

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Brehm, Johannes; Gruhl, Henri; Kottmann, Robin; Schmitz, Laura

Working Paper Low depression zones? The effect of driving restrictions on air pollution and mental health

Ruhr Economic Papers, No. 1093

Provided in Cooperation with: RWI – Leibniz-Institut für Wirtschaftsforschung, Essen

Suggested Citation: Brehm, Johannes; Gruhl, Henri; Kottmann, Robin; Schmitz, Laura (2024) : Low depression zones? The effect of driving restrictions on air pollution and mental health, Ruhr Economic Papers, No. 1093, ISBN 978-3-96973-270-0, RWI - Leibniz-Institut für Wirtschaftsforschung, Essen, https://doi.org/10.4419/96973270

This Version is available at: https://hdl.handle.net/10419/302183

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

RUHR ECONOMIC PAPERS

Johannes Brehm Henri Gruhl Robin Kottmann Laura Schmitz

> Low Depression Zones? The Effect of Driving Restrictions on Air Pollution and Mental Health

> > **CWI** #1093

Imprint

Ruhr Economic Papers

Published by

RWI – Leibniz-Institut für Wirtschaftsforschung Hohenzollernstr. 1-3, 45128 Essen, Germany Ruhr-Universität Bochum (RUB), Department of Economics Universitätsstr. 150, 44801 Bochum, Germany Technische Universität Dortmund, Department of Economic and Social Sciences Vogelpothsweg 87, 44227 Dortmund, Germany Universität Duisburg-Essen, Department of Economics Universitätsstr. 12, 45117 Essen, Germany

Editors

Prof. Dr. Thomas K. Bauer RUB, Department of Economics, Empirical Economics Phone: +49 (0) 234/3 22 83 41, e-mail: thomas.bauer@rub.de Prof. Dr. Wolfgang Leininger Technische Universität Dortmund, Department of Economic and Social Sciences Economics - Microeconomics Phone: +49 (0) 231/7 55-3297, e-mail: W.Leininger@tu-dortmund.de Prof. Dr. Volker Clausen University of Duisburg-Essen, Department of Economics International Economics Phone: +49 (0) 201/1 83-3655, e-mail: vclausen@vwl.uni-due.de Prof. Dr. Ronald Bachmann, Prof. Dr. Almut Balleer, Prof. Dr. Manuel Frondel, Prof. Dr. Ansgar Wübker RWI, Phone: +49 (0) 201/81 49-213, e-mail: presse@rwi-essen.de

Editorial Office

Sabine Weiler

RWI, Phone: +49 (0) 201/81 49-213, e-mail: sabine.weiler@rwi-essen.de

Ruhr Economic Papers #1093

Responsible Editor: Manuel Frondel

All rights reserved. Essen, Germany, 2024

ISSN 1864-4872 (online) - ISBN 978-3-96973-270-0

The working papers published in the series constitute work in progress circulated to stimulate discussion and critical comments. Views expressed represent exclusively the authors' own opinions and do not necessarily reflect those of the editors.

Ruhr Economic Papers #1093

Johannes Brehm, Henri Gruhl, Robin Kottmann, and Laura Schmitz

Low Depression Zones? The Effect of Driving Restrictions on Air Pollution and Mental Health

Bibliografische Informationen der Deutschen Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de

RWI is funded by the Federal Government and the federal state of North Rhine-Westphalia.

https://dx.doi.org/10.4419/96973270 ISSN 1864-4872 (online) ISBN 978-3-96973-270-0 Johannes Brehm, Henri Gruhl, Robin Kottmann, and Laura Schmitz*

Low Depression Zones? The Effect of Driving Restrictions on Air Pollution and Mental Health

Abstract

Does exposure to air pollution impact mental health? This paper uses administrative health insurance data to estimate the long-term cumulative effects of air pollution exposure on mental health outcomes. For identification, we exploit the staggered introduction of Low Emission Zones (LEZs) across German cities, which restrict access for emission-intensive vehicles. We find that LEZs reduce various air pollutants and improve the population's mental health measured by depression and anxiety diagnoses, prescriptions, and specialist visits. The health benefits emerge gradually, with younger individuals benefiting the most. Our findings suggest substantial mental health co-benefits and avoided health costs from improved air quality.

JEL-Codes: I18, Q53, Q58

Keywords: Mental health; air pollution; low emission zones

August 2024

^{*} Johannes Brehm, RWI and Hertie School; Henri Gruhl, RWI and Vrije Universiteit Amsterdam; Robin Kottmann, RWI and Paderborn University; Laura Schmitz, DIW Berlin and Berlin School of Economics; – We thank Jörg Ankel-Peters, Christian Flachsland, Derek Johnson, Fabian Dehos, Manuel Frondel, Christoph M. Schmidt, Colin Vance, Nicole Wägner, Matthias Westphal, and seminar participants at ETH Zurich, University of Zurich, Hertie School, RWI, the MEEP, and AURÖ workshop for their helpful comments and suggestions. Kathrin Waltner and Marlin Riede provided excellent research assistance. All errors and views expressed in this article are solely those of the authors. – All correspondence to: Johannes Brehm, RWI, Hohenzollernstraße 1–3, 45128 Essen, Germany, e-mail: johannes. brehm@rwi-essen.de

1 Introduction

According to the World Health Organization (WHO), in 2019, nearly a billion people, including 14 % of the world's adolescents, grappled with mental health disorders, with suicide claiming more than 1 in 100 lives (WHO, 2022). Mental health, akin to physical well-being, significantly influences economic productivity. Depression and anxiety, two prevalent conditions, annually cost the global economy a staggering US\$1 trillion each (WHO, 2022). The escalating demand for mental health services further strains existing resources and systems across many nations. Therefore, understanding the contributing factors to mental health conditions is essential for developing targeted interventions and policies.

The effects of the biophysical environment on mental health are not yet well understood (Kühn & Gallinat, 2024). Recent advances in the medical literature have provided evidence supporting a plausible link between exposure to air pollution and mental health outcomes (e.g., Guxens & Sunyer, 2012, Roberts et al., 2019). Multiple studies have established that a part of the adverse effects of air pollution on cardiovascular and respiratory diseases (e.g., Kelly & Fussell, 2015, Rückerl et al., 2011) can be attributed to inflammation and oxidative stress (Arias-Pérez et al., 2020, Laumbach et al., 2014). The latter, in turn, are processes known to contribute to various psychiatric diagnoses (Coccaro et al., 2014, Miller & Raison, 2016, Najjar et al., 2013, Salim, 2014). While medical research has provided strong evidence of a negative correlation between air pollution and mental health (see e.g., Braithwaite et al., 2019, Zundel et al., 2022, for overviews), the multitude of confounding factors and the potential for reverse causality necessitate a more rigorous approach to establish causation.

An emerging body of economic research indicates that air pollution has causal effects on neurocognitive disorders such as dementia (Bishop et al., 2023), severe mental health outcomes including suicide (Persico & Marcotte, 2022), and overall well-being or other selfreported mental health-related outcomes (Beshir & Fichera, 2022, Chen et al., 2018b, Zheng et al., 2019a). However, no study to date has estimated the causal effects of air pollution on broader mental health outcomes like depression and anxiety using administrative data. When assessing mental health outcomes, administrative data offers distinct advantages over self-reported survey data, including larger sample sizes, extensive population coverage, and greater objectivity and accuracy of outcome measures due to the absence of response bias (see e.g., Braun et al., 2001, Paulhus, 1984).

This paper conducts the first large-scale study of air pollution and broader mental health relying on administrative data. This data is provided by a large German public health insurance fund covering more than ten percent of the German population (around 9 million individuals). Using depression and anxiety diagnoses as well as antidepressant prescriptions and specialist visits it offers detailed insights into the impact of air pollution on mental health outcomes at the extensive and intensive margin. Our identification strategy rests on the staggered implementation of low-emission zones (LEZs) in German cities after 2008, which by limiting vehicle access to designated areas, has led to significant reductions in coarse particulate matter (PM_{10}), nitrogen dioxide (NO_2), and carbon monoxide (CO) (see e.g., Sarmiento et al., 2022, Wolff, 2014). The regional and spatial variation caused by the introduction of LEZs in Germany offers a favorable setting for identifying the causal effects of air pollution on socio-economic outcomes, as shown by e.g. Klauber et al. (2024), Pestel and Wozny (2021), and Sarmiento et al. (2022). To account for the staggered implementation of LEZs, we rely on an estimator proposed by Sun and Abraham (2021) in addition to the standard two-way fixed effects (TWFE) estimation (see e.g., Goodman-Bacon, 2021, for a discussion on potential biases in TWFE estimation).

Our findings indicate that the introduction of LEZs reduced PM_{10} levels by 10.4 percent and NO_2 by 15.3 percent in covered areas. While we find substantially smaller effects on $PM_{2.5}$ (a reduction of 3.1 percent), we interpret these findings as a lower bound because satellite-based measures might not capture traffic pollution as well as ground-based measurement stations placed close to large roads. These joint reductions in air pollution translate into meaningful and robust effects on mental health. Specifically, they are associated with a 4 percent decrease in the likelihood of getting antidepressant prescriptions, a 5.7 percent decrease in the risk of visiting a specialist (psychologist or psychotherapist), a 3.5 percent reduction in the risk of a depression diagnosis, and a 4.2 percent decrease in the risk of an anxiety diagnosis. Moreover, we find economically meaningful and statistically significant effects at the intensive margin: LEZs reduce the number of antidepressant prescriptions by 5.7 percent and number of specialist visits by 7.4 percent. Our heterogeneity analysis suggests that the effects are larger for the youngest group of 15 to 29 year olds. One possible explanation for this is that exposure to inflammatory stimuli may have a more pronounced effect during adolescence due to ongoing brain development (Danese & Baldwin, 2017, Roberts et al., 2019), besides lifestyle differences that lead to a higher exposure of younger people to traffic pollution. Overall, our findings point to meaningful causal effects of traffic-related air pollution on mental health, similar in magnitude to effects measured on cardiovascular health (Margaryan, 2021, Pestel & Wozny, 2021). Besides pointing to an important pathway to help prevent mental health disorders, we provide estimates for the fiscal benefits of driving restriction policies related to public spending on mental health. Our cost-benefit analysis suggests that LEZs in Germany have prevented approximately 23,000 cases of depression diagnoses per year, translating into \notin 150 to 200 million in yearly public health expenditure savings.

We contribute to several strands of the medical and economic literature. First, we add to the understanding of the role of air pollution in the development of mental illnesses. Experimental research conducted on animals (e.g., Levesque et al., 2011) and post-mortem observations in humans (e.g., Calderón-Garcidueñas et al., 2008) have demonstrated that especially fine and ultrafine particles like PM_{10} and $PM_{2.5}$ as well as NO_x are able to reach the brain, influencing vasoregulatory pathways and triggering neuroinflammation (Block & Calderón-Garcidueñas, 2009). When air pollutants enter the body, they trigger an innate immune response observable through elevated levels of cytokines in blood and cerebrospinal fluid. These cytokines promote inflammation, tissue swelling, release of cytotoxic substances, and further inflammatory signaling, leading to widespread neuroinflammation. This process damages and causes the loss of neural tissue in brain areas such as the prefrontal and frontal cortices and the olfactory bulb (Brockmeyer & d'Angiulli, 2016). A growing body of evidence suggests direct associations between air pollution and psychopathology. Numerous meta-studies have synthesized findings from observational research, largely reporting positive associations between pollution exposure and adverse mental health outcomes such as depression (Borroni et al., 2022, Braithwaite et al., 2019, Zeng et al., 2019, Zundel et al., 2022), psychological stress (Trushna et al., 2021), anxiety (Zundel et al., 2022), and suicide rates (Davoudi et al., 2021, Heo et al., 2021).¹ Our study provides essential causal evidence for the effect of air pollution on psychopathology in the general population of a large industrialized country.

Second, our study adds to the economic literature on the effects of air pollution on mental health and well-being. Several studies, predominantly conducted in China using the China Family Panel Study (Chen et al., 2018b, Ju et al., 2022, Ju et al., 2023, Li et al., 2021, Ren et al., 2023, Xue et al., 2019, Zhang et al., 2017b), have explored the effects of air pollution on various subjective well-being outcomes. A first strand uses linear regression models, thereby relying on the assumption that air pollution exposures are quasi-random after accounting for individual-level factors and that all potential omitted confounders are time-invariant.² Other authors employ contemporaneous variations in air pollution, such as heat inversions (e.g., Balakrishnan & Tsaneva, 2023, Chen et al., 2018b), or cross-boundary air pollution flows (e.g., Zheng et al., 2019b), as instrumental variables to establish causality.³ While these studies provide vital insights into the causal effects of self-reported mental health in China and India, it remains unclear whether these findings hold external validity for Western countries due to differences in traffic and healthcare infrastructure, culture, and pollution levels. Evidence from Western countries on the causal effects of air pollution on mental health is extremely scarce. Beshir and Fichera (2022) investigate the effects of London's ultra-low emission zone (ULEZ) on mental health, concluding that the ULEZ improved feelings of happiness, worthiness and satisfaction. However, the study suffers from the limitation that inner-city London, where the ULEZ is located, is arguably different from other cities in the UK in many re-

¹However, it is important to note that Trushna et al. (2021) and other studies have emphasized substantial between-study (e.g., Fan et al., 2020) and between-sample (e.g., Zijlema et al., 2016) heterogeneity. Consequently, Braithwaite et al. (2019) advocates for further high-quality investigations to explore potential causal associations, calling for continued efforts to enhance our understanding of the complex relationship between air pollution and mental health.

²For instance, Zhang et al. (2017b) maintains that hazardous air pollution correlates with heightened hedonic unhappiness, depressive symptoms, and decreased mental well-being. Additionally, Li et al. (2021) find that a 15-point increase in mean Air Pollution Index (API) correlates with a 5.5 percent increase in psychological distress among Chinese adolescents, along with a 0.9 percent decrease in self-esteem.

³Zheng et al. (2019b), using a happiness index derived from 210 million geo-tagged tweets on the Chinese micro-blog platform *Sina Weibo* (equivalent to Twitter), demonstrate that $PM_{2.5}$ air pollution significantly reduces expressed happiness. Similarly, Chen et al. (2018b) and Balakrishnan and Tsaneva (2023) find that higher pollution levels in China and India respectively had significant negative impacts on self-reported measures of well-being and mental health.

spects. In contrast, LEZs in Germany were introduced in many different cities, creating more favorable conditions for estimating difference-in-difference models. In addition, similar to the studies from China and India, Beshir and Fichera (2022) measure effects on self-reported mental health. Especially when measuring sensitive outcomes like mental health, survey data may encompass social desirability response bias leading to inaccurate self-reporting (see e.g., Paulhus, 1984, on the concept of social desirability bias). Administrative data can provide a more comprehensive and objective view of healthcare utilization, while also ensuring a larger, more representative sample. Persico and Marcotte (2022) is the only study using administrative cause of death data from all death certificates in the U.S. between 2003 and 2010. They provide compelling evidence for the causal relationship between air pollution and suicide rates. However, suicide is only one extreme outcome of psychopathology. We aim to offer a broader perspective on the causal effect of air pollution on mental health.

In addition, we contribute to the existing knowledge on the effectiveness of the German LEZ as an example of driving restriction policies that could be implemented in other countries as well. Here, our contribution is twofold: First, we expand the evidence on the effect of the policy on pollution levels, by exploiting monthly global satellite-based fine particulate matter concentrations (PM_{2.5}) compiled by (Van Donkelaar et al., 2021). Previous papers (e.g., Gehrsitz, 2017, Pestel & Wozny, 2021, Sarmiento et al., 2022, Wolff, 2014) have focused on the policies' effect on coarse particulate matter (PM_{10}) and nitrogen dioxide (NO_2) , as well as carbon monoxide (CO) and ground-level ozone (O_3) in the case of Sarmiento et al. (2022).⁴ While all air pollutants have adverse effects on health, recent estimates by the European Environment Agency (EEA) show that with approximately 238,000 premature deaths attributable to fine particulate matter $(PM_{2.5})$ in the 27 EU Member States in 2020, $PM_{2.5}$ is associated with the most substantial health impacts (Agency, 2022). Therefore, more knowledge on which policies effectively reduce $PM_{2.5}$ is urgently needed. Second, we add to our understanding of German LEZs on socio-economic and health outcomes through their effect on air pollution. Pestel and Wozny (2021) and Margaryan (2021) demonstrate that the implementation of LEZs in Germany led to a reduction in hospitalizations related to circulatory and respiratory conditions. In terms of economic benefits, Wolff (2014) provide evidence that the policy's health benefits translate into lower health expenditures. Moreover, Klauber et al. (2024) find that newborns exposed to cleaner air required less medication for respiratory diseases. Gehrsitz (2017) finds only minor effects on the number of stillbirths and no impact on infant health. Brehm et al. (2022) use the exogenous variation induced by the introduction of LEZs to study human capital effects of pollution, finding that LEZs increased the share of elementary school children transitioning to the highest secondary school track increases by 0.9-1.6 percentage points. In terms of self-rated life satisfaction, however, Sarmiento et al. (2022) show that LEZs temporarily had adverse effects on the well-being of residents. Given the strong link of mental health with both physical health and well-being and the opposing

⁴See Pestel and Wozny (2021) for an overview on how these different pollutants pose risks to human health.

effects found in the literature, it is not clear in which ways LEZs affect mental health.

The remainder of the paper is structured as follows. Section 2 provides insights into the institutional setting. Section 3 describes the data sources used and Section 4 the empirical strategy. Section 5 presents the result, including heterogeneity and robustness analyses as well as a discussion of the mechanisms at play. Section 6 presents a cost-benefit analysis while Section 7 concludes.

2 Institutional Setting

2.1 Low Emission Zones

In response to increasing evidence on the health risks of air pollution in the early 2000s, the EU has issued a series of Clean Air Directives, targeting fine particles, coarse particles (PM₁₀), nitrogen dioxide (NO₂), and other ambient pollutants, defining specific numerical limits on their ambient levels.⁵ Directive 1999/30/EC divided the PM₁₀ limits into two phases, with the first phase spanning from 2005 to 2009 and the second phase starting in 2010 and continuing thereafter. In the first phase, PM₁₀ regulations stipulated that, at a city's highest-polluting station, the daily average must not exceed 50 $\mu g/m^3$ for more than 35 days per year, and the yearly average must not exceed 40 $\mu g/m^3$. Cities failing to meet EU air quality standards were required to develop "Clean Air Plans" laying out policies and measures to comply with the targets. Between 2005 and 2007, 79 German large cities violated the 35-day limit (Wolff & Perry, 2010).⁶

Among various measures, the most popular was the introduction of Low Emission Zones (LEZs), which restricted the access of high-emitting vehicles, such as older diesel cars, from entering certain areas, mainly in the city centers. Starting in 2008, vehicles must display a colored windscreen sticker based on EU-wide tailpipe emissions categories in order to enter the designated areas. Initially, vehicles without stickers were banned, followed by those with red or yellow stickers. Over time, only cars with green stickers are permitted in these zones.⁷ Enforcement is carried out by the police and public order office, with violations resulting in fines of $\in 100.^{8}$

LEZ implementation is decided at the regional level, involving city administrations, councils, and local stakeholders, although state governments can overrule local authorities. The

 $^{^{5}}$ The 1999 Directive required basic PM_{2.5} monitoring, while only the 2008 directive established specific thresholds for PM_{2.5}.

⁶These legally binding standards have been in effect since 2005. Directive 2008/50/EC (EU, 2008) defines the current lawfully binding limits and detailed measurement procedures for all criteria pollutants (NO₂, SO₂, PM₁₀, CO, and O₃). It is a revised version of Directives 1999/30/EC (EU, 1999), 2000/69/EC (EU, 2000), and Directive 2002/3/EC (EU, 2002).

⁷Stickers are assigned based on the tax class and EURO standard recorded in the car registration book and regulated by the labeling regulation in the 35th Ordinance for the Implementation of the Federal Immission Control Act (35. BImSchV). Neu-Ulm is an exception, where yellow stickers are still allowed.

⁸See Wolff and Perry (2010) for more details on the implementation of LEZs in Germany.

need for a Clean Air Plan and LEZ varies based on prior pollution levels and regional decisionmaking processes, which are influenced by various interests. Stakeholders can both support and oppose LEZs, with legal actions taken on both sides. Due to frequent conflicts of interest between state and local policymakers, the decision-making process for introducing LEZs can vary significantly in duration. Further, NGOs and private citizens often resort to legal action to support or oppose air quality regulations, leading to further plausibly exogenous variation in the timing of LEZ implementation (see Klauber et al., 2024, for a detailed discussion).

By 2022, the number of LEZs had increased to 56 (Table A.1). Despite the evident success of the LEZs in curbing pollution and improving public health, a first wave of LEZs in five cities in the federal state of Baden-Wuerttemberg was abolished in 2023⁹, followed by a second wave in June 2024, operating under the assumption that pollution levels would not significantly rise and that European Union air quality standards could still be met without the imposition of LEZs. Currently, there are 38 active LEZs in Germany.

2.2 Mental Health in the German Healthcare System

Germany provides universal access to high-quality healthcare, ensuring that its population receives necessary medical services. Public health insurance is mandatory for employees earning below a certain income threshold (currently around $\notin 69,300$ annually) and for various other groups such as students, pensioners, and the unemployed. Those above this income threshold, as well as self-employed individuals and civil servants, can opt for private health insurance. Approximately 90 percent of the German population is covered by public health insurance. Coverage includes prescribed drugs and therapies, including psychotherapy, ensuring that patients have access to necessary medications and treatments without significant out-of-pocket expenses.

Germany's healthcare system is characterized by a robust infrastructure. In 2017 there were approximately 8.0 hospital beds per 1,000 inhabitants compared to 2.9 hospital beds in the United States. In addition, there were 4.5 doctors per 1,000 inhabitants in 2020 compared to 3.6 doctors in the US. The density of psychotherapists in Germany is 13.2 (2015) per 100,000 inhabitants compared to 10.5 (2016) in the US (WHO, 2024b).

Mental health care is predominantly provided through a collaborative approach involving psychiatrists, psychologists, psychotherapists, and general practitioners. Patients typically access mental health care by first consulting a general practitioner who can refer them to specialized services as needed. However, there are notable issues regarding the availability of psychotherapists, especially for outpatient care, often leading to excess demand. An analysis by the Federal Chamber of Psychotherapists in 2019 found that, on average, people

 $^{^9 \}mathrm{One}$ LEZ in Erfurt had been abolished earlier in 2021.

had to wait nearly five months to start therapy after a need for treatment was identified (Bundespsychotherapeutenkammer, 2021).¹⁰

3 Data

3.1 Administrative Health Insurance Data

Our primary data source is administrative health records for nine million individuals (over ten percent of the German population) insured with one of Germany's largest public health insurers (Grobe & Szecsenyi, 2023). Figure A.1 displays the geographical distribution insured individuals across Germany. In addition to all inpatient and outpatient health records, diagnoses, prescriptions, and medical billings, it includes detailed individual-level characteristics such as age, sex, education and the most recent residence on zip code level.¹¹ We consider working age individuals (15-65 years old) who were insured without interruptions between 2005 and 2019.¹² We further exclude individuals who move their residency (county level) during the sample period to address potential selection biases related to changes in residence within LEZs during the study period.

Following Pestel and Wozny (2021) and Ahammer et al. (2023), we use the ICD-10-GM for diagnoses¹³ and the Anatomical Therapeutic Chemical (ATC) Classification System for prescriptions¹⁴ to analyze health outcomes. We also include specialist visits¹⁵ and specific outpatient billings¹⁶ to identify therapy sessions. Our outcomes for diagnoses, prescriptions, and specialist visits are averaged at the zip code level, thus defining an average risk. In addition, we analyze the average number of defined daily dosages (DDD)¹⁷ of prescriptions and specialists billings as a measure of the intensive margin. See Table 1 for a descriptive

¹⁰Since April 1, 2017, the reformed psychotherapy directive has been in effect. Psychotherapists are now required to offer initial consultations and can provide acute treatment for patients in acute mental crises (Bundespsychotherapeutenkammer, 2018)

¹¹Education information is derived from the *Tätigkeitsschlüssel* (occupation key), a numeric code used to classify the professional activities of employees for social security reporting purposes. Employers use it to report to social security authorities, providing detailed information about the types of jobs their employees perform. Due to the conversion of a 5-digit code to a 9-digit code in 2010, which significantly altered schooling information, we use the largest common denominator across time. We define a binary education variable, where one indicates the insured individual has earned the *Abitur* (university entrance qualifying exam) and zero otherwise.

 $^{^{12}}$ See Figure A.2 for detailed information on age distribution.

¹³We consider relevant ICD codes for depression (F32 and F33) and anxiety (F40-F48), arm injuries (S52) as well as cardiovascular diseases (I). See Table A.3 for more details.

¹⁴In Germany, strong medications such as antidepressants require a prescription. We consider relevant prescriptions with drugs categorized as antidepressants (N06A and N06CA) and cardiac medications (C). See Table A.4 for more details.

¹⁵Specialist groups are identified by the eighth and ninth digits of the lifetime physician number. Psychiatrists and psychotherapists are coded as "58", "60", "61", "68" and "69."

¹⁶Outpatient billing data from health insurance companies consist of codes from the standardized evaluation scale (EBM). We select relevant codes (21220, 21221, 22211, 22212, 22222, 22230, 23211, 23212, 23214, 23220, 23210) identifying therapy sessions, see Table A.2 for more details.

¹⁷The assumed average maintenance dose per day for a drug used for its main indication in adults (WHO, 2024a).

summary of our outcome variables.

		Outside LEZs				Inside LEZs		
Mental health outcomes	mean	sd	\min	max	mean	sd	\min	max
Extensive Margin								
Depression probability	0.07	0.03	0	0.2	0.07	0.03	0	0.19
Anxiety probability	0.06	0.02	0	0.18	0.06	0.02	0	0.14
Antidepressant probability	0.07	0.02	0	0.18	0.07	0.02	0	0.15
Specialist visit probability	0.06	0.03	0	0.23	0.06	0.03	0	0.18
Intensive margin								
Antidepressant prescriptions	0.25	0.1	0	0.67	0.27	0.09	0	0.63
Antidepressant DDD	17.78	8.31	0	64.38	18.91	7.44	0	49.03
Specialist visits	0.18	0.08	0	0.62	0.19	0.09	0	0.54
Specialist billings	1.75	0.89	0.03	9.32	1.71	0.85	0	6.34
Confirmatory and Placebo Outcomes								
Cardiovascular disease probability	0.32	0.08	0	0.63	0.3	0.07	0.03	0.56
Cardiovascular prescription probability	0.21	0.07	0	0.42	0.19	0.06	0	0.45
Cardiovascular prescriptions DDD	128.06	48.74	0	342.95	113.52	45.36	0	346.63
Injury probability	0.11	0.03	0	0.21	0.1	0.03	0	0.21
Observations	10,738			9,332				

Table 1: Descriptive statistics: Outcomes

Note: This table displays different health outcomes for zip codes inside and outside of LEZs for 2005 to 2019. Mean and standard deviation are weighted by the number of insured individuals in our sample.

3.2 Low Emission Zone and Air Pollution Data

The German Environmental Agency (UBA) provides data on the history of implementation, stringency (such as the ban of Euro 1-3 vehicles), and geographic coverage of LEZs.¹⁸ To enhance the spatial accuracy of our analysis, we use OpenStreetMap to incorporate the exact boundaries of each LEZ. In our analysis, the main treatment variable is a binary indicator for whether an individual is located within a zip code that is at least partly covered by an active LEZ.

Air pollution level data is provided by the air pollution monitoring system of the German Federal Environment Agency. We use data from all stations measuring nitrogen dioxide (NO_2) and particulate matter (PM_{10}) concentrations between 2005 and 2018. We aggregate the station data to the zip code-year level by assigning each zip code the closest station with non-missing pollution readings for that year. We ensure that stations within LEZs are not assigned to zip codes outside of LEZs, and conversely, stations outside LEZs are not assigned to zip codes within LEZs. Table 2 provides an overview of air pollution levels for zip codes inside and outside LEZs, based on more than 800 stations within LEZs. As Table 2 high-

¹⁸Table A.1 lists the name, state, stringency, adoption and abolish dates as well as covered area and circumference of all LEZs in Germany.

lights, pollution levels are significantly higher within LEZs compared to outside LEZs.

Additionally, we use monthly global satellite-based data on fine particulate matter concentrations ($PM_{2.5}$) compiled by Van Donkelaar et al. (2021). Although $PM_{2.5}$ has been linked to severe health threats (see e.g., Feng et al., 2016), the effectiveness of LEZs to lower $PM_{2.5}$ in Germany has not been thoroughly studied due to data limitations. Since the station-based data from the German Environmental Agency is available only from 2008 onwards and has significant data gaps in the initial years, previous studies on the effectiveness of LEZs on $PM_{2.5}$ (Klauber et al., 2024) are likely underpowered.

3.3 Socioeconomic and Weather Data

We use the RWI-GEO-GRID data (Breidenbach & Eilers, 2018) to incorporate socioeconomic characteristics at the $1 \times 1 km^2$ level. We aggregate the information from the grid to the zip code level to match the level of the outcomes. We control for various socioeconomic factors, including the yearly average number of inhabitants, purchasing power per capita, and the number of vehicles per household. The RWI-GEO-GRID data spans from 2005 to 2021, with a three-year gap between 2006 and 2008, which we interpolate linearly to ensure a balanced dataset.

In addition to socioeconomic factors, we consider several quarterly weather conditions, as they correlate with both pollution and mental health outcomes. Extensive literature documents the association between mental health and weather conditions such as heat (Hansen et al., 2008, Thompson et al., 2018), precipitation, and other factors. Sunlight, in particular, has been observed to accelerate recovery from severe depression in hospitals (Beauchemin & Hays, 1996), while decreased sunlight exposure is linked to the onset of seasonal affective disorder (Menculini et al., 2018, Rosenthal et al., 1984). Weather metrics such as precipitation, temperature, and wind speed also influence air pollution (Makar et al., 2015, Zhang et al., 2017a). We obtain monthly weather data from the German Weather Service (DWD) for each German weather station. To capture weather at the zip code level, we select the geographically closest active weather station to each zip code's centroid. Our regression model controls for sunshine duration, wind speed, vapor pressure, humidity, and precipitation and mean, minimum, and maximum temperatures.

3.4 Treatment and Control Group

Our treatment group comprises zip codes partially covered by a LEZ. Our control group consists of zip codes outside of LEZs that lie within large cities (over 100,000 inhabitants), i.e., densely populated areas. This restriction ensures similarity with our treatment group in terms of socioeconomic and demographic characteristics, as LEZs are predominantly established in large cities and city centers (Pestel & Wozny, 2021). We aggregate individual-level outcomes on the zip code year level for data protection reasons and on computational grounds. This yields a sample size of N = 20,070 zip codes inhabited by 2,029,359 insured individu-

als (see Table 2).¹⁹ Th zip codes treated by a LEZ and in large cities are displayed in Figure 1.

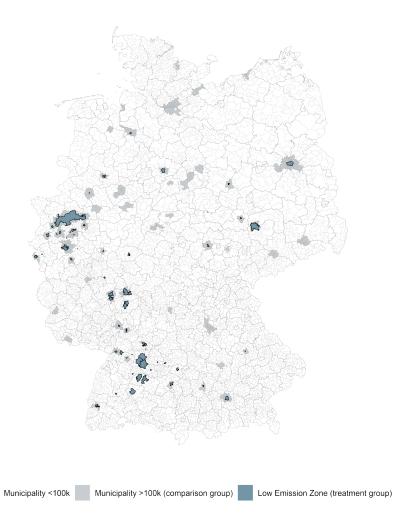


Figure 1: Empirical Setup: LEZs and Large Cities

Note: This Figure displays our treatment and control group on county level. The treatment group is shown at its widest expansion in 2018.

Table 2 displays descriptive statistics for our time-varying zip code characteristics. There are only small socio-economic differences between treatment and control group. Within LEZs, there is a slightly larger share of individuals with a university entrance-qualifying exam (*Abitur*), albeit also a slightly higher share of individuals without schooling information. Treated zip codes also exhibit a slightly higher unemployment rate and lower purchasing power compared to the control group. Demographically, areas covered by LEZs have a higher proportion of individuals in their prime age (20-45 years old), whereas the share of older individuals is higher outside of LEZs. Further, baseline pollution levels are slightly higher within LEZs than in the control areas.

¹⁹We do not observe all individuals over the whole observation period. For example, the sample may include persons who were born in 2003 and appear in 2018 at the age of 15. We exclude individuals that move to a different country within the observation period.

	Outside LEZs				Inside LEZs					
Controls	mean	sd	min	max	n	mean	sd	min	max	n
Socioeconomic										
Less than Abitur	0.38	0.11	0.05	0.59	10738	0.34	0.1	0.07	0.62	9332
Abitur	0.28	0.09	0.04	0.53	10738	0.3	0.09	0.05	0.56	9332
No info on school	0.34	0.09	0.12	0.88	10738	0.36	0.09	0.11	0.88	9332
Purchasing power per capita	22,485	4,526	11,934	42,257	10,738	22,946	4,757	12,362	41,332	9,332
Cars per household	0.74	0.23	0.18	1.47	10738	0.66	0.26	0.25	1.53	9332
Number of inhabitants	15,135	$7,\!193$	610	38,587	10,738	$15,\!946$	6,824	1,028	61,667	9,332
Number of observations	968	537	21	7103	10738	823	443	21	6388	9332
Weather										
Humidity	77.34	3.14	66.97	88.11	10738	75.47	3.33	66.02	86.14	9332
Precipitation	1.95	0.44	0.73	4.18	10738	1.99	0.44	0.73	4.18	9332
Temperature	10.24	0.97	4.17	17.32	10738	10.74	1.01	4.14	17.8	9332
Maximal temperature	14.5	1.23	7.77	23.05	10738	15.16	1.14	7.75	23.54	9332
Minimal temperature	5.95	0.97	0.19	12.28	10738	6.41	1.15	-0.34	12.69	9332
Vapor pressure	10.1	0.55	6.78	15.5	10738	10.16	0.55	6.92	16.29	9332
Wind speed	3.53	0.65	1.77	8.77	10738	3.25	0.65	1.02	8.77	9332
Sunny hours	4.74	0.53	2.58	7.68	10738	4.9	0.54	2.39	7.54	9332
Air Pollution										
PM_{10}	23.1	5.1	7.03	64.89	10,136	22.95	5.97	7.03	44.76	8,834
$PM_{2.5}$	13.6	2.1	8.9	20.71	6,516	13.89	2.11	9.18	20.77	$5,\!679$
NO_2	31.56	14.38	1.85	98.71	10,136	33.23	17.14	1.85	98.71	8,834

Table 2: Descriptive statistics treatment and control group

Note: This table displays control-variables for zip-codes inside and outside of LEZs for 2005 to 2019. Mean and standard deviation are weighted by the number of insured individuals in our sample except for the number of insured individuals itself.

4 Empirical Strategy

For identification, we exploit the staggered introduction of LEZs in Germany as exogenous variation. We first establish a Two-Way Fixed Effects (TWFE) model represented by the following regression equation:

$$Y_{it} = \beta^{TWFE} LEZ_{it} + \gamma X_{it} + \lambda_i + \phi_t + t \times \theta_c + \varepsilon_{it}, \tag{1}$$

where Y_{it} is the average health outcome for individuals in zip code *i* in year *t*. LEZ_{it} is the treatment variable, indicating whether zip code *i* is within a LEZ in year *t*. We also include zip code (λ_i) and year fixed effects (ϕ_t) , a county-specific time trend $(t \times \theta_c)$, and a set of time-varying socio-economic characteristics on zip code level X_{it} (see Section 3.3), while standard errors are clustered at the county level ε_{it} . The number of insured individuals per zip code in our sample is used as weights.

To estimate dynamic treatment effects, we establish the following event study model:

$$Y_{it} = \sum_{k=-5}^{-2} \beta_k \operatorname{EventTime}_{it}^k + \sum_{k=0}^{7} \beta_k \operatorname{EventTime}_{it}^k + \gamma X_{it} + \lambda_i + \phi_t + t \times \theta_c + \varepsilon_{it}, \quad (2)$$

where EventTime^k_{it} is an indicator variable that equals 1 if zip code *i* is *k* periods away from the treatment event in period *t*. The coefficients β_k capture the causal impact of the LEZ introduction at different event times *k* relative to the reference period k = -1. The treatment window includes five years before and seven years after the treatment.

However, recent contributions have cast doubt on the conventional interpretation of the difference-in-differences coefficient (β^{TWFE}) in settings with numerous periods and staggered treatment implementation (see e.g., Callaway & Sant'Anna, 2021, de Chaisemartin & D'Haultfœuille, 2020a, Goodman-Bacon, 2021, Wooldridge, 2021). In these scenarios, β^{TWFE} may not accurately represent the true underlying Average Treatment Effect on the Treated (ATT). This is because it estimates a weighted average of all 2×2 comparisons of "switchers" and "non-switchers," which can introduce bias when treatment effects vary over time or between groups. These comparisons include potentially problematic scenarios, such as comparing later treated units to earlier treated ones (Goodman-Bacon, 2021). Consequently, these comparisons in the weighted average can induce a downward bias or even yield a negative coefficient, irrespective of all underlying ATTs being positive (de Chaisemartin & D'Haultfœuille, 2020b). Such issues are more pronounced when treatment outcomes differ across treatment groups or over time. In our study, the staggered implementation of LEZs may have led to time-varying treatment effects, particularly as the vehicle fleet composition changed between the initial and subsequent LEZ adoptions.

To address the concern at hand, we employ the staggered Difference-in-Differences (DiD) design proposed by Sun and Abraham (2021). This method estimates dynamic treatment effects while correcting for the biases associated with TWFE models in the presence of staggered treatment adoption. Sun and Abraham (2021) construct interaction weights that account for the timing of treatment adoption. These weights are derived from an auxiliary regression where the dependent variable is the event time indicator, and the independent variables include interactions between cohort and time indicators. This step ensures that the weights reflect the distribution of treatment timing across cohorts. The event study regression is then re-estimated using the interaction weights that adjust for the heterogeneity in treatment timing.

5 Results

5.1 LEZ Effects on Air Pollution

Table 3 displays the effect of LEZ adoption on yearly traffic-related pollutants, specifically coarse particulate matter (PM_{10}) and nitrogen dioxide (NO_2) from pollution monitors (Columns 1-2), and fine particular matter ($PM_{2.5}$) derived from cross-validated satellite images (Column 3). All outcomes are aggregated at the zip code and year level and are log-transformed, allowing for the coefficients to be interpreted as percentage changes. The regressions follow (Sun & Abraham, 2021) and include time-varying socio-economic and weather controls, year and zip code fixed effects, and a county-year trend (see Section 4).

Data source:	Pollution	Cross-validated satellite estimates		
Dependent variables:	$\frac{\log(\mathrm{PM}_{10})}{(1)}$	$\frac{\log(\mathrm{NO}_2)}{(2)}$	$\log(\mathrm{PM}_{2.5})$ (3)	
All Zip Codes				
ATT	-0.1036***	-0.1532^{**}	-0.0309***	
	(0.0314)	(0.0590)	(0.0092)	
Ν	17,304	17,304	10,935	
Zip Codes with Large Streets (≥ 3 lanes)				
ATT	-0.1227^{***}	-0.1884^{***}	-0.0290***	
	(0.0313)	(0.0606)	(0.0077)	
Ν	11,819	11,819	7,493	
Socio-economic controls	\checkmark	\checkmark	\checkmark	
Weather controls	\checkmark	\checkmark	\checkmark	
Year fixed effects	\checkmark	\checkmark	\checkmark	
Zip code fixed effects	\checkmark	\checkmark	\checkmark	

 Table 3: LEZ on Air Pollution

Note: This table displays the average treatment effect on the treated of Low Emission Zones on the concentrations of different air pollutants. The dependent variables in Column (1) and (2) are measurements from air pollution monitors and in Column (3) the dependent variable are cross-validated satellite estimates from 2010 to 2018 based on Van Donkelaar et al. (2021). Socio-economic controls include information on the number of cars per household, purchasing power per capita, and the number of inhabitants. Weather controls include information on humidity, vapor pressure, precipitation, and wind speed as well as mean, minimum, and maximum temperature. The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level. *p<0.1; **p<0.05; ***p<0.01.

We find that the introduction of LEZs reduced yearly coarse particulate matter concentrations in zip codes covered by a LEZ by on average 10.4 percent. This average ATT is statistically significant at the one percent level. The effect size is consistent with previous studies on the effectiveness of LEZs in reducing coarse particulate matter (Sarmiento et al., 2022, Wolff, 2014) and translates into a reduction of 2.5 $\mu g/m^3$. Regarding nitrogen dioxide (Column 2), we find that the introduction of LEZs decreased yearly pollution levels by an average of 15.3 percent, which is statistically significant at the five percent level. It translates into a reduction of 4.8 $\mu g/m^3$. This effect aligns with recent findings by Sarmiento et al. (2022).

In Column (3), we use cross-validated satellite images to measure fine particulate matter levels aggregated to the zip code level, extending beyond pollution monitor data (Van Donkelaar et al., 2021). We find that the introduction of LEZs reduced yearly PM_{2.5} levels by on average 3.1 percent, a statistically significant effect at the one percent level. This translates into a reduction of 0.4 μ g/m³. However, this reduction is notably smaller than the reduction observed for coarse particulate matter (PM₁₀). Two factors could explain the differences in the measured impacts of LEZs on PM_{10} and $PM_{2.5}$. First, the distinct sources and behaviors of these pollutants are highlighted. Coarse particulate matter (PM_{10}), primarily emitted from vehicular activities such as diesel engine exhaust, is more strongly impacted by driving restriction policies. In contrast, $PM_{2.5}$ includes finer particles that, while also resulting directly from vehicle exhausts, often form through regional atmospheric chemical reactions involving sulfate and nitrate particles (Pope & Dockery, 2006). The satellite-based $PM_{2.5}$ data reflect these broader regional influences, which can dilute the local effects of LEZs.²⁰ Second, satellite measurements may not fully capture ground-level reductions in pollution, potentially underestimating the policy's impact with respect to $PM_{2.5}$ (Holloway et al., 2021).^{21,22}

In the lower part of Table 3 we focus on zip codes with large streets (≥ 3 lanes) as we expect larger effect sizes in areas with higher traffic volume. As expected, estimates based on monitor data (Columns 1-2) become larger in magnitude and the statistical significance tends to increase. The exception is fine particulate matter (PM_{2.5}) where the coefficient becomes marginally smaller. The underlying reason may again be connected to satellites not being able to precisely capture ground-level reductions. In Figure B.2, we perform the same analysis on air pollution levels instead of logs, and a very similar picture emerges.

Figure 2 displays dynamic treatment effects for all pollutants corresponding to the estimations presented in Table 3. In line with evidence from the existing literature, the dynamic results suggest that LEZs have become more effective over time in reducing pollutants (e.g., Margaryan, 2021, Sarmiento et al., 2022). One reason for this finding may be changes in the vehicle fleet composition, as vehicles not allowed to enter LEZs are substituted with cleaner ones over time (Margaryan, 2021, Wolff, 2014). In the Appendix, in Figure B.1 we analyze whether LEZ introduction also affects other pollutants recorded by the pollution monitors (SO₂ and O₃) and find statistically significant reductions for SO₂.

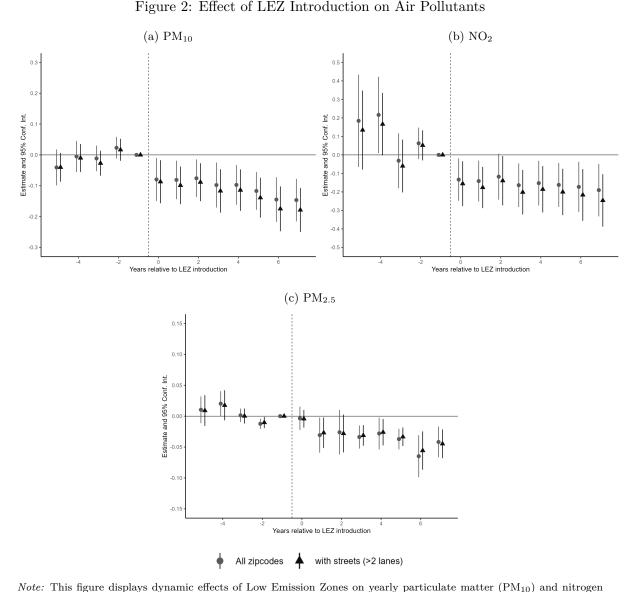

5.2 LEZ Effects on Mental Health Outcomes

Table 4 presents the average treatment effects on the treated for our primary mental health indicators. These indicators are defined as average probabilities at the year-zip code level, interpreted as an extensive margin. We begin by examining the impact of air quality improvements following the introduction of LEZs on the average probability of being prescribed antidepressants (Column 1) and on visiting a specialist, such as a psychotherapist or psychi-

²⁰Indeed, Van Donkelaar et al. (2021) make the following disclaimer: "Note that these estimates are primarily intended to aid in large-scale studies. Gridded datasets are provided to allow users to agglomerate data as best meets their particular needs. Datasets are gridded at the finest resolution of the information sources that were incorporated (0.01° × 0.01°), but do not fully resolve $PM_{2.5}$ gradients at the gridded resolution due to influence by information sources at coarser resolution."

²¹The limited "vertical sensitivity", i.e., the (in)ability of satellite instruments to detect and accurately measure concentrations of pollutants at different altitudes within the atmosphere, is due to factors such as surface reflectivity, cloud cover, viewing geometry, and decreased instrument sensitivity near the ground caused by atmospheric scattering and reduced thermal contrast (see e.g., Martin, 2008).

²²Using a subset of pollution monitor data due to data constraints, Klauber et al. (2024) find no effect of LEZ introduction on $PM_{2.5}$.

dioxide (NO_2) from pollution monitors (a and b) and fine particular matter ($PM_{2.5}$) derived from cross-validated satellite images (c) in logs. Specifications correspond to Table 3. The effects are estimated using estimators proposed by Sun and Abraham (2021). Estimates are shown including 95% confidence intervals.

atrist (Column 2). We find a statistically significant 4 percent reduction in the probability of being prescribed antidepressants. This translates into a reduction of the zip code incidence from 7.3 to 7 percent. For the probability of visiting a specialist, our estimated effect is a 5.7 percent reduction, which corresponds to a decrease in the zip-code level incidence from 6.2 to 5.9 percent. Moreover, we report the effects of LEZs on mental health diagnoses such as depression (Column 3, Table 4) and anxiety disorder diagnoses (Column 4). Our findings indicate that individuals residing in zip codes with LEZs have a 3.5 percent lower probability of being diagnosed with depression, a statistically significant result at the five percent level. That is, the incidence decreases from 6.7 to 6.5 percent at the zip-code level. Similarly, the introduction of LEZs results in a statistically significant 4.2 percent reduction in the probability of being diagnosed with an anxiety disorder, which in turn translates into a incidence reduction from 6.2 to 6 percent. These effect sizes are meaningful and the relative magnitude lies between the effects of LEZs on hospitalizations related to cardiovascular diseases reported by Margaryan (2021) and Pestel and Wozny (2021).

Dependent variables in log:	Antidepressant probability	Specialist visit probability	Depression probability	Anxiety probability
Model:	(1)	(2)	(3)	(4)
ATT	-0.0403^{***} (0.0102)	-0.0573^{**} (0.0218)	-0.0350^{**} (0.0140)	$\begin{array}{c} -0.0416^{***} \\ (0.0146) \end{array}$
Socio-economic controls Weather controls County×Year linear trend Year fixed effect Zip code fixed effect	\checkmark	\checkmark	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	\checkmark
Mean of dependent variable R ² N	$0.0734 \\ 0.90 \\ 17,896$	$0.0618 \\ 0.88 \\ 17,886$	$0.0669 \\ 0.91 \\ 17,894$	$0.0624 \\ 0.88 \\ 17,893$

Table 4: Effect of LEZ Introduction on Extensive Margin Mental Health Outcomes

Note: This table displays the average treatment effect on the treated of Low Emission Zones on different average probabilities in logs. All variables are on zipcode-year level. Column (1) shows the estimated effects on the probability to be described antidepressants. Column (2) shows the estimated effects on the probability of a specialist visit (for detailed information on how a specialist visit is defined see section 3). Columns (3) and (4) show estimated effects on the probability of depression and anxiety diagnoses. Socio-economic controls include information on education, and purchasing power per capita. Weather controls include information on humidity, vapor pressure, wind speed, sunshine duration, precipitation, and temperature (mean, minimum, and maximum). The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level. *p<0.1; **p<0.05; ***p<0.01.

Figure 3 illustrates the dynamic treatment effects for our mental health outcomes at the extensive margin, corresponding to Columns 1-4 in Table 4. The event studies confirm the absence of statistically significant pre-treatment trends, which supports our identifying assumption of parallel trends. A general pattern emerges: all outcomes begin to decline after the introduction of LEZs, but the improvement in mental health materializes only gradually. The dynamic treatment effect tends to peak five to six years after LEZ adoption, suggesting that the cumulative improvement in air quality over time leads to meaningful reductions in mental health issues within the population. The findings align with recent evidence on the health effects of LEZs (Klauber et al., 2024, Pestel & Wozny, 2021), where the authors find that effects become larger over time. This likely occurs because it takes time for longer-term exposure to air pollution to manifest in health outcomes (see e.g., Health Effects Institute, 2022, for a systematic review of the health effects of long-term exposure to air pollution).

Turning to intensive margin, Table 5 displays our estimated effects of LEZs in terms of intensity of the treatment effect. We present the intensive margin by including the average number of antidepressant prescriptions. To improve interpretability, we also include the av-

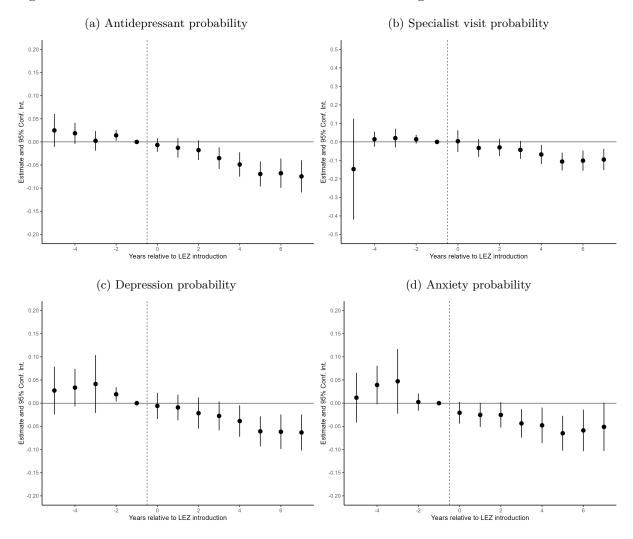


Figure 3: Event Studies of LEZ Introduction on Extensive Margin Mental Health Outcomes

Note: This figure displays the dynamic effects of Low Emission Zones on different average probabilities in logs. The effects are estimated using estimators proposed by Sun and Abraham (2021). Panel (a) shows the estimated effects on the probability to be described antidepressants (for detailed information on ATCs see Appendix A.4). Panel (b) shows the estimated effects on the probability of a specialist visit (for detailed information on how a specialist visit is defined see section 3). Panel (c) and (d) show estimated effects on Depression and Anxiety diagnosis (for detailed information on ICDs see Appendix A.3). Specifications correspond to Table 4. Standard errors are clustered at the county level. Estimates are shown including 95% confidence intervals.

erage defined daily doses (DDD) per individual. This approach accounts for the intensity of each prescription, by weighting individuals according their clinical need. We find that LEZs reduce the number of prescriptions by approximately 5.7 percent and DDDs by about 5.2 percent. In other words, the average number of yearly prescriptions per individual is reduced from 0.26 to 0.24. Similar to Column (2) in Table 4, we also include an intensive measure for specialist visits (Column 3).²³ In Column (4), we include the number of specialist billings as an outcome, covering all available psychotherapy billings.²⁴ The estimated effect of LEZs on specialist visits is a reduction of 7.4 percent, while the effect on specialist billings is a

²³Counting specialist visits in Germany is challenging because actual visits are not directly observable; researchers only observe quarterly cases.

²⁴Billings include different quantities of therapy sessions.

Dependent variables in log:	Antidepressant prescriptions	Antidepressant DDD	Specialist visits	Specialist billings
Model:	(1)	(2)	(3)	(4)
ATT	-0.0574^{***} (0.0113)	-0.0513^{***} (0.0138)	-0.0739^{***} (0.0218)	-0.0495^{***} (0.0172)
Socio-economic controls Weather controls County×Year linear trend Year fixed effect Zip code fixed effect	\checkmark	\checkmark		\checkmark
Mean of dependent variable \mathbf{R}^2 N	$0.26 \\ 0.89 \\ 17,896$	$18.53 \\ 0.91 \\ 17,896$	$0.18 \\ 0.88 \\ 17,886$	$1.67 \\ 0.92 \\ 17,910$

Table 5: Effect of LEZ Introduction on Intensive Margin Mental Health Outcomes

Note: This table displays the average treatment effect on the treated of Low Emission Zones on different intensive measures in logs. All variables are on the zipcode-year level. Columns (1) and (2) show estimated effects on Antidepressants. Column (1) describes the effect on the average number of prescriptions, Column (2) the effect on the average number of specialist visits. A visit is defined on the quarterly level resulting in a maximum of 4 visits per doctor (for detailed information on specialists see section 3). Column (4) shows the estimated effects on the average number of specialist billings in terms of psychotherapy. Socio-economic controls include information on education, and purchasing power per capita. Weather controls include information on humidity, vapor pressure, wind speed, sunshine duration, precipitation, and temperature (mean, minimum, and maximum). The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level. *p<0.1; **p<0.05; ***p<0.01.

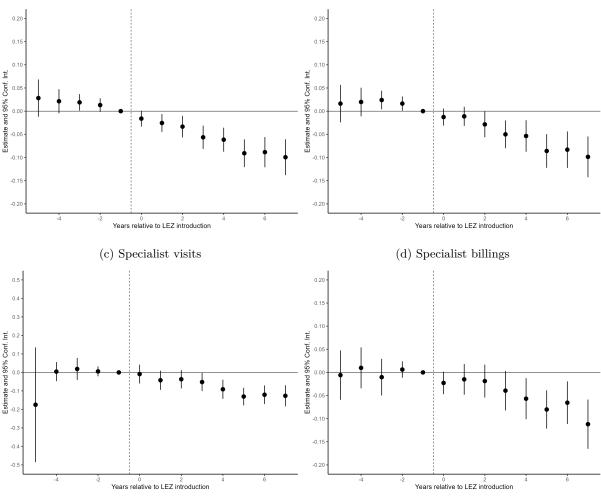

reduction of about 5 percent. Those effects translate into an average reduction of the number of yearly specialist visits per individual from 0.18 to 0.17 and a reduction of the average number of specialist billings from 1.67 to 1.59. Both estimates are significant at the one percent level. All estimates at the intensive margin are larger than the corresponding estimates at the extensive margin. This suggests that air quality improvements reduce the probability of getting a new diagnosis but may also alleviate the mental health suffering of those already diagnosed with a mental health issue.

Figure 4 displays the dynamic treatment effects for the intensive margin of our mental health outcomes. We estimate the largest effects in all outcomes around 5 to 6 years after LEZs were adopted effect. Similar to the results displayed in Figure 3, the cumulative effects of cleaner air on the mental health outcomes take time to materialize.

We do not observe large discrepancies in the timing of the effect across outcomes in Figures 3 and 4. Antidepressant Prescriptions (Figure 4, Panel a) decrease slightly sooner than depression and anxiety diagnoses (Figure 3, Panel c and d), which become statistically significant two and three years after treatment. Specialist visits tend to take the longest to decrease (Figure 3, Panel b, and Figure 4, Panels c and d). This chronology makes sense because antidepressant prescriptions can be prescribed by general practitioners and psychiatrists. Patients experiencing acute symptoms (like feeling down or having trouble sleeping)

Figure 4: Event Studies LEZ Introduction on Mental Health Outcomes at the Intensive Margin

(a) Antidepressant prescriptions
(b) Antidepressant DDD

Note: This figure displays dynamic effects of Low Emission Zones on different intensive measures in logs. The effects are estimated using estimators proposed by Sun and Abraham (2021). All variables are on zipcode-year level. Panel (a) and (b) show estimated effects on antidepressants. Panel (a) describes the effect on the average number of prescriptions, Panel (b) the effect on the average number of defined daily dosages (DDD). For detailed information on ATCs see Table A.4. For information on DDD see section 3. Panel (c) shows the estimated effects on the average number of specialist cases. A case is defined on quarterly level resulting in a maximum of 4 visits per doctor (for detailed information on specialists see section 3). Panel (d) shows the estimated effects on the average number of specialists billings in terms of psychotherapy (for detailed information on specialist billings see Appendix A.2). Specifications correspond to Table 5. Standard errors are clustered at the county level. Estimates are shown including 95% confidence intervals.

might receive medication relatively quickly as an initial treatment. Psychotherapy visits may involve longer delays due to patient behavior (delaying seeking specialist help) and systemic factors (waiting periods for therapy appointments, see Section 2.2).

Overall, a consistent picture emerges from our analyses of mental health outcomes. First, the introduction of LEZs results in significant reductions in the probability of mental health issues within treated zip codes. These effects are statistically significant and economically meaningful. Second, the effects of air quality improvements on mental health outcomes are cumulative and take time to materialize. Last, we observe consistent effects at both the extensive and intensive margins, indicating that LEZs and the resulting air quality improvements reduce the intensity of mental health issues.

5.3 Confirmatory and Placebo Exercises

Next, we assess whether our method effectively replicates established findings from the literature and identifies effects in a placebo exercise. Several papers have demonstrated the effectiveness of LEZs in reducing diagnoses and prescriptions for cardiovascular diseases (Margaryan, 2021, Pestel & Wozny, 2021). In Table 6 we display the effect of the introduction of LEZs on the probability of a diagnosis related to cardiovascular diseases (Column 1), respective prescriptions (Column 2), and their DDDs (Column 3). We find that LEZs reduce the probability of a diagnosis by 2.1 percent, prescriptions by 2.8 percent and their DDDs by 3.1 percent. The estimates are statistically significant at conventional significance levels. Moreover, the effect sizes fall between those reported by Margaryan (2021) and Pestel and Wozny (2021). Figure 5 displays the dynamic treatment effects for those outcomes in an event study approach with the estimations corresponding to Table 6. Again, we find no evidence of statistically significant pre-trends but clear evidence of statistically significant dynamic effects, which increase in size over time.

Dependent variables in log:	Cardiovascular disease probability	Cardiovascular prescriptions probability	Cardiovascular prescriptions DDD	Injury probability
Model:	(1)	(2)	(3)	(4)
ATT	-0.0209^{**} (0.0093)	-0.0275^{***} (0.0098)	-0.0310^{***} (0.0115)	-0.0061 (0.0136)
Socio-economic controls	\checkmark	\checkmark	\checkmark	\checkmark
Weather controls	\checkmark	\checkmark	\checkmark	\checkmark
County×Year linear trend	\checkmark	\checkmark	\checkmark	\checkmark
Year fixed effect	\checkmark	\checkmark	\checkmark	\checkmark
Zip code fixed effect	\checkmark	\checkmark	\checkmark	\checkmark
Mean of dependent variable	0.33	0.21	128.3	0.1
\mathbb{R}^2	0.90	0.92	0.92	0.85
Ν	17,910	17,903	17,903	$17,\!904$

Table 6: Effect of LEZ Introduction on Cardiovascular Diseases and Injuries

Note: This table displays the average treatment effect on the treated of Low Emission Zones on different average probabilities in logs. All variables are on zipcode-year level. Column (1) and (2) show estimated effects on outcomes related to Cardiovascular diseases. Column (1) in terms of diagnosis and Column (2) in terms of prescriptions. Column (3) shows the estimated effects on the probability of a diagnosis related to an injury. Socio-economic controls include information on education, and purchasing power per capita. Weather controls include information on humidity, vapor pressure, wind speed, sunshine duration, precipitation, and temperature (mean, minimum, and maximum). The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level. *p<0.0; **p<0.01.

To investigate whether our empirical strategy identifies effects where we would not theoretically expect any, we perform a placebo exercise. For this purpose, we identify ICD codes related to injuries²⁵ and estimate the effect of LEZ introduction on their probability. We find that the introduction of LEZs did not affect the probability of injuries (Table 6, Column 4

²⁵ICD-Chapter S: This chapter specifically covers injuries to specific body parts.

and Figure 5, Panel d).

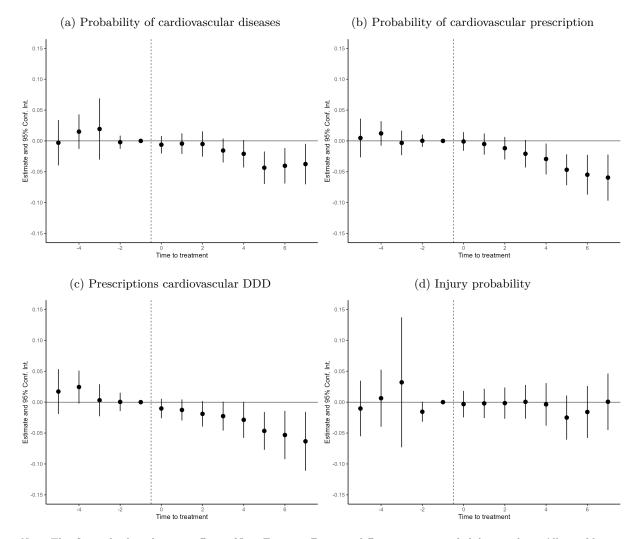


Figure 5: Event Studies Confirmatory and Placebo Excercise

Note: This figure displays dynamic effects of Low Emission Zones on different average probabilities in logs. All variables are on zipcode-year level. Panels (a) and (b) show estimated effects on outcomes related to cardiovascular diseases. Panel (a) in terms of diagnosis (for detailed information on ICDs see Appendix A.3), Panel (b) of prescriptions, and Panel (c) of the defined daily dosage (DDD) of prescriptions. For detailed information on ICDs and ATCs see Appendix A.3 and A.4. For information on DDD, see section 3. Panel (d) shows the estimated effects on the probability of a diagnosis related to an injury. Specifications correspond to Table 6. Standard errors are clustered at the county level. Estimates are shown including 95% confidence intervals. *p<0.1; **p<0.05; ***p<0.01

5.4 Robustness Checks

We conduct additional analyses to validate the robustness of our estimates. Table 7 displays the results of those robustness checks. First, we estimate our effects with the canonical two-way fixed effects (TWFE) estimator. The coefficients closely resemble those in Tables 4 and 5 and maintain statistical significance. Second, LEZs could also affect zip codes located just outside their borders. Theoretically, these areas could either benefit from improved air quality or be disadvantaged by increases in pollution as drivers circumvent the LEZ with emission-intensive cars. The latter scenario is particularly concerning as it could lead

	Extensive margin				
Dependent variables in log:	Antidepressant prescription probability	Specialist visit probability	Depression probability	Anxiety probability	
Model:	(1)	(2)	(3)	(4)	
TWFE					
ATT	-0.0276**	-0.0491*	-0.0364^{*}	-0.0499**	
	(0.0131)	(0.0253)	(0.0196)	(0.0192)	
N	17,896	17,886	$17,\!894$	$17,\!893$	
Spillover: neighbouring zip codes					
ATT on LEZ-zip codes	-0.0413**	-0.0597**	-0.0297	-0.0419^{*}	
	(0.0178)	(0.0300)	(0.0253)	(0.0232)	
ATT on neighbouring zip codes (10 km)	-0.0037	-0.0085	0.0186	-0.0012	
	(0.0446)	(0.0500)	(0.0560)	(0.0607)	
N	17,896	17,886	17,894	$17,\!893$	
		Intensive man	rgin		
Dependent variables in log:	Antidepressant prescriptions	Antidepressant prescriptions DDD	Specialist visits	Specialist billings	
Model:	(5)	(6)	(7)	(8)	
TWFE					
ATT	-0.0452^{***}	-0.0425***	-0.0585**	-0.0333*	
	(0.0128)	(0.0136)	(0.0255)	(0.0179)	
Ν	17,896	17,896	17,886	17,910	
Spillover: neighbouring zip codes					
ATT on LEZ-zip codes	-0.0587***	-0.0507**	-0.0755**	-0.0560**	
1	(0.0188)	(0.0220)	(0.0303)	(0.0263)	
ATT on neighbouring zip codes (10 km)	-0.0046	0.0023	-0.0055	-0.0228	
, , ,	(0.0431)	(0.0457)	(0.0524)	(0.0570)	
N	17,896	17,896	17,886	17,910	
Socio-economic controls	\checkmark	\checkmark	\checkmark	\checkmark	
Weather controls	\checkmark	\checkmark	\checkmark	\checkmark	
$County \times Year$ linear trend	\checkmark	\checkmark	\checkmark	\checkmark	
Year fixed effect	\checkmark	\checkmark	\checkmark	\checkmark	
Zip code fixed effect	\checkmark	\checkmark	\checkmark	\checkmark	

Table 7: Robustness Checks at the Extensive and Intensive Margins

Note: This table displays the average treatment effect on the treated of Low Emission Zones on different average probabilities in logs. Row 1 and 2 report outcomes at the extensive margin while Row 3 and 4 report outcomes measured at the intensive margin. All variables are on zipcode-year level. Row 1 and Row 3 display the coefficients of a standard TWFE estimation. Row 2 and 4 add an additional binary variable for zip codes neighbouring an active LEZ. Column (1) shows the estimated effects on the probability to be described antidepressants. Column (2) shows the estimated effects on the probability of a specialist visit (for detailed information on how a specialist visit is defined see Section 3). Column (3) and (4) show estimated effects on Depression and Anxiety diagnosis. Columns (5) and (6) show estimated effects on Antidepressants. Column (5) describes the effect on the average number of prescriptions, (6) the effect on the average number of defined daily dosages (DDD). Column (7) shows the estimated effects on the average number of specialist visits. A visit is defined on the quarterly level resulting in a maximum of 4 visits per doctor (for detailed information on specialists see Section 3). Column (8) shows the estimated effects on the average number of specialist billings in terms of psychotherapy. Socio-economic controls include information on education, and purchasing power per capita. Weather controls include information on humidity, vapor pressure, wind speed, sunshine duration, precipitation, and temperature (mean, minimum, and maximum). The effects are estimated using estimators proposed by Sun and Abraham (2021) unless othewise specified. Standard errors are clustered at the county level. *p<0.1; **p<0.05; ***p<0.01.

to overestimation of the treatment effects as pollution levels increase in parts of the control group. To address these concerns, we adopt the approach of Klauber et al. (2024) and include

a treatment indicator for zip codes within a 10-kilometer radius of LEZs, set to one if the neighboring LEZ is active and zero otherwise. We generally observe negative coefficients for neighboring zip codes that are not statistically significant, while our main treatment effects remain consistent (Rows 2 and 4 of Table 7). These findings are in line with Klauber et al. (2024) who report that German LEZs had no negative spillovers but rather positive effects on air quality and vehicle fleet composition in neighboring counties. Overall, these findings suggest that our treatment effects are not overestimated due to negative spillovers of polluting traffic into the control group.

5.5 Heterogeneities

In this section, we examine whether our findings vary across age groups, building on findings from the previous literature (e.g., Bishop et al., 2023, Currie & Neidell, 2005, Ju et al., 2023) indicating that different age groups exhibit varying levels of vulnerability to air pollution. In Figure 6 we show results for three age groups: 15 to 29, 30 to 49, and 50 to 65 year olds. Overall, the effect appears to be more pronounced for the youngest age group of 15 to 29 years, which is also the group with the highest depression rates (see e.g., Hapke et al., 2019). While the observed effects are only statistically different from one another for the antidepressant prescription probability (Figure 6, Panel c), it is striking that the same pattern emerges for all outcomes.

One possible explanation for this is that exposure to inflammatory stimuli may exert a more pronounced effect during adolescence due to ongoing brain development (Danese & Baldwin, 2017, Roberts et al., 2019). For example, children exposed to high levels of air pollution in Mexico City exhibited significant differences in white matter volumes and associated cognitive impairments compared to those in less polluted areas (Calderón-Garcidueñas et al., 2015). In addition, due to their higher breathing rate to body size ratio, and less developed natural barriers in the lungs warding against inhaled particles, children and adolescents are more susceptible to airborne pollutants in their environment (Brockmeyer & d'Angiulli, 2016). Another factor may relate to differences in lifestyle, as younger people tend to spend more time engaging in outdoor activities (Brasche & Bischof, 2005), thereby increasing their exposure to air pollution. The stronger effects for young people are also consistent with the economic literature on the long-term health effects of early exposure to air pollution (e.g., Chay & Greenstone, 2003, Currie & Neidell, 2005, Luechinger, 2014), as well as the shortand medium-term effects of air pollution on schooling outcomes (e.g., Brehm et al., 2022, Persico & Marcotte, 2022).

Interestingly, we consistently observe no effects on the oldest age group (aged 50 to 65). Recent research has documented a positive relationship between long-term cumulative exposure to fine-particulate air pollution later in life and neurodegenerative diseases like dementia (Bishop et al., 2023, Peters et al., 2019), which are also associated with neuroinflammation due to $PM_{2.5}$ accumulation in brain tissue (Kang et al., 2021, Maher et al., 2016). Thus,

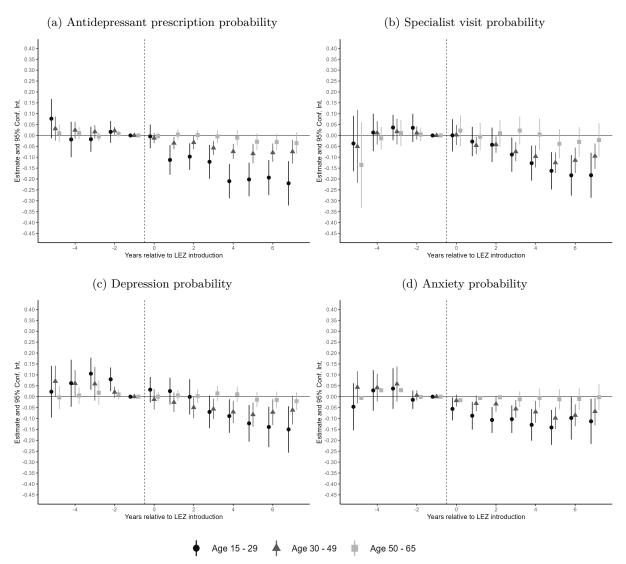


Figure 6: Event Studies Age Heterogeneity

Note: This figure displays dynamic effects of Low Emission Zones on different average probabilities in logs for sub samples in terms of age. The effects are estimated using estimators proposed by Sun and Abraham (2021). All variables are on zipcode-year level. Panel (a) shows the estimated effects on the probability to be described antidepressants (for detailed information on ATCs see Appendix A.4). Panel (b) shows the estimated effects on the probability of a specialist visit (for detailed information on how a specialist visit is defined see Section 3). Panels (c) and (d) show estimated effects on Depression and Anxiety diagnosis (for detailed information on ICDs see Appendix A.3). Socio-economic controls include information on education, and purchasing power per capita. Weather controls include information on humidity, vapor pressure, wind speed, sunshine duration, precipitation, and temperature (mean, minimum, and maximum). The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level. Estimators are shown including 95% confidence intervals.

exposure to air pollution and the resulting inflammatory processes may have age-specific implications for brain-related outcomes: younger individuals may face an increased risk of depression and anxiety, while older individuals may face a higher risk of neurodegenerative diseases.

5.6 Mechanisms

Newer vehicles typically incorporate better noise control technologies, so restricting or banning older, noisier vehicles from specific areas can decrease noise levels in those areas. Thus, while LEZs primarily aim to reduce air pollution, they might also mitigate noise pollution, which can independently impact mental health. Unfortunately, controlling directly for traffic noise is not possible in our case. Despite having three waves of noise maps (Lärmkarten) for our observation period (2007, 2012, and 2017), changes in the data generation methodology prevent us from using this data as a consistent panel. Instead, to proxy the confounding effect of noise, we perform a robustness check by restricting our sample to zip codes affected less by high traffic volume and noise, excluding zip codes with major roads (more than four lanes). Since air pollution propagates more than noise (Khan et al., 2018), the remaining sample should still benefit from the air quality benefits of LEZs but only to a much lesser extent from the noise reduction. If noise reductions were driving our main effects, we should observe a smaller effect size in this exercise. In contrast, the analysis in Table B.1 yields slightly larger point estimates that are not significantly different from our main estimates, suggesting that noise does not substantially influence our results.²⁶ Nonetheless, we cannot completely dismiss the possibility that changes in noise levels contribute to the observed effects. Even if noise contributes to the observed effects on mental health, it probably affects most traffic policies designed to reduce air pollution, such as license plate programs, scrapping schemes, and bans on old vehicles.

Another potential mechanism may be traffic volume. Air pollution levels might decrease either because vehicles become less emission-intensive or because there are fewer vehicles driving through the LEZ. Especially, particulate matter can be generated by exhaust fumes from the vehicle fleet and by tire and brake wear. Thus, it is associated with the number of cars on the road.²⁷ To explore these mechanisms, we estimate the impact of LEZs on traffic volume using data on the number of vehicles measured at German traffic monitors provided by the Federal Highway Research Agency (BASt). We find no significant effect of LEZs on traffic volumes (Table B.3), which aligns with existing literature indicating that the impact of German LEZs on air pollution is mainly due to changes in the vehicle fleet.²⁸

A third mechanism driving parts of our results on mental health could be the general health channel. Specifically, LEZs improving respiratory and cardiovascular health (e.g., Margaryan, 2021, Pestel & Wozny, 2021) may indirectly enhance mental health outcomes. Several studies have established a strong link between physical health and mental well-being.

 $^{^{26}}$ One reason why the estimates may increase compared to our main results could be that by excluding large streets, we exclude motorways passing through large cities like the Federal Highway 100 (*Bundesautobahn 100*) in Berlin, which are exempt from the LEZ regulation even though they are geographically located within LEZs.

²⁷Particulate matter from the exhaust of diesel vehicles, which are the primary target of LEZs, may be particularly harmful to the human body (Klauber et al., 2024, Krzyzanowski et al., 2005).

²⁸Specifically, Pestel and Wozny (2021) and Klauber et al. (2024) also do not find LEZ effects on traffic volumes while Wolff (2014) and Klauber et al. (2024) find effects on the composition of the vehicle fleet.

For instance, improvements in cardiovascular health can reduce stress and anxiety, as cardiovascular diseases are often associated with heightened psychological distress and depressive symptoms (Rafiei et al., 2023). Similarly, better respiratory health can lead to improved sleep quality and overall physical comfort, which are critical factors in maintaining mental health (Pauley et al., 2020).

5.7 Retrospective Design Analysis

We conduct a retrospective design analysis to assess the plausibility of our effect sizes, recognizing that the interpretation of statistically significant results depends on the plausible size of the underlying effect. We follow Gelman and Carlin (2014), calculating the probability of an estimate being in the wrong direction (Type S error) and the factor by which the magnitude of our effects might be overestimated (Type M error, magnitude error or exaggeration ratio). The first step involves positing true effect sizes based on the literature. However, as mentioned earlier, very few causal studies exist on the link between air pollution and mental health. Beshir and Fichera (2022) find that the introduction of ULEZ reduced anxiety by 6.5 percent based on self-reported survey data. Pestel and Wozny (2021) is most comparable in terms of our sample and set-up and provides evidence for reductions in circulatory and respiratory diseases ranging from 8 to 16 percent. The issue is further complicated as effect estimates from the literature may themselves be overestimated due to power issues. Consequently, we posit a wide range of plausible effects (one to eight percent) and examine how our power, type S error, and type M error rates change accordingly. Given the various outcomes, we focus on depression diagnosis probability and the number of antidepressant prescriptions as they are the most conservative estimates with the highest p-value in both extensive and intensive margins.

Table B.2 displays a range of effect sizes as well as their corresponding power and the Type S and Type M errors. Our retrospective design analysis suggests that the probability that our estimates have the wrong sign is essentially zero. Our estimated effect and standard error for the probability of a depression diagnosis, suggest a power of 0.71, with an exaggeration rate of 1.2. This suggests that we may be overestimating the true effect size by a factor of 1.2 on average (Timm, 2018). However, as mentioned, we follow a conservative approach by taking the estimate with the highest p-value as a reference group. If we instead use the estimate and standard error of antidepressant prescriptions (Table B.2) even the overestimation error vanishes. To conclude, while some coefficients may be slightly exaggerated in the most conservative estimation, we conclude that power issues and exaggeration errors do not seem to be a major problem in our analysis.

6 Cost-benefit Analysis

Our analyses demonstrate that policy measures targeting reductions in air pollution have far-reaching effects on human health. Despite the substantial impact of mental health on society and public health expenditures, it has been largely overlooked in discussions about the cost-effectiveness of policies like driving restrictions. This study offers the first estimates based on administrative health insurance data to quantify the mental health related economic benefits of LEZs.

First, we perform a back-of-the-envelope calculation for the benefits of reduced depression diagnoses (excluding costs related to potentially overlapping diagnoses such as anxiety). In our sample (15-65 year old individuals living in large cities), an average of 6.8 percent of the population is diagnosed with depression each year. Since the administrative health insurance data is representative of the German population, we can approximate the number of yearly depression diagnoses in large cities covered by future LEZs by multiplying this rate by the population in these areas that are of the same age. According to the RWI-GEO-GRID data, on average 9,965,120 individuals from our age cohort reside in zip codes with (future) LEZs, resulting in 677,628 depression diagnoses each year. To determine the number of depression diagnoses prevented by implementing LEZs, we start with the average number of depression diagnoses in (future) LEZ areas and multiply it with the average reduction in depression diagnoses found in our study (3.5 percent). This calculation results in 23,717 fewer depression diagnoses annually (677,628 individuals \times 3.5 percent reduction = 23,717 avoided depression diagnoses). To estimate the avoided health costs, we multiply the number of prevented depression cases by the average health costs associated with a diagnosis. According to Eden et al. (2021), the average total costs per depression patient per year in Germany range from \in 3,000 to \in 5,000, excluding indirect costs. Using these figures, the prevented depression diagnoses translate into €71.2 million to €118.6 million in avoided annual total health care costs for our age group.

In addition to the health care cost savings, the broader welfare implications include the willingness to pay (WTP) of individuals to avoid depression. According to Eaton and Hunt (2024), the WTP to avoid depression is estimated at 6% of an individual's stated income. With the average net income in Germany in 2023 (Statista, 2024) being \notin 2,426 per month, this equates to an annual WTP of \notin 1,747 per person. For 23,717 cases of depression prevented, this amounts to \notin 41.4 million annually. Furthermore, depression significantly contributes to workplace absenteeism and productivity losses. Krauth et al. (2014) report that the average cost of absenteeism due to depression in Germany was \notin 1,063 per employee per year in 2014. Eßl-Maurer et al. (2022) estimate that sick leave costs for moderate to severe depressive symptoms amounts to \notin 2,194, compared to sick leave costs for those with no to mild symptoms. Using the average of these estimates, preventing 23,717 cases of depression could result in an additional saving of \notin 38.6 million annually in productivity losses. While the loss in tax revenue due to depression-related work stoppages is another important consideration, reliable estimates for Germany are not available.²⁹ Even without accounting for potential tax revenue losses, the direct and indirect monetary benefits of Low Emission Zones (LEZs)

²⁹Occupational disability and early retirement are difficult to attribute directly to depressive disorders (Krauth et al., 2014).

in reducing depression amount to approximately $\notin 150$ to $\notin 200$ million.

Finally, we compare the avoided mental health costs to the private and social costs of vehicle replacements required by LEZ introduction. However, coming up with an estimate of the private costs is challenging. Wolff (2014) considers private costs at US\$1,650 per car and estimate that LEZs caused upgrading costs of US\$1.09 billion. In contrast, Khan et al. (2018) assume the same costs per vehicle but find that the total upgrading costs only amount to US\$82.5 million. Those numbers indicate a high uncertainty range of the private costs. However, the cumulative direct and indirect monetary benefits of avoided conservatively estimated depression diagnoses likely outweigh or equalize the private upgrading costs. When factoring in additional health savings, such as reductions in asthma prescriptions and improvements in child health (Klauber et al., 2024), reductions in hospital visits (Pestel & Wozny, 2021), lower ambulatory care claims (Margaryan, 2021), and improved human capital (Brehm et al., 2022), a retrospective cost-benefit analysis is likely to reveal substantial net benefits.

7 Conclusion

This paper explores the intersection between two of today's most pressing global challenges: mental health and air pollution. We present the first large-scale causal estimates of trafficrelated air pollution and broader mental health outcomes using administrative data from one of Germany's largest public health insurance providers. To identify causal effects, we leverage the staggered introduction of Low Emission Zones (LEZs) across German cities starting in 2008, which restrict access for emission-intensive vehicles. Consistent with previous studies, we find that the adoption of LEZs led to significant improvements in air quality by reducing traffic-related pollutants. Being the first study to estimate the effects of German LEZs on PM_{2.5}, we find statistically significant but smaller effects for these satellite-based estimates compared to the station-based data on PM₁₀ and NO₂, suggesting that ground-level measurements may better capture the full effects of traffic policies on air pollutants. Additionally, we find that reductions in air pollution lead to significant improvements in mental health. The introduction of LEZs reduces the likelihood of being prescribed antidepressants, of visiting a mental health specialist (psychotherapist or psychiatrist), and of mental health diagnoses (depression and anxiety) among residents in zip codes covered by an LEZ. These effects are statistically significant and economically meaningful, with effect sizes similar to those found for cardiovascular diseases. We observe consistent effects at both the extensive and intensive margins, indicating that LEZs and the resulting air quality improvements also reduce the intensity of mental health issues. The measured effects of air quality improvements on mental health outcomes are cumulative and emerge only gradually, with most statistically significant effects observed three to four years after LEZ introduction. Our heterogeneity analysis indicates that the youngest age group, 15 to 29-year-olds, experiences the largest mental health benefits from improved air quality. Our findings are robust to an alternative estimation strategy and accounting for spatial spillovers. Further analyses suggest that air

pollution is the primary mechanism affecting mental health, compared to noise or reduced traffic volume. Overall, we find that reducing traffic-related air pollution significantly benefits the mental health of the general population.

These findings have several policy implications. First, they suggest that environmental policies improving air pollution can positively affect various health areas beyond respiratory and cardiovascular health. Future cost-benefit analyses of LEZs should consider the comprehensive effects by incorporating savings linked to mental health diagnoses similar to the estimates provided by this paper. Second, the age diversity in our findings underscores that young people benefit most from policies reducing traffic pollution in terms of mental health outcomes. Policies aimed at reducing air pollution can thus significantly enhance the mental well-being and productivity of younger populations, carrying substantial implications for human capital. This relevance is particularly pronounced given the declining trend in overall mental health among this age group over the past decade. Third, the recent abolition of several LEZs in Southern Germany, due to reaching EU emission targets, may be premature since Germany still exceeds pollutant levels (particularly $PM_{2.5}$) as stated in the air quality guidelines recommended by the World Health Organization (2021). Therefore, the proposed revision of the EU Ambient Air Quality Directive, which aims to halve the current annual limit for fine particulate matter, may necessitate enhancing the stringency of policy instruments like LEZs. As this paper suggests, increasing the policy stringency could yield significant future mental health benefits—besides other health benefits related to respiratory and cardiovascular health and reduce overall health costs. Expanding the scope of LEZs and similar policies may therefore represent a cost-effective strategy to improve public health outcomes on multiple fronts, addressing both environmental and health-related factors to promote overall well-being.

References

Agency, E. E. (2022). Air quality in europe 2022. Web Report, 05/2022.

- Ahammer, A., Glogowsky, U., Halla, M., & Hener, T. (2023). The Parenthood Penalty in Mental Health: Evidence from Austria and Denmark. SSRN Electronic Journal. https: //doi.org/10.2139/ssrn.4592963
- Arias-Pérez, R. D., Taborda, N. A., Gómez, D. M., Narvaez, J. F., Porras, J., & Hernandez, J. C. (2020). Inflammatory effects of particulate matter air pollution. *Environmental Science and Pollution Research*, 27(34), 42390–42404.
- Balakrishnan, U., & Tsaneva, M. (2023). Impact of Air Pollution on Mental Health in India [Publisher: Routledge __eprint: https://doi.org/10.1080/00220388.2022.2120804]. The Journal of Development Studies, 59(1), 133–147. https://doi.org/10.1080/00220388. 2022.2120804
- Beauchemin, K. M., & Hays, P. (1996). Sunny hospital rooms expedite recovery from severe and refractory depressions. *Journal of affective disorders*, 40(1-2), 49–51.
- Beshir, H., & Fichera, E. (2022). "and breathe normally": The low emission zone impacts on health and well-being in england.
- Bishop, K. C., Ketcham, J. D., & Kuminoff, N. V. (2023). Hazed and confused: The effect of air pollution on dementia. *Review of Economic Studies*, 90(5), 2188–2214.
- Block, M. L., & Calderón-Garcidueñas, L. (2009). Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32(9), 506–516. https://doi.org/ 10.1016/j.tins.2009.05.009
- Borroni, E., Pesatori, A. C., Bollati, V., Buoli, M., & Carugno, M. (2022). Air pollution exposure and depression: A comprehensive updated systematic review and meta-analysis. *Environmental Pollution*, 292, 118245. https://doi.org/10.1016/j.envpol.2021.118245
- Braithwaite, I., Zhang, S., Kirkbride, J. B., Osborn, D. P. J., & Hayes, J. F. (2019). Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis [Publisher: Environmental Health Perspectives]. Environmental Health Perspectives, 127(12), 126002. https://doi.org/10.1289/EHP4595
- Brasche, S., & Bischof, W. (2005). Daily time spent indoors in german homes baseline data for the assessment of indoor exposure of german occupants. *International Journal* of Hygiene and Environmental Health, 208(4), 247–253. https://doi.org/https: //doi.org/10.1016/j.ijheh.2005.03.003
- Braun, H. I., Jackson, D. N., & Wiley, D. E. Socially desirable responding: The evolution of a construct. In: In *The role of constructs in psychological and educational measurement*. Routledge, 2001, pp. 61–84.
- Brehm, J., Pestel, N., Schaffner, S., & Schmitz, L. (2022). From low emission zone to academic track: Environmental policy effects on educational achievement in elementary school (Working Paper No. 980) [ISBN: 9783969731451 ISSN: 9697-3145]. Ruhr Economic Papers. https://doi.org/10.4419/96973145
- Breidenbach, P., & Eilers, L. (2018). Rwi-geo-grid: Socio-economic data on grid level. Jahrbücher für Nationalökonomie und Statistik, 238(6), 609–616.

- Brockmeyer, S., & d'Angiulli, A. (2016). How air pollution alters brain development: The role of neuroinflammation. *Translational neuroscience*, 7(1), 24–30.
- Bundespsychotherapeutenkammer. (2018). Ein Jahr nach der Reform der Psychotherapie-Richtlinie: Wartezeiten 2018. Retrieved May 30, 2024, from https://api.bptk.de/uploads/ 20180411_bptk_studie_wartezeiten_2018_85039d7677.pdf
- Bundespsychotherapeutenkammer. (2021). Monatelange Wartezeiten bei Psychotherapeut*innen, Corona-Pandemie verschärft das Defizit an Behandlungsplätzen. Retrieved May 30, 2024, from https://www.bptk.de/pressemitteilungen/bptk-auswertung-monatelangewartezeiten-bei-psychotherapeutinnen/
- Calderón-Garcidueñas, L., Vojdani, A., Blaurock-Busch, E., Busch, Y., Friedle, A., Franco-Lira, M., Sarathi-Mukherjee, P., Martínez-Aguirre, X., Park, S.-B., Torres-Jardón, R., et al. (2015). Air pollution and children: Neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. Journal of Alzheimer's disease, 43(3), 1039–1058.
- Calderón-Garcidueñas, L., Solt, A. C., Henríquez-Roldán, C., Torres-Jardón, R., Nuse, B., Herritt, L., Villarreal-Calderón, R., Osnaya, N., Stone, I., García, R., Brooks, D. M., González-Maciel, A., Reynoso-Robles, R., Delgado-Chávez, R., & Reed, W. (2008). Long-term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid -42 and -Synuclein in Children and Young Adults [Publisher: SAGE Publications Inc]. *Toxicologic Pathology*, 36(2), 289– 310. https://doi.org/10.1177/0192623307313011
- Callaway, B., & Sant'Anna, P. H. C. (2021). Difference-in-Differences with multiple time periods. *Journal of Econometrics*, 225(2), 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001
- Chay, K. Y., & Greenstone, M. (2003). The impact of air pollution on infant mortality: Evidence from geographic variation in pollution shocks induced by a recession. *The quarterly journal of economics*, 118(3), 1121–1167.
- Chen, C., Liu, C., Chen, R., Wang, W., Li, W., Kan, H., & Fu, C. (2018a). Ambient air pollution and daily hospital admissions for mental disorders in Shanghai, China. Science of The Total Environment, 613-614, 324–330. https://doi.org/10.1016/j.scitotenv. 2017.09.098
- Chen, S., Oliva, P., & Zhang, P. (2018b, June). Air Pollution and Mental Health: Evidence from China. https://doi.org/10.3386/w24686
- Coccaro, E. F., Lee, R., & Coussons-Read, M. (2014). Elevated Plasma Inflammatory Markers in Individuals With Intermittent Explosive Disorder and Correlation With Aggression in Humans. JAMA Psychiatry, 71(2), 158–165. https://doi.org/10.1001/jamapsychiatry.2013.3297
- Currie, J., & Neidell, M. (2005). Air pollution and infant health: What can we learn from california's recent experience? *The quarterly journal of economics*, 120(3), 1003–1030.
- Danese, A., & Baldwin, J. R. (2017). Hidden wounds? inflammatory links between childhood trauma and psychopathology. *Annual review of psychology*, 68, 517–544.
- Davoudi, M., Barjasteh-Askari, F., Amini, H., Lester, D., Mahvi, A. H., Ghavami, V., & Rezvani Ghalhari, M. (2021). Association of suicide with short-term exposure to air

pollution at different lag times: A systematic review and meta-analysis. *Science of The Total Environment*, 771, 144882. https://doi.org/10.1016/j.scitotenv.2020.144882

- de Chaisemartin, C., & D'Haultfœuille, X. (2020a, November). Difference-in-Differences Estimators of Intertemporal Treatment Effects (SSRN Scholarly Paper No. ID 3731856).
 Social Science Research Network. Rochester, NY. https://doi.org/10.2139/ssrn. 3731856
- de Chaisemartin, C., & D'Haultfœuille, X. (2020b). Two-way fixed effects estimators with heterogeneous treatment effects. *American Economic Review*, 110(9), 2964–96.
- Eaton, E., & Hunt, A. (2024). Does willingness to pay differ for mental and physical health? *Value in Health.*
- Eden, J.-L., Konnopka, A., & Koenig, H.-H. (2021). Costs of depression in germany-systematic review. *Psychiatrische Praxis*, 48(6), 290–300.
- Eßl-Maurer, R., Flamm, M., Hösl, K., Osterbrink, J., & van der Zee-Neuen, A. (2022). Absenteeism and associated labour costs according to depressive symptom severity in the german general population: Why preventive strategies matter. *International archives of occupational and environmental health*, 1–10.
- Fan, S.-J., Heinrich, J., Bloom, M. S., Zhao, T.-Y., Shi, T.-X., Feng, W.-R., Sun, Y., Shen, J.-C., Yang, Z.-C., Yang, B.-Y., & Dong, G.-H. (2020). Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. *Science of The Total Environment*, 701, 134721. https://doi.org/10.1016/j.scitotenv.2019.134721
- Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient pm2. 5 and potential mechanisms. *Ecotoxicology and environmental safety*, 128, 67–74.
- Gehrsitz, M. (2017). The effect of low emission zones on air pollution and infant health. Journal of Environmental Economics and Management, 83, 121–144.
- Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type s (sign) and type m (magnitude) errors. *Perspectives on psychological science*, 9(6), 641–651.
- Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, 225(2), 254–277.
- Grobe, T. G., & Szecsenyi, J. (2023). *Kindergesundheit: Frühgeburtlichkeit und folgen*. Barmer Institut für Gesundheitssystemforschung.
- Gu, X., Guo, T., Si, Y., Wang, J., Zhang, W., Deng, F., Chen, L., Wei, C., Lin, S., Guo, X., & Wu, S. (2020). Association Between Ambient Air Pollution and Daily Hospital Admissions for Depression in 75 Chinese Cities [Publisher: American Psychiatric Publishing]. American Journal of Psychiatry, 177(8), 735–743. https://doi.org/10. 1176/appi.ajp.2020.19070748
- Guxens, M., & Sunyer, J. (2012). A review of epidemiological studies on neuropsychological effects of air pollution [Number: 0102]. Swiss Medical Weekly, 142(0102), w13322– w13322. https://doi.org/10.57187/smw.2012.13322
- Hansen, A., Bi, P., Nitschke, M., Ryan, P., Pisaniello, D., & Tucker, G. (2008). The effect of heat waves on mental health in a temperate australian city. *Environmental health* perspectives, 116(10), 1369–1375.

- Hapke, U., Cohrdes, C., & Nübel, J. (2019). Depressive symptomatik im europäischen vergleichergebnisse des european health interview survey (ehis) 2. Journal of Health Monitoring, 4(4), 62–70.
- Health Effects Institute. (2022). Systematic review and meta-analysis of selected health effects of long-term exposure to traffic-related air pollution. *HEI Special Report 23*.
- Heo, S., Lee, W., & Bell, M. L. (2021). Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis [Number: 14 Publisher: Multidisciplinary Digital Publishing Institute]. International Journal of Environmental Research and Public Health, 18(14), 7699. https://doi.org/10.3390/ijerph18147699
- Holloway, T., Miller, D., Anenberg, S., Diao, M., Duncan, B., Fiore, A. M., Henze, D. K., Hess, J., Kinney, P. L., Liu, Y., et al. (2021). Satellite monitoring for air quality and health. Annual review of biomedical data science, 4(1), 417–447.
- Hwang, I. Y., Choi, D., Kim, J. A., Choi, S., Chang, J., Goo, A. J., Ko, A., Lee, G., Kim, K. H., Son, J. S., & Park, S. M. (2022). Association of short-term particulate matter exposure with suicide death among major depressive disorder patients: A time-stratified casecrossover analysis [Number: 1 Publisher: Nature Publishing Group]. Scientific Reports, 12(1), 8471. https://doi.org/10.1038/s41598-022-12421-z
- Ju, K., Lu, L., Chen, T., Duan, Z., Chen, D., Liao, W., Zhou, Q., Xu, Z., & Wang, W. (2022). Does long-term exposure to air pollution impair physical and mental health in the middle-aged and older adults? — A causal empirical analysis based on a longitudinal nationwide cohort in China. Science of The Total Environment, 827, 154312. https: //doi.org/10.1016/j.scitotenv.2022.154312
- Ju, K., Lu, L., Wang, W., Chen, T., Yang, C., Zhang, E., Xu, Z., Li, S., Song, J., Pan, J., & Guo, Y. (2023). Causal effects of air pollution on mental health among Adults——An exploration of susceptible populations and the role of physical activity based on a longitudinal nationwide cohort in China. *Environmental Research*, 217, 114761. https: //doi.org/10.1016/j.envres.2022.114761
- Kang, Y. J., Tan, H.-Y., Lee, C. Y., & Cho, H. (2021). An air particulate pollutant induces neuroinflammation and neurodegeneration in human brain models. *Advanced Science*, 8(21), 2101251.
- KBV. (2024, May). EBM [Publisher: Kassenärztliche Bundesvereinigung (KBV)]. Retrieved May 30, 2024, from https://www.kbv.de/html/ebm.php
- Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. *Environmental Geochemistry and Health*, 37(4), 631– 649. https://doi.org/10.1007/s10653-015-9720-1
- Khan, J., Ketzel, M., Kakosimos, K., Sørensen, M., & Jensen, S. S. (2018). Road traffic air and noise pollution exposure assessment-a review of tools and techniques. *Science of* the total environment, 634, 661–676.
- Kim, S. Y., Bang, M., Wee, J. H., Min, C., Yoo, D. M., Han, S.-M., Kim, S., & Choi, H. G. (2021). Short- and long-term exposure to air pollution and lack of sunlight are associated with an increased risk of depression: A nested case-control study using meteorological data and national sample cohort data. *Science of The Total Environment*, 757, 143960. https://doi.org/10.1016/j.scitotenv.2020.143960

- Klauber, H., Holub, F., Koch, N., Pestel, N., Ritter, N., & Rohlf, A. (2024). Low emission zones and child health from birth to school. *American Economic Journal: Applied Economics*.
- Krauth, C., Stahmeyer, J. T., Petersen, J. J., Freytag, A., Gerlach, F. M., & Gensichen, J. (2014). Resource utilisation and costs of depressive patients in germany: Results from the primary care monitoring for depressive patients trial. *Depression research and treatment*, 2014(1), 730891.
- Krzyzanowski, M., Kuna-Dibbert, B., & Schneider, J. (2005). *Health effects of transport*related air pollution. WHO Regional Office Europe.
- Kühn, S., & Gallinat, J. (2024). Environmental neuroscience unravels the pathway from the physical environment to mental health. *Nature Mental Health*, 2(3), 263–269.
- Laumbach, R. J., Kipen, H. M., Ko, S., Kelly-McNeil, K., Cepeda, C., Pettit, A., Ohman-Strickland, P., Zhang, L., Zhang, J., Gong, J., Veleeparambil, M., & Gow, A. J. (2014). A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability. *Particle and Fibre Toxicology*, 11(1), 45. https://doi.org/10.1186/s12989-014-0045-5
- Levesque, S., Taetzsch, T., Lull, M. E., Kodavanti, U., Stadler, K., Wagner, A., Johnson, J. A., Duke, L., Kodavanti, P., Surace, M. J., & Block, M. L. (2011). Diesel Exhaust Activates and Primes Microglia: Air Pollution, Neuroinflammation, and Regulation of Dopaminergic Neurotoxicity [Publisher: Environmental Health Perspectives]. Environmental Health Perspectives, 119(8), 1149–1155. https://doi.org/10.1289/ehp. 1002986
- Li, H., Zhang, S., Qian, Z. M., Xie, X.-H., Luo, Y., Han, R., Hou, J., Wang, C., McMillin, S. E., Wu, S., Tian, F., Deng, W.-F., & Lin, H. (2020). Short-term effects of air pollution on cause-specific mental disorders in three subtropical Chinese cities. *Environmental Research*, 191, 110214. https://doi.org/10.1016/j.envres.2020.110214
- Li, M., Ferreira, S., Smith, T. A., & Zhang, X. (2021). Air pollution and noncognitive traits among chinese adolescents. *Health Economics*, 30(2), 478–488.
- Luechinger, S. (2014). Air pollution and infant mortality: A natural experiment from power plant desulfurization. *Journal of health economics*, 37, 219–231.
- Maher, B. A., Ahmed, I. A., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., Mann, D. M., Torres-Jardón, R., & Calderon-Garciduenas, L. (2016). Magnetite pollution nanoparticles in the human brain. *Proceedings of the National Academy of Sciences*, 113(39), 10797–10801.
- Makar, P., Gong, W, Milbrandt, J, Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R, Im, U., Balzarini, A, Baró, R., et al. (2015). Feedbacks between air pollution and weather, part 1: Effects on weather. Atmospheric Environment, 115, 442–469.
- Margaryan, S. (2021). Low emission zones and population health. Journal of Health Economics, 76, 102402.
- Martin, R. V. (2008). Satellite remote sensing of surface air quality. *Atmospheric environment*, 42(34), 7823–7843.
- Menculini, G., Verdolini, N., Murru, A., Pacchiarotti, I., Volpe, U., Cervino, A., Steardo, L., Moretti, P., Vieta, E., & Tortorella, A. (2018). Depressive mood and circadian

rhythms disturbances as outcomes of seasonal affective disorder treatment: A systematic review. Journal of affective disorders, 241, 608–626.

- Miller, A. H., & Raison, C. L. (2016). The role of inflammation in depression: From evolutionary imperative to modern treatment target [Number: 1 Publisher: Nature Publishing Group]. Nature Reviews Immunology, 16(1), 22–34. https://doi.org/10.1038/nri. 2015.5
- Najjar, S., Pearlman, D. M., Alper, K., Najjar, A., & Devinsky, O. (2013). Neuroinflammation and psychiatric illness. *Journal of Neuroinflammation*, 10(1), 816. https://doi.org/ 10.1186/1742-2094-10-43
- Pauley, A. M., Moore, G. A., Mama, S. K., Molenaar, P., & Symons Downs, D. (2020). Associations between prenatal sleep and psychological health: A systematic review. *Journal of Clinical Sleep Medicine*, 16(4), 619–630.
- Paulhus, D. L. (1984). Two-component models of socially desirable responding. Journal of personality and social psychology, 46(3), 598.
- Persico, C., & Marcotte, D. E. (2022). Air quality and suicide (tech. rep.). National Bureau of Economic Research.
- Pestel, N., & Wozny, F. (2021). Health effects of Low Emission Zones: Evidence from German hospitals. Journal of Environmental Economics and Management, 109, 102512.
- Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., & Anstey, K. J. (2019). Air pollution and dementia: A systematic review. *Journal of Alzheimer's Disease*, 70(s1), S145–S163.
- Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the air & waste management association, 56(6), 709–742.
- Qiu, H., Zhu, X., Wang, L., Pan, J., Pu, X., Zeng, X., Zhang, L., Peng, Z., & Zhou, L. (2019). Attributable risk of hospital admissions for overall and specific mental disorders due to particulate matter pollution: A time-series study in Chengdu, China. *Environmental Research*, 170, 230–237. https://doi.org/10.1016/j.envres.2018.12.019
- Rafiei, S., Raoofi, S., Baghaei, A., Masoumi, M., Doustmehraban, M., Nejatifar, Z., Sanaei, M., Bagheribayati, F., Shayestehbonyan, M., Biparva, A. J., et al. (2023). Depression prevalence in cardiovascular disease: Global systematic review and meta-analysis. *BMJ Supportive & Palliative Care*, 13(3), 281–289.
- Ren, Y., Yu, J., Zhang, G., Zhang, C., & Liao, W. (2023). The Short- and Long-Run Impacts of Air Pollution on Human Health: New Evidence from China [Number: 3 Publisher: Multidisciplinary Digital Publishing Institute]. International Journal of Environmental Research and Public Health, 20(3), 2385. https://doi.org/10.3390/ijerph20032385
- Roberts, S., Arseneault, L., Barratt, B., Beevers, S., Danese, A., Odgers, C. L., Moffitt, T. E., Reuben, A., Kelly, F. J., & Fisher, H. L. (2019). Exploration of no2 and pm2. 5 air pollution and mental health problems using high-resolution data in london-based children from a uk longitudinal cohort study. *Psychiatry research*, 272, 8–17.
- Rosenthal, N. E., Sack, D. A., Gillin, J. C., Lewy, A. J., Goodwin, F. K., Davenport, Y., Mueller, P. S., Newsome, D. A., & Wehr, T. A. (1984). Seasonal affective disorder: A description of the syndrome and preliminary findings with light therapy. Archives of general psychiatry, 41(1), 72–80.
- Rückerl, R., Schneider, A., Breitner, S., Cyrys, J., & Peters, A. (2011). Health effects of particulate air pollution: A review of epidemiological evidence [Publisher: Taylor &

Francis __eprint: https://doi.org/10.3109/08958378.2011.593587]. Inhalation Toxicology, 23(10), 555–592. https://doi.org/10.3109/08958378.2011.593587

- Salim, S. (2014). Oxidative stress and psychological disorders. Current neuropharmacology, 12(2), 140–147.
- Sarmiento, L., Wägner, N., & Zaklan, A. (2022, June). The Air Quality and Well-Being Effects of Low Emission Zones. https://doi.org/10.2139/ssrn.4142070
- Statista. (2024). Höhe des durchschnittlichen Nettolohns. Retrieved July 19, 2024, from https: //de.statista.com/statistik/daten/studie/370558/umfrage/monatliche-nettoloehneund-gehaelter-je-arbeitnehmer-in-deutschland/
- Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225(2), 175–199.
- Thompson, R, Hornigold, R, Page, L, & Waite, T. (2018). Associations between high ambient temperatures and heat waves with mental health outcomes: A systematic review. *Public health*, 161, 171–191.
- Timm, A. (2024). *Retrodesign: Tools for type s (sign) and type m (magnitude) errors* [R package version 0.2.2]. https://CRAN.R-project.org/package=retrodesign
- Timm, A. (2018, May 11). Type S/M Errors in R with Retrodesign(). https://andytimm.github.io/2019-02-05-Intro_To_retrodesign.html
- Trushna, T., Dhiman, V., Raj, D., & Tiwari, R. R. (2021). Effects of ambient air pollution on psychological stress and anxiety disorder: A systematic review and meta-analysis of epidemiological evidence [Publisher: De Gruyter]. *Reviews on Environmental Health*, 36(4), 501–521. https://doi.org/10.1515/reveh-2020-0125
- Van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R., Garay, M. J., Hsu, N. C., Kalashnikova, O. V., Kahn, R. A., Lee, C., et al. (2021). Monthly global estimates of fine particulate matter and their uncertainty. *Environmental Science & Technology*, 55(22), 15287–15300.
- Wang, F., Liu, H., Li, H., Liu, J., Guo, X., Yuan, J., Hu, Y., Wang, J., & Lu, L. (2018). Ambient concentrations of particulate matter and hospitalization for depression in 26 Chinese cities: A case-crossover study. *Environment International*, 114, 115–122. https://doi.org/10.1016/j.envint.2018.02.012
- Wei, F., Wu, M., Qian, S., Li, D., Jin, M., Wang, J., Shui, L., Lin, H., Tang, M., & Chen, K. (2020). Association between short-term exposure to ambient air pollution and hospital visits for depression in China. *Science of The Total Environment*, 724, 138207. https: //doi.org/10.1016/j.scitotenv.2020.138207
- WHO. (2022). World mental health report: Transforming mental health for all.
- WHO. (2024a). Defined Daily Dose (DDD). Retrieved May 30, 2024, from https://www.who. int/tools/atc-ddd-toolkit/about-ddd
- WHO. (2024b). Global Health Workforce statistics database. Retrieved June 14, 2024, from https://www.who.int/data/gho/data/themes/topics/health-workforce
- Wolff, H. (2014). Keep your clunker in the suburb: Low-emission zones and adoption of green vehicles. The Economic Journal, 124(578), F481–F512.
- Wolff, H., & Perry, L. (2010). Policy monitor. Review of Environmental Economics and Policy.

- Wooldridge, J. (2021). Two-way fixed effects, the two-way mundlak regression, and differencein-differences estimators. Available at SSRN 3906345.
- World Health Organization. (2021). Who global air quality guidelines: Particulate matter (pm2. 5 and pm10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
- Xue, T., Zhu, T., Zheng, Y., & Zhang, Q. (2019). Declines in mental health associated with air pollution and temperature variability in China [Number: 1 Publisher: Nature Publishing Group]. Nature Communications, 10(1), 2165. https://doi.org/10.1038/s41467-019-10196-y
- Zeng, Y., Lin, R., Liu, L., Liu, Y., & Li, Y. (2019). Ambient air pollution exposure and risk of depression: A systematic review and meta-analysis of observational studies. *Psychiatry Research*, 276, 69–78. https://doi.org/10.1016/j.psychres.2019.04.019
- Zhang, H., Wang, Y., Park, T.-W., & Deng, Y. (2017a). Quantifying the relationship between extreme air pollution events and extreme weather events. Atmospheric Research, 188, 64–79.
- Zhang, X., Zhang, X., & Chen, X. (2017b). Happiness in the air: How does a dirty sky affect mental health and subjective well-being? Journal of Environmental Economics and Management, 85, 81–94. https://doi.org/10.1016/j.jeem.2017.04.001
- Zhao, T., Tesch, F., Markevych, I., Baumbach, C., Janßen, C., Schmitt, J., Romanos, M., Nowak, D., & Heinrich, J. (2020). Depression and anxiety with exposure to ozone and particulate matter: An epidemiological claims data analysis. *International Journal of Hygiene and Environmental Health*, 228, 113562. https://doi.org/10.1016/j.ijheh. 2020.113562
- Zheng, S., Wang, J., Sun, C., Zhang, X., & Kahn, M. E. (2019a). Air pollution lowers Chinese urbanites' expressed happiness on social media [Number: 3 Publisher: Nature Publishing Group]. Nature Human Behaviour, 3(3), 237–243. https://doi.org/10.1038/ s41562-018-0521-2
- Zheng, S., Wang, J., Sun, C., Zhang, X., & Kahn, M. E. (2019b). Air pollution lowers chinese urbanites' expressed happiness on social media. *Nature human behaviour*, 3(3), 237– 243.
- Zhou, Y.-M., An, S.-J., Tang, E.-J., Xu, C., Cao, Y., Liu, X.-L., Yao, C.-Y., Xiao, H., Zhang, Q., Liu, F., Li, Y.-F., Ji, A.-l., & Cai, T.-j. (2021). Association between short-term ambient air pollution exposure and depression outpatient visits in cold seasons: A time-series analysis in northwestern China. Journal of Toxicology and Environmental Health, Part A, 84(9), 389–398. https://doi.org/10.1080/15287394.2021.1880507
- Zijlema, W. L., Wolf, K., Emeny, R., Ladwig, K.-H., Peters, A., Kongsgård, H., Hveem, K., Kvaløy, K., Yli-Tuomi, T., Partonen, T., et al. (2016). The association of air pollution and depressed mood in 70,928 individuals from four european cohorts. *International journal of hygiene and environmental health*, 219(2), 212–219.
- Zundel, C. G., Ryan, P., Brokamp, C., Heeter, A., Huang, Y., Strawn, J. R., & Marusak, H. A. (2022). Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. *NeuroToxicology*, 93, 272–300. https://doi.org/10.1016/j.neuro.2022.10.011

A Descriptives

LEZ	Federal State	LEZ type	LEZ type active	Area in km2	Circumference in km
Aachen	NW	Green	01.02.2016	24	28
Augsburg	BY	Green	01.07.2009	6	12
Balingen	$_{\rm BW}$	Green	01.04.2017 - 01.03.2023	90	50
Berlin	В	Green	01.01.2008	87	37
Bonn	NW	Green	01.01.2010	9	18
Bremen	HB	Green	01.01.2009	7	13
Darmstradt	$_{\rm HE}$	Green	01.11.2015	106	90
Dinslaken	NW	Green	01.07.2011	4	9
Düsseldorf	NW	Green	15.02.2009	14	16
Erfurt	TH	Green	01.10.2012 - 01.05.2021	16	19
Eschweiler	NW	Green	01.06.2016	2	7
Frankfurta.M.	$_{\rm HE}$	Green	01.10.2008	98	60
Freiburg	$_{\rm BW}$	Green	01.01.2010	25	58
Hagen	NW	Green	01.01.2012	9	19
Halle(Saale)	SA	Green	01.09.2011	7	12
Hannover	NI	Green	01.01.2008 - 22.02.2024	43	30
Heidelberg	$_{\rm BW}$	Green	01.01.2010 - 01.03.2023	10	33
Heidenheim	$_{\rm BW}$	Green	01.01.2012 - 01.01.2024	17	28
Heilbronn	BW	Green	01.01.2009 - 01.01.2024	38	55
Herrenberg	BW	Green	01.01.2009 - 01.01.2024	4	9
Ilsfeld	BW	Green	01.03.2008 - 01.05.2023	2	5
Köln	NW	Green	01.01.2008	95	88
Karlsruhe	$_{\rm BW}$	Green	01.01.2009 - 01.03.2023	11	16
Krefeld	NW	Green	01.01.2011	10	16
Langenfeld	NW	Green	01.01.2013	1	6
Leipzig	SN	Green	01.03.2011	182	111
Leonberg/Hemmingen	BW	Green	02.12.2013 - 01.01.2024	131	60
LimburganderLahn	HE	Green	31.01.2018	6	15
Ludwigsburg	BW	Green	01.01.2013	139	58
Mönchengladbach	NW	Green	01.01.2013	21	26
Magdeburg	SA	Green	01.09.2011	7	21
Mainz	RP	Green	01.02.2013	34	35
Mannheim	BW	Green	01.03.2008	7	16
Marburg	HE	Green	01.04.2016	15	34
Müchen	BY	Green	01.10.2008	43	28
Mühlacker	BW	Green	01.01.2009 - 01.08.2024	1	7
Münster	NW	Green	01.01.2010	1	6
Neuss	NW	Green	15.02.2010	2	6
Neu-Ulm	BY	Yellow	01.11.2009 - 04.06.2024	2	21
Offenbach	HE	Green	01.01.2015	39	35
Osnabrück	NI	Green	04.01.2010	17	33
Overath	NW	Green	01.10.2017	0	3
Pfinztal	BW	Green	01.01.2010 - 01.03.2023	31	30
Pforzheim	BW	Green	01.01.2009	2	9
Regensburg	BY	Green	15.01.2018	1	7
Remscheid	NW	Green	01.01.2013	1	6
Reutlingen	$_{\rm BW}$	Green	01.01.2009 - 04.06.2024	109	91
Ruhrgebiet	NW	Green	01.01.2012	870	276
Schramberg	BW	Green	01.07.2013 - 01.03.2023	4	16
SchwäbischGmünd	BW	Green	01.03.2008 - 01.05.2023	6	17
Siegen	NW	Green	01.01.2015	3	11
Stuttgart	BW	Green	01.03.2008	204	108
Tübingen	BW	Green	01.03.2008 - 04.06.2024	108	73
Ulm	BW	Green	01.01.2009 - 04.06.2024	28	26
Urbach	BW	Green	01.01.2012 - 01.05.2023	2	8
Wendlingen	BW	Green	02.04.2013 - 01.05.2023	4	9
Wiesbaden	HE	Green	01.02.2013	63	77
Wuppertal	NW	Green	15.02.2009	25	48
Mean				49.02	35.53
Median				12.50	21.00
SD				119.63	42.13

Table A.1: LEZs in Germany

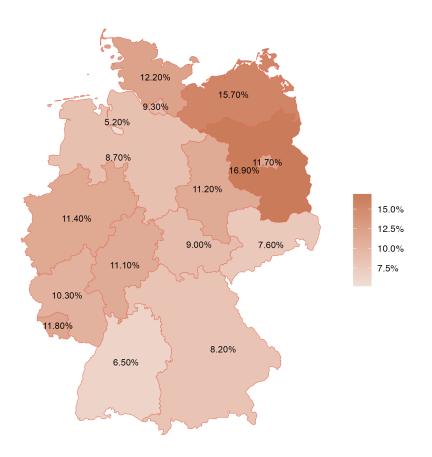


Figure A.1: Share of Insured Individuals by Federal State in 2022

Note: This figure displays the share of individuals insured by the health care provider in 2022. *Source:* Grobe and Szecsenyi (2023).

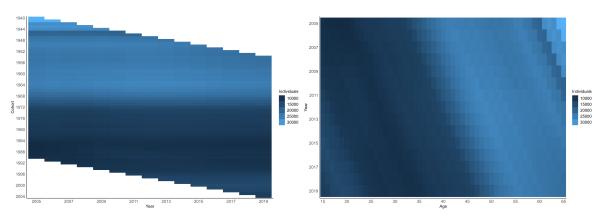


Figure A.2: Age and Cohort Distribution in our Sample

Note: This figure displays age and cohort distribution as well as the underlying number ob observations over time.

Table A.2: GOP - Codes

Psychiatric and psychotherapeutic fee schedule items (psychiatrists) 21220 Conversation, consultation, discussion, clarification (individual treatment) Psychiatric treatment (group treatment) 2121 Basis flat rate 6th. 5 bth year of life 22220 Psychotherapeutic consultation (individual treatment) 22221 Psychotherapeutic consultation (individual treatment) 22222 Psychotherapeutic medical treatment (group treatment) 22230 Basic flat rate up to 5 years of age 22311 Basic flat rate up to 5 years of age 23212 Basic flat rate of the 1 by hyear of life 23212 Basic flat rate of the 1 by hyear of life 23212 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic chaffication of psychosomatic disease states 35111 Exercise interventions in children and adolescents, group treatment 3512 Supplementary survey of neurological and psychiatric findings 35141 In-depth exploration 35142 Supplementary survey of neurological and psychiatre findings 35173	Code	Description
21220 Conversation, consultation, discussion, clarification (individual treatment) 21221 Psychiatric treatment (group treatment) 22211 Basic flat rate 6th + 50th year of life 22212 Basic flat rate from 60 years of age 22213 Psycholoberapeutic consultation (individual treatment) 22220 Psycholoberapeutic consultation (group treatment) 22221 Psycholoberapeutic ideal treatment (individual treatment) 22222 Psycholoberapeutic fee schedule items* 22210 Basic flat rate up to 5 years of age 23211 Basic flat rate for hol years of age 23212 Basic flat rate for hol years of age 23214 Basic flat rate for hol years of age 23215 Basic flat rate for hol years of age 23216 Disk flat rate for hol years of age 23217 Basic flat rate flat and adolescent psychotherapists 23200 Psychotherapeutic interview (individual treatment) 5110 Differential diagnostic clarification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5122 Hyposis 5134 Exercise according to the psychotherapy guideline (Servideas), group treatment	Peuchiatric a	ind neuchatharanautic for schedule items (neuchiatriets)
21221 Psychiatric treatment (group treatment) Fee schedule items for psychosomatic medicine and psychotherapy 22211 Basic flat rate 6th. 59th year of life 22222 Psychotherapeutic consultation (individual treatment) 22223 Psychotherapeutic and treatment (individual treatment) 22224 Psychotherapeutic fee schedule items* 22230 Basic flat rate (bt. 59th year of life 22311 Basic flat rate (bt. 59th year of life 223220 Psychotherapeutic interview (individual treatment) 23212 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5110 Verbal interventions, individual treatment 5111 Exercise interventions in children and adolescent, group treatment 5112 Exercise interventions in children and adolescent, group treatment 5112 Exercise interventions in children and adolescent, group treatment 5112 Exercise interventions in children and adolescent, group treatment 5112 Exercise interventions in children and adolescent, group treatment 5112 Supplementary survey of neurological and psychiatric findi		
Fee schedule items for psychosomatic medicine and psychotherapy 22211 Basic flat rate 6th - 59th year of life 22220 Psychosomatic medical treatment (individual treatment) 22221 Psychosomatic medical treatment (individual treatment) 22222 Psychosomatic medical treatment (individual treatment) 22221 Psychosomatic medical treatment (individual treatment) 22222 Psychosomatic medical treatment (group treatment) 22223 Basic flat rate up to 5 years of age 22211 Basic flat rate for 60 years of age 22212 Basic flat rate for 60 years of age 22213 Basic flat rate for child and adolescent psychotherapists 22220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5100 Differential diagnostic charification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5122 Acet psychotherapeutic consultation 5142 Supplementary survey of neurological and psychiatric findings 5151 Psychotherapeutic consultation 5152 Acet psychotherapeutic primary care, 3 participants - 9 participants 5153 Psych		
22211 Basic flat rate form 60 years of age 22220 Psychotherapeutic consultation (individual treatment) 22221 Psychotherapeutic medical treatment (group treatment) 22222 Psychotherapeutic fee schedule items* 22220 Basic flat rate up to 5 years of age 22211 Basic flat rate up to 5 years of age 22212 Basic flat rate of the Sy toyears of age 22211 Basic flat rate form 60 years of age 22212 Basic flat rate for child and adolescent psychotherapists 22200 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5100 Differential diagnostic clarification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5112 Exercise interventions, individual treatment 5113 Exercise interventions in children and adolescents, group treatment 5120 Hypnosis 5141 In-depth exploration 5152 Acute psychotherapeutic treatment 5154 Psychotherapeutic consultation 5155 Probationary session (group treatment), 3 participants - 9 participants 5164 <t< td=""><td>21221</td><td>i sychiatric treatment (group treatment)</td></t<>	21221	i sychiatric treatment (group treatment)
22211 Basic flat rate form 60 years of age 22220 Psychotherapeutic consultation (individual treatment) 22221 Psychotherapeutic medical treatment (group treatment) 22222 Psychotherapeutic fee schedule items* 22220 Basic flat rate up to 5 years of age 22211 Basic flat rate up to 5 years of age 22212 Basic flat rate of the Sy toyears of age 22211 Basic flat rate for child and adolescent psychotherapists 22220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5100 Differential diagnostic clarification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5112 Exercise interventions, individual treatment 5113 Exercise interventions in children and adolescents, group treatment 5120 Hypnosis 5141 In-depth exploration 5152 Acute psychotherapeutic treatment, 3 participants - 9 participants 5154 Psychotherapeutic consultation 5155 Probationary session (group treatment, 3 participants - 9 participants 5161 Psychotherapeutic treatment, 3 participants - 9 participan	Fee schedule	items for psychosomatic medicine and psychotherapy
22212 Basic flat rate from 60 years of age 22220 Psychokerapeutic consultation (individual treatment) 22221 Psychosematic medical treatment (group treatment) 22222 Psychotherapeutic medical treatment (group treatment) 22223 Basic clinical-neurological diagnosis Psychotherapeutic fee schedule items* 22210 Basic flat rate up to 5 years of age 22211 Basic flat rate for h0 years of age 22212 Basic flat rate for h0 years of age 22213 Dasic flat rate for h0 years of age 22214 Basic flat rate for h0 years of age 22215 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, individual treatment 35120 Hyponsis 35141 In-dept exploration 35142 Supplementary survey of neurological and psychiatric findings 35151 Psychotherapeutic consultation 35152 Acute psychotherapeutic treatment 35153 Probationary session (group treatment, 3 participants - 9 participants		
22220 Psychotherapeutic consultation (individual treatment) 22221 Psychotherapeutic medical treatment (individual treatment) 22222 Psychotherapeutic fee schedule items* 22230 Basic flat rate up to 5 years of age 23211 Basic flat rate top to 5 years of age 23212 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5100 Differential diagnostic clarification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5112 Exercise interventions, individual treatment 5113 Exercise interventions, individual treatment 5114 In-depth exploration 5151 Psychotherapeutic consultation 5151 Psychotherapeutic primary care, 3 participants - 9 participants 5151 Psychotherapeutic primary care, 3 participants - 9 participants 5163 S169 Probationary session 5151 Psychotherapeutic primary care, 3 participants - 9 participants 5164 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 5401		
2221 Psychosomatic medical treatment (individual treatment) 2222 Psychotherapeutic medical treatment (group treatment) 22230 Basic flat rate up to 5 years of age 23211 Basic flat rate up to 5 years of age 23212 Basic flat rate for 00 years of age 23214 Basic flat rate for 00 years of age 23214 Basic flat rate for 00 years of age 23214 Basic flat rate for 00 years of age 23214 Basic flat rate for 00 years of age 23214 Basic flat rate for 00 years of age 23214 Basic flat rate for 0.10 years of age 23214 Basic flat rate for 0.10 years of age 23214 Basic flat rate for 0.10 years of age 23215 Psychotherapeutic interventions, individual treatment 35110 Verbal interventions, individual treatment 35113 Exercise interventions 35140 Biographical anamesis 35141 In-depth exploration 35152 Acute psychotherapeutic consultation 35163 Probationary session 35173 - 35179 Group psychotherapy (short-term therap 1, individual treatment) 35401 Depth psychological psychotherapy (
2222 Psychotherapeutic medical treatment (group treatment) 22230 Basic clinical-neurological diagnosis Psychotherapeutic fee schedule items* 22210 Basic flat rate up to 5 years of age 22111 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5100 Differential diagnostic clarification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5112 Exercise interventions, individual treatment 5113 Exercise interventions, group treatment 5114 Indegraphical anamnesis 5115 Probationary session 51511 Psychotherapeutic consultation 5152 Acute psychotherapeutic treatment 5153 Probationary session 5154 Psychotherapeutic group treatment) 5550 Probationary session (group treatment) 55151 Psychotherapeutic treatment 55162 Acute psychotherapeutic treatment 55173 S3519 Group psychotherapeutic primary care, 3 participants - 9 participants		
Psychotherapeutic fee schedule items* 23210 Basic flat rate top to 5 years of age 23211 Basic flat rate top tof 0 years of age 23212 Basic flat rate for child and adolescent psychotherapists 23200 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 5100 Differential diagnostic clarification of psychosomatic disease states 5111 Exercise interventions, individual treatment 5112 Exercise interventions, individual treatment 5113 Exercise interventions, group treatment 5120 Hypnosis 5141 In-depth exploration 5152 Acute psychotherapeutic treatment 5153 Psychotherapeutic consultation 5154 Psychotherapeutic treatment 5155 Probationary session (group treatment), 3 participants - 9 participants 5173 - 35179 Group psychotherapy (short-term therapy 1, individual treatment) 5400 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 5411 Analytical psychotherapy (short-term therapy 1, individual treatment) 5420 Depth psychological psychotherapy (short-term therapy 1, individual treatmen		• • • •
23210 Basic flat rate up to 5 years of age 23211 Basic flat rate for child and adolescent psychotherapists 23212 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, individual treatment 35112 Exercise interventions, individual treatment 35113 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35141 In-depth exploration 35142 Supplementary survey of neurological and psychiatric findings 35150 Probationary session 35151 Psychotherapeutic treatment 35162 Acute psychotherapeutic primary care, 3 participants - 9 participants 35173 -35179 Group psychotherapy (log-tern therapy 1, individual treatment) 35401 Depth psychological psychotherapy (log-tern therapy 1, individual treatment) 35412 Analytical psychotherapy (log-tern therapy 2, individual treatment) 35402 Depth psychological psychotherapy (log-tern therapy 1, individua	22230	Basic clinical-neurological diagnosis
23210 Basic flat rate up to 5 years of age 23211 Basic flat rate for child and adolescent psychotherapists 23212 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, individual treatment 35112 Exercise interventions, individual treatment 35113 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35141 In-depth exploration 35142 Supplementary survey of neurological and psychiatric findings 35150 Probationary session 35151 Psychotherapeutic treatment 35162 Acute psychotherapeutic primary care, 3 participants - 9 participants 35173 -35179 Group psychotherapy (log-tern therapy 1, individual treatment) 35401 Depth psychological psychotherapy (log-tern therapy 1, individual treatment) 35412 Analytical psychotherapy (log-tern therapy 2, individual treatment) 35402 Depth psychological psychotherapy (log-tern therapy 1, individua	Psychotherar	eutic fee schedule items*
23211 Basic flat rate füh - 59th year of life 23212 Basic flat rate for oh ogars of age 23214 Basic flat rate for ohid and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline. (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, group treatment 35120 Hypnosis 35140 Biographical anamnesis 35141 In-depth exploration 35152 Acute psychotherapeutic consultation 35154 Probationary session 35155 Probationary session (group treatment) 35161 Probationary session (group treatment), 3 participants - 9 participants 35173 -35179 Group psychotherapeutic treatment 35161 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 35401 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35402 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35401 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35402		
23212 Basic flat rate from 60 years of age 23214 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, individual treatment 35112 Exercise interventions, individual treatment 35120 Hypnosis 35141 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35141 In-dept exploration 35152 Acute psychotherapeutic treatment 35163 Probationary session (group treatment), 3 participants - 9 participants 35173 - 35179 Group psychotherapeutic primary care, 3 participants - 9 participants 35401 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35403 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35404 Depth psychological psychotherapy (individual treatment) 35405 Depth psychological psychotherapy (individual treatment) 35406 Depth psychological psychotherapy 2, individual treatment) <		
23214 Basic flat rate for child and adolescent psychotherapists 23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, group treatment 35112 Exercise interventions, group treatment 35113 Exercise interventions, group treatment 35140 Biographical anamesis 35141 In-depth exploration 35150 Probationary session 35161 Psychotherapeutic consultation 35163 35169 35179 Group psychotherapeutic primary care, 3 participants - 9 participants 35171 Depth psycholycapy (short-term therapy 1, individual treatment) 35401 Depth psycholycapy (short-term therapy 1, individual treatment) 35402 Depth psycholycal psychotherapy (short-term therapy 1, individual treatment) 35403 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 35401 Depth psychological psychotherapy 1, individual treatment) 35402 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 35412		*
23220 Psychotherapeutic interview (individual treatment) Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, individual treatment 35112 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35141 In-depth exploration 35142 Supplementary survey of neurological and psychiatric findings 35151 Psychotherapeutic consultation 35163 Probationary session 35173 35179 Group psychotherapeutic primary care, 3 participants - 9 participants 35401 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 35402 Depth psychological psychotherapy (long-term therapy 1, individual treatment) 35401 Depth psychological psychotherapy (long-term therapy 1, individual treatment) 35402 Depth psychological psychotherapy (long-term therapy 1, individual treatment) 35412 Analytical psychotherapy (long-term therapy 1, individual treatment) 35412 Analytical psychotherapy (long-term therapy 1, individual treatment) 35401 Depth psychological psychotherapy 1, individual treat		
Services according to the psychotherapy guideline (Services not subject to application) 35100 Differential diagnostic clarification of psychosomatic disease states 35111 Exercise interventions, individual treatment 35112 Exercise interventions, group treatment 35113 Exercise interventions in children and adolescents, group treatment 35113 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35140 Biographical anamnesis 35141 In-depth exploration 35150 Probationary session 35151 Psychotherapeutic consultation 35152 Acute psychotherapeutic treatment 35153 Probationary session (group treatment), 3 participants - 9 participants 35173 - 35179 Group psychotherapy guideline - Individual treatment) 35401 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 35402 Depth psychological psychotherapy (long-term therapy 1, individual treatment) 35403 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35404 Depth psychological psychotherapy (long-term therapy 1, individual treatment) 35401 Depth psychological psychotherapy (long-term therapy 1, ind		
35100 Differential diagnostic clarification of psychosomatic disease states 35110 Verbal interventions, individual treatment 35111 Exercise interventions, individual treatment 35112 Exercise interventions, individual treatment 35113 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35141 Indepth exploration 35142 Supplementary survey of neurological and psychiatric findings 35151 Probationary session 35163 Probationary session 35164 Biographical exploration 35152 Acute psychotherapeutic treatment 35163 Probationary session (group treatment), 3 participants - 9 participants 35173 -35179 Group psychotherapeutic primary care, 3 participants - 9 participants 35401 Depth psychological psychotherapy (short-term therapy 1, individual treatment) 35402 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35411 Analytical psychotherapy (short-term therapy 1, individual treatment) 35412 Analytical psychotherapy (long-term therapy 1, individual treatment) 35413 Analytical psychotherapy (long-term therapy 1, individual treatment) </td <td></td> <td>• <u>-</u> , , , , , , , , , , , , , , , , , , ,</td>		• <u>-</u> , , , , , , , , , , , , , , , , , , ,
35110 Verbal intervention in psychosomatic disease states 35111 Exercise interventions, individual treatment 35112 Exercise interventions, incluider nand adolescents, group treatment 35113 Exercise interventions in children and adolescents, group treatment 35120 Hypnosis 35141 In-depth exploration 35142 Supplementary survey of neurological and psychiatric findings 35151 Probationary session 35163 Acute psychotherapeutic treatment 35163 - Stop psychotherapeutic primary care, 3 participants - 9 participants 35173 - Stop psychotherapeutic primary care, 3 participants - 9 participants 35401 Depth psychological psychotherapy (short-term therapy 2, individual treatment) 35405 Depth psychological psychotherapy (long-term therapy 2, individual treatment) 35411 Analytical psychotherapy (short-term therapy 2, individual treatment) 35405 Depth psychological psychotherapy (long-term therapy 2, individual treatment) 35415 Analytical psychotherapy (long-term therapy 2, individual treatment) 35411 Analytical psychotherapy (short-term therapy 2, individual treatment) 35421 Behavioral therapy (short-term therapy 2, individual treatment)		
35111Exercise interventions, individual treatment35112Exercise interventions in children and adolescents, group treatment35120Hypnosis35141Exercise interventions in children and adolescents, group treatment35120Hypnosis35141In-depth exploration35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment351639 Probationary session (group treatment), 3 participants - 9 participants3517335179Group psychotherapeutic primary care, 3 participants - 9 participants35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35403Depth psychological psychotherapy (short-term therapy 1, individual treatment)35404Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 1, individual treatment)35413Analytical psychotherapy (short-term therapy 1, individual treatment)35424Behavioral therapy (short-term therapy 1, individual treatment)35425Behavioral therapy (short-term therapy 1, individual treatment)35421Behavioral therapy (short-term therapy 2, individual treatment)35422Behavioral therapy (short-term therapy 1, individual treatment)35423Systemic therapy (short-term therapy 2, individual treatment)354242Behavioral		
35112Exercise interventions, group treatment35113Exercise interventions in children and adolescents, group treatment35120Hypnosis35140Biographical anamnesis35141In-depth exploration35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment). 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participants35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35413Analytical psychotherapy (short-term therapy 1, individual treatment)35414Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)35434Systemic therapy (short-term therapy 1, individual treatment)35425Behavioral therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term		
35113Exercise interventions in children and adolescents, group treatment35120Hyporsis35140Biographical anamnesis35141In-depth exploration35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment3516335169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participants35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (long-term therapy, individual treatment)35411Analytical psychotherapy (short-term therapy, individual treatment)35412Analytical psychotherapy (short-term therapy, individual treatment)35413Analytical psychotherapy (short-term therapy, individual treatment)35414Analytical psychotherapy (short-term therapy, individual treatment)35412Analytical psychotherapy (short-term therapy, individual treatment)35423Behavioral therapy (short-term therapy 1, individual treatment)354242Behavioral therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)35434Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35433 <t< td=""><td></td><td></td></t<>		
35120Hypnosis35140Biographical anamnesis35141In-depth exploration35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participants35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35405Depth psychological psychotherapy (short-term therapy 2, individual treatment)35405Depth psychological psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)354341Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)35434Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435		, o 1
35140Biographical anamnesis35141In-depth exploration35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participants35400Depth psychological psychotherapy (short-term therapy 1, individual treatment)35401Depth psychological psychotherapy (long-term therapy 1, individual treatment)35402Depth psychological psychotherapy (long-term therapy 1, individual treatment)35411Analytical psychotherapy (long-term therapy 1, individual treatment)35412Analytical psychotherapy (long-term therapy 1, individual treatment)35413Systemic therapy (short-term therapy 1, individual treatment)35414Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)35434Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual tre		
35141In-depth exploration35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participants35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35411Analytical psychotherapy (short-term therapy, individual treatment)35415Analytical psychotherapy (short-term therapy, individual treatment)35415Analytical psychotherapy (short-term therapy, individual treatment)35415Analytical psychotherapy (long-term therapy, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 1, individual treatment)35433Systemic therapy (long-term therapy 1, individual treatment)35445Behavioral therapy (long-term therapy 1, individual treatment)35425Behavioral therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35435Systemic therapy (long-term therapy, not-term therapy)35435Systemic therapy (long-term therapy, short-term therapy)35435Systemic therapy (long-term therapy, long-term therapy)35435Systemic therapy (long-term therapy)		* -
35142Supplementary survey of neurological and psychiatric findings35150Probationary session35151Psychotherapeutic consultation35151Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participantsServices according to the psychotherapy guideline - Individual therapies35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (long-term therapy 2, individual treatment)35411Analytical psychotherapy (long-term therapy 2, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35413Analytical psychotherapy (long-term therapy, individual treatment)35414Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (short-term therapy 2, individual treatment)35436Systemic therapy (short-term therapy 1, individual treatment)35431Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 2, individual treatment)35434Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 1, individual treatment)		· ·
35150Probationary session35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participantsServices according to the psychotherapy guideline - Individual therapies35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35411Analytical psychotherapy (short-term therapy 2, individual treatment)35412Analytical psychotherapy (short-term therapy 1, individual treatment)35413Analytical psychotherapy (short-term therapy 1, individual treatment)35414Analytical psychotherapy (short-term therapy 1, individual treatment)35425Behavioral therapy (long-term therapy 1, individual treatment)35426Behavioral therapy (short-term therapy 1, individual treatment)35431Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35433Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)<		
35151Psychotherapeutic consultation35152Acute psychotherapeutic treatment35163- S516935173Group psychotherapeutic primary care, 3 participants - 9 participants35173- S5179Group psychotherapeutic primary care, 3 participants - 9 participants35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35405Depth psychological psychotherapy (short-term therapy 2, individual treatment)35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy, individual treatment)35413Analytical psychotherapy (short-term therapy, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)35434Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)<		
35152Acute psychotherapeutic treatment35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participantsServices according to the psychotherapy guideline - Individual therapies35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35413Analytical psychotherapy (short-term therapy 1, individual treatment)35414Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 2, individual treatment)35416Analytical psychotherapy (short-term therapy 2, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35421Behavioral therapy (short-term therapy 2, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (long-term therapy 1, individual treatment)35433Sispance therapy (short-term therapy 2, individual treatment)35434Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35436Systemic therapy (long-term therapy 2, individual treatment)35437Sispance therapy (short-term therapy 2, individual treatment)35438Systemic therapy (short-term therapy 2, individual treatment)		
35163 - 35169Probationary session (group treatment), 3 participants - 9 participants35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participantsServices according to the psychotherapy guideline - Individual therapies35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35403Depth psychological psychotherapy (short-term therapy 1, individual treatment)35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35413Analytical psychotherapy (long-term therapy 2, individual treatment)35424Behavioral therapy (short-term therapy 1, individual treatment)35425Behavioral therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35433Systemic therapy (short-term therapy 1, individual treatment)35434Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)3543S5599Somplex for group therapies (depth psychological therapy, short-term therapy)35533 - 35599Complex for group therapies (analytical therapy, short-term therapy)35533 - 35		
35173 - 35179Group psychotherapeutic primary care, 3 participants - 9 participantsServices according to the psychotherapy guideline - Individual therapies35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35403Depth psychological psychotherapy (short-term therapy 2, individual treatment)35414Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35416Analytical psychotherapy (long-term therapy 2, individual treatment)35417Behavioral therapy (short-term therapy 2, individual treatment)35428Behavioral therapy (short-term therapy 2, individual treatment)35429Behavioral therapy (short-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 2, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35433Systemic therapy (short-term therapy 2, individual treatment)35434Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy, nog-term therapy)		
35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35405Depth psychological psychotherapy (long-term therapy 2, individual treatment)35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35413Analytical psychotherapy (long-term therapy 2, individual treatment)35414Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (short-term therapy 1, individual treatment)35426Behavioral therapy (short-term therapy 1, individual treatment)35427Behavioral therapy (short-term therapy 1, individual treatment)35428Systemic therapy (short-term therapy 1, individual treatment)35439Systemic therapy (short-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy)35519Complex for		
35401Depth psychological psychotherapy (short-term therapy 1, individual treatment)35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35405Depth psychological psychotherapy (long-term therapy 2, individual treatment)35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35413Analytical psychotherapy (long-term therapy 2, individual treatment)35414Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (short-term therapy 1, individual treatment)35426Behavioral therapy (short-term therapy 1, individual treatment)35427Behavioral therapy (short-term therapy 1, individual treatment)35428Systemic therapy (short-term therapy 1, individual treatment)35439Systemic therapy (short-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy)35519Complex for	<i>a</i> ·	1· · ·1 1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1
35402Depth psychological psychotherapy (short-term therapy 2, individual treatment)35405Depth psychological psychotherapy (long-term therapy, individual treatment)35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35415Analytical psychotherapy (short-term therapy 1, individual treatment)35415Analytical psychotherapy (long-term therapy, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 1, individual treatment)35432Systemic therapy (long-term therapy 1, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)3553335519Complex for group therapies (alepth psychological therapy, short-term therapy) <t< td=""><td></td><td></td></t<>		
35405Depth psychological psychotherapy (long-term therapy, individual treatment)35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35415Analytical psychotherapy (long-term therapy, individual treatment)35416Analytical psychotherapy (long-term therapy, individual treatment)35417Behavioral therapy (short-term therapy 1, individual treatment)35428Behavioral therapy (short-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35436Systemic therapy (long-term therapy 2, individual treatment)35437Systemic therapy (short-term therapy 2, individual treatment)35438Systemic therapy (long-term therapy 2, individual treatment)35439Systemic therapy (long-term therapy 2, individual treatment)35430Systemic therapy (long-term therapy 2, individual treatment)35431Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)3553735509Complex for group therapies (depth psychological therapy, short-term therapy)3553335539Complex for group therapies (analytical therapy, short-term therapy) <td></td> <td></td>		
35411Analytical psychotherapy (short-term therapy 1, individual treatment)35412Analytical psychotherapy (short-term therapy 2, individual treatment)35415Analytical psychotherapy (long-term therapy 2, individual treatment)35415Analytical psychotherapy (long-term therapy 1, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35435Behavioral therapy (short-term therapy 2, individual treatment)35436Systemic therapy (short-term therapy 1, individual treatment)35437Systemic therapy (short-term therapy 1, individual treatment)35438Systemic therapy (short-term therapy 2, individual treatment)35439Systemic therapy (long-term therapy 2, individual treatment)35430Systemic therapy (long-term therapy 2, individual treatment)35431Systemic therapy (long-term therapy 2, individual treatment)35432Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35436Systemic therapy (long-term therapy 2, individual treatment)35437Systemic therapy (long-term therapy 2, individual treatment)3543Systemic therapy (long-term therapy 2, individual treatment)3543Systemic therapy (long-term therapy, individual treatment)3543Sis509Complex for group therapies (depth psychological therapy, long-term therapy)35533 - 3559Complex for group therapies (analytical therapy, long-term therapy)35533 - 3559		
35412Analytical psychotherapy (short-term therapy 2, individual treatment)35415Analytical psychotherapy (long-term therapy, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (short-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 1, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35533 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, short-term therapy)35533 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (systemic therapy, long-term therapy) <t< td=""><td></td><td></td></t<>		
35415Analytical psychotherapy (long-term therapy, individual treatment)35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (long-term therapy 1, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35436Systemic therapy (long-term therapy, individual treatment)35437Softer for group therapies (depth psychological therapy, short-term therapy)35533 - 35519Complex for group therapies (analytical therapy, long-term therapy)35533 - 35529Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35559Complex for group therapies (systemic therapy, long-term therapy)35533 - 35559Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term the		
35421Behavioral therapy (short-term therapy 1, individual treatment)35422Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (long-term therapy 2, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35533 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35533 - 35519Complex for group therapies (analytical therapy, long-term therapy)35533 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35549Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35599Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35599Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35713 - 35719 <td></td> <td></td>		
35422Behavioral therapy (short-term therapy 2, individual treatment)35425Behavioral therapy (long-term therapy, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35537S5509Complex for group therapies (depth psychological therapy, short-term therapy)3553335519Complex for group therapies (analytical therapy, long-term therapy)3553335539Complex for group therapies (analytical therapy, long-term therapy)3553335539Complex for group therapies (behavioral therapy, long-term therapy)3553335549Complex for group therapies (behavioral therapy, long-term therapy)3553335599Complex for group therapies (behavioral therapy, long-term therapy)3553335599Complex for group therapies (systemic therapy, long-term therapy)3553435599Complex for group therapies (systemic therapy		
35425Behavioral therapy (long-term therapy, individual treatment)35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)35503 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35513 - 35519Complex for group therapies (analytical therapy, long-term therapy)35533 - 35529Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35559Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)35709Sompl		
35431Systemic therapy (short-term therapy 1, individual treatment)35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)Services according to the psychotherapy guideline - Group therapies35503 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35513 - 35519Complex for group therapies (depth psychological therapy, long-term therapy)35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35559Complex for group therapies (systemic therapy, long-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)35709Somplex for group therapies (systemic therapy, long-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35432Systemic therapy (short-term therapy 2, individual treatment)35435Systemic therapy (long-term therapy, individual treatment)Services according to the psychotherapy guideline - Group therapies35503 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35513 - 35519Complex for group therapies (depth psychological therapy, long-term therapy)35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, long-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (systemic therapy, short-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, long-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35435Systemic therapy (long-term therapy, individual treatment)Services according to the psychotherapy guideline - Group therapies35503 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35513 - 35519Complex for group therapies (depth psychological therapy, long-term therapy)35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35553 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35599Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35599Complex for group therapies (systemic therapy, short-term therapy)35533 - 35599Complex for group therapies (systemic therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)35700Test procedures35600Test procedures, standardized		
35503 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35513 - 35519Complex for group therapies (depth psychological therapy, long-term therapy)35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35503 - 35509Complex for group therapies (depth psychological therapy, short-term therapy)35513 - 35519Complex for group therapies (depth psychological therapy, long-term therapy)35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, short-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized	<i>C</i> :	where the the new heathermore with time of the t
35513 - 35519Complex for group therapies (depth psychological therapy, long-term therapy)35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, short-term therapy)35533 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35523 - 35529Complex for group therapies (analytical therapy, short-term therapy)35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35553 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35533 - 35539Complex for group therapies (analytical therapy, long-term therapy)35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35553 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35543 - 35549Complex for group therapies (behavioral therapy, short-term therapy)35553 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35553 - 35559Complex for group therapies (behavioral therapy, long-term therapy)35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35703 - 35709Complex for group therapies (systemic therapy, short-term therapy)35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
35713 - 35719Complex for group therapies (systemic therapy, long-term therapy)Psychodiagnostic test procedures35600Test procedures, standardized		
Psychodiagnostic test procedures 35600 Test procedures, standardized		
35600 Test procedures, standardized	99119 - 99118	complex for group incrapies (systemic incrapy, long-term incrapy)
35600 Test procedures, standardized	Psychodiagno	ostic test procedures
		Test procedures, standardized
	35601	Test procedures, psychometric
35601 - 35529 Procedures, projective	35601 - 35529	Procedures, projective

Notes: See KBV (2024) for the full catalogue. * medical and psychological psychotherapists, child and adolescent psychotherapists.

Table A.3: ICD - Codes

Code Description

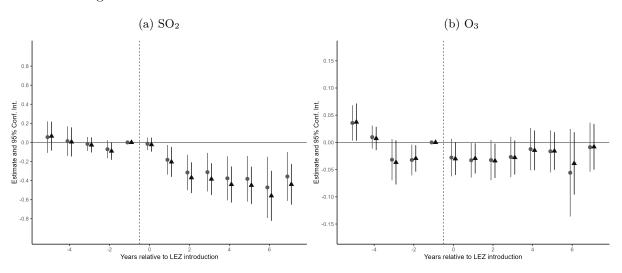
Depress	ion (F32-F33)
F32	Depressive episode
F33	Recurrent depressive disorder
Anxiety	(F40-F41)
F40	Phobic disorder
F41	Anxiety disorder
Chanton	· I - Diseases of the circulatory system (100-199)
I00-I09	Acute rheumatic fever
I10-I15	Hypertensive diseases Ischemic heart diseases
I20-I25	
I26-I28	Pulmonary heart disease and diseases of pulmonary circulation
I30-I52	Other forms of heart disease
I60-I69	Cerebrovascular diseases
170-179	Diseases of arteries, arterioles, and capillaries
180-189	Diseases of veins, lymphatic vessels and lymph nodes, not elsewhere classified
I95-I99	Other and unspecified disorders of the circulatory system
Chapter	- S - Injuries (S00-S99)
S00-S09	Injuries to the head
S10-S19	Injuries to the neck
S20-S29	Injuries to the thorax
S30-S39	Injuries to the abdomen, lower back, lumbar spine, pelvis and external genitals
S40-S49	Injuries to the shoulder and upper arm
S50-S59	Injuries to the elbow and forearm
S60-S69	Injuries to the wrist, hand and fingers
S70-S79	Injuries to the wrist, hard and high
S80-S89	Injuries to the knee and lower leg
S90-S99	Injuries to the ankle and foot

Notes: ICD selection as in Chen et al., 2018a, Gu et al., 2020, Hwang et al., 2022, Kim et al., 2021, Li et al., 2020, Qiu et al., 2019, Wang et al., 2018, Wei et al., 2020, Zhao et al., 2020, Zhou et al., 2021.

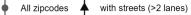
ATC Description

N06A - Antidepressants

- N06AA Non-selective monoamine reuptake inhibitors
- N06AB Selective serotonin reuptake inhibitors
- N06AF Monoamine oxidase inhibitors, non-selective
- N06AG Monoamine oxidase A inhibitors
- N06AH Homeopathic and anthroposophic antidepressants
- N06AP Herbal antidepressants
- N06AX Other antidepressants


C - Cardiovascular system

- C01 Cardiac therapy
- C01A Cardiac glycosides
- C01B Antiarrhythmics, Class I and III
- C01C Cardiac stimulants excl. cardiac glycosides
- C01D Vasodilators used in cardiac diseases
- C01E Other cardiac preparations
- C02 Antihypertensives
- C02A Antiadrenergic agents, centrally acting
- C02B Antiadrenergic agents, ganglion blockers
- C02C Antiadrenergic agents, peripherally acting
- C02D Agents acting on arteriolar smooth muscle
- C02K Other antihypertensives
- C02L Antihypertensives and diuretics in combination
- C02N Combinations of antihypertensive agents in ATC group C02
- C03 Diuretics
- C03A Low-ceiling diuretics, thiazides
- C03B Low-ceiling diuretics, excl. thiazides
- C03C High-ceiling diuretics
- C03D Aldosterone antagonists and other potassium-sparing agents
- C03E Diuretics and potassium-sparing agents in combination
- C03X Other diuretics
- C04 Peripheral vasodilators
- C04A Peripheral vasodilators
- C04B Combinations of peripheral vasodilators
- C05 Vasoprotectives
- C05A Agents for treatment of hemorrhoids and anal fissures for topical use
- C05B Anti-varicose agents
- C05C Capillary-stabilizing agents
- C05X Other vasoprotectives
- C06 Other cardiovascular drugs
- C06A Antihypotensive agents
- C07 Beta-blocking agents
- C07A Beta-blocking agents
- C07B Beta-blocking agents and thiazides
- C07C Beta-blocking agents and other diuretics
- C07D Beta-blocking agents, thiazides, and other diuretics
- C07E Beta-blocking agents and vasodilators


Table A.4 continued from previous page

ATC	Description
C07F	Beta-blocking agents, other combinations
C08 - C	Calcium channel blockers
C08C	Selective calcium channel blockers with mainly vascular effects
C08D	Selective calcium channel blockers with mainly cardiac effects
C08E	Non-selective calcium channel blockers
C08G	Calcium channel blockers and diuretics
C09 - A	gents acting on the renin-angiotensin system
C09A	ACE inhibitors, plain
C09B	ACE inhibitors, combinations
C09C	Angiotensin II receptor blockers (ARBs), plain
C09D	Angiotensin II receptor blockers (ARBs), combinations
C09X	Other agents acting on the renin-angiotensin system
C10 - L	ipid modifying agents
C10A	Lipid modifying agents, plain
C10B	Lipid modifying agents, combinations

B Additional Analyses

Figure B.1: Effect of LEZ Introduction on Additional Air Pollutants

Note: This figure displays dynamic effects of Low Emission Zones on yearly sulfur dioxide (SO_2) and ozone (O_3) from pollution monitors (a and b) and fine particular matter $(PM_{2.5})$ derived from cross-validated satellite images (b) in logs. Specifications are similar to Table 3. The effects are estimated using estimators proposed by Sun and Abraham (2021). Estimates are shown including 95% confidence intervals.

Dependent variables in log:	Antidepressant probability	Specialist Visit probability	Depression probability	Anxiety probability
ATT	-0.0399***	-0.0753***	-0.0399**	-0.0514***
	(0.0111)	(0.0208)	(0.0154)	(0.0168)
Ν	13,320	13,309	$13,\!322$	$13,\!315$
Dependent variables in log:	Antidepressant prescriptions	Antidepressant DDD	Specialist visits	Specialist billings
ATT	-0.0584^{***}	-0.0488***	-0.0930***	-0.0611***
	(0.0117)	(0.0123)	(0.0209)	(0.0175)
N	13,320	13,320	$13,\!309$	13,332
Socio-economic controls	\checkmark	\checkmark	\checkmark	\checkmark
Weather controls	\checkmark	\checkmark	\checkmark	\checkmark
Demographic controls	\checkmark	\checkmark	\checkmark	\checkmark
County×Year linear trend	\checkmark	\checkmark	\checkmark	\checkmark
Year fixed effect	\checkmark	\checkmark	\checkmark	\checkmark
Zip code fixed effect	\checkmark	\checkmark	\checkmark	\checkmark

Table B.1: Main Results:	Only Zip Codes without Main Streets	(< 4 lanes)

Note: This table displays the average treatment effect on the treated of Low Emission Zones on the concentrations of different air pollutants. The dependent variables in Column (1) and (2) are measurements from air pollution monitors and in Column (3) the dependent variable are cross-validated satellite estimates from 2010 to 2018 based on Van Donkelaar et al. (2021). Socio-economic controls include information on education, and purchasing power per capita. Weather controls include information on humidity, vapor pressure, wind speed, sunshine duration, precipitation, and temperature (mean, minimum, and maximum). The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level.*p<0.1; **p<0.05; ***p<0.01.

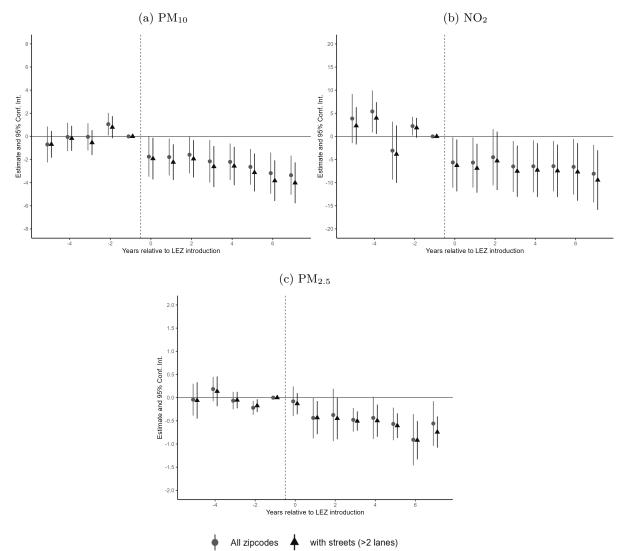


Figure B.2: Effect of LEZ Introduction on Air Pollutant Levels

Note: This figure displays dynamic effects of Low Emission Zones on yearly particulate matter (PM_{10}) and nitrogen dioxide (NO_2) from pollution monitors (a and b) and fine particular matter $(PM_{2.5})$ derived from cross-validated satellite images (b) in levels. Specifications correspond to Table 3 without logs. The effects are estimated using estimators proposed by Sun and Abraham (2021). Estimates include 95% confidence intervals.

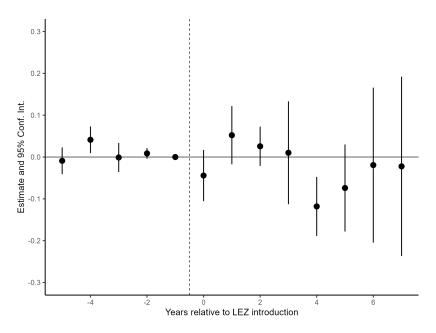


Figure B.3: Effect of LEZ Introduction on Traffic Volume

Note: This Figure displays dynamic effects of Low Emission Zones on traffic volume (average number of vehicles per hour between 6 am and 6 pm) in logs. Data is measured at the zip code and year level. Socio-economic controls include information on the number of cars per household, purchasing power per capita, and the number of inhabitants. Weather controls include information on humidity, vapor pressure, precipitation, and wind speed as well as mean, minimum, and maximum temperature. The effects are estimated using estimators proposed by Sun and Abraham (2021). Standard errors are clustered at the county level. Estimates are shown including 95% confidence intervals.

Depression diagnosis (extensive)				Antidepressant prescriptions (intensive)				
Effect size	Power	Type S	Type M		Effect size	Power	Type S	Type M
Plausible hypothetical effect sizes								
0.01	0.1102	0.0340	3.4235		0.01	0.1434	0.0155	2.8053
0.02	0.2979	0.0012	1.8097		0.02	0.4247	0.0002	1.5264
0.03	0.5725	0	1.3257		0.03	0.7564	0	1.1617
0.04	0.8151	0	1.1133		0.04	0.9429	0	1.0344
0.05	0.9464	0	1.0311		0.05	0.9931	0	1.0013
0.06	0.9900	0	1.0073		0.06	0.9996	0	0.9980
0.07	0.9988	0	0.9998		0.07	0.9999	0	1.0006
0.08	0.9999	0	0.9999		0.08	1.0000	0	0.9993
Estimated e	Estimated effect sizes							
0.035	0.7054	0	1.1945		0.057	0.9990	0	1.0021

Table B.2: Retrospective Design Analysis

Note: This table displays the results of a retrospective power analysis for two mental health outcomes, depression diagnosis (extensive margin) and antidepressant prescriptions (intensive margin). We use the R package *retrodesign* by Timm (2024) to calculate the power as well as type s (sign) and m (magnitude) errors. For depression diagnosis the coefficient and standard errors for this analysis are based on Column 1 of Tab. 4 with degrees of freedom df = 16,351, while estimate and standard error for antidepressant prescriptions are sourced from Column 1 Tab. 5 with the corresponding df = 16,353.