ii)⇔(iii)⇔(iv): This follows from the Ergin (2002, Theorem).

(iv)⇒(i): If < is acyclic, then DA becomes a hierarchical exchange rule where inheritance

of objects follows the priority structure <. Thus, by Theorem 3, DA satisfies bounded

invariance. �

6 Tie-breaking in Top-Trading-Cycles

Although the priority orders considered above were strict, in applications such as school

choice they are often weak, i.e., <o may contain ties when agents have equal priority for

26Ergin (2002) considers a general assignment model where both objects come with capacities and agents
have the option to be unassigned (which may be preferred to certain objects). Then a “scarcity” condition
has to be added to Definition 4. One can check that Theorem 4 remains unchanged in this more general
setup.
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object o. This raises the question of how to break ties, which has been discussed in de-

tail for deterministic mechanisms given the desirability of stability, strategy-proofness and

constrained efficiency among stable assignments27 (where for strict priorities DA satisfies all

these properties). For instance, Abdulkadiroğlu et al. (2009) show that DA with tie-breaking

is not Pareto-dominated by any strategy-proof deterministic mechanism while Erdil and Er-

gin (2008) show the non-existence of stable, strategy-proof and constrained efficient deter-

ministic mechanisms. Ehlers and Erdil (2010) characterize the priority structures for which

constrained efficiency among stable matchings is equivalent to efficiency while Ehlers and

Westkamp (2018) characterize the weak priority structures for which strategy-proofness, sta-

bility and constrained efficiency are compatible for deterministic mechanisms. Han (2018)

characterizes priority structures for which strategy-proofness, stability and efficiency are

compatible for deterministic mechanisms.

There is continued discussion whether to use single-tie-breaking (STB) or multiple-tie-

breaking (MTB) for weak priority structures, see Pathak (2017) for a detailed account. STB

means that ties are broken in the same way for all objects’ priority orderings while MTB

means that ties are broken in possible different ways for objects’ priority orderings. For

deterministic mechanisms, there is no clear recommendation for using STB versus MTB for

DA – while some agents may be better off at some preference profile, others will be worse

off, possibly at another profile. Recent contributions have considered the ex-ante welfare

effects of STB and MTB before tie-breaking, i.e., for random mechanisms where for STB

any tie-breaking order is chosen with equal probability whereas for MTB any profile of tie-

breaking orders is chosen with equal probability. For given preference profiles, but before

ties are broken, Han (2020) characterized the priority-structures for which STB-DA is ex-

post constrained efficient. For an ex-ante analysis – before agents’ preference realization

and tie-breaking – in large markets with random preferences, such as Ashlagi et al. (2019),

Ashlagi and Nikzad (2020), Arnosti (2023), and Allman et al. (2023) provide a detailed rank

distribution comparison analysis (to which choices agents are matched) for STB-DA and

MTB-DA, and identify circumstances under which STB-DA is superior to MTB-DA.

Most importantly, this has not been discussed in detail for the TTC-mechanism with

tie-breaking. Obviously, as TTC-mechanisms are efficient, unlike DA the issue of Pareto-

dominance does not arise among deterministic mechanisms. Once ties are broken randomly

like in STB or MTB this is no longer true. For instance, for single tie-breaking (STB) we

take an order of agents, denoted by m to break ties identically: for all o ∈ O, if i ∼o j
and i mo j, then i �m

o j. For the obtained strict priority structure we apply TTC. Now

choosing any tie-breaking order with equal probability 1/n!, we obtain STB-TTC which is

27I.e., assignments which are not Pareto-dominated by any other stable assignment.
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ex-post efficient, strategy-proof and boundedly invariant (by Theorem 3), and hence by our

second main result – Theorem 2 – not stochastically dominated by any other strategy-proof

and boundedly invariant mechanism. The same is true for multiple tie-breaking whereby we

choose different tie-breaking orders for different objects, i.e., for any object o we have a tie-

breaking order mo to break ties in <o, and now any profile of tie-breaking orders (one for each

object) (mo)o∈O we apply TTC for the obtained strict priority structure. Now MTB-TTC is

obtained by choosing any profile of tie-breaking orders with equal probability 1/(n!)n. Again

by Theorem 2 MTB-TTC is not stochastically dominated by any other strategy-proof and

boundedly invariant mechanism.

Corollary 1 Let < be a weak priority structure.

(i) No boundedly invariant and strategy-proof mechanism sd-dominates STB-TTC.

(ii) No boundedly invariant and strategy-proof mechanism sd-dominates MTB-TTC.

Furthermore, this remains true when different tie-breaking orders are chosen with dif-

ferent weights, i.e., again such a weighted MTB-TTC is not stochastically dominated by

any other strategy-proof and boundedly invariant mechanism. It follows from Theorem 2

that weighted versions of MTB-TTC (including weighted versions of STB-TTC) do not sd-

dominate each other as they all satisfy ex-post efficiency, strategy-proofness and bounded

invariance. For random versions of STB-TTC and MTB-TTC, Corollary 1 is parallel to

Abdulkadiroğlu et al. (2009) for the deterministic versions of STB-DA and MTB-DA (but as

explained above, they do not hold any longer for random versions of STB-DA and MTB-DA).

Note that when all agents have equal priority at all objects, then STB-TTC coincides

with RSD, i.e., as a special case we obtain again that RSD is not sd-dominated in the class

of boundedly invariant strategy-proof mechanisms.

7 Conclusion

Instead of reporting ordinal preferences, one might ask agents to report cardinal utility

functions, assuming that they evaluate random assignments according to their expected

utilities. We implicitly assume ordinality of mechanisms, i.e., constrain random assignments

to be the same across cardinal utility profiles which induce identical ordinal preferences.

For applications ordinality is a natural requirement as it facilitates reporting, when agents

are unable to determine their exact utilities but are able to compare individual objects. Of

course, allowing cardinal reports but imposing ordinality yields the same result as imposing

ordinal preference reports. In particular, in such contexts RSD is not dominated by any
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mechanism satisfying ordinality, strategy-proofness and bounded invariance. This is positive

answer on the acceptable domain and addresses a question raised by Zhou (1990), who

showed that in the cardinal framework no mechanism satisfies equal treatment of equals,

strategy-proofness and ex-ante efficiency. The latter postulates always to choose a random

assignment which is not Pareto dominated in terms of expected utility by any other. It is

clear that in the cardinal context the properties of ordinality, equal treatment of equals and

ex-ante efficiency are incompatible: as a simple example, let N = {1, 2, 3}, O = {a, b, c},
u1 = (u1a, u1b, u1c) = (1, 1− ε, 0) = u2 and u3 = (1, ε, 0) where ε > 0 is small; when all agents

have utility function u3 equal treatment of equals requires each agent to obtain a with

probability one third, and similarly, when all agents have utility function u1 equal treatment

of equals requires each agent to obtain c with probability one third; now ordinality requires

for the profile (u1, u2, u3) that each agent obtains any object with probability 1
3
, which is

dominated in terms of expected utility by assigning agent 3 object b with probability one,

and assigning agents 1 and 2 objects a and c each with probability one half.

The last example shows the disrelation of Zhou’s result and the impossibility results in

the ordinal framework with respect to efficiency, equity and strategy-proofness. Ordinality,

sd-efficiency and envy-freeness are compatible as PS satisfies all those properties. As soon as

strategy-proofness is added, we obtain an incompatibility, which is robust when weakening

sd-efficiency to ex-post efficiency, or envy-freeness to equal treatment of equals.

Theorem 1 invalidated the conjecture that RSD was characterized by ex-post efficiency,

equal treatment of equals and strategy-proofness.28 Pycia and Troyan (2021) recently showed

that RSD is characterized by symmetry, efficiency, and obvious strategyproofness among all

mechanisms that, roughly speaking, can be represented as a symmetrization of an extensive-

form game where in each stage, one agent is allowed to pick one house from a subset of the

remaining houses or “pass” on this opportunity. For the assignment of one object, Ehlers

(2002) characterized the uniform random dictatorship mechanism by ex-post efficiency, envy-

freeness and strategy-proofness.

Another strand of the literature studies large markets. In particular one may enlarge

markets in two different ways: either by keeping the set of object types fixed and adding

copies to match an increasing number of agents, or by considering a sequence of economies

where the number of distinct agents and the number of distinct objects grow at the same

rate. First, when we add object copies, Liu and Pycia (2016, Theorem 2) have shown that

any two symmetric and “regular”29 mechanisms, which are asymptotically strategy-proof

28Brandt et al. (2023) claimed to have found an affirmative answer to this question for five agents via
computational methods.

29Loosely speaking, this means that agents cannot change to “too much” the random assignments of other
agents (in terms of probability shares) as the market becomes large.
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and asymptotically efficient, coincide asymptotically, i.e., they choose the same allocations

in the limit. For instance, this implies asymptotic coincidence of RSD30 and PS (which

was first shown by Che and Kojima (2010)), and that RSD and, respectively, PS satisfy

ex-post efficiency and asymptotically both strategy-proofness and envy-freeness. In some

sense, then, it does not matter in the large whether we choose RSD or PS (or any other

mechanism satisfying the above three properties). However when we consider economies

with a large number of distinct agents and distinct objects,31 Manea (2009) has shown that

RSD is sd-efficient with probability approaching zero, and hence RSD and PS diverge with

probability one. Thus, continued discussions in real-life markets show the importance of the

choice of the random assignment mechanism to be implemented. As we have shown, RSD

cannot be improved in an unambiguous way while maintaining our two basic properties.
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Anna Bogomolnaia and Hervé Moulin. A new solution to the random assignment problem.

Journal of Economic Theory, 100:295–328, 2001.
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APPENDIX.

A General Version of Theorem 1

Below we allow for the possibility of unequal numbers of agents and objects. With fewer

objects than agents, some agents may remain unassigned. All our definitions then extend in

a straightforward way. Theorem 1 is a corollary from this more general result.

We further strengthen symmetry to anonymity where agents’ names are treated equally:

a mechanism f satisfies anonymity if for any permutation π : N → N of agents and for any

profile R, we have fi(R) = fπ(i)((Rπ(i))i∈N).

In addition, the constructed mechanism is immune to renaming objects: a mechanism f

satisfies neutrality if for any permutation τ : O → O of objects and for any profile R, we

define τ(R) = (τ(Ri)i∈N) ∈ RN such that for o, o′ ∈ O, τ(o)τ(Ri)τ(o′) iff oRio
′, and we have

for all i ∈ N and all o ∈ O, fio(R) = fiτ(o)(τ(R)).

Theorem 5 For |N | ≥ 5 and |O| ≥ 5, there exist mechanisms satisfying ex-post efficiency,

anonymity, neutrality and strategy-proofness, which are not welfare equivalent to random

serial dictatorship.

Proof. We begin with five agents and five objects, i.e., let N = {1, . . . , 5} and O =

{a, b, c, d, e}.
First, we define the following mechanism g5 whereby agents 1, 2, 3 and 4 are ranked arbi-

trarily and choose in that order (as in RSD for four agents) and afterwards agent 5 receives
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the remaining object. Making it symmetric for agents (by choosing gi with probability 1
5
) we

get back RSD (as then any order is chosen with equal probability 1
5!

), i.e., RSD = 1
5

∑
i∈N g

i.

Second, let R2, R3, R4 be as follows

R2 R3 R4

c c c

a b e

d d d

e e a

b a b

It will turn out to be crucial that the same object d is ranked below c and a for agent 2 and

below c and b for agent 3, and that agent 4 ranks the different object e below c. We define

the mechanism g1−5 whereby agent 1 is improved over g5, agents 2, 3 and 4 receive identical

random assignments under g1−5 and g5, and agent 5 is worse off or better off under g1−5

compared to g5.

We decompose the preference domain for agent 1 as the disjoint union of the following

three sets:

R1
a = {R1 : aP1bP1x for all x ∈ O\{a, b, c}}

R1
b = {R1 : bP1aP1x for all x ∈ O\{a, b, c}}

R̂1 = {R1 : there exists x ∈ O\{a, b, c} such that xP1a or xP1b} .

For all Q ∈ RN , let

g1−5
i (Q) = g5

i (Q) for i = 2, 3, 4. (1)

Moreover, for any profile Q, if Q−15 6= (R2, R3, R4) or Q1 ∈ R̂1, then g1−5(Q) = g5(Q).

Otherwise, suppose Q1 ∈ R1
a ∪ R1

b and Q−15 = (R2, R3, R4). Note that once we have

defined g1−5
1 (Q), then g1−5

5 (Q) is the residual given (1).

If Q1 ∈ R1
a, then under g5(Q) agent 1 receives their most preferred object from O\{a, b, c}

for the orders 4-2-3-1-5 and 4-3-2-1-5 (where any such order is chosen with probability

1/24), i.e., with probability 1/12. Similarly, object b is assigned to agent 5 for the orders

3− 1− 4− 2− 5 and 3− 1− 2− 4− 5, i.e., at least with probability 1/12.

Then let g1−5
1 (Q) = g5

1(Q) + 1/12b − 1/12x where x is 1’s most preferred object from

O\{a, b, c}. Note that then g1−5
1 (Q) strictly sd-improves agent 1 over g5

1(Q) (and if Q5 : be . . .,

then g5
1(Q) strictly sd-dominates g1−5

1 (Q), i.e., agent 5 is unambiguously worse off, and if

Q5 : . . . b, then g1−5
1 (Q) strictly sd-dominates g5

1(Q), i.e., agent 5 is unambiguously better
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off).

Analogously, if Q1 ∈ R1
b , then let g1−5

1 (Q) = g5
1(Q) + 1/12a− 1/12x where x is 1’s most

preferred object from O\{a, b, c}.
It remains to show that g1−5 is strategy-proof and ex-post efficient. For strategy-proofness,

it is obvious that agents 2, 3, 4 and 5 cannot gain from manipulation. Let Q ∈ RN . If

Q−15 6= (R2, R3, R4), then agent 1 cannot gain from manipulation as g1−5
1 (Q) = g5

1(Q) and

g1−5
1 (R1, Q−1) = g5

1(R1, Q−1) for all R1. Thus, let Q−15 = (R2, R3, R4). By Lemma 2 of Gib-

bard (1977) it suffices to consider pairwise switches of objects ranked adjacently, i.e., compare

the random assignment of agent 1 when reporting Q1 and when reporting R1 = Qy↔z
1 for

two objects y, z ∈ O ranked adjacent in Q1.32

Suppose that Q1 ∈ R1
a. Note that by ex-post efficiency and as agent 5 chooses last, agent

1 receives object c with probability zero when c is not ranked first in Q1. Suppose c is not

ranked first in Q1. Then by construction g1−5
1 (Q) = (18a + 6b)/24. If R1 ∈ R1

a ∪ R1
b , yet c

is not ranked first under R1, then 1’s random assignment either unchanged when reporting

R1 instead of Q1 or changed to (18b+ 6a)/24. If instead R1 ∈ R1
a ∪R1

b , and c is now ranked

first under R1, then g1−5
1 (R1, Q−1) = (6c + 12a + 6b)/24. The case where c is ranked first

under Q1 and R1 ∈ R1
a ∪R1

b is analysed analogously.

Suppose R1 ∈ R̂1. Then g1−5
1 (R1, Q−1) = g5

1(R1, Q−1). But then g1−5
1 (Q) by construc-

tion stochastically Q1-dominates g5
1(Q), which, by strategy-proofness of g5, stochastically

Q1-dominates g5
1(R1, Q−1) = g1−5

1 (R1, Q−1). Thus, reporting R1 leads to a Q1-dominated

random assignment.

This completes the analysis for Q1 ∈ R1
a. The case Q1 ∈ R1

b is analysed analogously.

For Q1 ∈ R̂1, if R1 ∈ R̂1 then g1−5
1 and g5

1 coincide both at Q and at (R1, Q−1) – hence

strategy-proofness of g5
1 implies that g1−5

1 (Q) stochastically Q1-dominates g5
1(R1, Q−1). If

R1 ∈ R1
a, then the pairwise swap of two objects must have involved b (ranked below a under

both Q1 and R1) and object x ∈ O\{a, b, c} such that xQ1d and xQ1e, i.e., aQ1xQ1b and

aR1bR1x. By construction, when reporting R1 instead of Q1, this only moves probability

mass from x to b – hence g1−5
1 (Q) stochastically Q1-dominates g5

1(R1, Q−1). Again, the case

R1 ∈ R1
b is analysed analogously.

For completeness below we just list the first three objects in R1 (where x ∈ {d, e} is such

that xR1d and xR1e), R1 = Qy↔z
1 (where possibly x ∈ {z, y}), and Q1 ∈ R1

a ∪ R1
b . This

implies that x cannot be ranked at the top of R1, and x cannot be ranked second while c is

ranked third in R1):

If aP1bP1x or aP1cP1b, then her assignment is (18a+ 6b)/24.

32If R1 : uvwyzx, then Q1 : uvwzyx.
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If bP1aP1x or bP1cP1a, then her assignment is (18b+ 6a)/24.

If cP1aP1b, then her assignment is (6c+ 12a+ 6b)/24.

If cP1bP1a, then her assignment is (6c+ 12b+ 6a)/24.

If aP1xP1b, then her assignment is (18a+ 4x+ 2b)/24.

If aP1cP1x, then her assignment is (18a+ 6x)/24.

If bP1cP1x, then her assignment is (18b+ 6x)/24.

If bP1xP1a, then her assignment is (18b+ 4x+ 2a)/24.

If cP1aP1x, then her assignment is (6c+ 12a+ 6x)/24.

If cP1bP1x, then her assignment is (6c+ 12b+ 6x)/24.

Under the first four announcements agent 1 receives objects d and e with probability

zero, and at each announcement agent 1 receives with probability one his first three objects.

A straightforward pairwise comparison of these ten outcomes verifies that at each preference

ranking Q1 ∈ R1
a∪R1

b ∪R̂1, truthful revelation (weakly or strongly) first-order stochastically

dominates untruthful revelation.

Finally, we verify ex-post efficiency of g1−5. Here it is crucial that the same object d is

ranked below c and a for agent 2 and below c and b for agent 3, and that agent 4 ranks the

different object e below c. Improving 1’s assignment when R1 ∈ R1
a involves increasing her

share of b by 1/12, while holding unchanged the assignment of agents 2, 3, and 4. This can

be done by replacing the assignments on the left below with the assignments on the right

with probability share 1/12 each. Each assignment on the left is realized with probability

1/12 or more, therefore this improvement is indeed feasible. And the assignments on the

right are efficient, therefore ex-post efficiency is preserved (where {d, e} = {x, y} and xP1y)(
1 2 3 4 5

x a b c y

)
+

(
1 2 3 4 5

a d c e b

)
→

(
1 2 3 4 5

b a c e d

)
+

(
1 2 3 4 5

a d b c e

)

Note that the first assignment is obtained for the orders 4−2−3−1−5 and 4−3−2−1−5,

the second one for the orders 3− 1− 2− 4− 5 and 3− 1− 4− 2− 5, the third one for the

orders 3−2−1−4−5 and 3−2−4−1−5, and the fourth one for the orders 4−1−2−3−5

and 4− 1− 3− 2− 5.

The argument for the case when R1 ∈ R1
b is analogous but for completeness we verify it

below. Improving 1’s assignment when R1 ∈ R1
b involves increasing her share of a by 1/12,

while holding unchanged the assignment of agents 2, 3, and 4. This can be done by replacing

the assignments on the left below with the assignments on the right with probability share

1/12 each. Each assignment on the left is realized with probability 1/12 or more, therefore
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this improvement is indeed feasible. And the assignments on the right are efficient, therefore

ex-post efficiency is preserved (where {d, e} = {x, y} and xP1y)(
1 2 3 4 5

x a b c y

)
+

(
1 2 3 4 5

b c d e a

)
→

(
1 2 3 4 5

a c b e d

)
+

(
1 2 3 4 5

b a d c e

)

The first assignment is obtained for the orders 4− 2− 3− 1− 5 and 4− 3− 2− 1− 5, the

second one for the orders 2− 1− 3− 4− 5 and 2− 1− 4− 3− 5, the third one for the orders

2− 3− 1− 4− 5 and 2− 3− 4− 1− 5, and the fourth one for the orders 4− 1− 2− 3− 5

and 4− 1− 3− 2− 5.

Third, the mechanism g1−5 treats agent 1 differently in comparison to agents 2, 3 and

4. In order to recover equal treatment of equals among agents 1, 2, 3, and 4, we appeal to

randomization again.

Let π be a permutation of the agents with agent 5 staying put, i.e., let π : N → N

be a bijection such that π(5) = 5. Then π(g1−5) is defined via changing the roles of the

agents in mechanism g1−5 according to the permutation π. Denoting with Π5 the set of all

permutations of N where agent 5 stays put, we define h5 as

h5 =
1

4!

∑
π∈Π5

π(g1−5).

Then h5 inherits ex-post efficiency and strategy-proofness from g1−5, and agents 1, 2, 3, and

4 are treated symmetrically. Note also that
∑

π∈Π5 π(g5) = g5, and hence agents 1, 2, 3 and

4 are better off under h5 and agent 5 is worse off or better off under h5 (when compared to

g5).

Fourth, in order to recover anonymity (and, respectively, symmetry) completely, let h =
1
5

∑
i∈N h

i. Again, h inherits ex-post efficiency and strategy-proofness from hi, and satisfies

anonymity and symmetry.

Fifth, we show that h does not coincide with RSD, i.e., there exists a profile Q such that

hi(Q) 6= RSDi(Q) for some i ∈ N . Thus, there exist other random mechanisms (in terms

of probability shares) satisfying ex-post efficiency, symmetry and strategy-proofness. Let

Q ∈ RN be such that Q1 : abecd, Q−15 = (R2, R3, R4) and Q5 : edcab.

Then g1−5
1 (Q) = (18a+6b)/24 6= (18a+4b+2e)/24 = g5

1(Q). Now let us consider gi−j(Q)

and gj(Q), i.e., where we permute the roles of agents. For i = 5 and j = 1 the two coincide,

since agent 5 does not rank a and b over d and e. Finally, if {i, j} 6= {1, 5} then again

gi−j(Q) = gj(Q) since either 1 or 5 is now in the role of agents 2, 3, or 4 in g1−5 but neither

1 nor 5 ranks c first.
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But now it follows that h1e(Q) 6= RSD1e(Q), and h(Q) stochastically Q-dominates

RSD(Q) (as agents 1 and 5 are better off and agents 2, 3 and 4 receive identical random

assignments).

Finally, we show that neutrality can be recovered from the above mechanism. Let τ :

O → O be a renaming of the objects and denote by Γ the set of all such bijections. Let τ(h)

denote the permuted mechanism where the names of the objects in h are changed according

to τ , and let h = 1
5!

∑
τ∈Γ τ(h). But then h inherits all the properties from h and satisfies

neutrality. Furthermore, for the above profile, we continue to have h1e(Q) 6= RSD1e(Q).

Lastly, suppose that there at least five agents and at least five objects, i.e., N = {1, . . . , n}
with n ≥ 5 and O = {a, b, c, d, e, o1, . . . , o|O|−5} with |O| ≥ 5 where possibly |N | 6= |O|. We

then define the mechanism g56···n by letting choose agents 1− 4 in a random order and then

the remaining agents in the order 5−6−· · ·−n. Again permuting gives us back RSD. For the

mechanism g1−56···n we add to the preferences R2, R3 and R4 the other objects in the same

order o1 − · · · − o|O|−5 at the bottom. Now for agent 1 an improvement is applied under the

same conditions (where no x ∈ O\{a, b, c} shall be ranked above a or b). One can check again

strategy-proofness and ex-post efficiency, and make the mechanism symmetric. In showing

that the new mechanism does not coincide with RSD, let the preferences of agents 1-5 be as

above in profile Q with the other objects being ranked in the same order o1− · · · − o|O|−5 at

the bottom and let agent i (with i ≥ 5) have the same preference as agent 5. Note that then

the above improvement is applied for agent 1 in the mechanism g56···n but when at least one

agent i with i ≥ 5 plays the role of agent 2, 3 or 4, then no improvement can be applied as

i ranks e at the top. Finally, neutrality can be recovered as above. �

B Proof of Theorem 2

We begin by introducing some additional notation. Given Ri ∈ Ri, let top(Ri) ∈ O denote

the top-ranked object in O according to Ri, i.e., top(Ri)Rix for all x ∈ O. For a subset

I ′ ⊆ N , let top(RI′) = ∪i∈I′{top(Ri)} and denote the set of objects top-ranked by some

i ∈ N by top(R) = ∪i∈N{top(Ri)}. Conversely, let top(R) = O\top(R) denote the set of

objects which are not top-ranked by any i ∈ N .

If all agents rank a different object at the top, i.e., if top(R) = O, Pareto efficiency requires

that each agent receives their top-ranked object. Our first lemma concerns an implication of

efficiency when preferences are at least partially in conflict, i.e., if top(R) 6= O – top-ranked

objects will not be assigned to agents who rank them at the bottom, i.e., below non-top

ranked objects.
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Lemma 2 Consider any ex-post efficient mechanism g and any preference profile R ∈ RN

such that top(R) 6= O. Then for all i ∈ N and all y ∈ top(R) such that xPiy for all

x ∈ top(R), we have giy(R) = 0. Moreover, for any mechanism f such that f �sd g, we also

have fiy(R) = 0.

Proof. Towards a contradiction, assume there exists an i ∈ N and y ∈ top(R) ( O, such

that giy(R) > 0 while for all x ∈ top(R) we have xPiy. Since g is ex-post efficient, there

exists µ ∈ PO(R) such that µi = y.

Since top(Ri)PixPiµi for all x ∈ top(R), we have top(Ri) 6= µi – and since µi ∈ top(R),

there must be another agent, j ∈ N\{i}, for whom top(Rj) = µi.

But then top(Rj) 6= µj. By efficiency, µj ∈ top(R) – as otherwise µjPiµi and µi =

top(Rj)Pjµj, creating a possible trading cycle where all included agents become strictly

better off. Thus, there must be another agent, k ∈ N\{i, j}, for whom top(Rk) = µj.

But then top(Rk) 6= µk. By efficiency, µk ∈ top(R) – as otherwise µkPiµi, µiPjµj, and

µjPkµk, creating a possible trading cycle where all included agents become strictly better

off. Thus there must be another agent, l ∈ N\{i, j, k} for whom top(Rl) = µj.

Continue in this way. Since N is finite, we eventually arrive at a contradiction once we

have exhausted N . This establishes the first part of the lemma: no agent receives objects

ranked below their least preferred object in top(R) under g. A fortiori, the same needs to

hold for any mechanism f which stochastically dominates g. �

Suppose now that mechanism g satisfies ex-post efficiency, bounded invariance and strategy-

proofness. Towards a contradiction, assume there exists a bounded invariant and strategy-

proof mechanism f such that f �sd g. In particular, this implies that there is a non-empty

set of preference profiles where f and g are not welfare-equivalent. Let R6=0 denote this set,

i.e.,

R6=0 = {R ∈ RN : fi(R) 6= gi(R) for some i ∈ N}.

To prove Theorem 2 by contradiction, we will show that R6=0 = ∅. For this, we will

consider an arbitrary sequence of objects z1, z2, . . . , zn ∈ O along with a decreasing sequence

of subsets of preference profiles

R6=0 ⊇ R
6=
1 ⊇ R

6=
2 ... ⊇ R6=n

where (i) for each k = 1, ..., n, R 6=k−1 6= ∅ implies R6=k 6= ∅ while (ii) fzl(R) = gzl(R) for all

l ≤ k and all R ∈ R 6=k . This way, (i) implies R6=n 6= ∅ (given R6=0 6= ∅), while (ii) implies that

for R ∈ R 6=n all objects z1, ..., zn have to be assigned with the same assignment probabilities

under f and g – i.e., R6=n = ∅.
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Intuitively, each R6=k is the set of preference profiles where zk is ranked as low as possible

by all agents (relative to objects in top(R)), subject to the constraint that R6=k ⊆ R
6=
k−1 ⊆

... ⊆ R6=0 , i.e., subject to preserving a difference between f and g and subject to ranking the

preceding objects zk−1, zk−2..., z1 as low as possible. Moreover, note that for all preference

profiles in R6=0 , and hence also for all profiles in R6=k , we have top(R) 6= O as otherwise ex-post

efficiency requires that all agents receive their top ranked object with probability one so that

f(R) = g(R).

To make this precise and define the sets R6=k formally, let N = {0, 1, . . .} denote the set

of natural numbers including zero. Let N|N |≥ denote the set of all vectors v ∈ N|N | such that

v1 ≥ v2 ≥ · · · ≥ v|N |, i.e., the coordinates of v are arranged in non-increasing order. Let -

denote the lexicographical ordering on N|N |≥ : for all v, w ∈ N|N |≥ , v - w means either v = w

or there is 1 ≤ t ≤ n, such that vt < wt and vi = wi for every i < t and . We write v ≺ w if

v - w and w 6= v.

Furthermore, for any z ∈ O and Ri, let

L(z,Ri) = {y ∈ O : zPiy}

denote the strict lower contour set of z at Ri. Note that this set excludes z.

Next, let O = {z1, . . . , zn}, define O≥t = {zt, . . . , zn}, for any 1 ≤ t < n, and for any

i ∈ N let

ρi(zt, R) = |L(zt, Ri) ∩O≥t ∩ top(R)|

be the rank that zt occupies in agents’ preferences, where the rank of zt is the number of

non-top-ranked objects below zt, ignoring objects zl with l < t. Further, let θ(zt, R) ∈ Nn
≥

be the vector of ranks, ordered in non-increasing fashion, i.e., θi(zt, R) = ρτ(i)(zt, R) for an

appropriate permutation τ : N → N . For any t ≥ 1 define

R6=t ={R ∈ R6=t−1 : there exists no R̄ ∈ R6=t−1 such that θ(zt, R̄) ≺ θ(zt, R)},

where θ(zt, R̄) and θ(zt, R) are ordered by lexicographic minimization. Hence, R6=t contains

all profiles where zt is ranked as low as possible, provided that (i) f and g still differ in the

assignment probability shares of some object, and that (ii) all objects zl ∈ O, l < t, are

likewise ranked as low as possible (with rank-minimization of zm taking precedence over the

rank-minimization of zm′ for any m < m′ < t).

We first show in two lemmas that for any preference profile in R6=1 , the assignment

probabilities of z1 coincide under f and g. We then proceed by induction to show that the

same holds for any R6=k , and objects zl, l ≤ k. This implies that R6=n = ∅ and thus establishes
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the desired contradiction.

Lemma 3 Consider z1 ∈ O and R ∈ R6=1 , and partition N as follows: N = I1 ∪ I2 with

I1 = {i ∈ N : L(z1, Ri) ∩ top(R) = ∅} and I2 = N\I1 (i.e., I1 consists of those agents for

which z1 is ranked least relative to top(R) while agents in I2 rank some object from top(R)

below z1). If there is some j ∈ N such that fjz1(R) > gjz1(R), then j ∈ I2 and for all

i ∈ I2\{j} we have (L(z1, Ri) ∩ top(R)) ⊇ (L(z1, Rj) ∩ top(R)) 6= ∅ (i.e., i’s lower contour

set of z1 at Ri contains all objects in top(R) which are contained in j’s lower contour set).

Proof. First, given that f�sdg, fjz1(R) > gjz1(R) implies that there is some object x ranked

below z1 by j, for which fjx(R) < gjx(R). If x ∈ top(R), then we have L(z1, Rj)∩top(R) 6= ∅;
and if x ∈ top(R), then Lemma 2 implies L(z1, Rj)∩ top(R) ⊆ L(x,Rj)∩ top(R) 6= ∅. Hence,

in either case we have j ∈ I2. Now take any a ∈ L(z1, Rj) ∩ top(R) and move it up to just

below z1, arriving at R′. Note that top(R) = top(R′) so that θ(z1, R) = θ(z1, R
′) and hence

R′ ∈ R6=1 . By strategy-proofness we have fjz1(R
′) > gjz1(R

′) and since R′ ∈ R6=1 we have

fja(R
′) < gja(R

′) – otherwise, we could swap a and z1, arriving at R′′ where f(R′′) 6= g(R′′),

yet top(R′′)\{z1} ⊇ top(R′)\{z1} so that z1 is ranked lower relative to non-top-ranked objects

in R′′ than in R′, contradicting R′ ∈ R6=1 . Any agent i 6= j who does not rank z1 least relative

to top(R′) = top(R), i.e., for whom L(z1, Rj) ∩ top(R′) 6= ∅, must also rank a below z1 in

Ri = R′i: otherwise, they could move z1 to the bottom of their preferences in R′ – call the

new profile R′′′. By BI, we still have fja(R
′′′) < gja(R

′′′). Again, this would contradict

R′ ∈ R6=1 , i.e., that z1 is ranked as low as possible in R′.

Since a ∈ L(z1, Rj) ∩ top(R) was chosen arbitrarily, this proves the Lemma 3. �

Lemma 4 Let R ∈ R6=1 . Then fiz1(R) = giz1(R) for all i ∈ N .

Proof. Towards a contradiction, assume there exists j ∈ N with fjz1(R) > gjz1(R) and

consider the partition {I1, I2} as in Lemma 3. By Lemma 3 we know that j ∈ I2, i.e.,

L(z1, Rj) ∩ top(R) 6= ∅, and 0 = ρh(z1, R) < ρj(z1, R) ≤ ρl(z1, R) for all h ∈ I1 and l ∈ I2.

We will construct a new profile R̃∗ such that f(R̃∗) 6= g(R̃∗) but where the number of non-

top ranked objects below z1 for agents in I2 is lower than in R – strictly so for j ∈ I2 –

and where for all agents in i ∈ I1 we have ρi(z1, R̃
∗) < ρj(z1, R). Thereby we will find that

θ(z1, R̃
∗) ≺ θ(z1, R), contradicting R ∈ R6=1 .

First we will rule out z1 ∈ top(R). For that, note that since R ∈ R 6=1 , we need to have

fiz1(R) ≥ giz1(R) for all i ∈ I2 – otherwise, for i ∈ I2 such that fiz1(R) < giz1(R), f�sdg would

imply there to be a higher-ranked object, xPiz1, such that fix(R) > gix(R) and we could move

z1 to the bottom of i preference order. For the new profile, denoted R̂, strategy-proofness

would imply fix(R̂) > gix(R̂), i.e., f(R̂) 6= g(R̂). Since top(R) = top(R̂) and z1 is now ranked
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lower for i but unchanged for all k 6= i, i.e., 0 = |L(zt, R̂i) ∩ top(R̂)| < |L(zt, Ri) ∩ top(R)|
and |L(zt, R̂k) ∩ top(R̂)| = |L(zt, Rk) ∩ top(R)|, this contradicts R ∈ R 6=1 . We conclude that

fiz1(R) ≥ giz1(R), for all i ∈ I2.

But then it cannot be the case that z1 ∈ top(R), since Lemma 2 would imply fiz1(R) =

0 = giz1(R), for all i ∈ I1, which, together with fiz1(R) ≥ giz1(R), for all i ∈ I2, as well as

fjz1(R) > gjz1(R), would contradict the fact that z1 is assigned with probability one in both

f and g.

Now, if top(RI1) ∩ L(z1, Rj) 6= ∅, take any x ∈ top(RI1) ∩ L(z1, Rj) and move up x

in Rj just below z1 to arrive at Rx
j . Note that top(Rx

j , R−j) = top(R) and L(z1, R
x
j ) =

L(z1, Rj). By strategy-proofness, we still have fjz1(R
x
j , R−j) > gjz1(R

x
j , R−j). We have

either fjx(R
x
j , R−j) < gjx(R

x
j , R−j) or fjx(R

x
j , R−j) ≥ gjx(R

x
j , R−j). We show that for both

cases we obtain a new profile R′ where fjz1(R
′) > gjz1(R

′), where ρi(z1, R
′) = ρi(z1, R) for

all i ∈ I2 and where ρi(z1, R
′) ≤ ρj(z1, R) for all i ∈ I1. Let Ix1 denote the set of agents in I1

who rank x at the top.

Case (1.x): if fjx(R
x
j , R−j) < gjx(R

x
j , R−j), let all i ∈ Ix1 push {z1} ∪ (L(z1, Rj) ∩ top(R)) to

the bottom of their preference order, in the same order as they are ranked in Rj, to arrive

at R′i. For j, relabel R′j = Rx
j and for all other i ∈ N\(Ix1 ∪ {j}), relabel R′i = Ri to arrive

at R′ = (R′k)k∈N . By BI, we still have fjx(R
′) < gjx(R

′). Towards a contradiction, assume

fjz1(R
′) ≤ gjz1(R

′). Then there would be some object yP ′jz1 such that fjy(R
′) > gjy(R

′).

Moreover, yP ′iz1 for all i ∈ Ix1 . Hence we could push z1 to the bottom of the preference

order for all agents i ∈ Ix1 as well as for j and, by BI, arrive at a profile R̂ where f and g

differ in the assignment probabilities of y. Since in R̂, z1 is ranked lower relative to objects

top(R̂) = top(R) than at our initial profile R, this contradicts R ∈ R6=1 – and we conclude

that fjz1(R
′) > gjz1(R

′).

Case (2.x): if instead we have fjx(R
x
j , R−j) ≥ gjx(R

x
j , R−j), swap x and z1 in the ranking of

j – let us denote this new preference order as R′j and the new preference profile (R′j, R−j)

simply as R′. Note that since z1 6= top(Rx
j ) = top(Rj) we have top(R′) = top(R). Towards

a contradiction, assume fjx(R
′) > gjx(R

′). Then we could push down z1 to the bottom of

j’s preference order, below all other top(R′), and do the same for all i ∈ Ix1 – call the new

preference profile R̂. By BI this preserves fjx(R̂) > gjx(R̂). Since in R̂ object z1 is ranked

lower relative to objects top(R̂) = top(R) than at our initial profile R, this contradicts

R ∈ R 6=1 . Therefore, after having swapped x and z1, we must have fjx(R
′) ≤ gjx(R

′) and

thus fjz1(R
′) > gjz1(R

′).

Thus, independently of whether Case (1.x) or Case (2.x) applies, we arrive at a new

profile R′ where fjz1(R
′) > gjz1(R

′) and where ρi(z1, R
′) = ρi(z1, R) for all i ∈ I2, i.e., z1 is

ranked as low as before for all agents in I2. While z1 might be ranked higher than in R for
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agents in Ix1 , we still have ρk(z1, R
′) ≤ ρj(z1, R

′) ≤ ρl(z1, R
′) for all k ∈ I1 and l ∈ I2.

Next, if there is any other x′ ∈ (top(RI1) ∩ L(z1, Rj))\{x} ⊆ top(R′I1) ∩ L(z1, R
′
j), we

proceed as before and move up x′ in R′j just below z1. Refer to this preference order as Rx′
j .

By strategy-proofness, we still have fjz1(R
x′
j , R

′
−j) > gjz1(R

x′
j , R

′
−j). We proceed as above

and obtain profile R′′ where fjz1(R
′′) > gjz1(R

′′) and the rank of z1 relative to non-top-ranked

objects remains unchanged for agents in I2.

Case (1.x’): if fjx′(R
x′
j , R

′
−j) < gjx′(R

x′
j , R

′
−j) we proceed as in Case (1.x) – the only difference

is that we now need to take into account the possible changes made to preferences of agents

in Ix1 in Case (1.x). Let all i ∈ Ix′1 push {z1} ∪ (L(z1, Rj) ∩ top(R)) to the bottom of their

preference order, in the same order as they are ranked in Rj, to arrive at R′′i . For j, relabel

R′′j = Rx′
j and for all other i ∈ N\(Ix′1 ∪{j}), relabel R′′i = R′i to arrive at R′′ = (R′′k)k∈N . By

BI, we still have fjx′(R
′′) < gjx′(R

′′). Towards a contradiction, assume fjz1(R
′′) ≤ gjz1(R

′′).

Then there would be some object yP ′′j z1 such that fjy(R
′′) > gjy(R

′′). Moreover, yP ′′i z1

for all i ∈ Ix′1 as well as for all i ∈ Ix1 if we arrived at R′ via Case (1.x). Hence we could

push z1 to the bottom of the preference order for all agents in I1 for whom we have so far

constructed new preferences33 as well as for j and, by BI, arrive at a profile R̂ where f and g

differ in the assignment probabilities of y. Since in R̂, z1 is ranked lower relative to objects

top(R̂) = top(R) than at our initial profile R, this contradicts R ∈ R6=1 – and we conclude

that fjz1(R
′′) > gjz1(R

′′).

Case (2.x’): if instead we have fjx′(R
x′
j , R

′
−j) ≥ gjx′(R

x′
j , R

′
−j), swap x′ and z1 in the ranking

of j – let us denote this new preference order as R′′j and the new preference profile (R′′j , R
′
−j)

simply as R′′. Note that since z1 6= top(Rx
j ) = top(Rj) we have top(R′′) = top(R). Towards

a contradiction, assume fjx(R
′′) > gjx(R

′′). Then we could push down z1 to the bottom

of j’s preference order, below all other top(R′′), and do the same for all i ∈ Ix
′

1 , as well

as for all other i ∈ I1 for whom we may have so far constructed new preferences – call

the new preference profile R̂. By BI this preserves fjx(R̂) > gjx(R̂). Since in R̂ object z1 is

ranked lower relative to objects top(R̂) = top(R) than at our initial profile R, this contradicts

R ∈ R6=1 . Therefore, after having swapped x and z, we must have fjx(R
′′) ≤ gjx(R

′′) and

thus fjz1(R
′′) > gjz1(R

′′).

Repeat these steps for all x∗ ∈ top(RI1) ∩ L(z1, Rj), i.e., move up x∗ in the preference

order of j to just below z1 and then proceed as in Case (1.x′) or (2.x′). This way, we arrive

at a profile, refer to it as R†, where top(R†i ) = top(Ri) for all i ∈ N , fjz1(R
†) > gjz1(R

†), and

I1 has been partitioned into two subsets: I ′1 includes all agents i ∈ I1 for whom R†i = Ri

and hence L(z1, R
†
i ) ∩ top(R) = ∅, and whose top ranked objects are ranked above z1 by j –

33I.e., for i ∈ Ix′1 ∪ Ix1 if we arrived at R′ via Case (1.x), and for i ∈ Ix′1 if we arrived at R via Case (2.x).
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in R but also in R† since j’s lower contour set has only gotten weakly smaller as we moved

away from R to R† (strictly smaller whenever Case 2 applied). Second, I ′′1 includes all agents

i ∈ I1 whose lower contour set L(z1, R
†
i ) consists of all objects L(z1, Rj) ∩ top(R). Third,

compared to R, j’s lower contour set at z1 has gotten weakly smaller in that some objects

from top(RI1) may now be ranked above z1 – however, no object in top(R) has been raised

above z1 as we moved to R†j, i.e., L(z1, Rj)∩ top(R) = L(z1, R
†
j)∩ top(R†). Last the ranking

of other agents i ∈ I2\{j} is unchanged, i.e., R†i = Ri.

By Lemma 3 as well as the preceding construction, we have for all h ∈ I ′′1 and all l ∈ I2,

L(z1, R
†
h) ∩ top(R

†) ⊆ L(zk+1, R
†
j) ∩ top(R†) ⊆ L(z1, R

†
l ) ∩ top(R†),

ρh(z1, R
†) ≤ ρj(z1, R

†) ≤ ρl(z1, R
†) and ρl(z1, R

†) = ρl(z1, R).

Now, for all i ∈ I ′′1 ∪ I2 (including j) change the order of objects in the lower contour set

L(z1, R
†
i ) as follows: (i) objects that are in L(z1, R

†
i )\L(z1, R

†
j) are ranked immediately below

z1 (beyond that, their order does not matter), (ii) objects that are also in L(z1, R
†
j)∩ top(R†)

are ranked next, in the same order as by R†j, (iii) last, all objects in L(z1, R
†
i ) ∩ L(z1, R

†
j) ∩

top(R†) are ranked below (beyond that, their order does not matter). Call this new (and

penultimate) profile R̃. By BI, we still have fjz1(R̃) > gjz1(R̃). By Lemma 2 and f �sd g, we

have fix(R̃) = 0 = gix(R) for all i ∈ I2 and all x ∈ L(z1, R̃i) ∩ L(z1, R̃j) ∩ top(R̃).

Hence, we now have all agents in I ′′1 ∪ I2 ranking objects L(z1, R̃j) ∩ top(R̃) adjacent

and in the same order as R̃j, and below that only objects in top(R̃) = top(R) for which

the assignment probabilities are equal to zero under f and g by Lemma 2. Since fjz1(R̃) >

gjz1(R̃), there is some y, ranked below z1 by R̃j, such that fjy(R̃) < gjy(R̃) – and thus some

i ∈ N with fiy(R̃) > giy(R̃). Moreover, by Lemma 2, we have y ∈ L(z1, R̃j) ∩ top(R̃).

If i ∈ I ′′1 ∪ I2, then there is y′ with yR̃iy
′, such that fiy′(R̃) < giy′(R̃) – and thus some

i′ ∈ N with fi′y′(R̃) > gi′y′(R̃). Hence, by Lemma 2, it must be that y ∈ top(R̃), so that

y′ ∈ L(y, R̃j) ∩ top(R̃). Thus, y′ is ranked lower than y according to R̃j.

If i′ ∈ I ′′1 ∪I2, then there is y′′ with y′R̃i′y
′′, such that fi′y′′(R̃) < gi′y′′(R̃) – and thus some

i′′ ∈ N with fi′′y′′(R̃) > gi′′y′′(R̃), and so on.

Since L(z, R̃j) ∩ top(R̃) is finite and we move down (according to R̃j) in each iteration,

eventually there is some y∗ ∈ L(z, R̃j) ∩ top(R̃) and i∗ ∈ I ′1 = N\(I ′′1 ∪ I2) such that

fi∗y∗(R̃) > gi∗y∗(R̃).

Note that R̃i = Ri, and thus, y∗P̃iz1 for any i ∈ I ′1. If y∗Pitop(R̃i∗), then change R̃i to

R̃′i as follows: (i) objects in B(y∗, Ri) are ranked first according to Ri, (ii) then top(R̃i∗) and

(iii) then objects in L(y∗, Ri)\{top(R̃i∗)} according to Ri. After having done this for all such

i ∈ I ′1 and denoting the obtained profile by R̃′, by BI we continue to have fi∗y∗(R̃
′) > gi∗y∗(R̃

′).
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But then let i∗ exchange the positions of y∗ and top(R̃i∗) in R̃′i∗ and call this final profile

R̃∗. This strictly decreases the number of non-top objects ranked below z1 for j, as well

as all i ∈ I ′′1 , and weakly decreases it for all i ∈ I ′1 (as either top(R̃i∗)P̃
′
iy
∗P̃ ′iz1 or top(R̃i∗)

is ranked immediately below y∗ in R̃′i) and for all i ∈ I2\{j} (only weakly if i ∈ I2\{j}
ranked both top(R̃i∗) and top(R̃∗i∗) below z1). Hence, ρi(z1, R̃

∗) ≤ ρi(z1, R) for i ∈ I2\{j},
ρj(z1, R̃

∗) < ρj(z1, R), and ρi(z1, R̃
∗) ≤ ρj(z1, R̃

∗) for i ∈ I1 contradicting R ∈ R6=1 . �

The following two lemmas extend Lemma 3 and Lemma 4 to R6=t , t = 1, ..., n, thereby

completing the proof. Recall that O≥t = {zt, ..., zn}, for any 1 ≤ t < n. Let Zt = {z1, . . . , zt}
for any 1 ≤ t < n.

Lemma 5 Consider 1 ≤ t < n, zt ∈ O and R ∈ R6=t , and partition N as follows: N = I1∪I2

with I1 = {i ∈ N : L(zt, Ri) ∩ O≥t ∩ top(R) = ∅} and I2 = N\I1 (i.e., I1 consists of those

agents for which zt is ranked least relative to O≥t∩top(R) while agents in I2 rank some object

from O≥t ∩ top(R) below zt). If there is some j ∈ N such that fjzt(R) > gjzt(R) then j ∈ I2

and for all i ∈ I2\{j} we have L(zt, Ri)∩O≥t ∩ top(R) ⊇ L(zt, Rj)∩O≥t ∩ top(R) 6= ∅ (i.e.,

i’s lower contour set of zt at Ri contains all objects in O≥t ∩ top(R) which are contained in

j’s lower contour set).

Lemma 6 Let R ∈ R6=t . Then fizt(R) = gizt(R) for all i ∈ N .

Proof of Lemma 5 and 6. For t = 1, this is established by Lemma 3 and 4, which serve

as the basis for the following induction. For the induction step, assume we have established

both statements for all 1 ≤ t ≤ k < n (the induction hypothesis). It remains to show that

both hold for t = k + 1. For this, the following observation will be useful.

Claim 6 If there is some j ∈ I such that fjzk+1
(R) > gjzk+1

(R) for R ∈ R6=k+1, then zk+1 6=
top(Rj).

Proof of Claim 6: Suppose top(Rj) = zk+1. Since fjzk+1
(R) > gjzk+1

(R), there exists i

with fizk+1
(R) < gizk+1

(R). We have either L(zk+1, Ri)∩O≥k+1∩ top(R) 6= ∅ or L(zk+1, Ri)∩
O≥k+1 ∩ top(R) = ∅.

Suppose L(zk+1, Ri) ∩ O≥k+1 ∩ top(R) 6= ∅. By f �sd g there exists x with xPizk+1

and fix(R) > gix(R). But then we could move Zk+1 ∩ L(zk+1, Ri) to the bottom of Ri in

unchanged order, arriving at a contradiction to R ∈ R6=k+1.

Suppose instead L(zk+1, Ri)∩O≥k+1∩ top(R) = ∅. By Lemma 2 and zk+1 ∈ top(R), there

exists y ∈ top(R) ∩ L(zk+1, Ri). Hence we must have y ∈ Zk. Furthermore, by f �sd g and

fizk+1
(R) < gizk+1

(R), we have
∑

o∈O:oPizk+1
fio(R) >

∑
o∈O:oPizk+1

gio(R). Now reorder the
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objects in Ri as follows: first rank O\(L(zk+1, Ri) ∪ {zk+1}), then top(R) ∩ L(zk+1, Ri), and

then, at the bottom top(R)∩L(zk+1, Ri)∪ {zk+1}. Call the new preference profile R′. Since

objects O\(L(zk+1, Ri) ∪ {zk+1}) are still ranked above objects in (L(zk+1, Ri) ∪ {zk+1}),
strategy-proofness implies

∑
o∈O\(L(zk+1,Ri)∪{zk+1}) fio(R

′) >
∑

o∈O\(L(zk+1,Ri)∪{zk+1}) gio(R
′).

Yet by the induction hypothesis and Lemma 2, we have fiy(R
′) = giy(R

′) for all y ∈
(L(zk+1, Ri) ∪ {zk+1}). Hence

∑
o∈O fio(R

′) >
∑

o∈O gio(R
′) – contradicting feasibility and

thus establishing Claim 6.

Induction step for Lemma 5. First, given that f �sd g, fjzk+1
(R) > gjzk+1

(R) implies that

there is some object x ranked below zk+1 for which fjx(R) < gjx(R). Thus, by Lemma 2 and

the induction hypothesis, we have L(zk+1, Rj)∩top(R)∩O≥k+1 6= ∅, i.e., j ∈ I2: otherwise all

objects in L(zk+1, Rj) would either be top-ranked objects or from Zk. But then we could move

to R′j by reordering j′s lower contour set, pushing all objects in top(R) to the bottom. Since

this leaves the rank of objects z ∈ Zk+1 unaffected, we would still have (R′j, R−j) ∈ R
6=
k+1.

But now Lemma 2 implies that fjx(R
′
j, R−j) = gjx(R

′
j, R−j) for all x ∈ top(R) = top(R′j, R−j)

while the induction hypothesis implies that fjx(R
′
j, R−j) = gjx(R

′
j, R−j) for all x ∈ Zk. Since

strategy-proofness ensures fjzk+1
(R′j, R−j) > gjzk+1

(R′j, R−j), this would contradict f �sd g.

Now take any a ∈ L(zk+1, Rj) ∩ O≥k+1 ∩ top(R) and move it up to just below zk+1,

arriving at R′. Note that top(R) = top(R′) so that ρ(zk+1, R) = ρ(zk+1, R
′) and hence

R′ ∈ R 6=k+1. By strategy-proofness we have fjzk+1
(R′) > gjzk+1

(R′) and since R′ ∈ R 6=k+1

we have fja(R
′) < gja(R

′) – otherwise, we could swap a and zk+1 in R′j, arriving at R′′

where fl(R
′′) 6= gl(R

′′) for some l ∈ N , yet, by Claim 6, top(R′′) = top(R′), so that zk+1 is

ranked lower relative to non-top-ranked objects from O≥k+1 in R′′ than in R′, contradicting

R′ ∈ R 6=k+1. Any agent i 6= j who does not rank zk+1 least relative to top(R′) = top(R)

and O≥k+1, i.e., for whom L(zk+1, Rj) ∩ O≥k+1 ∩ top(R′) 6= ∅, must also rank a below

zk+1 in Ri = R′i: otherwise, they could move zk+1 to the bottom of their preferences

in R′ – call the new profile R′′′. By BI, we still have fja(R
′′′) < gja(R

′′′). Again, this

would contradict R′ ∈ R6=k+1, i.e., that zk+1 is ranked as low as possible in R′. Since

a ∈ L(zk+1, Rj) ∩ O≥k+1 ∩ top(R) was chosen arbitrarily, this completes the induction step

for Lemma 5.

Induction step for Lemma 6. Suppose the statement is not true for t = k + 1. Then

there exist R ∈ R 6=k+1 and j ∈ N with fjzk+1
(R) > gjzk+1

(R). By Claim 6, zk+1 ∈ top(R).

Moreover, without loss of generality, we may assume that all objects in Zk are ranked at

the bottom of Rj such that zm′Rjzm for m < m′ ≤ k: otherwise we can begin by moving

z1 to the bottom of j’s preference list in single, pairwise swaps. Since these transformations

keep the profile in R6=k ⊆ R
6=
1 we have fjz1(R̂) = gjz1(R̂) both before and after the swap and
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hence, by SP, fjzk+1
(R) > gjzk+1

(R) (where R̂ denotes an arbitrary profile in the sequence

starting at R). Repeating this for each m with 1 < m ≤ k establishes the claim.

Consider the partition {I1, I2} as in Lemma 5 – by the induction hypothesis and the

induction step for Lemma 5 above, this exists for t = k + 1. By Lemma 5 we know that

j ∈ I2, i.e., L(zk+1, Rj)∩O≥k+1∩top(R) 6= ∅, and 0 = ρk(zk+1, R) < ρj(zk+1, R) ≤ ρl(zk+1, R)

for all k ∈ I1 and l ∈ I2. As in Lemma 3, we will construct a new profile R̃∗ in which zk+1

is ranked lower to contradict R ∈ R6=k+1.

Now, if top(RI1) ∩ L(zk+1, Rj) ∩ O≥k+1 6= ∅, take any x ∈ top(RI1) ∩ L(zk+1, Rj) ∩
O≥k+1 and move up x in Rj just below zk+1 to arrive at Rx

j . Note that top(Rx
j , R−j) =

top(R) and L(zk+1, R
x
j ) = L(zk+1, Rj). By strategy-proofness, we still have fjzk+1

(Rx
j , R−j) >

gjzk+1
(Rx

j , R−j). We have either fjx(R
x
j , R−j) < gjx(R

x
j , R−j) or fjx(R

x
j , R−j) ≥ gjx(R

x
j , R−j).

We show that for both cases we obtain a new profile R′ where fjzk+1
(R′) > gjz1(R

′), where

ρi(zk+1, R
′) = ρi(zk+1, R) for all i ∈ I2 and where ρi(zk+1, R

′) ≤ ρj(zk+1, R) for all i ∈ I1.

Let Ix1 denote the set of agents in I1 who rank x at the top.

Case (1.x): if fjx(R
x
j , R−j) < gjx(R

x
j , R−j), let all i ∈ Ix1 push {zk+1} ∪ (L(zk+1, Rj) ∩

top(R)) ∪ Zk to the bottom of their preference order, in the same order as they are ranked

in Rj, to arrive at R′i. For j, relabel R′j = Rx
j and for all other i ∈ N\(Ix1 ∪ {j}), relabel

R′i = Ri to arrive at R′ = (R′l)l∈N . By BI, we still have fjx(R
′) < gjx(R

′). Towards a

contradiction, assume fjzk+1
(R′) ≤ gjzk+1

(R′). Then there would be some object yP ′jzk+1

such that fjy(R
′) > gjy(R

′). Moreover, yP ′izk+1 for all i ∈ Ix1 . Hence we could push zk+1

down in the preference order, ranking just above Zk, for all agents i ∈ Ix1 as well as for j and,

by BI, arrive at a profile R̂ where f and g differ in the assignment probabilities of y. Since

in R̂, zk+1 is ranked lower relative to objects O≥k+1 ∩ top(R̂) = O≥k+1 ∩ top(R) than at our

initial profile R, this contradicts R ∈ R6=k+1 – and we conclude that fjzk+1
(R′) > gjzk+1

(R′).

Case (2.x): if instead we have fjx(R
x
j , R−j) ≥ gjx(R

x
j , R−j), swap x and zk+1 in the ranking

of j – let us denote this new preference order as R′j and the new preference profile (R′j, R−j)

simply as R′. Since zk+1 ∈ top(R), we have top(R′) = top(R) – thus the set of (non-

)top ranked objects relevant to determine the ranks of zl, l ≤ k + 1 in agents preferences

is unchanged. Towards a contradiction, assume fjx(R
′) > gjx(R

′). Then we could push

down zk+1 in j’s preference order, ranking just above Zk and hence below all other O≥k+1 ∩
top(R′), and do the same for all i ∈ Ix1 , i.e., push down {zk+1} ∪ Zk to the bottom of

i’s preferences. Call the new preference profile R̂. By BI the transformation from R′ to

R̂ preserves fjx(R̂) > gjx(R̂). Since in R̂ object zk+1 is ranked lower relative to objects

O≥k+1 ∩ top(R̂) = O≥k+1 ∩ top(R) than at our initial profile R, this contradicts R ∈ R6=k+1.

Therefore, after having swapped x and zk+1, we must have fjx(R
′) ≤ gjx(R

′) and thus

fjzk+1
(R′) > gjzk+1

(R′).
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Thus, independently of whether Case (1.x) or Case (2.x) applies, we arrive at a new

profile R′ where fjzk+1
(R′) > gjzk+1

(R′) and where ρi(zk+1, R
′) = ρi(zk+1, R) for all i ∈ I2,

i.e., zk+1 is ranked as low as before for all agents in I2. While zk+1 might be ranked higher

than in R for agents in Ix1 , we still have ρh(zk+1, R
′) ≤ ρj(zk+1, R

′) ≤ ρl(zk+1, R
′) for all

h ∈ I1 and l ∈ I2.

Next, if there is any other x′ ∈ (top(RI1) ∩ L(zk+1, Rj) ∩ O≥k+1)\{x} ⊆ top(R′I1) ∩
L(zk+1, R

′
j) ∩ O≥k+1, we proceed as before and move up x′ in R′j just below zk+1. Refer

to this preference order as Rx′
j . By strategy-proofness, we still have fjzk+1

(Rx′
j , R

′
−j) >

gjzk+1
(Rx′

j , R
′
−j). We proceed as above and obtain profile R′′ where fjzk+1

(R′′) > gjzk+1
(R′′)

and the rank of zk+1 relative to non-top-ranked objects in O≥k+1 remains unchanged for

agents in I2.

Case (1.x’): if fjx′(R
x′
j , R

′
−j) < gjx′(R

x′
j , R

′
−j) we proceed as in Case (1.x) – the only difference

is that we now need to take into account the possible changes made to preferences of agents in

Ix1 in Case (1.x). Let all i ∈ Ix′1 push {zk+1}∪(L(zk+1, Rj)∩top(R))∪Zk to the bottom of their

preference order, in the same order as they are ranked in Rj, to arrive at R′′i . For j, relabel

R′′j = Rx′
j and for all other i ∈ N\(Ix′1 ∪{j}), relabel R′′i = R′i to arrive at R′′ = (R′′l )l∈N . By

BI, we still have fjx′(R
′′) < gjx′(R

′′). Towards a contradiction, assume fjzk+1
(R′′) ≤ gjz1(R

′′).

Then there would be some object yP ′′j zk+1 such that fjy(R
′′) > gjy(R

′′). Moreover, yP ′′i zk+1

for all i ∈ Ix′1 as well as for all i ∈ Ix1 if we arrived at R′ via Case (1.x). Hence we could

push zk+1 down in the preference order, ranking just above Zk, for all agents in I1 for whom

we have so far constructed new preferences34 as well as for j and, by BI, arrive at a profile

R̂ where f and g differ in the assignment probabilities of y. Since in R̂, zk+1 is ranked

lower relative to objects O≥k+1 ∩ top(R̂) = O≥k+1 ∩ top(R) than at our initial profile R, this

contradicts R ∈ R6=k+1 – and we conclude that fjzk+1
(R′′) > gjzk+1

(R′′).

Case (2.x’): if instead we have fjx′(R
x′
j , R

′
−j) ≥ gjx′(R

x′
j , R

′
−j), swap x′ and zk+1 in the

ranking of j – let us denote this new preference order as R′′j and the new preference profile

(R′′j , R
′
−j) simply as R′′. Since zk+1 ∈ top(R), we have top(R′) = top(R) – thus the set of (non-

)top ranked objects relevant to determine the ranks of zl, l ≤ k + 1 in agents preferences is

unchanged. Towards a contradiction, assume fjx(R
′′) > gjx(R

′′). Then we could push down

zk+1 in j’s preference order, ranking just above Zk and hence below all other O≥k+1∩top(R′),
and do the same for all i ∈ Ix1 , , i.e., push down {zk+1}∪Zk to the bottom of i’s preferences.

Moreover, do the same for all other i ∈ I1 for whom we may have so far constructed new

preferences. Call the new preference profile R̂. By BI this preserves fjx(R̂) > gjx(R̂). Since

in R̂ object zk+1 is ranked lower relative to objects O≥k+1 ∩ top(R̂) = O≥k+1 ∩ top(R) than

at our initial profile R, this contradicts R ∈ R 6=k+1. Therefore, after having swapped x and

34I.e., for i ∈ Ix′1 ∪ Ix1 if we arrived at R′ via Case (1.x), and for i ∈ Ix′1 if we arrived at R via Case (2.x).
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z, we must have fjx(R
′′) ≤ gjx(R

′′) and thus fjzk+1
(R′′) > gjzk+1

(R′′).

Repeat these steps for all x∗ ∈ top(RI1) ∩ L(zk+1, Rj) ∩ O≥k+1, i.e., move up x∗ in

the preference order of j to just below zk+1 and then proceed as in Case (1.x′) or (2.x′).

This way, we arrive at a profile, refer to it as R†, where top(R†i ) = top(Ri) for all i ∈ N ,

fjzk+1
(R†) > gjzk+1

(R†), and I1 has been partitioned into two subsets: I ′1 includes all agents

i ∈ I1 for whom R†i = Ri and hence L(zk+1, R
†
i )∩O≥k+1∩ top(R) = ∅, and whose top ranked

objects are in Zk or ranked above zk+1 by j – in R but also in R† since j’s lower contour set

has only gotten weakly smaller as we moved away from R to R† (strictly smaller whenever

Case 2 applied). Second, I ′′1 includes all agents i ∈ I1 whose lower contour set L(zk+1, R
†
i )

consists of all objects (L(zk+1, Rj) ∩ top(R)) ∪ Zk. Third, compared to R, j’s lower contour

set at zk+1 has gotten weakly smaller in that some objects from top(RI1) may now be ranked

above zk+1 – however, no object in O≥k+1 ∩ top(R) has been raised above zk+1 as we moved

to R†j, i.e., L(zk+1, Rj) ∩O≥k+1 ∩ top(R) = L(zk+1, R
†
j) ∩O≥k+1 ∩ top(R†). Last the ranking

of other agents i ∈ I2\{j} is unchanged, i.e., R†i = Ri.

By the induction step for Lemma 5 as well as the preceding construction, we have for all

h ∈ I ′′1 and all l ∈ I2,

L(zk+1, R
†
h) ∩O≥k+1 ∩ top(R†) ⊆ L(zk+1, R

†
j) ∩O≥k+1 ∩ top(R†) ⊆ L(zk+1, R

†
l ) ∩O≥k+1 ∩ top(R†),

ρh(zk+1, R
†) ≤ ρj(zk+1, R

†) ≤ ρl(zk+1, R
†) and ρl(zk+1, R

†) = ρl(zk+1, R).

Now, for all i ∈ I ′′1 ∪ I2 (including j) change the order of objects in the lower contour set

L(zk+1, R
†
i ) as follows: (i) objects that are in L(zk+1, R

†
i )\L(zk+1, R

†
j) are ranked immedi-

ately below zk+1 (beyond that, their order does not matter), (ii) objects that are also in

L(zk+1, R
†
j) ∩ top(R†) are ranked next, in the same order as by R†j, (iii) last, all objects in

L(zk+1, R
†
i )∩L(zk+1, R

†
j)∩ top(R†) are ranked below (beyond that, their order does not mat-

ter). Call this new (and penultimate) profile R̃. By BI, we still have fjzk+1
(R̃) > gjzk+1

(R̃).

By Lemma 2 and f �sd g, we have fix(R̃) = 0 = gix(R) for all i ∈ I ′′1 ∪ I2 and all

x ∈ L(zk+1, R̃i) ∩ L(zk+1, R̃j) ∩ top(R̃). Lastly, since in moving from R to R† and on to

R̃ objects in Zk were only moved down relative to non-top ranked objects, we still have

R̃ ∈ R6=k .

Hence, we now have all agents in I ′′1 ∪ I2 ranking objects L(zk+1, R̃j) ∩ top(R̃) adjacent

and in the same order as R̃j, and below that only objects in top(R̃) = top(R) for which the

assignment probabilities are equal to zero under f and g by Lemma 2. Since fjzk+1
(R̃) >

gjzk+1
(R̃), there is some y, ranked below zk+1 by R̃j, such that fjy(R̃) < gjy(R̃) – and thus

some i ∈ N with fiy(R̃) > giy(R̃). Moreover, by Lemma 2 and the induction hypothesis, we

have y ∈ L(zk+1, R̃j) ∩O≥k+1 ∩ top(R̃).

40



If i ∈ I ′′1 ∪ I2, then there is y′ 6= y with yR̃iy
′, such that fiy′(R̃) < giy′(R̃) – and thus some

i′ ∈ N with fi′y′(R̃) > gi′y′(R̃). Moreover, given that y ∈ L(zk+1, R̃j), our construction of R̃i

implies that y′ is ranked lower than y according to R̃j, while by Lemma 2 and the induction

hypothesis, it must be that y′ ∈ L(y, R̃j) ∩O≥k+1 ∩ top(R̃).

If i′ ∈ I ′′1 ∪ I2, then there is y′′ 6= y′ with y′R̃i′y
′′, such that fi′y′′(R̃) < gi′y′′(R̃) – and thus

some i′′ ∈ N with fi′′y′′(R̃) > gi′′y′′(R̃), and so on.

Since L(zk+1, R̃j)∩O≥k+1 ∩ top(R̃) is finite and we move down (according to R̃j) in each

iteration, eventually there is some y∗ ∈ L(z, R̃j)∩O≥k+1 ∩ top(R̃) and i∗ ∈ I ′1 = N\(I ′′1 ∪ I2)

such that fi∗y∗(R̃) > gi∗y∗(R̃).

Suppose top(R̃i∗) ∈ O≥k+1. Note that R̃i = Ri, and thus, y∗P̃iz1 for any i ∈ I ′1. For

any i ∈ I ′1 where y∗Pitop(R̃i∗), change R̃i to R̃′i as follows: (i) objects in B(y∗, Ri) are

ranked first according to Ri, (ii) then top(R̃i∗) and (iii) then objects in L(y∗, Ri)\{top(R̃i∗)}
according to Ri. After having done this for all such i ∈ I ′1 and denoting the obtained profile

by R̃′, by BI we continue to have fi∗y∗(R̃
′) > gi∗y∗(R̃

′). As only top(R̃i∗) was moved up

and R̃ ∈ R 6=k , we still have R̃′ ∈ R 6=k . But then let i∗ exchange the positions of y∗ and

top(R̃i∗) in R̃′i∗ and call this final profile R̃∗. This strictly decreases the number of non-top

objects ranked below zk+1 for j, as well as all i ∈ I ′′1 , and weakly decreases it for all i ∈ I ′1
(as either top(R̃i∗)P̃

′
iy
∗P̃ ′izk+1 or top(R̃i∗) is ranked immediately below y∗ in R̃′i) and for

all i ∈ I2\{j} (only weakly if i ∈ I2\{j} ranked both top(R̃i∗) and top(R̃∗i∗) below zk+1).

Note that this also weakly decreases the number of non-top objects ranked below any object

in Zk. Hence, ρi(zk+1, R̃
∗) ≤ ρi(zk+1, R) for i ∈ I2\{j}, ρj(zk+1, R̃

∗) < ρj(zk+1, R), and

ρi(zk+1, R̃
∗) ≤ ρj(zk+1, R̃

∗) for i ∈ I1 contradicting R ∈ R6=k+1.

Finally, consider top(R̃i∗) = zm ∈ Zk (i.e., m ≤ k). Since fi∗y∗(R̃) > gi∗y∗(R̃) there must

be some lower ranked ŷ such that fi∗ŷ(R̃) < gi∗ŷ(R̃). But then, consider the strict upper

countour set of ŷ, i.e. U(ŷ, R̃∗i ) = {o ∈ O : oP̃ ∗i ŷ}. Push all elements in U(ŷ, R̃i∗) ∩ Zk to

just above ŷ to arrive at R̃∗. This preserves fi∗ŷ(R̃
∗) < gi∗ŷ(R̃

∗) (by SP). Moreover, since we

have pushed these objects below y∗ and y∗ ∈ O≥k+1 ∩ top(R̃), we have reduced their rank.

But that contradicts R̃ ∈ R6=k – which concludes the proof. �

C Independence of Non-Bossiness in Theorem 3

Using the example from Svensson (1999, p.563) we show that strategy-proofness, efficiency

and bounded invariance do not imply non-bossiness.

Example 1 Let N = {1, 2, 3, 4} and O = {a, b, c, d}.
Let g be defined as follows: if R1 = R2, then use the SD order 1 − 2 − 3 − 4, and
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otherwise use the SD order 1− 2− 4− 3. It is easy to see that g satisfies strategy-proofness

and efficiency, and violates non-bossiness. We show that g satisfies bounded invariance.

Let R be a profile. Agents 3 and 4 cannot affect who gets objects in their upper contour

set by changing their ranking below, since from their perspective the ordering in which agents

choose is exogenous – their lower contour set for a given object only matters if all objects in

their upper contour set have already been assigned to other agents by the time they get to

pick an object.

Now for agents 1 and 2 there are only two ways in which an agent can change their

ranking such that bounded invariance has any bite – either they change the ranking below

their top ranked object (this should not affect who gets their top-ranked object) or they

change the order of the two least preferred objects (this should not change who gets the two

most-preferred objects)

Let denote the top ranked object of agent 1 by x and consider three cases.

Case 1: Both 1 and 2 rank x at the top and the same object at the second position: R1 : xy . . .

and R2 : xy . . . .

If 1 changes the ordering below x, she still gets x; if 1 changes the order of the last two

objects, 2 still gets y. The same holds for 2.

Case 2: Both 1 and 2 rank x at the top but different objects at second position: R1 : xy . . .

and R2 : xz . . ..

If 1 changes the ordering below x, she still gets x; if 1 changes the order of the last two

objects, 2 still gets z and the same SD order 1− 2− 4− 3 is used. Same holds for 2.

Case 3: 1 and 2 rank different objects at the top: R1 : x . . . and R2 : y . . ..

No matter whether 1 or 2 change the order below their most-(or second-most-)preferred

object, 1 receives x and 2 receives y while 4 gets to choose next and receives her most

preferred object among O\{x, y}.
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