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Abstract

We design the profit-maximizing monetization scheme for a monopolistic
digital content creator. She sells an excludable and non-rival good that
is produced at a fixed cost. Users have heterogeneous private values that
depend on how many users consume the content. Moreover, this audience
size maps into additional creator profits, reflecting additional business op-
portunities. We show that the optimal allocation excludes low-type users,
but may include otherwise unprofitable types that are solely included for
their network value. We suggest an implementation in which users may
voluntarily pay more than others or even subsidize them to make content
provision to a larger audience more likely.
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1 Introduction

The “creator economy” is a system in which platforms such as Instagram, Only-
Fans, Snapchat, Tiktok, Twitch or YouTube rely on content which is created by
its users. The size of this market is estimated to be over $100 billion US dollars.
While this industry has many examples of top earners, the vast majority of creators
struggle to make a living from their content production.1 Many companies have
set up multi-billion dollar “creator funds” to attract and hold on to active content
providers, and others have experimented with various features allowing creators
to monetize their activity. In this paper, we contribute to the design of optimal
monetization schemes for creators, who may only cater to niche audiences. Our
model emphasizes the implications from three important features of this market:
oligopsony, network effects, and the non-rivalry of digital content. We show that
the optimal payment structure is fundamentally different from the simple pricing
maximizing profit in large markets.

We isolate the content creator’s profit maximization from many other economi-
cally relevant aspects of the digital creator economy. Specifically, we consider a
monopolistic content creator as a mechanisms designer who faces a user popula-
tion with heterogeneous values for her product. Digital content is produced at a
one-time cost, and consumption is non-rival and excludable, i.e., once the content
is produced it can be consumed by an unlimited number of users without extra
cost, but access can be denied. Users draw a private value parameter, but their
consumption value also depends on how many other users access content as well.
In addition to this network effect on the user side, the creator’s profit also features
a network effect, e.g., by opening additional business opportunities such as spon-
soring deals. We show that the profit-maximizing allocation can be implemented
with a voluntary payment mechanism in which users can opt to pay more than
others to make content provision more likely. A wide range of platforms such
as OnlyFans, Substack, or Twitch indeed couple subscription fees with “tipping”
or “donation” features. We also illustrate how positive network effects offer a
self-interested rational for allowing “gifts” to other users, another only seemingly
altruistic monetization element employed by, for instance, Twitch.

Besides modeling digital content as a club good, including network effects is inte-
gral both to capture the creator’s objective and the consumers’ value. Consumers
value engagement with other consumers through comments, “likes,” and chats
such that the size of a creator’s community enters their consumption value. Of
course, we also allow for this network effect to be negative (congestion): a large
audience may spark spam or come with a loss of a community feeling through
reduced chances of directly engaging with the creator. The network effect on
the creator’s profit may reflect additional business opportunities that only emerge
for popular creators with sufficiently large audiences. All creators in the “Top

1Some of the “Top Creators 2022” listed by Forbes (2022) such as Bhad Bhabie, FuckJerry,
Jake Paul, or MrBeast made more than $30 million dollars that year, whereas the Economist
(2021) suggests that more than 99% of content creators barely earn below minimum wage.
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Creators 2022” list by Forbes (2022) make a significant fraction of their income
through merchandise, advertisement deals or other partnerships that only arise
through their fame. This feature of our model explains why, for instance, a blog-
ger or podcaster may provide content for free in order to attract a large audience
of which some then buy their book or their designed clothes.

The applied value of this paper lies in fitting the market for digital content cre-
ation into a mechanism-design framework to show that the commonly observed
elements described above can indeed be part of an optimal monetisation scheme.
Our technical contribution is to incorporate the network effect into a modified cost
function, which allows us to characterize the optimal (dominant-strategy) imple-
mentable allocation with a straightforward algorithm. Although this allocation
might exclude low-type users, it may include otherwise unprofitable types solely
for their network value. Varying the direction and size of network effects allow
us to nest several benchmark cases: the allocation of an indivisible private good
(Myerson, 1981), which is essentially a non-rival good with very large negative
network effects, and the allocation of a public good (Clarke, 1971; Groves, 1973),
which is essentially a non-rival good with very large positive network effects such
that it is only valued when it is consumed by all agents.

Cornelli (1996) considers our baseline model without the two network effects. Due
to this relation, our indirect implementation through voluntary payment mecha-
nisms also extends the payment scheme proposed in her paper. She considers a
monopolistic mechanism designer who can produce a good at a fixed cost and zero
marginal cost. By rewriting the creator’s maximization problem, we essentially
model the network effects as (possibly negative) costs. However, in contrast to
Schmitz (1997), who extends the cost function of Cornelli (1996) to agent specific
but constant costs, the “costs” in our setting depend on the audience size. The
network effects on the user side feature in a type-dependent cost-benefit analy-
sis. The similarities with these papers also connect our paper to the literature
on crowdfunding (Belleflamme et al., 2015; Strausz, 2017; Ellman and Hurkens,
2019) and serial cost sharing (Moulin and Shenker, 1992; Moulin, 1994).

By modelling digital content as a club good (Buchanan, 1965), our work also
relates to the mechanism-design literature on excludable public goods (Deb and
Razzolini, 1999; Hellwig, 2003, 2005; Norman, 2004; Hellwig, 2007; Bierbrauer,
2011), where the goal is efficient provision rather than profit maximization. Birulin
(2006) considers public goods with congestion, but, in contrast to us, models
the congestion as a capacity constraint rather than directly in the agents’ payoff
function.

Although we have positive network effects in mind, a user’s consumption value
can also go down if others can consume the good as well. For instance, Imas and
Madarász (2021) provide evidence that consumers’ valuations for the consumption
of a good can be increasing in others’ unmet desires. That is, all else equal the
willingness-to-pay increases when other consumers are excluded from the market.
Second, Schneider (2020) documents that it can have a negative impact on con-
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sumers’ willingness-to-pay if groups that are associated with bad moral values also
consume the good.

2 Model

Players and outcomes: A monopolistic content creator (mechanism designer)
can produce a non-rival but excludable good (her digital content) at cost c. She
faces N users (consumers) i ∈ N , and she designs an arbitrary (finite) game that
determines the outcomes, i.e., who has access to her content and the payments
of all players. Formally, an outcome o = (qi,mi)i∈N determines for each user i
whether he can consume the good, qi ∈ {0, 1}, and his payment mi ∈ R.

Types: User i privately learns his value type θi, an iid draw from a commonly
known distribution with cdf F , continuous density f , and support Θ := [0, θ].
The type profile is denoted by θ := (θi)i∈N ∈ ΘN , and we sometimes use the
notation θ = (θi,θ−i). By independence, the joint distribution of θ is given by
G(θ) = Πj∈NF (θj), and we define G−i(θ−i) analogously.

Payoffs: We call the subset of users that can consume the good the audience,
A = {i : qi = 1} ⊆ N . Given an audience of size |A| = k, user i’s valuation for
the good is v(θi, k). We allow for positive, negative and also non-monotone user
network effects, i.e., v can be increasing, decreasing or non-monotone in audience
size k, but we assume the network effects go in the same direction for all types,
i.e., sign(v(θi, k) − v(θi, j)) = sign(v(θ′i, k) − v(θ′i, j)) for all j, k, θi, θ

′
i. Moreover,

v is continuous and increasing in θi, ∂v(θi,k)/∂θi > 0 for all θi and k, and we impose
the following single-crossing assumption for all x > y, k > k′,

sign{(v(x, k)− v(x, k′))− (v(y, k)− v(y, k′))} = sign{v(x, k)− v(x, k′)}. (SC)

It says that the effect of a change in the audience size on the marginal utility
in terms of types goes in the same direction as the network effect. That is, for
positive network effects, larger types benefit more from an audience increase; for
negative network effects, larger types lose more from an audience increase.

Given k − 1 other users access the good, the utility of user i is given by

qiv(θi, k)−mi.

The mechanism designer maximizes her profit, and she only incurs cost c when
the content is provided, i.e., when she accepts at least one user, k > 0. For a given
outcome, the creator’s profit is

N∑
i=1

mi − c1k>0 + φ(k), (1)

where function φ : {0, 1, . . . , N} → R maps an audience size into creator network
effects, an effect on creator profit that can be positive or negative depending on
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the application. Whereas v measures the network effect on users’ valuations of
the good, φ measures the network effect on the creator’s profit.

Game: The content creator sets up an arbitrary (finite) game in which each
agent has an action (plan) αi ∈ Ai, and an outcome function maps all actions
into a deterministic outcome o ∈ O, g : A → O with A := (Ai)i∈N , where
gi(α) ∈ {0, 1} × R is the final allocation decision and payment of user i given
all players’ actions α. Moreover, we allow users to walk away from the outcome
such that each user must receive at least his outside option, which we normalize to
zero. By the revelation principle,2 we can restrict attention to incentive-compatible
direct revelation mechanisms (DRM) in our quest to find the optimal allocation
that can be implemented by any equilibrium in dominant strategies of any game
designed by the creator. Because direct mechanisms are barely used in practice, we
propose an indirect mechanism that implements this allocation, but in Bayesian
Nash equilibrium instead of dominant strategies.

DRM: In a DRM, each user i reports his type, and functions ⟨q,m⟩ = (qi,mi)i∈N
determine the outcome for each combination of types, qi : ΘN → {0, 1} and
mi : Θ

N → R. For any deterministic DRM, we can define the audience size as
k(θ) :=

∑
i∈N qi(θ).

Given the other users reported types θ̂−i, the payoff of a user of type θi who
reported θ̂i to the DRM is

ui(θ̂i, θ̂−i|θi) = qi(θ̂i, θ̂−i)v(θi, k(θi, θ̂−i))−mi(θ̂i, θ̂−i).

Note that user i’s utility depends on the final allocation through the audience size,
which depends on the other users’ reported types, not their true types. That is,
we are still in a private-value setting. Moreover, for fixed θ̂−i and a given function
q, user i’s report fixes the allocation (and hence k) deterministically. The usual
incentive and participation constraints when maximizing (1) can be expressed as

Ui(θi, θ̂−i) = ui(θi, θ̂−i|θi) ≥ ui(θ̂i, θ̂−i|θi) ∀i, θi, θ̂i, θ̂−i (IC)

ui(θi, θ̂−i|θi) ≥ 0 ∀i, θi, θ̂−i. (IR)

In contrast to a rival-goods problem, we do not have a restriction
∑

i qi(θ) ≤
1 because the good can be consumed by all users at the same time such that
qi(θ) ∈ {0, 1} for all θ and i is the only feasibility constraint of our deterministic
mechanism.

Implementability: The constraint (IC) implies that qi must be weakly increasing
in type θi for all θ−i whereas the transfers are pinned down by the familiar integral
form (4) below. Consequently, (IC) implies (IR) if the lowest type gets at least
utility zero for all θ−i. The following results are helpful to rewrite our problem.

2The revelation principle may not hold when restricting attention to deterministic mecha-
nisms. However, this is not an issue in our setting with ex-post constraints. See Jarman and
Meisner (2017).
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Lemma 1. A direct mechanism ⟨q,m⟩ is incentive compatible if and only if for
every i and every θ−i,

(i) there is a type x(θ−i) such that for all θi > x(θ−i) > θ′i:

qi(θi,θ−i) = 1 and qi(θ
′
i,θ−i) = 0; (2)

(ii) for all θi > θ′′i > x(θ−i),

v(θi, k(θi,θ−i))− v(θ′′i , k(θi,θ−i)) ≥ v(θi, k(θ
′′
i ,θ−i))− v(θ′′i , k(θ

′′
i ,θ−i)); (3)

(iii) for all θi > x(θ−i) > θ′i:

mi(θ
′
i,θ−i) = m(0,θ−i),

mi(θi,θ−i) = m(0,θ−i) + v(θi,θ−i)−
∫ θi

x(θ−i)

∂v(t, k(t,θ−i))

∂t
dt

(4)

The above lemma gives familiar necessary and sufficient conditions (2) and (4)
for incentive compatibility. The lemma below tells us that (3) and (SC) together
imply that higher types who get the good must get a weakly “better” audience
size.

Lemma 2. Suppose (SC) holds. A direct mechanism ⟨q,m⟩ is incentive-compatible
if and only if audience sizes are ordered k1, . . . , kn such that v(θi, kj) ≥ v(θi, kj+1)
for all θi, and given any θ−i the interval (x(θ−i), θ] is partitioned by cutoffs
x1(θ−i) ≥ · · · ≥ xn(θ−i) such that k(θi,θ−i) = j if θi ∈ (xj(θ−i), xj+1(θ−i)].

Rewriting the payoffs: Exploiting the integral form (4), we can rewrite the
designer’s objective as∫

ΘN

(
N∑
i=1

ψ(θi, k(θ))qi(θ)− c1k(θ)>0 + φ(k(θ))

)
dG(θ), (5)

where the virtual value of type θi in an audience of size k is given by

ψ(θi, k) = v(θi, k)−
1− F (θi)

f(θi)

∂v(θi, k)

∂θi
, (6)

where the latter part reflects the information rents needed to incentivize truthful
type revelation. We assume it is strictly increasing in θi, and, in line with Myerson
(1981), we call such environments regular. Because ∂v(θi,k)/∂θi ≥ 0 for all k and
θi, the standard monotone hazard rate condition combined with ∂2v(θi,k)/∂θ2i ≤ 0 is
sufficient for regularity.

3 Analysis

Road map: In the usual fashion, we approach our problem by first considering
a relaxed problem, i.e., we maximize (5) without the constraints (2) and (3) im-
plied by (IC). Next, we verify that our solution indeed satisfies these constraints
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and, hence, it also solves our original (more constrained) problem. Finally, we
discuss Bayesian indirect implementations of our optimal allocation to rationalize
commonly seen elements in real-life monetisation schemes.

3.1 The relaxed problem

Our first step towards the optimal allocation of the relaxed problem is a charac-
terization of the type profiles under which the content can be provided profitably.
The second step clarifies the structure of the audience in these cases for any au-
dience size, while the third step provides an algorithm that finds the optimal
audience size, establishing the optimal allocation for all type profiles. Finally, we
find conditions under which the optimal allocation rule is simple.

1. Content provision: In the relaxed problem, we maximize

N∑
i=1

ψ(θi, k(θ))qi(θ)− c1k(θ)>0 + φ(k(θ)) (7)

separately for all possible type profiles θ and disregard the constraints (2) and (3)
of Lemma 1. Because the problem is linear in qi, it follows immediately that in
the relaxed problem our restriction to deterministic mechanisms is without loss,
qi(θ) ∈ {0, 1} for all θ.

Given a fixed type profile, the creator prefers to provide the good to an audience
consisting of users in set J (left-hand side payoff) over not providing it at all
(right-hand side payoff) if∑

i∈J

ψ(θi, |J |)− c+ φ(|J |) ≥ 0 + φ(0),

which we can rearrange to

Ψ(θ|J) ≥ C(|J |)

with Ψ(θ|J) :=
∑
i∈J

ψ(θi, |J |) and C(k) := c− (φ(k)− φ(0)). (8)

This inequality simply expresses that providing the content is only profitable if
the revenue extractable from audience J exceeds the network effect adjusted cost
for an audience of size |J |. The extractable revenue is the sum of virtual values of
admitted types, and C(k) adjusts the total costs for creator network effects. For
instance, a negative cost adjustment reflects positive creator network effects. By
assumption, the cost adjustment (φ(k) − φ(0)) only depends on the size of the
audience and not its composition.

Lemma 3. Consider the relaxed problem and take any θ. In optimum, the good
is provided if and only if a set J ⊆ N exists such that

Ψ(θ|J) ≥ C(|J |). (8)
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The result above gives a necessary and sufficient condition for content provision,
but it does not delineate to whom the good shall be provided. The proof follows
straightforwardly from the type-by-type creator profit function (7).

2. Audience structure and candidate sets: Given some type profile θ, the
content creator prefers to entertain audience J (payoff on the left-hand side) in-
stead of audience J ′ (payoff on the right-hand side) if∑

j∈J

ψ(θj, |J |)− c+ φ(|J |) ≥
∑
j∈J ′

ψ(θj, |J ′|)− c+ φ(|J ′|),

which can be rearranged to

Ψ(θ|J)−Ψ(θ|J ′) ≥ φ(|J ′|)− φ(|J |). (9)

Without loss of generality, let us relabel users in order of their (virtual) types,
θi ≥ θi+1, where regularity implies ψ(θi, k) ≥ ψ(θi+1, k) for all k. Since (φ(k) −
φ(k)) = 0 for all k ∈ N, we can immediately infer from (9) that out of all possible
audiences of the same size k, the seller prefers Jk = {j : j ≤ k} the most. That is,
in the relaxed problem, every optimal allocation that accepts k users must accept
the k users with the highest (virtual) types. Hence, we can restrict attention to
such allocation sets, and we only need to find the optimal audience size k∗ for all
type realizations θ. Let us call a set with this structure a candidate set. That is,
Jk is a candidate set if and only if

Jk(θ) = {j ∈ N : j ≤ k and θi ≥ θi+1 ∀i}. (10)

Lemma 4. Consider the relaxed problem and take any θ. If the good is produced,
the optimal audience is a candidate set.

This result follows from the objective (7) combined with the insights above. Having
established the structure of the optimal audience for any size k, we can finalize
the characterization of the optimal allocation by determining the optimal audience
size for all type vectors θ.

3. Audience size and general algorithm: For any optimal audience Jk, it
must be unprofitable a) to add the lowest-index users i ̸∈ Jk and b) to remove the
highest-index users j ∈ J . If candidate set Jk is the optimal audience, (9) implies

a)Ψ(θ|Jk)−Ψ(θ|Jk+j) ≥φ(k + j)− φ(k) ∀j ∈ {1, . . . , N − k}, and
b)Ψ(θ|Jk)−Ψ(θ|Jk−j) ≥φ(k − j)− φ(k) ∀j ∈ {1, . . . , k}.

(11)

In general, these are many constraints to keep track of, and we essentially define
an algorithm that compares the revenue of all candidate sets, in keeping with
Lemma 4. Further assumptions on the network effects can reduce the complexity
of our algorithm considerably.

Let J ⪰θ J
′ express that, for a given type vector θ, the creator weakly prefers

audience J over audience J ′, i.e., it expresses that (9) holds. Next, we define
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thresholds on the additional revenue when adding the next j highest-value users
{k + 1, . . . , k + j} to audience Jk,

γ(k, k + j,θ≤k) :=

=C(k+j)−C(k)︷ ︸︸ ︷
φ(k)− φ(k + j)+

k∑
i=1

[ψ(θi, k)− ψ(θi, k + j)] (12)

with θ≤k = (θ1, . . . , θk). This threshold reflects two changes in the creator’s profit
that the revenue extractable from the j additional users needs to compensate.
First, the creator network effect changes by (φ(k)−φ(k+ j)). This first part can
be used to represent the variable part of the total adjusted total cost, C(k) =
c + γ(0, k, ·) for all k. Second, each user i ≤ k already admitted to the audience
now garners value v(θi, k + j) ̸= v(θi, k). That is, due to the network effects on
the users’ side the creator can extract either more or less value from the users Jk
already tentatively considered for her audience. While the sign of this effect only
depends on whether we assume positive or negative network effects, its size also
depends on θ≤k.

That is, for any candidate set Jk, we have

Jk+j ⪰θ Jk ⇐⇒
j∑

i=1

ψ(θk+i, k + j) ≥ γ(k, k + j,θ≤k). (13)

Without further assumptions on the form of v in k, it may be possible that
ψ(θk+1, k+1) < γ(k, k+1,θ≤k), but ψ(θk+1, k+2)+ψ(θk+2, k+2) > γ(k, k+2,θ≤k).
That is, it can be unprofitable to add user (k + 1) to the audience alone, while
it is profitable to add user (k + 1) and (k + 2) together. Similarly, it might be
profitable to add a single user to the audience, but even more profitable to remove
several users. Consequently, we cannot generally restrict attention to “local” (one-
by-one) changes in our quest to find the optimal allocation. Nevertheless, once we
have defined the general algorithm to find the optimal allocation, we can specify
conditions under which a greedy algorithm that only considers such local changes
succeeds as well.

General algorithm: To state the general algorithm that finds the optimal allo-
cation in the relaxed problem, we define the operator

maxθ{J,K} =

{
J if J ⪰θ K,

K otherwise.

Now, we, we define the direct mechanism ⟨q,m⟩ by the following algorithm. In
each step k, this algorithm compares the step’s candidate set Jk to the step’s
comparison set Kk. The preferred of the two sets becomes the comparison set in
the next step. The final comparison set is the audience that generates the maximal
revenue, and the algorithm’s final step is to a) verify whether this maximal revenue
covers the adjusted total cost and to b) use Myerson’s revenue-equivalence formula
(4) to determine the payments.
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Definition 1. ⟨q,m⟩ is defined by the following steps for each θ.

step 0: Set J0(θ) = K1(θ) = ∅.

step 1: Set J1(θ) = {1}, and set K2(θ) = maxθ{J1(θ), K1(θ)} ...

step k: Set Jk(θ) = {1, 2, . . . , k}, and set Kk+1(θ) = maxθ{Jk(θ), Kk(θ)} ...

Stop The most profitable allocation set is KN+1(θ) with size k(θ) = |KN+1(θ)|.
Set for all i ∈ N

qi(θ) = 1
i∈KN+1(θ) and Ψ(θ|KN+1(θ))≥C(k(θ))

. (14)

That is, the optimal audience only consists of users KN+1(θ), and the good
is provided if and only if the adjusted costs are covered. Set for all i ∈ N

mi(θ) = v(θi, k(θ)) qi(θ)−
∫ θi

0

qi(x,θ−i)
∂v(x, k(θ))

∂x
dx. (15)

This algorithm indeed solves our relaxed problem.

Lemma 5. ⟨q,m⟩ as defined above is the solution to the relaxed problem.

The algorithm finds the audience that allows to extract the maximal revenue by
essentially comparing all candidate sets. Step N of the algorithm only guarantees
that the revenue extractable from the concluding set KN+1 covers the variable
part of the adjusted cost C(k), Ψ(θ|KN+1) ≥ φ(k) − φ(0). Hence, an extra step
is necessary to consider the fixed part c. The algorithm also makes sure that if
the total adjusted costs are not covered for set KN+1, they are not covered for any
other audience such that the algorithm’s provision decision is indeed final.

Simple allocation rule: Our algorithm q above solves the relaxed problem by
comparing all candidate sets. However, the creator or a user may not find it
straightforward to compute the allocation even for a given θ, but an understanding
of the allocation mechanism (at least intuitively) is crucial for actual equilibrium
play to ensue. We now consider the simpler allocation rule q̂, and give a necessary
and sufficient condition such that q̂ and q are equivalent. In other words, under
this condition the considerably less complex rule q̂ solves the relaxed problem.
The transfer rule m̂ again just follows from the integral form (4).

Definition 2. Allocation rule q̂ is defined as follows for all θ:

q̂i(θi) = 1
i≤k̂(θ) and Ψ(θ|J

k̂(θ)
≥C(k̂(θ))

with k̂(θ) = argmax
k

ψ(θk, k) ≥ γ(k − 1, k,θ≤k−1).
(16)

For a given θ, allocation rule q̂ simply identifies the highest-index k̂ such that the
virtual type exceeds the local cutoff for inclusion γ(k̂ − 1, k̂,θ≤k−1), and then it
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accepts all users k ≤ k̂, while rejecting all others. That is, conditional on the
provision of the content, the k-th highest type is admitted to the audience if and
only if

ψ(θk, k) ≥ γ(k − 1, k,θ≤k−1) ⇐⇒ θk ≥ xk(θ−k) := ψ−1(γ(k − 1, k,θ≤k−1), k),
(17)

where ψ−1(·, k) is the inverse of function ψ(·, k) with respect to the first argument.
This inverse exists because all virtual values for each k are strictly increasing by
our regularity assumption.

This insight makes the allocation rule easy to understand for users. User i knows
his own valuation parameter θi and knows that the other users types θ−k fix a
sequence of cutoffs (xk)k∈{1,...,N}. Any user i then understands that if he was the
k-th highest type, he is conditional on content provision part of the audience if
and only if θi ≥ xk(θ−i).

Before we give the condition under which q and q̂ are equivalent, we observe that
it is always the case that any optimal mechanism rejects all users i > k̂(θ). That

is, the algorithm of Definition 1 can essentially stop at step k̂(θ) without loss of

generality for all θ. By definition of k̂, no type θi with i > k̂ exceeds its local
cutoff, which implies that adding any number of users i > k̂ only reduces profit.

Lemma 6. For any θ, qi(θ) = 0 for all i > k̂(θ).

Given the good is provided, allocation rules q and q̂ are only equivalent when, in
addition to the insight above, it is also not profitable to drop users from audience
Jk̂(θ). The result below gives a necessary and sufficient condition for this case.

Lemma 7. Allocation rule q̂ solves the relaxed problem if and only if

j γ(k̂(θ)− 1, k̂(θ),θ≤k̂(θ)−1) ≥ γ(k̂(θ)− j, k̂(θ),θ≤k̂(θ)−j) ∀j,θ. (18)

Sufficient condition for an optimal simple rule: Condition (18) nests the

special case of no network effects at all, when φ(k) = 0 and ψ(θi, k) = ψ̃(θi) for all
k and θi. Here, γ(k, j,θ≤k) = 0 and C(k) = c for all k, j,θ such that the simple
allocation rule of Cornelli (1996) is optimal: accept all types with non-negative
virtual values and provide the good if the sum of these virtual values exceeds c.

Intuitively, (18) says that the inclusion conditions for lower (higher-index) types at
a later stages of algorithm q can only become “harder.” Hence, when adding user
k̂ to audience Jk̂−1 is profitable it must also be profitable to add user k̂ together
with users with higher (lower-index) types to a smaller candidate set. A sufficient
condition for (18) is that both φ and ψ are concave in audience size. That is, as
long as these functions have an inverted u-shape, they can also be non-monotone.

Taking stock, we have solved the relaxed problem in general, and we have provided
a condition on the network effects such that the solution to the relaxed problem
is simple. Now, we verify that our solution indeed satisfies the constraints which
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the relaxed problem ignores, and, as a result, the solutions to the relaxed problem
and the constrained problem coincide.

3.2 The full constrained problem

Given our regularity assumption on virtual valuations (6) and our single-crossing
assumption (SC), the optimal allocation in the relaxed problem is indeed incentive
compatible and individually rational. Hence, it also solves the more constrained
problem. First, the algorithm behind q admits users to the audience in order
of their virtual types, which under regularity coincides with the order of types.
Therefore, any admitted user remains in the audience if his type is increased.
Second, (SC) ensures that whenever two types obtain the good with different
audience sizes, the larger type gets the audience size he prefers.

Proposition 1. In regular environments given (SC), ⟨q,m⟩ of Definition 1 is the
solution to the full constrained problem.

Discussion of non-regular environments: The optimality of q in the full con-
strained problem hinges on regularity in a fashion similar to the classical result by
Myerson (1981). With non-monotone virtual values, q would violate the mono-
tonicity constraint. As expected, the solution to this problem is to apply the
classical ironing techniques applied separately for every audience size k and to
then run the algorithm with with ironed virtual values. Ironing (or, alternatively,
called bunching) implies that the types in the ironed region get the same contract
(q̃, m̃). While this insight implies that the optimal allocation rule is stochastic
in Myerson’s model with a single rival good, this is not necessarily true in our
model. For instance, when all network effects are weakly positive, the creator al-
ways wants to add all types in the bunching region whenever she wants to add one
of them. That is, restricting attention to deterministic allocation rules is without
loss. However, this is clearly not true when negative network effects are allowed.
The most obvious example is Myerson’s setting with a single scarce good, which
is nested by our model when v(θi, 1) = θi and v(θi, k) < 0 for all θi and all k > 1.

Discussion of the optimal allocation against benchmarks: Figure 1 juxta-
poses the optimal allocations in four exemplary settings with N = 2 users, uni-
formly distributed types on [0, 1], and cost c = 1/2. Step by step and starting from
a setting without any network effects (Cornelli, 1996), we add a component of our
model in each panel. In Figure 2, we focus on user network effects, and we discuss
the intermediate cases between the benchmark of Myerson (1981) (strong negative
user network effects) and public goods (strong positive user network effects).

Panel 1a is copied from Cornelli (1996, Figure 1), who essentially solves our
model without network effects, i.e., with va(θi, k) = θi and φ(k) = 0 for all θi
and k. Here, the creator’s first-best solution is to provide the good to both users
for all θ north-east of the dashed line defined by cost c and not to provide it
otherwise. Because incentive compatibility prevents the creator from extracting
full surplus, the first-best allocation does not maximize profits when information
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(b) No user network effects, constant cre-
ator network effects, φb(1) = φb(2).
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(c) No user network effects, variable creator
network effects, φc(1) < φc(2).
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{1}

{2} {1, 2}

{ }

c− φb(2)

(d) User and creator network effects.

Figure 1: Optimal allocations when adding components of our model step by step.
The creator network effects essentially lead to the model of Cornelli (1996) with a
different cost function. Lines are straight due to the assumed linearity of ψ (linear
v and uniformly distributed types).

rents are accounted for. For type combinations north-east of the dash-dotted line
in Panel 1a, the sum of virtual values covers the cost. Excluding types θi < 1/2
with negative virtual values increases revenue, γa(k − 1, k,θ) = 0 for all k,θ.
Hence, the good is provided if and only if the sum of non-negative virtual values
exceeds the cost, Ca(k) = c for all k, and, in contrast to the first-best allocation,
sometimes only a single user may access the content. In contrast to the public-
good case, the possibility to provide the good while excluding low types allows
to maintain higher prices. In contrast to the private-good case, the non-rivalry
allows the seller to accept all users that increase revenue. Thus, the non-rivalry
with a fixed cost creates a positive externality among users even without network
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effects. All types θi > 1/2 have a positive externality because they help to cover
the creator’s cost c.

Panel 1b and Panel 1c incorporate creator profit network effects. In Panel
1b, they are constant for any provision, φc(2) = φc(1) = 1/10 > φc(0) = 0.
The new optimal allocation is visualized by the thick black lines, where as the
dotted lines represent the optimal allocation from Panel 1a. Incorporating these
constant creator profit network effects, we see a uniform shift of the adjusted cost
Cb(k) = Ca(k) − 1/10 and a shift in the thresholds for good provision to a single
user and to two users. Panel 1c includes variable profit network effects, specifically
φc(2) = 1/5 > φc(1) = 1/10 > φc(0) = 0. There is an additional shift just for the
provision for two users compared to Panel 1b. There is, however, no effect on the
threshold of providing to one user only as the extractable valuation while providing
to one user does not change. Only when provided to both users does the network
effect allow for lower types to be included in the allocation.

Panel 1d depicts the optimal allocation in a setting with the same variable net-
work effects as in 1c and additionally incorporates (positive) consumer network
effects vd(θi, k) = (2+k)θi/3, where vd(θi, 1) = va(θ, k) for all k. The dashed line
characterizes the optimal allocation from Panel 1c. Because the consumer network
effects are positive, this line is shifted to the south-west. Additionally, the lines
separating the allocation of providing to one instead of two consumers is tilted. In
the other panels, a consumer type left/below this line has an insufficient virtual
value and is excluded in Cornelli (1996) purely for incentives, i.e., to maintain
lower information rents for higher types. In Panel 1d, however, the designer does
not want to exclude all such types because an exclusion also reduces the valuation
of the other consumer. The higher the valuation of this other consumer the higher
the loss in extractable value of removing a consumer.

Figure 2 focuses on the user network effects (no profit network effects), and it
shows how our model nests benchmarks from the literature. We assume uniformly
distributed types on [0, 1], and cost c = 1/4 with the utility function v(θ, 1) = πθ
and v(θ, 2) = (1 − π)θ. That is, an decrease in π makes consumption alone less
valuable and consumption together more valuable. The optimal allocation without
network effects (π = 1/2) is depicted by the dotted lines in each panel.

Panel 2a essentially represents the case of an indivisible, excludable, rival good
(Myerson, 1981). The thick line in that Panel represents the optimal allocation
with π = 1, i.e., a user only garners a payoff if he consumes the good alone and
otherwise negative network effects destroy all value. Our optimal direct mechanism
of Proposition 1 collapses to a second-price auction with a reserve price. A decrease
in π up to 2/3 (dashed line) does not qualitatively change the structure of the
allocation. Only the reserve price changes as the good becomes less valuable when
consumed alone while consumption together still destroys too much value that it
is never optimal to have both users share the good.

Panel 2b shows smaller negative network effects. For parameters π slightly
smaller than 2/3 (dashed line), it becomes optimal to have some types close to
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such that good is essentially rival.
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(c) Small positive user network effects.
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(d) Positive negative user network effects
such that good is essentially public.

Figure 2: Optimal allocations compared to benchmark cases. If user network
effects are sufficiently strongly negative, the good is provided to at most one user
(Myerson, 1981). If user network effects are sufficiently strongly positive, the good
is provided to at least two users (Clarke, 1971; Groves, 1973). The dotted lines
represent the settings without network effects (Cornelli, 1996).

the 45-degree line share the good. However, if the types are too far apart it is op-
timal to award the good only to the higher type. Further decreasing π enlarges the
area of type combinations for which the good is allocated to both users. Panel 2c
shows smaller positive network effects with the thick line compared to no network
effects (dotted line) and negative network effects (dashed line).

In essence, Panel 2d represents the case of a public good (non-excludable and
non-rival). In that Panel, a user only garners a payoff if no users are excluded
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and otherwise exclusion destroys all value,3 i.e., π = 0. Qualitatively, the optimal
allocation looks the same for all π smaller than 1/4 (dashed line), where the good
is also only provided to both users or not at all. Our optimal direct mechanism
of Proposition 1 collapses to a standard VCG mechanism (Clarke, 1971; Groves,
1973).

Externalities due to production cost: More broadly, our settings resembles
that of a public good regardless of the direction of user network effects and despite
the possibility of exclusion. The reason is that the fixed production cost c create
a positive externality among the users, even when user network effects are slightly
negative. To see this, it is easiest to consider the dotted lines in Figure 2, which
represent the setting without any network effects (Cornelli, 1996). Here, user
1 may benefit from an increase in user 2’s type when this increase pushes the
extractable revenue above the cost. However, this is only relevant for types θ1 ∈
[1/2, 3/4] because lower types never get the good, and higher types always get the
good and are indifferent between consumption alone and together. With network
effects, these boundaries vary with θ2. When network effects are positive, the
externality mentioned before still exists, and the positive network externality is
added on top, making the total externality strictly positive in expectation. In the
allocation depicted in Panel 2b, an increase in θ2 can either add user 2 to the
audience or even kick out user 1 from the audience. However, there is a small
interval of types θ1 such that the good is not produced for low θ2, only provided
to user 2 for high θ2, and provided to both for intermediate θ2, i.e., the externality
is not monotone.

3.3 Optimal interim allocation and indirect Bayesian im-
plementation

In the previous subsection, we dealt with the optimal allocation under a dominant-
strategy incentive constraint. Because we arrived at our results using pointwise
maximization of the relaxed problem in Section 3.1, this allocation is also optimal
given a weaker Bayesian incentive constraint. That is, the allocation characterized
by Proposition 1 is also the optimal interim allocation. Because direct mechanisms
are rarely seen in practice, we now consider a Bayesian implementation of this
allocation through an indirect mechanism. Indeed, we can rationalize commonly
seen features of monetisation schemes in the creator economy.

Trivial economies: First, in Lemma 8, we determine conditions leading to a
trivial outcome, i.e., never or always supplying the good. The first applies if
the cost is sufficiently high, and the second applies if it is sufficiently low and
there are sufficiently strong positive network effects. In the following, we call
any economy satisfying the conditions of Lemma 8 “trivial” and all other settings
“non-trivial.” Second, in Lemma 9, we characterize the optimal interim expected

3To be precise, here it is not that the designer is unable to exclude users, but does not want
to because value to extract can only exits without exclusion. Our model would also allow to
model exclusion costs directly through profit network effects.
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payment function in non-trivial cases, and the notation introduced here is helpful
to state the indirect implementation.

Lemma 8. The following settings constitute trivial economies.
a) The good is never provided, i.e., (q,m)(θ) = (0,0) for all θ if and only if

kψ(θ, k) < C(k) ∀k. (19)

b) The good is always provided for free to all, i.e., (q,m)(θ) = (1,0) for all θ if
and only if

(i) Nψ(0, N) ≥ C(N), and

(ii) (N − k)ψ(0, N) ≥ γ(k,N,0≤k) ∀k.
(20)

Outside of the cases outlined above, the good is only sometimes provided, and
maybe only to some users. For our indirect implementation, we now introduce the
optimal interim allocation,

Qi(θi) := Eθ−i
[qi(θi,θ−i)], and Mi(θi) := Eθ−i

[mi(θi,θ−i)],

where ⟨Q,M⟩ corresponds to ⟨q,m⟩.

We define θp as the lowest type to get the good for some type combination,

y = min
θi

{θi : ∃θ−i : q(θi,θ−i) = 1} = min
θ−i

x(θ−i). (21)

By optimality, it must be that Qi(θi) = M i(θi) = 0 for all θi < y, i.e., all these

types are excluded. Incentive compatibility—i.e., Lemma 2—implies that type θ
must get the “best contract” in the sense that he always consumes the good with
the most preferred audience size among all types. However, there may be other
types who get the same allocation for all θ−i. Let the smallest of these types be

y = min
θi

{θi : q(θi,θ−i) = q(θ,θ−i) and k(θi,θ−i) = k(θ,θ−i)∀θ−i}. (22)

By incentive compatibility, Qi(θi) = Qi(θ) and Mi(θi) = Mi(θ) for all θi ∈ [y, θi].
It is possible that y = θ. The following lemma shows that higher types pay more
in expectation, and two types only have the same interim expected payment if
they get exactly the same contract.

Lemma 9. Consider any non-trivial economy. For all users i, the optimal interim
expected transfer M i is weakly increasing in the type, and whenever M i(x) =
M i(y) for two types x ̸= y, it must be that k(x,θ−i) = k(y,θ−i) and qi(x,θ−i) =
qi(y,θ−i) for all θ−i.

Indirect implementation: We exploit this structure to propose an indirect im-
plementation with a simple structure. In an all-pay contribution mechanism,
each agent i selects a price pi ∈ [0,∞), and then an allocation decision is taken
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based on the price vector p = (pi)i∈N , while all agents have to pay their selected
price independent of the allocation decision. In the formal language of Section 2,
any all-pay contribution mechanism has an action set Ai = [0,∞), and is then
fully determined by an outcome function g such that for any p and any user i,
gi(p) ∈ {(0, pi), (1, pi)}. A (pure) strategy for a user i in the all-pay contribution
game induced by such a mechanism is a function ρi : Θi → Ai that maps a type
into a price, and a strategy profile consists of all players’ strategies ρ = (ρi)i∈N .

Proposition 2. There is an all-pay contribution mechanism ⟨Ã, g̃⟩ that imple-
ments the optimal allocation in a Bayesian Nash equilibrium ρ∗.

The idea behind this implementation is simple. Essentially, it follows a reverse rev-
elation principle. We know that the optimal direct mechanism ⟨q,m⟩ is Bayesian
incentive compatible and that M is either invertible or, where it is constant, gives
all types in this region the same contract. Hence, the game induced by outcome

function g̃i(pi,p−i) = (q(M
−1

i (pi),M
−1

−i (p−i)), pi) has a Bayesian Nash equilibrium
in which any type θi selects price ρi(θi) = M i(θi) to get expected utility for this
type

ũi(ρi(θi), θi) = Eθ−i

[
q̃i(ρi(θi),ρ−i(θ−i))v(θi, k̃(ρi(θi),ρ−i(θ−i))− ρi(θi))

]
= Eθ−i

[
qi(θi,θ−i)v(θi, k(θi,θ−i))−mi(θi,θ−i))

]
,

where the incentive compatibility of ⟨q,m⟩ ensures that no type θi finds it prof-
itable to select a price designated to another type. If agent i chooses a price
outside of the range of the interval [M i(y),M i(y)], he never gets the good such
that these deviations are also not profitable.

Voluntary payments: Self-selected contributions are a common feature in mone-
tization schemes in the creator economy, e.g., “cheering” on Twitch or “donations”
on other platforms. In our model, a high-type user would volunteer to pay more
than other users to jointly consume exactly the same good. Through the lens of
our model, the rational behind this behavior is to increase the probability that the
content is provided. That is, next to the transfer, also the threat of not producing
any content can be used to incentivize users. In the benchmark of Myerson (1981),
the above implementation corresponds to an all-pay auction. The allocation ex-
ternality discussed in the previous section is the reason why this implementation
resembles the equilibria in games of private provision of public goods.

Often users only have to pay their contribution when they actually consume the
content. In some settings, a similar construction is possible, in which the user
only has to pay if he is a member of the audience, i.e., we reverse engineer the
optimal allocation and payments thorough the equation Mi(θi) = Qi(θi)pi. For
instance, Cornelli (1996) suggests such a scheme or, as another example, the op-
timal allocation in Myerson (1981) can be implemented with a first-price auction
rather than an all-pay auction (or the second-price auction essentially suggested
by Proposition 1). However, it is not feasible in the example below, where Mi/Qi

is not invertible.
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Community gifts with positive network effects: Twitch also allows gifted
subscriptions (“community subs”) by one user to another one. In some sense,
we incorporate this kind of “altruism” as positive network effects into the payoff
function v. If a user prefers to consume the good together with more others, there
is an implicit motive to subsidize other users. Figure ?? (details in the appendix)
illustrates how to employ community gifts to implement the optimal allocation in a
2-user setting with positive user network effects as depicted in Panel 2c. Here, the
creator offers each user to voluntarily choose a reduced price ri[0, p) or a regular
price pi ∈ [p, p] with an additional subsidy si ∈ [0, s]. The regular prices and the
subsidies are paid unconditionally as in Proposition 2. In contrast, the reduced
price only has to be paid when the user obtains the good which happens only if
the other user paid a large enough subsidy.

To put it in a nutshell, our model offers a rationalization for two common fea-
tures of monetization schemes in the creator economy, voluntary payments (“do-
nations”) and community support features. On a first glance, the usefulness of
these features appears to be be driven by generosity. However, our model shows
that both are in fact perfectly in line with purely self-interested agents, when two
important aspects of the creator economy are accounted for. First, the non-rivalry
of digital content with production costs entails that a user may want to pay more
to increase the probability that the digital content is provided (or, alternatively,
that the creator can continue her career rather than leaving the creator economy
for a job in another industry). Moreover, a user can benefit from subsidizing
other users to garner positive network effects. Although we do not deny the im-
portance (or existence) of altruism in small digital communities, we believe our
model contributes to a better understanding of the full picture.

Exclusive content with negative network effects: Some digital content is
provided in a more exclusive fashion that is more akin to standard private-good
provision. For example, chess streamers may discuss games in front of a larger
audience, but may also offer to give subscribers exclusive and private feedback on
their own games. As an alternative example, live-streamers offering adult content
on camera may perform in front of a larger audience, but may change to a private
one-on-one setting for additional payments. Figure ?? (details in the appendix)
illustrates how to employ exclusive content to implement the optimal allocation
in a 2-user setting with negative user network effects as depicted in Panel 2b.

Here, users are sorted into three different tiers depending on their types. Low
types are “regular users” who may only consume the content in a group, and
they only have to pay their selected price if they get to consumer the content.
Intermediate types are “subscribers.” They unconditionally pay an entry fee for
a first-price auction to bid on consuming the good alone, but may also consume
the good as a group or not at all. High types are “premium subscribers.” They
unconditionally pay a higher entry fee for a first-price auction to bid on consuming
the good alone, but get to consume the good with certainty (either alone or in a
group).
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4 Conclusion

We design the profit-maximizing monetization schedule for a monopolistic digital
content creator. Her content is an excludable and non-rival good that is produced
once at a fixed cost. Users have heterogeneous private values that depend on the
audience size, i.e., how many other users also consume the content. Moreover,
the audience size maps into additional creator profits. We construct an allocation
algorithm to implement the optimal allocation while truthful revelation of the
types is a dominant strategy for users. On top of this direct mechanism, we
discuss indirect implementations of this allocation, and we are able to rationalize
common features in monetization schemes in the creator economy.

Appendix

5 Proofs

Proof of Lemma 1. We first show that in any incentive-compatible mechanism (2),
(3), and (4) must hold.

Fix any user i and two types x > y. (IC) requires that for each θ−i (replaced by
· below)

Ui(x, ·) = v(x, k(x, ·))qi(x, ·)−mi(x, ·) ≥v(x, k(y, ·))qi(y, ·)−mi(y, ·) and

Ui(y, ·) = v(y, k(y, ·))qi(y, ·)−mi(y, ·) ≥v(y, k(x, ·))qi(x, ·)−mi(x, ·).

Subtracting the inequalities yields

qi(x, ·)
(
v(x, k(x, ·))− v(y, k(x, ·))

)
≥ qi(y, ·)

(
v(x, k(y, ·))− v(y, k(y, ·))

)
.

Hence, for all x, y,θ−i with qi(x,θ−i) = q(y,θ−i) = 1, we obtain (3). Because
x > y and v is increasing in θi for all k, we obtain for all other x, y,θ−i that qi
must be weakly increasing in θi,

qi(x, ·) ≥ qi(y, ·)
(
v(x, k(y, ·))− v(y, k(y, ·))
v(x, k(x, ·))− v(y, k(x, ·))

)
.

Because the second factor on the right-hand side is positive, it must be that
qi(x, ·) = 1 when qi(y, ·) = 1, and it must be that qi(y, ·) = 0 when qi(x, ·) = 0.
Therefore, for all θ−i, qi is either constant or has exactly one jump upwards, i.e.,
(2) holds.
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Moreover, considering x = y + δ with qi(x, ·) = qi(y, ·) = 1, we obtain

lim
δ→0

Ui(y + δ, ·)− U(y, ·)
δ

≥ lim
δ→0

1
(
v(y + δ, k(y, ·))− v(y, k(y, ·))

)
δ

=
∂v(y, k(y, ·))

∂y
,

lim
δ→0

Ui(x, ·)− U(x− δ, ·)
δ

≤ lim
δ→0

1
(
v(x, k(x, ·))− v(x− δ, k(x, ·))

)
δ

=
∂v(x, k(x, ·))

∂x
,

which implies that U ′
i(x,θ−i) =

∂v(x,k(x))
∂x

wherever qi is equal to one. Since (IC)
also implies that Ui is Lipschitz-continuous, it is differentiable almost everywhere
and equals the integral over its derivative. Hence, (4) follows from rearranging.

Now, suppose (2), (3), and (4) hold. Then, also (IC) holds, because

Ui(x, ·) ≥ ui(y, ·|x) = qi(y, ·)v(x, k(y, ·)−mi(y, ·)
Ui(x, ·) ≥ ui(y, ·|x) + qi(y, ·)v(y, k(y, ·)− qi(y, ·)v(y, k(y, ·)
Ui(x, ·) ≥ qi(y, ·)

(
v(x, k(y, ·)− v(y, k(y, ·)

)
+ Ui(y, ·)∫ y

x

qi(t, ·)
∂v(t, k(t, ·))

∂t
dt ≥

∫ y

x

qi(y, ·)
∂v(t, k(y, ·))

∂t
dt

is implied by these conditions.

Proof of Lemma 2. By (3) of Lemma 1, (IC) requires that for all x > y > x(θ−i),

((v(x, k(x, ·))− v(y, k(x, ·)))− (v(x, k(y, ·))− v(y, k(y, ·))) ≥ 0. (23)

By contradiction suppose that k(x, ·) = kj and k(y, ·) = kj′ with j > j′, i.e., the
lower type y receives a “better” audience size. (SC) implies that

((v(x, k(x, ·))− v(y, k(x, ·)))− (v(x, k(y, ·))− v(y, k(y, ·))) < 0, (24)

a contradiction.

Vice versa, suppose that for all x > y, k(x, ·) = kj and k(y, ·) = kj′ with j ≤ j′.
The negation of (24) implies (23).

Proof of Lemma 3. Let J(θ) be the optimal audience in the relaxed problem given
type vector θ. That is, qi(θ) = 1i∈J(θ).

Contradicting the lemma, suppose J(θ̂) ̸= ∅ although (8) is violated for all J .

The creator makes a loss that can be avoided by setting J(θ̂) = ∅. Analogously,

J(θ̂) = ∅ cannot be optimal for type vector θ̂ if a profitable J satisfying (8)
exists.

Proof of Lemma 4. The right-hand side of (9) is zero when |J | = |J ′|, while the
left-hand side is positive when J ̸= J ′ has structure (10).
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Proof of Lemma 5. Fix any θ. By Lemma 4, the optimal audience J∗ is either
empty or it is the most profitable candidate set, J∗ = Jk∗ for some k∗. The
algorithm compares only candidate sets, and it considers all such sets. Hence, it
cannot select a set with another structure. We show that our algorithm selects
KN+1 = Jk∗ and only provides the good if and only if J∗ = Jk∗ .

If J∗ is empty, Lemma 3 implies that for all non-empty candidate sets Jk, Ψ(θ|Jk) <
C(k). Hence, the algorithm never chooses to provide the good in the final step.

Similarly, if J∗ is non-empty, optimality implies that Ψ(θ|Jk∗) ≥ C(k∗). Hence,
the algorithm chooses to provide the good in the final step if KN+1 = Jk∗ . By
optimality, Jk∗ = maxθ{Jk∗ , Kk} for all k. Hence, Jk∗ becomes the comparison set
at step k∗, Kk∗+1 = max{Jk∗ , Kk∗} = Jk∗ , and it stays the comparison set until
the final step, KN+1 = Kk∗+1 = Jk∗ .

Suppose there is a candidate set Jk ̸= KN+1 such that Ψ(θ|Jk) ≥ C(k), and let
k∗ = k + j for some j > 0. Because Jk∗ = maxθ{Jk, Jk∗}, it holds that

j∑
i=1

ψ(θk+i, k + j) ≥ φ(k)− φ(k + j) +
k∑

i=1

[ψ(θi, k)− ψ(θi, k + j)]

Ψ(θ|Jk+j) ≥ φ(k)− φ(k + j) + Ψ(θ|Jk)
Ψ(θ|Jk∗) ≥ φ(k)− φ(k + j) + C(k) = C(k∗),

and an analogous argument holds when j < 0. Hence, if the algorithm chooses not
to provide the good at the final step, there is no other set for which the adjusted
total cost is covered.

Proof of Lemma 6. Fix any θ. By definition of k̂ in (16), for all k > k̂, it holds

that ψ(θk, k) < γ(k − 1, k,θ≤k−1). Hence, for all j ≥ 1, j ≤ n− k̂, we have

j∑
i=1

ψ(θk̂+i, k̂ + i) <

j∑
i=1

γ(k̂ + i− 1, k̂ + i,θ≤k̂+i−1), (25)

which is equivalent to the statement that adding any number of j users to audience
Jk̂ reduces profit. The reason is that the right-hand side of the inequality above
can be rewritten as

j∑
i=1

φ(k̂ + i− 1)− φ(k̂ + i) +
k̂+i−1∑
ℓ=1

(ψ(θℓ, k̂ + i− 1)− ψ(θℓ, k̂ + i))


= (φ(k̂)− φ(k̂ + j)) +

j∑
i=1

k̂+i−1∑
ℓ=1

(ψ(θℓ, k̂ + i− 1)− ψ(θℓ, k̂ + i))

= (φ(k̂)− φ(k̂ + j)) +
k̂∑

i=1

ψ(θi, k̂) +

ĵ−1∑
i=1

ψ(θk̂+i, k̂ + i)−
k̂+j−1∑
i=1

ψ(θi, k̂ + j)
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such that (25) becomes

j∑
i=1

ψ(θk̂+i, k̂ + j) < (φ(k̂)− φ(k̂ + j)) +
k̂∑

i=1

(ψ(θi, k̂)− ψ(θi, k̂ + j))

j∑
i=1

ψ(θk̂+i, k̂ + j) < γ(k̂, k̂ + j,θ≤k̂).

Proof of Lemma 7. Fix any θ, and let k̂ = k̂(θ).

Suppose (18) holds. For any j < k̂, we have

k̂∑
i=k̂−j+1

ψ(θi, k̂) ≥ jψ(θk̂, k̂) ≥ jγ(k̂ − 1, k̂,θ≤k̂−1) ≥ γ(k̂ − j, k̂,θ≤k),

where the first inequality follows from our relabeling of subscripts and regularity,
the second inequality follows from the definition of k̂ in (16), and the third inequal-
ity follows from (18). Consequently, for any candidate set Jk̂−j, adding all users

up to user k̂ is profitable and removing any user from Jk̂ is unprofitable. Lemma
6 implies that adding more users is also unprofitable. The resulting allocation is
the most profitable candidate set, i.e., q̂(θ) = q(θ).

Suppose (18) is violated for some j. Construct another type vector θ′ such that

θ′i = θi for all i ̸∈ {k̂ − j + 1, k̂ − j, . . . , k̂} and ψ(θ′i, k̂) = γ(k̂ − 1, k̂,θ≤k̂−1) for all

i ∈ {k̂−j+1, k̂−j, . . . , k̂}. That is, the types of users outside of the subset remain
unchanged from θ, while the types of all users in the subset are set equal to a local
cutoff type. Because we only changed the types of users i ≤ k̂, by construction
(16), k̂(θ′) = k̂ = k̂(θ).

The violation of (18) implies the following inequality

k̂∑
i=k̂−j+1

ψ(θ′i, k̂) = jψ(θ′
k̂
, k̂) = jγ(k̂ − 1, k̂,θ≤k̂−1)

< γ(k̂ − j, k̂,θ≤k̂−j) = γ(k̂ − j, k̂,θ′
≤k̂−j

).

Hence, for type vector θ′, removing users from audience Jk̂ increases profit. Since
the inequality is strict, there is a positive measure of type vectors such that the
above holds. Hence, allocation rule q̂ cannot be optimal.

Proof of Lemma ??. Clearly, (18) holds if the inequality holds for both added
components separately, i.e., if

j(φ(k − 1)− φ(k)) ≥ φ(k − j)− φ(k) and (26)

j

k−1∑
i=i

(ψ(θi, k − 1)− ψ(θi, k)) ≥
k−j∑
i=i

(ψ(θi, k − j)− ψ(θi, k)). (27)
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(26) is equivalent to

(φ(k − 1)− φ(k)) + (j − 1)(φ(k − 1)− φ(k)) ≥
φ(k − j)− φ(k − j + 1) + φ(k − j + 1)− φ(k),

and we show that the inequality holds for both added components separately.
Concavity (26) implies that

φ(k − 1)− φ(k) ≥ φ(k − 2)− φ(k − 1) ≥ · · · ≥ φ(k − j + 1)− φ(k − j).

The missing second part,

(j − 1)(φ(k − 1)− φ(k)) ≥ φ(k − j + 1)− φ(k),

is the original inequality (26) with j replaced by (j − 1). Therefore, (26) holds
because it holds for (j − 1) by induction as it is just a restatement of concavity
(??) when j = 2.

Next, we consider (27) with a case distinction.
a) Suppose that ψ(θi, k − 1)− ψ(θi, k) ≥ 0 (we assume the same sign for all θi in
our model). Then we can use the same argument as above because

j
k−1∑
i=1

(ψ(θi, k − 1)− ψ(θi, k)) ≥ j

k−j∑
i=1

(ψ(θi, k − 1)− ψ(θi, k))

=

k−j∑
i=1

(ψ(θi, k − 1)− ψ(θi, k)) + (j − 1)

k−j∑
i=1

(ψ(θi, k − 1)− ψ(θi, k)) .

b) Suppose that ψ(θi, k) < ψ(θi, k − 1)

Proof of Proposition 1. To show that q is incentive-compatible, we verify that it
always satisfies the three conditions of Lemma 1, i.e., (2), (3), and (4). The
allocation is individually rational if it is incentive-compatible and the participation
constraint binds for type θi = 0, which is true.

(4) is satisfied by construction (15).

We fix a user i and consider two possible types x > y for him. We also fix the
types of all other users θ−i and order them, θj > θj+1 for all j.

To show (2), we need that

qi(y,θ−i) = 1 =⇒ qi(x,θ−i) = 1, and qi(x,θ−i) = 0 =⇒ qi(y,θ−i) = 0.

The first part cannot be violated because if the algorithm added type y (and
possibly others) to the audience at some step k, it would also add type x. That
is, the inclusion condition at step k is

ψ(y, k) +
k−1∑
j=1

ψ(θj, k)−
k′−1∑
j=1

ψ(θj, k
′) ≥ φ(k′)− φ(k)
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for some k′. Because of regularity, this condition also holds for type x. Hence,
if type x was not added at an earlier step, it would have been added at step k
as well. Similarly, if the condition does not hold for type x, it cannot hold for
type y. Also because of regularity, we have that if there exists an audience set
including type y for which the provision condition (8), the condition also holds
for the same audience set including type x > y. Therefore, given any θ−i, qi is
weakly increasing in type θi for all i such that (2) holds.

Suppose that qi(x, ·) = qi(y, ·) = 1, but k(x, ·) = kx > k(y, ·) = ky. It must be
that

ψ(x, kx) +
kx−1∑
j=1

ψ(θj, kx) + φ(kx) ≥ ψ(x, ky) +

ky−1∑
j=1

ψ(θj, ky) + φ(ky), and

ψ(y, ky) +

ky−1∑
j=1

ψ(θj, ky) + φ(ky) ≥ ψ(y, kx) +
kx−1∑
j=1

ψ(θj, kx) + φ(kx).

Subtracting these two inequalities, we obtain

ψ(x, kx)− ψ(y, kx) ≥ψ(x, ky)− ψ(y, ky)

(v(x, kx)− v(y, kx))− (v(x, ky)− v(y, ky)) ≥h(x, kx, ky) + h(y, kx, ky), (28)

where

h(x, kx, ky) :=
1− F (x)

f(x)

(
∂v(x, kx)

∂x
− ∂v(x, ky)

∂x

)
.

The hazard rate is non-negative, and, by (SC), the second factor is positive if and
only if v(x, kx) > v(x, ky). That is, the left-hand side of (28) is positive if and
only if type x prefers kx over ky. Thus, (3) holds.

Hence, ⟨q,m⟩ is incentive compatible and individually rational, and thus also solves
the full constrained problem.

Proof of Lemma 8. Suppose (19) holds. For any k ≤ N , the revenue from ac-
cepting the highest k types does not cover the adjusted cost C(k) even when the
highest k types are all θ. By regularity, this is also true for all other type vectors.
Suppose (19) does not hold for some k. Then there exists a type vector realization
such that the profit from producing the good for the highest k types is profitable.
Hence, Lemma 3 implies statement a).

Suppose (20) holds, and suppose all types are zero, θ = 0. Part (i) implies that
accepting all N users covers the adjusted total cost , and part (ii) implies that
removing any user from this full audience reduces profits. Hence qi(0) = 1 for
all i. The incentive compatibility of ⟨q,m⟩—Lemma 1(i)—implies the audience
cannot be smaller for any other type vector. Individual rationality and v(0, k) = 0
for all k imply mi(0) = 0 for all i.

Suppose one part of (20) does not hold. Either accepting all users does not cover
the adjusted cost or excluding some users for some type vector increases profit.
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Hence, accepting all users is not optimal. Combined with the previous paragraph,
this implies statement b).

Proof of Lemma 9. This lemma follows from applying the expectation operator to
the payment function mi.

Proof of Proposition 2. Take any setting and the corresponding optimal direct
mechanism ⟨Q,M⟩. We construct the corresponding all-pay contribution mecha-

nism ⟨Ã, g̃⟩ and the Bayesian Nash equilibrium in the corresponding game that
implements the optimal allocation, ρ∗ = (ρ∗i )i∈N where ρ∗i : Θi → Ai = [0,∞) is a
strategy in the game.

First, set g̃i(pi,p−i) = (0, pi) for all pi ̸∈ [M i(y),M i(y)] such that choosing any
such price is weakly dominated by selecting price pi = 0. Suppose all types θi < y
select ρ∗i (θi) = 0.

Second, suppose any type θi ∈ [y, y) selects price

ρ∗i (θi) =M i(θi),

and any type θi ≥ y selects price ρ∗i (θi) =M i(θ).

Third, whenever M i is invertible, construct

g̃i(pi,p−i) = (q(M
−1

i (pi),M
−1

−i (p−i)), pi)

such that under the supposed strategy profile g̃i(pi,p−i) = (qi(θ),Mi(θi)) for all i
and all θ. If for several types x ̸= y we have M i(x) = Mi(y), Lemma 9 ensures
that qj(x,θ−i) = qj(y,θ−i) for all j ∈ N such that it does not matter which types
is used as input among types in a flat region of M i.

Under the proposed strategy profile, user i’s expected utility from following strat-
egy ρi is

ũi(ρi(θi), θi) = Eθ−i

[
q̃i(ρi(θi),ρ−i(θ−i))v(θi, k̃(ρi(θi),ρ−i(θ−i))− ρi(θi))

]
= Eθ−i

[
qi(θi,θ−i)v(θi, k(θi,θ−i))−mi(θi,θ−i))

]
,

which by incentive compatibility and individual rationality of ⟨q,m⟩ is at least
as large as the expected utility from any deviation to any price pi ∈ {0} ∪
[M i(y),M i(y)], which dominate all other prices. Hence, ρ∗ is a Bayesian Nash
equilibrium of the constructed all-pay contribution and implements the optimal
allocation for all θ.
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