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1 Introduction

Since the global financial crisis, most major central banks regularly used non-conventional

tools, such as forward guidance and large-scale asset purchases (LSAP). Understanding how

these tools affect financial markets and the economy more broadly is, therefore, key. Recent

research has identified the causal effects of multiple dimensions of central bank decisions based

on intraday financial market data. High-frequency identification schemes exploit changes

in financial market variables in a narrow window around central bank announcements and

impose additional restrictions to disentangle multiple dimensions (see, e.g., Gürkaynak et al.,

2005, Altavilla et al., 2019, Swanson, 2021). However, if high-frequency data is lacking, or if the

exact time of a policy event is unknown, such an approach is infeasible.1 This paper proposes

a two-step approach to estimate multi-dimensional monetary policy shocks and their causal

effects, requiring only daily financial market data and policy events.

First, following Rigobon (2003) and Rigobon and Sack (2004), we exploit the change

in the variance-covariance matrix of daily financial market variables on monetary policy

announcement days to identify the causal effects of monetary policy shocks. We additionally

impose recursive zero restrictions on the impact matrix along the term structure of interest rates

to disentangle three orthogonal dimensions. Specifically, we identify a shock to the short-term

interest rate (target shock), medium-term interest rate (path shock or forward guidance), and

term spread (term premium shock or LSAP). The zero restrictions impose that a path shock

has no immediate impact on the short-term interest rate, and the term premium shock has

no immediate impact on short- and medium-term interest rates. In contrast, a target shock

can affect all financial market variables on the same day. Importantly, these restrictions are

unnecessary in identifying the overall effect of a linear combination of all monetary policy

shocks. However, they allow us to disentangle multiple dimensions if they exist. We also

show that we can recursively estimate each column of the impact matrix up to a scale using

a modified version of the instrumental variable (IV) estimator proposed by Rigobon and Sack

(2004).2

Second, using the Kalman filter, we derive the unobserved shocks’ linear minimum

mean-square-error (MSE) prediction. Recovering these shocks is helpful, for example, to

estimate the causal effects on low-frequency macroeconomic variables with IV-structural

1Although databases on high-frequency surprises exist for various countries, due to the high data requirements,
they usually only start after the mid-1990s (see, e.g., Altavilla et al., 2019, Braun et al., 2024).

2In addition, we can estimate dynamic causal effects using local projections (Jordà, 2005) and apply weak
instruments tests in the presence of multiple endogenous regressors and instruments suggested by Lewis and
Mertens (2022).

1



vector autoregressions (IV-SVAR) or IV-local projections (IV-LP). The heteroscedasticity-based

identification scheme delivers all necessary inputs: an estimate of the impact matrix (up to a

scale), the variance-covariance matrix of the data on policy event days, and the data. There are

two main advantages compared to existing approaches.3 To extract a heteroscedasticity-based

monetary policy shock series Bu et al. (2021) regress interest rate changes across the term

structure on the impact responses in the spirit of Fama and MacBeth (1973). This approach

requires assumptions that may be violated in empirical applications. Specifically, it requires

an orthogonality condition between the impact response to the monetary policy shocks and

the impact response to other shocks. If this condition is violated, the monetary policy shock

series will be contaminated by other shocks occurring on policy event days. In addition, the

cross-sectional regressions do not yield the optimal prediction of the unobserved shocks in the

minimum MSE sense.

We then apply the two-step approach to estimate the causal impact of US monetary policy on

the US dollar exchange rate for two reasons. First, we can compare the results to existing

multi-dimensional high-frequency surprises by Swanson (2021). Second, the identification

scheme does not directly constrain the US dollar exchange rate. Our findings suggest

that the heteroscedasticity-based identification scheme is a valid alternative to estimate

multi-dimensional monetary policy shocks. The heteroscedasticity-based target, path, and

term premium shocks correlate with Swanson’s high-frequency Federal Funds Rate (FFR),

path, and LSAP surprises, respectively (0.66, 0.56, and 0.50). In addition, the daily impulse

responses to the heteroscedasticity-based shocks are qualitatively identical to those of their

high-frequency counterparts. A surprise monetary policy tightening, be it an increase in the

short-term interest rate target, the medium-term interest rate path, or an increase in the term

premium, all appreciate the US dollar exchange rate within a few working days. Therefore the

daily data do not point to a relevant delayed overshooting puzzle often found in low-frequency

VARs (see, e.g., Eichenbaum and Evans, 1995, Kim et al., 2017). However, we also find that term

premium shocks, and to a lesser extent path shocks, suffer from a weak instruments problem.

Meanwhile, the target shock passes the weak instruments tests. Again, we find qualitatively

identical results using high-frequency surprises.

We then conduct various robustness tests, qualitatively confirming the main results. Perhaps

the most relevant differences emerge when estimating monthly impulse responses of

macroeconomic variables to the heteroscedasticity-based monetary policy shocks in an IV-LP

3The approach based on the Kalman filter can be used for other identification schemes where the shocks are not
directly observed, as long as these three inputs are available.
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framework. The exchange rate appreciation to the target tightening is delayed by about 30

months, while we observe an appreciation after 10 months in response to a path tightening.

Therefore, there is a stark difference between the qualitative response at daily and monthly

frequency, as well as between different monetary policy dimensions. However, the weak

instruments problem for the path and term premium shocks carry over to the monthly data

for both heteroscedasticity-based and high-frequency identification schemes.

Our paper contributes to three strands of the literature. Following the seminal work by

Kuttner (2001), most researchers use high-frequency identification schemes to identify multiple

dimensions of monetary policy. Gürkaynak et al. (2005) show that path surprises, associated

with longer maturity interest rates, have a stronger effect on long-term interest rates than

target surprises. In the wake of the financial crisis, researchers aimed to identify additional

dimensions. Swanson (2021, 2023b) and Altavilla et al. (2019) estimate multiple factors from

a cross-section of high-frequency financial market data and rotate them so that they can be

interpreted as a target, path, or LSAP surprises. While high-frequency surprises have become

a widespread identification scheme, it is not without problems. Brennan et al. (2024) have

shown that different measures of high-frequency surprises yield varying results. In addition,

the surprises may still be contaminated by background noise and other shocks. Nakamura and

Steinsson (2018) show that these high-frequency surprises comprise an ‘information effect’, that

is, news that the central bank communicates about the state of the economy. These information

effects may bias the results because they may lead to positive co-movement of interest rates and

stock prices in response to supposedly exogenous monetary policy decisions. The assumption

that variation in high-frequency surprises is only caused by monetary policy shocks has

been questioned. Studies have shown that the surprises are predictable by the information

available to the public before the FOMC announcements (see, e.g. Bauer and Swanson,

2022, 2023, Miranda-Agrippino and Ricco, 2021, Zhu, 2023).4 Jarociński (2024) and Georgiadis

and Jarociński (2023) aim to circumvent this problem by exploiting fat tails in high-frequency

surprises to identify multiple dimensions of US monetary policy. We also exploit a change

in the distribution of financial market variables on policy announcement days. However, we

propose to use the change in the variance-covariance matrix and additional zero restrictions to

identify multi-dimensional monetary policy shocks without using high-frequency data.

Therefore, the paper is related to studies identifying causal effects of monetary policy and

other events via heteroscedasticity (see, e.g., Rigobon, 2003, Rigobon and Sack, 2004, Wright,

4Recently, Schlaak et al. (2023) show how to combine high-frequency identification schemes with heteroscedasticity.
As they exploit more exogenous variation, they can test the relevance and exogeneity of the instruments. They find
evidence against the validity of high-frequency monetary policy surprises.
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2012). In addition, we follow Canetg and Kaufmann (2022) who use additional zero restrictions

in a heteroscedasticity-based identification scheme to disentangle multi-dimensional shocks

of the Swiss National Bank’s debt security auctions.5 They assume the overnight rate

shock immediately affects all financial market variables through the short-term interest rate.

However, the signaling shock on impact affects only forward-looking variables, such as stock

prices, but not the short-term interest rate. We expand this literature by showing that dynamic

causal effects can be estimated with an IV approach and that the unobserved shocks can be

predicted using the Kalman filter.

Finally, we also contribute to a literature estimating the causal impact of monetary policy on

the exchange rate.6 There is still a controversy about whether the exchange rate immediately

overshoots after a monetary policy shock, as in the theory by Dornbusch (1976) and no

consensus about the size and persistence of the effects.7 Theoretically, the response depends

on rigidity in goods markets and the monetary policy regime (Benigno, 2004), or portfolio

adjustment costs (Bacchetta and van Wincoop, 2021). Empirically, the response depends on

the sample period (Kim et al., 2017) and the identification scheme (Faust et al., 2003, Kearns

and Manners, 2006, Scholl and Uhlig, 2008, Bjørnland, 2009). Some authors suggest that the

exchange rate does not overshoot at all (Schmitt-Grohé and Uribe, 2022) or displays a delayed

overshooting, for example, due to information rigidity (Müller et al., 2023). Other authors

find that the exchange rate often depreciates on a day with a policy tightening (Gürkaynak

et al., 2021).8 To the best of our knowledge, no paper examined whether the response differs

depending on the specific dimension of monetary policy.

The remainder of the paper is structured as follows. Section 2 presents the identification

and estimation strategy, as well as the Kalman-filter approach to extract multi-dimensional

monetary policy shocks. Section 3 discusses the results of the empirical application before the

last section concludes.
5Lewis (2019) estimates multiple dimensions of unconventional monetary policy announcements using intraday
heteroscedasticity. His approach allows for the varying importance of shocks across announcements. He also
finds that forward guidance has relevant effects. However, he also finds evidence of relevant information and
large-scale asset purchase shocks.

6There are various studies on global spillovers of US monetary policy using high-frequency surprises (see, e.g.,
Georgiadis and Jarociński, 2023, Ricco et al., 2020).

7To answer this question, researchers resorted to theoretical and empirical approaches (see, e.g., Dornbusch, 1976,
Eichenbaum and Evans, 1995, Rogoff, 2002, Bjørnland, 2009, Schmitt-Grohé and Uribe, 2022, Bacchetta and van
Wincoop, 2021).

8Wright (2012) identifies monetary policy shocks at the effective lower bound through heteroscedasticity and shows
that these shocks immediately affect bilateral exchange rates. However, he does not report dynamic causal effects.
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2 Heteroscedasticity-based identification with zero restrictions

We propose identifying and estimating the causal effects of multiple dimensions of (monetary

policy) shocks based on heteroscedasticity and zero restrictions. Imposing recursive zero

restrictions on top of assuming that some shocks occur only in specific periods allows us

to disentangle the causal effects of multi-dimensional shocks. Therefore, we can use an IV

approach to estimate the causal effects of these multiple dimensions. In addition, we can extract

the underlying unobserved structural shocks using the Kalman filter.

2.1 Identification and estimation of causal effects

Suppose the data-generating process reads:

𝑦𝑡 = Ψ𝜀𝑡 + Γ𝑣𝑡 for 𝑡 ∈ 𝑃 (1)

𝑦𝑡 = Γ𝑣𝑡 for 𝑡 ∈ 𝐶

where 𝑦𝑡 is a vector of 𝑁 dependent variables, 𝜀𝑡 is a vector of 𝐸 i.i.d. structural shocks on

policy event days (𝑃), and 𝑣𝑡 is a vector of 𝑅 i.i.d. other shocks on policy event as well as

control days (𝑃 and 𝐶).9 Furthermore, Γ and Ψ denote impact matrices of dimensions 𝑁 × 𝑅

and 𝑁 × 𝐸, respectively. Finally, we assume that Ψ is lower triangular.

We will justify the identifying assumptions in the empirical application below. In what follows,

we show that these assumptions allow us to sequentially identify and estimate the causal

impact of 𝜀𝑡 using the change in the variance-covariance of 𝑦𝑡 on policy event days. The first

equation of the model reads:

𝑦1𝑡 = Ψ11𝜀1𝑡 + Γ1𝑣𝑡 for 𝑡 ∈ 𝑃

𝑦1𝑡 = Γ1𝑣𝑡 for 𝑡 ∈ 𝐶

where Ψ𝑖 𝑗 denotes the 𝑖th row and 𝑗th column of Ψ and Γ𝑖 denotes the 𝑖th row of Γ.

Because Ψ is lower triangular, only the first structural shock (𝜀1𝑡) affects 𝑦1𝑡 . Therefore, the

same insights as in Rigobon (2003) apply. The variance of 𝑦1𝑡 differs between policy event and

9We drop constant terms, lagged dependent, and other exogenous variables for ease of exposition. In addition,
we focus on the identification and estimation of the impact matrix. We can extend this framework to include
additional control variables and estimate dynamic causal effects using local projections following Jordà (2005).
Details are given in Appendix A.
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control days:

V[𝑦1𝑡] = Ψ2
11𝜎

2
1𝜀 +

∑𝑅
𝑟=1 Γ

2
1𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝑃

V[𝑦1𝑡] =
∑𝑅
𝑟=1 Γ

2
1𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝐶

where 𝜎2
𝑒𝜀 and 𝜎2

𝑟𝑣 denote the variances of structural shock 𝑒 and other shock 𝑟, respectively.

Thus, we can identify Ψ11 up to a scale from the difference in the variance on policy event and

control days (Ψ2
11𝜎

2
1𝜀).

We can identify the impact on 𝑦2𝑡 from the change in the covariance between the first two

variables:

COV[𝑦1𝑡 , 𝑦2𝑡] = Ψ11Ψ21𝜎2
1𝜀 +

∑𝑅
𝑟=1 Γ1𝑟Γ2𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝑃

COV[𝑦1𝑡 , 𝑦2𝑡] =
∑𝑅
𝑟=1 Γ1𝑟Γ2𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝐶

where Ψ11Ψ21𝜎2
1𝜀 corresponds to the difference in the covariance between policy event and

control days. Having identified Ψ11, this difference allows us to identify Ψ21 up to a

scale. Similarly, the impacts on other variables (Ψ31 , . . . ,Ψ𝑁1) can be identified from the

corresponding covariances.

The impact of the second structural shock can be identified from the second equation of the

model:

𝑦2𝑡 = Ψ21𝜀1𝑡 +Ψ22𝜀2𝑡 + Γ2𝑣𝑡 for 𝑡 ∈ 𝑃

𝑦2𝑡 = Γ2𝑣𝑡 for 𝑡 ∈ 𝐶

where the variance of 𝑦2𝑡 corresponds to:

V[𝑦2𝑡] = Ψ2
21𝜎

2
1𝜀 +Ψ2

22𝜎
2
2𝜀 +

∑𝑅
𝑟=1 Γ

2
2𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝑃

V[𝑦2𝑡] =
∑𝑅
𝑟=1 Γ

2
2𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝐶

The difference between the variance of 𝑦2𝑡 on event and control days (Ψ2
21𝜎

2
1𝜀 + Ψ2

22𝜎
2
2𝜀)

comprises the effects of shocks 1 and 2. Therefore, applying the approach by Rigobon (2003)

using 𝑦2𝑡 identifies the effect of a linear combination of the two shocks. However, having

identified Ψ21 from the first equation, Ψ22 is subsequently identified up to a scale. Similarly,

we can identify the effect of shock 2 on the remaining variables using the covariances, for

6



example, between 𝑦2𝑡 and 𝑦3𝑡 :

COV[𝑦2𝑡 , 𝑦3𝑡] = Ψ21Ψ31𝜎2
1𝜀 +Ψ22Ψ32𝜎2

2𝜀 +
∑𝑅
𝑟=1 Γ2𝑟Γ3𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝑃

COV[𝑦2𝑡 , 𝑦3𝑡] =
∑𝑅
𝑟=1 Γ2𝑟Γ3𝑟𝜎

2
𝑟𝑣 for 𝑡 ∈ 𝐶

Conditional on having identified Ψ21 and Ψ31 from the first equation, and Ψ22 from the

second equation, we can identify Ψ32 up to a scale from the difference in the two covariances

(Ψ21Ψ31𝜎2
1𝜀+Ψ22Ψ32𝜎2

2𝜀). Similar arguments apply to identifying the effect of shock 3 on other

variables and the effects of additional dimensions.

The additional recursive zero restrictions also allow us to estimate each column of Ψ up to a

scale using an IV approach. Only the first shock affects the first variable. As argued before, we

can use a standard heteroscedasticity-based identification scheme and, therefore, the standard

IV estimator (see Rigobon and Sack, 2004, Lewis, 2022). The instrument, the first, as well as the

second stage read:

𝑍1𝑡 =

[
1(𝑡 ∈ 𝑃) 𝑇

𝑇𝑃
− 1(𝑡 ∈ 𝐶) 𝑇

𝑇𝐶

]
𝑦1𝑡

𝑦1𝑡 = 𝛼1 + 𝛽1𝑍1𝑡 + 𝑢1𝑡

𝑦𝑖𝑡 = 𝛼𝑖 + Ψ̃𝑖1 �̂�1𝑡 + 𝑒𝑖𝑡

where 1(𝑡 ∈ 𝑋) denotes an indicator function that equals one if the condition in parentheses

is true and zero otherwise, and 𝑇, 𝑇𝑃 , and 𝑇𝐶 are the number of total, policy event and control

days, respectively. In addition, 𝑍1𝑡 and �̂�1𝑡 = �̂�1𝑍1𝑡 denote the instrument, as well as the

first-stage prediction. Finally, 𝛼𝑖 , 𝛽𝑖 , and Ψ̃𝑖 𝑗 are regression parameters and 𝑢𝑖𝑡 and 𝑒𝑖𝑡 are

regression residuals.

Three comments are in order. First, the instrument is uncorrelated with 𝑣𝑡 , and therefore

𝑒𝑖𝑡 , because 𝜀1𝑡 occurs only during policy event days (see e.g. Lewis, 2022, for a detailed

discussion). Second, the instrument is also uncorrelated with structural shocks 𝑒 = 2, . . . , 𝐸

because the variance of 𝑦1𝑡 changes on event days only due to 𝜀1𝑡 (recursive zero restriction).

Finally, we estimate the impulse responses only up to a scale because the impact on 𝑦1𝑡 is

normalized to unity, that is, Ψ̃𝑖1 = Ψ𝑖1/Ψ11.

For structural shock 2, the standard heteroscedasticity-based IV estimator will fail. The

variance of 𝑦2𝑡 changes on policy event days due to the first and second structural shocks.

If we fail to control for shock 1, the instrument will be correlated with the error term.

7



We propose to estimate the impact of structural shock 2 by controlling for variation in 𝑦1𝑡

caused by shock 1. We can construct an additional instrument using the second variable and

then use both to estimate Ψ𝑖2. The instrument, the first, as well as the second stage, then read:

𝑍2𝑡 =

[
1(𝑡 ∈ 𝑃) 𝑇

𝑇𝑃
− 1(𝑡 ∈ 𝐶) 𝑇

𝑇𝐶

]
𝑦2𝑡

𝑦1𝑡 = 𝛼1 + 𝛽11𝑍1𝑡 + 𝛽12𝑍2𝑡 + 𝑢1𝑡

𝑦2𝑡 = 𝛼2 + 𝛽21𝑍1𝑡 + 𝛽22𝑍2𝑡 + 𝑢2𝑡

𝑦𝑖𝑡 = 𝛼𝑖 + Ψ̃𝑖2 �̂�2𝑡 + Ψ̃𝑖1 �̂�1𝑡 + 𝑒𝑖𝑡

On event days, 𝑦2𝑡 and 𝑍2𝑡 are correlated with shocks 𝜀1𝑡 and 𝜀2𝑡 . However, by including �̂�1𝑡

as a control in the second stage, the instrument will not be correlated with the error term.10

More generally, we can recursively estimate the impact matrix of 𝐸-dimensional structural

shocks using the following instruments, first and second stages:

𝑍𝑒𝑡 =

[
1(𝑡 ∈ 𝑃) 𝑇

𝑇𝑃
− 1(𝑡 ∈ 𝐶) 𝑇

𝑇𝐶

]
𝑦𝑒𝑡 , 𝑒 = 1, . . . , 𝐸

𝑦𝑒𝑡 = 𝛼𝑒 +
𝑒∑
𝑗=1

𝛽𝑒 𝑗𝑍 𝑗𝑡 + 𝑢𝑒𝑡 , 𝑒 = 1, . . . , 𝐸

𝑦𝑖𝑡 = 𝛼𝑖 +
𝑒∑
𝑗=1

Ψ̃𝑖 𝑗 �̂� 𝑗𝑡 + 𝑒𝑖𝑡 , 𝑒 = 1, . . . , 𝐸 , 𝑖 = 1, . . . , 𝑁

In this framework, we have multiple endogenous regressors and instruments for 𝐸 > 1.

Therefore, we can use the heteroscedasticity- and autocorrelation-robust (HAR) test for weak

instruments proposed by Lewis and Mertens (2022). This test is also helpful in examining

whether there are multiple dimensions on policy event days because the corresponding IV

estimates will suffer from a weak instruments problem.11

2.2 Extraction of unobserved shocks

It is helpful to extract the unobserved shock series to compare the results to existing

multi-dimensional high-frequency surprises or use the shocks in low-frequency IV-LP or

IV-SVAR models. We propose to obtain the linear minimum MSE prediction of the unobserved

monetary policy shocks using the Kalman filter.12

10Again, we identify Ψ𝑖2 only up to a scale because the initial response on 𝑦2𝑡 is normalized to unity, that is,
Ψ̃𝑖2 = Ψ𝑖2/Ψ22.

11Appendix B illustrates this point using simulated data.
12We thank Mark Watson for guiding us in this direction.
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Recall that we can obtain the least squares forecast of a state vector in a state-space model using

the Kalman filter. Following Hamilton (1994), p. 372, consider the state-space system:

𝜉𝑡 = 𝐹𝜉𝑡−1 + 𝜈𝑡

𝑦𝑡 = 𝐴′𝑥𝑡 + 𝐻′𝜉𝑡 + 𝑤𝑡

𝑄 = E[𝜈𝑡𝜈′𝑡]

𝑅 = E[𝑤𝑡𝑤′
𝑡]

where 𝜈𝑡 and 𝑤𝑡 are serially uncorrelated shock vectors. In addition, they are uncorrelated with

each other at all leads and lags. 𝑦𝑡 is a vector of observed variables, 𝜉𝑡 a vector of unobserved

states, and 𝑥𝑡 is a vector of exogenous or predetermined variables. 𝐹, 𝐴′, 𝐻′ are conformable

matrices of parameters.

The unobserved states represent the unobserved structural shocks. We can use formulae based

on the Kalman filter to obtain predictions of these states.13 We are ultimately interested in

𝜉𝑡 |𝑡 ≡ E[𝜉𝑡 |Ω𝑡], the linear projection of the unobserved states on the information set Ω𝑡 ∈

{𝑦𝑡 , 𝑦𝑡−1 , . . . , 𝑥𝑡 , 𝑥𝑡−1 , . . .} on day 𝑡. The Kalman filter recursively provides the linear projection

in the state-space model (Hamilton, 1994, p. 379):

𝜉𝑡 |𝑡 = 𝜉𝑡 |𝑡−1 + 𝑃𝑡 |𝑡−1𝐻(𝐻′𝑃𝑡 |𝑡−1𝐻 + 𝑅)−1(𝑦𝑡 − 𝐴′𝑥𝑡 − 𝐻′𝜉𝑡 |𝑡−1)

where 𝜉𝑡 |𝑡−1 is the one-step-ahead prediction of the unobserved states and 𝑃𝑡 |𝑡−1 is the

one-step-ahead prediction MSE matrix.

The unobserved shocks in Equation (1) are serially uncorrelated. Therefore, 𝐹 = 0, where 0 is a

conformable matrix of zeros. It follows that 𝜉𝑡 |𝑡−1 = 0, the unobserved states are unpredictable

based on past data, and 𝑃𝑡 |𝑡−1 = 𝑄, the MSE matrix corresponds to the unconditional variance

of the shocks in the state equation (see Hamilton, 1994, p. 380). In addition, 𝐻′𝑄𝐻 + 𝑅 =

E[(𝑦𝑡 − 𝐴′𝑥𝑡)(𝑦𝑡 − 𝐴′𝑥𝑡)′] ≡ Σ is the variance-covariance matrix of the residuals between the

data and the predetermined variables. Therefore, we can predict the unobserved states based

on 𝑄, 𝐻 and Σ, and data available at time 𝑡:

𝜉𝑡 |𝑡 = 𝑄𝐻Σ−1(𝑦𝑡 − 𝐴′𝑥𝑡)
13Using the Kalman smoother is unnecessary because the unobserved states are serially uncorrelated. Therefore,

future observations do not contain useful information about the current unobserved state.
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We can cast the model in Equation (1) in state-space form. For 𝑡 ∈ 𝑃 we obtain:

𝜉𝑡 = 𝜀𝑡

𝑦𝑡 = Ψ𝜉𝑡 + Γ𝑣𝑡

𝑄 = E[𝜀𝑡𝜀′𝑡] = Σ𝜀

𝑅 = E[Γ𝑣𝑡𝑣′𝑡Γ′]

Therefore, the prediction formula for the unobserved shocks reads:

𝜀𝑡 |𝑡 = Σ𝜀Ψ
′Σ−1𝑦𝑡 for 𝑡 ∈ 𝑃

This implies that we can compute the minimum MSE prediction of the shocks if we know

the variance-covariance matrix of the structural shocks (Σ𝜀), the impact matrix (Ψ), the

variance-covariance matrix Σ ≡ ΨΣ𝜀Ψ
′ + 𝑅, and the actual data.14

Five comments are in order. First, we can estimate each column in Ψ up to a scale using the

IV estimator.15 Second, we can estimate Σ = ΨΣ𝜀Ψ
′ + 𝑅 as the variance-covariance matrix

of 𝑦𝑡 on policy event days (𝑡 ∈ 𝑃). Third, although we do not directly observe the diagonal

matrix Σ𝜀, it only affects the scale of the shocks. Therefore, we can arbitrarily normalize it to an

identity matrix to extract the shocks up to a scale. Fourth, if we include lags of the dependent

variables or other exogenous variables in the IV regressions to estimate Ψ, we can replace 𝑦𝑡

with the residuals (𝑦𝑡−𝐴′𝑥𝑡) and also compute the variance-covariance matrix Σ based on these

residuals.16 Finally, the number of variables in 𝑦𝑡 , 𝑁 , should be relatively large compared to

the number of unobserved shocks, 𝐸, to obtain an accurate prediction.17

Our approach has several advantages. In particular, it provides the linear minimum MSE

prediction of the shocks. In addition, at least with a sufficiently high number of variables

in 𝑦𝑡 , the multiple dimensions are orthogonal to each other and other shocks affecting 𝑦𝑡 on

policy event days. This is not guaranteed using existing approaches. Bu et al. (2021) propose

a two-step approach to estimate a one-dimensional unobserved monetary policy shock. First,

they estimate the causal impact of a monetary policy shock on interest rate changes across the

14The MSE of this updated projection reads 𝑃𝑡 |𝑡 = Σ𝜀 − Σ𝜀Ψ
′Σ−1ΨΣ𝜀 (see Hamilton, 1994, p. 380).

15The fact that we can estimate Ψ only up to a scale only affects the scale of the extracted shocks. Suppose Ψ̃ = Ψ𝑆,
where 𝑆 is a diagonal matrix scaling each column by a different scalar. �̃�𝑡 = Σ𝜀(Ψ𝑆)′Σ−1𝑦𝑡 = Σ𝜀𝑆

′Ψ′Σ−1𝑦𝑡 =

Σ̃𝜀Ψ
′Σ−1𝑦𝑡 , where Σ̃𝜀 = Σ𝜀𝑆

′ is again a diagonal matrix. Therefore, using Ψ̃ instead of Ψ to extract the shocks
corresponds only to a different scaling of the variance of the structural shocks.

16Even if no lags are included, the regressions will likely include a constant. In this case, 𝑦𝑡 is replaced by the
demeaned data.

17We illustrate this point using simulated data in Appendix B.
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term structure via the heteroscedasticity-IV approach by Rigobon and Sack (2004). Second, in

the spirit of Fama and MacBeth (1973), they perform a cross-sectional regression of interest rate

changes along the term structure on the impact vector for every day with an FOMC decision.

The OLS coefficients of these regressions are then proportional to the underlying unobserved

monetary policy shocks.

However, the regression-based approach requires stronger assumptions than the Kalman-filter

approach. Suppose we know each column of Ψ up to a scale, Ψ̃ = Ψ𝑆, where 𝑆 is a conformable

diagonal matrix with scaling factors. The OLS estimator of 𝑦𝑡 on Ψ̃ on day 𝑡 reads:

�̂�𝑡 = (Ψ̃′Ψ̃)−1Ψ̃′𝑦𝑡 = 𝑆
−1𝜀𝑡 + (Ψ̃′Ψ̃)−1Ψ̃′Γ𝑣𝑡 (2)

The OLS estimate depends proportionally on the true shocks and an error term. To verify

whether OLS is an unbiased estimator of the shocks up to a scale, we can compute the

expectation conditional on the information set on day 𝑡:

E[�̂�𝑡 |Ω𝑡] = 𝑆−1𝜀𝑡 + E[(Ψ̃′Ψ̃)−1Ψ̃′Γ𝑣𝑡 |Ω𝑡]

OLS is an unbiased estimator only if the error term (Ψ̃′Ψ̃)−1Ψ̃′Γ𝑣𝑡 is zero in expectation. Using

the law of total expectations, we can show that this is the case if E[Γ|Ψ̃,Ω𝑡] = 0, that is, we need

an orthogonality condition between Ψ̃ and Γ. This implies that the cross-sectional variation in

the responses of the dependent variables to the structural shocks (Ψ̃) has to be orthogonal to

the variation in the responses to other shocks (Γ).

If this assumption is violated, the shock estimates will suffer from an unobserved variables

bias because we fail to control for variation in Γ in the cross-sectional regression.18 If the

orthogonality assumption does not hold, the extracted shocks are contaminated by other

shocks occurring on policy event days (𝑣𝑡). In addition, it may introduce a correlation between

the multiple dimensions of structural shocks.19 Whether the assumption holds depends on the

application and is, therefore, an empirical question.

18In monetary policy applications, for example, the assumption is violated if long-term interest rates respond
less strongly than short-term interest rates to both monetary policy and productivity shocks. Whether this
assumption is violated in practice is an empirical question, and we will compare the resulting shock series with
both approaches to existing multi-dimensional high-frequency surprises.

19In Appendix B, we show, using simulated data, that even if the orthogonality assumption is satisfied, the Kalman
filter yields a more accurate prediction of the underlying shocks.
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3 Empirical application

We use the two-step approach to analyze how various dimensions of US monetary policy

affect the US dollar exchange rate. The US application allows us to compare the results to

the multi-dimensional high-frequency surprises by Swanson (2021). In addition, using the

exchange rate as an outcome is helpful because the identification scheme does not directly

constrain its impulse response.

3.1 Data

In the baseline specification, we set:20

𝑦𝑡 = [𝑖3𝑚𝑡 , 𝑖
2𝑦

𝑡 , 𝑖
10𝑦−2𝑦
𝑡 , neer𝑡 ,

𝑖6𝑚𝑡 , 𝑖
1𝑦

𝑡 , 𝑖
3𝑦

𝑡 , 𝑖
5𝑦

𝑡 , 𝑖
7𝑦

𝑡 , 𝑖
30𝑦

𝑡 ,

AAA𝑡 , BAA𝑡 , SP500𝑡 , NASDAQ𝑡 , OIL𝑡 , COM𝑡]′

The variables in the first row (3M and 2Y interest rates, the 10Y-2Y term spread, and the

nominal effective exchange rate) are the main variables of interest. We will impose recursive

zero restrictions on the first three variables to disentangle multiple dimensions of monetary

policy shocks and use the exchange rate as the main outcome of interest.

Then, we follow Bu et al. (2021) and use interest rate data along the term structure to extract

the monetary policy shocks (6M, 1Y, 3Y, 5Y, 7Y, and 30Y rates).21 In addition, we include two

corporate bond spreads (AAA and BAA), as well as financial market prices that may respond

to monetary policy announcements (S&P 500 and NASDAQ stock price indices, WTI oil prices,

and a commodity futures index).22

The exchange rate and financial market prices are included as log-changes multiplied by 100,

so the cumulative impulse responses are measured in percent. All interest rates and spreads are

included in first differences, so the cumulative impulse responses are measured in percentage

points.23

As monetary policy events, we obtained the 323 FOMC announcement dates for 1988–2019

20A detailed description of the data sources is given in Appendix C.
21Bu et al. (2021) use data from Gürkaynak et al. (2007) featuring more maturities. We use the same data as they

do in a robustness test. The baseline uses Treasury bill yields from the Board of Governors because we know the
exact timestamp of the daily data.

22The exchange rate data is recorded at noon EST. Most other series are recorded at market close. There are very
few missing observations that we linearly interpolate.

23As these (log-)changes are likely relatively independent over time, the baseline specification does not include lags
of the dependent variables. All specifications include constant terms.
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from Bauer and Swanson (2022) and extended them for 2020–2022. We end up with 344 FOMC

announcement dates.24 In the baseline, we use scheduled and unscheduled announcements as

policy event days and all other working days as control days.25

3.2 Identifying assumptions

The ordering of variables in 𝑦𝑡 implies that we impose recursive zero restrictions on the

response of the 3M interest rate, 2Y interest rate, and 10Y-2Y term spread to identify 𝐸 = 3

dimensions of monetary policy shocks. Therefore, the first shock potentially affects all variables

and increases the variance of the 3M interest rate.26 We, therefore, interpret this dimension as

a shock to the Fed’s short-term interest rate target. The second shock does not immediately

impact the 3M interest rate but has to increase the variance of the 2Y interest rate. As this shock

affects medium-term interest rates, we interpret it as a shock to expectations about the Fed’s

interest rate path.27 Finally, the third shock does not immediately impact 3M and 2Y interest

rates. However, the shock has to increase the variance of the term spread.28 We interpret

this shock as a non-conventional monetary policy dimension because we assume that it affects

financial markets via the term premium.

Existing approaches extracting multi-dimensional surprises from high-frequency data use

similar restrictions. The target surprise by Altavilla et al. (2019) is a factor estimated on changes

in high-frequency data around the ECB’s press release and primarily loads on short-term

interest rates (although this is not imposed in the model). In addition, they impose that the

path and LSAP surprises are orthogonal to the short-term interest rate. Finally, the Quantitative

Easing (QE) shock is assumed to have a small variance before the financial crisis. Similarly,

Swanson (2021) imposes that path, and large-scale asset purchase (LSAP) surprises do not affect

the current FFR. In addition, he imposes that the LSAP shock is as small as possible before the

effective lower bound on short-term interest rates becomes binding.

24284 are regularly scheduled FOMC meetings. Unscheduled meetings include events before 1994, as the FOMC
only started then to announce its decisions for the FFR target after each FOMC meeting. In addition, we have 60
FOMC (intermeeting) conference calls that we treat as unscheduled events. Note that these numbers differ from
Swanson and Jayawickrema (2023) because we use daily data and define events daily. In contrast, they sometimes
have two events on one day. We refer to their paper for more details about the selection of event dates.

25We control for various contaminating events, such as speeches or data releases, in a series of robustness tests.
26If the first shock does not increase the variance of the 3M rate, the heteroscedasticity-based instrument suffers

from a weak instruments problem. We use the 3M rate instead of the FFR to identify the target shock because
FOMC meetings do not occur daily. A target shock should be expected to persistently change the overnight rate
and, therefore, the 3M rate. However, we also report results using the Federal Funds Rate in the robustness
section.

27To impose the zero restriction in the IV regressions, we therefore include the first and second instruments and
have two endogenous variables.

28To impose the zero restriction in the IV regressions, we therefore include all three instruments and have three
endogenous variables.
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While high-frequency approaches assume that no other shocks occur in a narrow window

around policy announcements, our main identifying assumption is that policy events occur

only on pre-determined days. For example, suppose the Federal Reserve is more likely to

take decisions during economic crises. In that case, the variance of other shocks is different

between policy event days and control days. Focusing on scheduled FOMC decisions fulfills

this requirement. As our baseline includes scheduled and unscheduled announcements, we

will distinguish between scheduled and unscheduled FOMC decisions in a robustness test.

Furthermore, we assume that other shocks occur randomly across policy and control days. This

assumption is violated, for example, if the FOMC schedules its meetings after economic data

is released. If this is the case, the variance on control days is affected by data release surprises

that do not occur on policy event days. Therefore, other shocks are not randomly distributed

between policy events and control days. In addition, other central banks may schedule their

meetings briefly after the FOMC to consider US policy surprises in their decisions. We account

for this issue by excluding other events from the control days in the robustness checks.

3.3 Comparison of monetary policy shocks

How does our two-step procedure perform in practice? Figure 1 compares the shocks predicted

by the Kalman filter (KF) with the high-frequency surprises by Swanson (2021). The three

dimensions show a relevant correlation with the high-frequency counterparts (between 0.50

and 0.66).29 Although the correlations are lower than unity, they are sizeable, given that

our approach relies on a different data set and identification strategy. Compared to the

high-frequency surprises, the KF target shock exhibits a slightly larger variability starting in

late 2008, when short-term rates were constrained by the effective lower bound (ELB). This may

be related to the fact that we use a 3M rate rather than the FFR. Nevertheless, the variance of

target shocks declined substantially over time, especially at the ELB. The exceptions are severe

economic crises. In addition, the variance of the term premium shock increased substantially

during the period at the ELB, even though we did not impose this restriction. Meanwhile, path

shocks were quite volatile throughout the sample.

Recall that the Kalman filter yields the linear minimum MSE prediction of the unobserved

shocks. Alternatively, we can use Fama and MacBeth (1973) (FM) regressions to estimate the

shocks under stronger assumptions. Table 1 shows that the correlations of the FM shocks

with the corresponding high-frequency surprises are relatively low.30 In addition, the various

29Figure 9 in Appendix E shows the same graphs aggregated to monthly frequency.
30This is in line with Brennan et al. (2024), showing that the correlation between various approaches, including the

FM approach, to measure monetary policy shocks is relatively low.
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Fig. 1: Heteroscedasticity-based shocks and high-frequency surprises
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Notes: Daily shocks extracted using the Kalman filter (KF) and high-frequency surprises by Swanson (2021).
All series normalized to a mean of zero and a standard deviation of one.
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Tab. 1: Correlation matrix of heteroscedasticity-based shocks and high-frequency surprises

KF target KF path KF term premium

KF target 1.00

KF path 0.06 1.00

KF term premium -0.03 0.20 1.00

Swanson FFR 0.66 0.05 -0.11

Swanson path 0.03 0.56 0.17

Swanson LSAP -0.11 0.16 0.50

FM target FM path FM term premium

FM target 1.00

FM path -0.54 1.00

FM term premium 0.43 -0.76 1.00

Swanson FFR 0.30 -0.16 0.28

Swanson path 0.21 -0.05 0.14

Swanson LSAP -0.09 -0.02 0.01

Notes: Correlation of shocks extracted using the Kalman filter (KF) and Fama-MacBeth regressions (FM) with
high-frequency surprises by Swanson (2021).
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monetary policy dimensions are correlated when using FM regressions. This may indicate

that, in this specific application, the FM shocks are contaminated by other shocks affecting

financial market variables. By contrast, the various dimensions of KF shocks show a lower

cross-correlation in absolute value.

Tab. 2: Relationship between heteroscedasticity-based shocks and high-frequency surprises

SW FFR SW path SW LSAP SW FFR SW path SW LSAP

(1) (2) (3) (4) (5) (6)

KF target 0.74∗∗∗ 0.07 −0.09
(0.12) (0.10) (0.07)

KF path 0.11 0.60∗∗∗ 0.05
(0.07) (0.10) (0.10)

KF term premium −0.09 0.04 0.45∗∗∗

(0.07) (0.06) (0.17)

FM target 0.27∗∗∗ 0.22∗∗∗ −0.12∗

(0.09) (0.07) (0.07)

FM path 0.19 0.21 −0.05
(0.26) (0.22) (0.11)

FM term premium 0.32 0.19 0.02
(0.28) (0.21) (0.11)

Constant 0.01 −0.01 0.01 0.04 0.02 −0.002
(0.04) (0.05) (0.05) (0.05) (0.06) (0.06)

N 241 241 241 241 241 241
R2 0.45 0.32 0.26 0.13 0.06 0.01
Adjusted R2 0.44 0.32 0.25 0.12 0.05 −0.001

Notes: OLS regressions of the high-frequency surprises by Swanson (2021) (SW) on shocks extracted using the
Kalman filter (KF) and Fama-MacBeth regressions (FM). All series have been normalized to have zero mean
and variance 1. Significance levels are given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. HAC robust standard errors are
in parentheses.

Because the FM shocks are correlated, we also perform multivariate regressions of Swanson’s

high-frequency surprises on the KF and FM shocks, respectively. Table 2 shows a significant

relationship between the KF target, path, and term premium shocks with their high-frequency

counterparts. However, the KF path and term premium shocks, for example, do not

display a significant relationship with the high-frequency FFR shock. We expect this

if our approach yields i.i.d. monetary policy shocks that reasonably approximate the

corresponding high-frequency surprises. Meanwhile, the FM target shock is positively related

to high-frequency FFR and path surprises. The other dimensions do not exhibit a significant

relationship with any of the high-frequency shocks.
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3.4 Comparison of impulse response functions

Next, we turn to daily impulse response functions, focusing on the US dollar exchange rate.

While the correlation with the high-frequency surprises is imperfect, this may stem from

classical measurement errors that do not bias the impulse responses in an IV-LP approach.

This section therefore investigates whether we obtain qualitatively similar economic effects

using heteroscedasticity-based and high-frequency approaches.31

Figure 2 shows the impulse responses to a target, path, and a term premium shock, respectively.

The blue solid lines show the local projection responses using the heteroscedasticity-based

instruments with 90% and 95% confidence intervals. The red dotted lines show responses

using the corresponding high-frequency surprises as instruments.32

Focusing on the heteroscedasticity-based identification scheme, a target shock increases the

3M and 2Y interest rates and lowers the term spread. This is as expected if a target shock

persistently, but still temporarily, increases the short-term interest rate. All exchange rates are

defined as one USD in terms of foreign currency. A decrease in the exchange rate is, therefore,

an appreciation of the USD. We observe an immediate appreciation of the US dollar, which

vanishes after ten working days. The response is slightly delayed. However, the delay is not

statistically significant.33

A path shock tightening does not affect the 3M interest rate on impact due to the recursive zero

restriction. In addition, the 3M rate and the term spread hardly respond. However, we observe

a rapid and statistically significant exchange rate appreciation. The exchange rate remains

persistently stronger for slightly less than 20 working days. Finally, the term premium shock

raises the term spread for up to ten working days while not significantly affecting the 3M or

2Y interest rates, even after the imposed zero impact effect. The exchange rate also appreciates.

Although the response is slightly delayed, it has reached the trough after about five working

days.

The responses are very similar for the high-frequency surprises. Although we do not impose

the zero restriction, the 3M rate (3M and 2Y rate) does not respond much to the path (LSAP)

shock. The target shock also leads to a decline in the term spread, while the LSAP shock leads

31We focus on IV-LP models throughout the paper, as IV-SVARs may yield too narrow confidence intervals if the
lag length of the model is misspecified (Montiel Olea et al., 2024).

32These responses use the FFR, path, and LSAP high-frequency surprises by Swanson (2021) to instrument the
3M rate, 2Y rate, and 10Y-2Y term spread, respectively. Figure 10 in Appendix E shows these responses with
confidence intervals. In addition, it shows the responses when additionally imposing the same zero restrictions
as in the heteroscedasticity-based identification scheme. Qualitatively, the results are identical.

33This may be partly related to the fact that exchange rates are recorded at noon, so it takes one working day until
the full effect of the monetary policy shock is recorded in the data.
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Fig. 2: Impulse responses to orthogonal monetary policy shocks
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Notes: Impulse responses to monetary policy shocks (target, path, and term premium). The responses are
normalized to a 25 bp increase in the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The blue solid lines
show the heteroscedasticity-based responses. The red dotted lines are the responses to the high-frequency
surprises by Swanson (2021). The horizontal axis measures working days (excluding weekends and holidays).
The models are estimated in first (log-)differences, but the impulse responses are cumulated. Therefore, all
interest rate responses are measured in percentage points and the exchange rate responses are measured in
percent. 90% and 95% confidence intervals are based on HAC-robust standard errors. 𝑇𝑝 , 𝑇𝑐 , 𝑇𝑜 denote the
number of policy event days, control days, and other days, respectively.
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Fig. 3: Impulse responses in the longer run
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Notes: Impulse responses to monetary policy shocks (target, path, and term premium) up to a horizon of
50 working days. The responses are normalized to a 25 bp increase in the 3M rate, 2Y rate, and 10Y - 2Y
spread, respectively. The blue solid lines show the heteroscedasticity-based responses. The red dotted lines
are the responses to the high-frequency surprises by Swanson (2021). The horizontal axis measures working
days (excluding weekends and holidays). The models are estimated in first (log-)differences, but the impulse
responses are cumulated. Therefore, all interest rate responses are measured in percentage points and the
exchange rate responses are measured in percent. 90% and 95% confidence intervals are based on HAC-robust
standard errors. 𝑇𝑝 , 𝑇𝑐 , 𝑇𝑜 denote the number of policy event days, control days, and other days, respectively.
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to an increase. Finally, for all three shocks, the exchange rate almost immediately appreciates.

Only for the LSAP shock is the exchange rate response smaller and less significant than the

heteroscedasticity-based response. Overall, this suggests that, at least in the daily data, there

is no delayed overshooting for any of the monetary policy dimensions and identification

schemes.

Fig. 4: Impulse responses of bilateral exchange rates
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Notes: Impulse responses of bilateral exchange rates to monetary policy shocks (target, path, and term
premium). A separate model is estimated for every bilateral exchange rate. The responses are normalized
to a 25 bp increase in the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The blue solid lines show the
heteroscedasticity-based responses. The red dotted lines are the responses to the high-frequency surprises by
Swanson (2021). The horizontal axis measures working days (excluding weekends and holidays). The models
are estimated in first (log-)differences, but the impulse responses are cumulated. Therefore, the exchange rate
responses are measured in percent. 90% and 95% confidence intervals are based on HAC-robust standard
errors. 𝑇𝑝 , 𝑇𝑐 , 𝑇𝑜 denote the number of policy event days, control days, and other days, respectively.

To examine whether we find a delayed overshooting puzzle at longer horizons, Figure 3 shows

the baseline results for a horizon of up to 50 working days. For the target shock, the exchange

rate responses remain around zero at longer horizons. The point estimate is more persistent

for the path and term premium shocks, but the responses are quite imprecisely estimated. This

suggests that there is no delayed overshooting puzzle using daily data. But, given the large
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estimation uncertainty, other patterns are also possible, in line with Faust et al. (2003).

We also examined the impulse response of bilateral exchange rates, where a separate model

was estimated for every currency pair (see Figure 4). Overall, the responses are similar but less

precisely estimated than for the nominal effective exchange rate. This is expected as bilateral

exchange rates are more noisy than the trade-weighted average. We also find that the responses

to the target shock are mostly less persistent than those to the path and term premium shocks.

In particular, the target shock responses reverse to zero after a few working days.

3.5 Weak instruments tests

Heteroscedasticity-based and high-frequency identification schemes use different approaches

to deal with background noise and other contaminating shocks. However, both approaches

may suffer from weak instruments problems. We, therefore, use a HAR test for

weak instruments in the presence of multiple endogenous regressors and instruments

proposed by Lewis and Mertens (2022). This exercise allows us to verify whether

the heteroscedasticity-based instruments perform better or worse concerning the weak

instruments problem than their high-frequency counterparts. In addition, they provide

evidence on whether there are multiple dimensions of monetary policy in the first place.

Table 3 shows the results for three exercises. The first column shows results only based on

the instrument associated with a target shock, where the 3M interest rate is the endogenous

variable. The second column corresponds to the second row of the model in Equation (1),

where we have two endogenous regressors (the 3M and 2Y interest rates) and two instruments.

Finally, the third column shows results for the third equation with three endogenous regressors

(3M and 2Y interest rate and the 10Y-2Y term spread) and three instruments.

The first panel shows that the heteroscedasticity-based target instrument passes the weak

instruments test. The test statistics are below the critical values for the path and term

premium shocks.34 This does not imply that the heteroscedasticity-based identification scheme

performs worse, as the second panel shows. We find a qualitatively similar pattern for the

high-frequency surprises. One possibility is that both approaches yield weak instruments, but

because they capture different variation, combining them may alleviate the problem. The last

panel shows that even when combining the corresponding instruments, identification remains

weak for the path and term premium shocks.35

34Wright (2012) also does not reject the null hypothesis of one monetary policy dimension at the ELB.
35It would be interesting to examine whether a heteroscedasticity-based identification scheme using intraday

changes would perform better because this would more strongly reduce background noise. We leave this as
an interesting avenue for future research.

22



Tab. 3: Weak instruments tests

Target Path Term premium

Test statistic 43.9 19.3 4.9
Critical value 23.1 27.3 31.2

Swanson FFR Swanson path Swanson LSAP

Test statistic 23.2 16.7 10.5
Critical value 23.1 24.1 27.5

Joint target/FFR Joint path Joint term premium/LSAP

Test statistic 34.0 14.1 12.1
Critical value 22.4 21.5 21.7

Notes: Weak instruments tests allowing for heteroscedasticity and autocorrelation with multiple endogenous
regressors (Lewis and Mertens, 2022). The endogenous regressors are the 3M rate, 2Y rate, and 10Y
- 2Y spread, respectively. The tests shown in the first, second, and third columns are based on one,
two, and three instruments. We impose the recursive zero restrictions used to disentangle the multiple
dimensions of monetary policy shocks with heteroscedasticity. The first panel shows the results for the
heteroscedasticity-based instruments. The second panel shows the results based on the high-frequency
surprises by Swanson (2021). The last panel includes the instruments from both the heteroscedasticity-based
and high-frequency approaches. The significance level is set to 5% and the tolerance level to 10%.
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3.6 Robustness tests

We conducted a range of robustness tests.36 The results are summarized in Table 4, which

shows correlations between the target, path, and term premium shocks with the corresponding

high-frequency surprises, and Table 5, which shows the corresponding weak instruments

tests.37

Tab. 4: Robustness tests: Correlation with high-frequency surprises

Target Path Term premium

Baseline 0.66 0.56 0.50

FFR instead of 3M rate 0.46 0.46 0.50

Main variables with 𝑃 = 4 lags 0.66 0.56 0.49

Additional control variables with 𝑃 =

2 lags
0.66 0.55 0.50

Only use term structure data 0.58 0.50 0.51

Include speeches as events 0.66 0.56 0.48

Exclude contaminating events 0.74 0.55 0.19

Tuesday and Wednesday as control 0.66 0.58 0.49

Exclude unscheduled meetings 0.50 0.52 0.55

Effective lower bound period 0.03 0.29 0.48

Swanson (2021) estimation sample 0.67 0.61 0.48

Notes: Correlation between the target, path, and term premium shocks extracted using the Kalman filter and
the corresponding high-frequency surprises by Swanson (2021).

We change the model specification in various ways. We use the FFR instead of the 3M interest

rate to identify the target surprise. While the correlation with the high-frequency surprise falls

for the target and path shocks, it remains unchanged for the term premium shock. Then we

estimate specifications with four lags of the main dependent variables (3M rate, 2Y rate, 10Y-2Y

term spread, effective exchange rate) and two lags of the main variables and additional control

variables (corporate bond spread, stock price index, oil prices, commodity prices) as controls.

The results remain virtually unchanged, suggesting that there was little serial correlation in the

first differences of the financial market variables. Then, we follow Bu et al. (2021) and only use

the term structure data by Gürkaynak et al. (2007) to extract the shocks. The correlation falls

relative to the baseline, suggesting that the responses of stock prices and other financial market

36The additional data is discussed in Appendix C.
37For brevity, we do not report the impulse response functions.
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variables comprise useful information to extract the unobserved monetary policy shocks.38

Finally, we include relevant speeches identified with a topic-modeling approach as policy

events.39 The results remain similar.40

Tab. 5: Robustness tests: weak instruments tests

Target Path Term premium

Baseline 43.9 19.3 4.9
Critical value 23.1 27.3 31.2

FFR instead of 3M rate 48.7 25.4 4.9
Critical value 23.1 26.9 31.2

Main variables with 𝑃 = 4 lags 47.3 20.0 4.9
Critical value 23.1 27.1 31.2

Additional control variables with 𝑃 =

2 lags
42.5 19.6 4.9

Critical value 23.1 26.9 31.0

Only use term structure data 43.9 19.3 4.8
Critical value 23.1 27.3 31.2

Include speeches as events 33.1 18.0 4.3
Critical value 23.1 27.8 31.2

Exclude contaminating events 68.8 11.7 4.1
Critical value 23.1 25.7 27.4

Tuesday and Wednesday as control 50.6 19.6 6.5
Critical value 23.1 28.2 32.5

Exclude unscheduled meetings 1.2 0.8 0.7
Critical value 23.1 25.6 31.6

Effective lower bound period 0.0 0.4 0.4
Critical value 23.1 25.3 30.8

Swanson (2021) estimation sample 43.5 16.3 8.4
Critical value 23.1 27.5 31.4

Notes: Tests for weak instruments allowing for heteroscedasticity and autocorrelation with multiple
endogenous regressors (Lewis and Mertens, 2022). The endogenous regressors are the 3M rate, 2Y rate, and
10Y - 2Y spread, respectively. The tests in the first, second, and third columns are based on one, two, and
three instruments. We impose the recursive zero restrictions used to disentangle the multiple dimensions of
monetary policy shocks with heteroscedasticity. For each specification, the first row shows the test statistic,
and the second row shows the critical value. The significance level is set to 5% and the tolerance level to 10%.

We then examine the robustness of the results when excluding various periods from the policy

event and control days. We remove contaminating events because it is debatable that other

38This is in line with Boehm and Kroner (2024), who find that non-interest rate financial market variables respond
strongly to monetary policy announcements.

39See Appendix D for more details. As Swanson and Jayawickrema (2023) and Bauer and Swanson (2022) suggest,
speeches by central bank representatives may also affect financial market variables.

40The high-frequency surprises by Swanson (2021) only comprise FOMC announcements but no speeches. We did
not compare our results with the speeches by Swanson and Jayawickrema (2023) because their dataset was not
publicly available at the time of writing.

25



shocks are randomly distributed over control and policy event days. We exclude speeches

identified with the topic model, important data releases, minutes released by the FOMC, policy

announcements by the Bank of England and the European Central Bank, and various crises.41

While the correlation for the target shock increases, it remains unchanged for the path shock

and falls for the term premium shock. Then, we only include Tuesdays and Wednesdays as

control days because most FOMC announcements (78%) occurred on one of these weekdays.

The correlations remain virtually unchanged. Finally, we estimate the shocks on the same

sample as Swanson (2021) and find no relevant difference.

There are more important differences for two specific robustness tests. If we exclude

unscheduled meetings, the test statistics for the weak instruments tests fall below the critical

values. The reason is that we predominantly remove events before 1994 when FOMC meetings

were not publicly announced (see, e.g., Swanson and Jayawickrema, 2023). This is in line with

the observation that the importance of target shocks declined over time. We also find weak

instruments when estimating the model only at the ELB.42 The correlation of the target shock

with the high-frequency surprises falls, suggesting that most movements during this period

were driven by other events or noise. By contrast, the correlation with the path and term

premium shocks remains higher, suggesting that monetary policy primarily operated through

these dimensions at the ELB. However, given the weak instruments tests, we must take these

results with a grain of salt.

Then, we perform a placebo test by randomly selecting event periods (the same number

as in the baseline, conditional on not being an actual FOMC announcement). Figure 11 in

Appendix E shows the impulse responses (blue solid lines) jointly with the baseline responses

(red dotted lines). The identifying assumptions constrain the 3M rate, 2Y rate, and 10Y-2Y term

spread to increase by 25 bp. Otherwise, the responses are largely statistically insignificant.

One advantage of our procedure is to use the extracted shocks to estimate the causal effects

on low-frequency macroeconomic variables (see, e.g., Stock and Watson, 2018).43 We perform

weak instruments tests and estimate impulse responses in a monthly IV-LP model, including

the 3M, 2Y interest rates, and the 10Y-2Y term spread, as well as industrial production,

consumer prices, and the nominal effective exchange rate. The shocks are aggregated to

41Specifically, we exclude 9/11, the global financial crisis, the outbreak of the Gulf War, New Year’s Day (because
of financial market volatility), and the Covid-19 crisis.

42We assume that interest rates were at the effective lower bound between 16 Dec 2008 and 16 Dec 2015 and between
16 Mar 2020 and 17 Mar 2022. Allowing the column of Ψ associated with the short-term interest rate to change at
the ELB would be an interesting extension. We leave this as an avenue for future research.

43Figure 9 in Appendix E shows that the shocks extracted with the Kalman filter are highly correlated with the
high-frequency surprises by Swanson (2021) at monthly frequency as well.
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monthly frequency as the sum of non-missing values. We set the monthly shock series to

zero for months without an event. We associate the three shocks with the same variables as

in the daily model and impose the recursive zero restrictions. The model is estimated in first

(log-)differences, including 12 lags of all dependent variables.44

Table 9 in Appendix E shows the weak instruments tests. As in the daily model, the instruments

for the path and term premium shocks do not pass the weak instruments tests for both

identification schemes. The results are more favorable for the heteroscedasticity-based target

shock. Overall, regarding the weak instruments tests, the heteroscedasticity-based approach

performs slightly better than the high-frequency surprises.

Figure 12 in Appendix E shows the cumulative monthly impulse responses. As only the target

shock passes the weak instruments tests, we should interpret the other responses carefully.

But we report them for the sake of completeness. Focussing on the heteroscedasticity-based

identification scheme (blue solid lines), industrial production temporarily declines after a target

tightening of 25 basis points. Meanwhile, the CPI shows a delayed response, falling by about

0.5 percent after 10 months. Interestingly, the exchange rate falls by about 3 percent, but

only after about three years.45 Turning to the path shock, we also find a decline in industrial

production, the CPI, and an exchange rate appreciation. The decline of industrial production

is more pronounced and more persistent. For the term premium shock, we do not find

statistically significant responses. The responses to the target and path shocks are qualitatively

similar to those based on high-frequency surprises. The results differ more strongly for the

term premium (LSAP) shock. However, as seen before, this dimension has not passed the

weak instruments tests.

Another advantage is that we can apply the approach to countries and periods with missing

high-frequency data. Therefore, we extend the sample period to 1986. This is the longest period

for which we were able to obtain all financial market data to extract the shocks. As events, we

constructed a more experimental data set starting in 1982 with 48 scheduled FOMC meetings

and 19 discount rate changes that we use as event days. Table 10 in Appendix E shows that

the target shock still passes the weak instruments test. However, all test statistics are lower.

Regarding the extracted shock series, Figure 13 in Appendix E shows that the correlations with

44The additional data sources are discussed in Appendix C. The financial market data are aggregated to monthly
frequency using the last available daily observation of the month. For the lag length, we follow the existing
literature (Bauer and Swanson, 2022, Gertler and Karadi, 2015, Ramey, 2016). We also estimated specifications,
including the excess bond premium by Gilchrist and Zakrajšek (2012), without the recursive zero restrictions
and varying the lag length. The results remain qualitatively similar. Most impulse responses were less precisely
estimated, however.

45It is puzzling that we do not find a delayed response in the daily data, while we find a stronger delay in the
monthly data. Examining the cause of this difference may be an interesting avenue for future research.
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the baseline series are very high. Therefore, the approach allows us to extend the shock series

to earlier sample periods.46

4 Concluding remarks

In this paper, we propose to combine a heteroscedasticity-based identification scheme with

recursive zero restrictions along the term structure of interest rates to identify multiple

orthogonal monetary policy shocks. We then show how to estimate daily dynamic causal

effects by modifying the IV approach by Rigobon and Sack (2004). In addition, we show how

to predict the unobserved monetary policy shocks using the Kalman filter.

Our shocks are substantially correlated with the multi-dimensional high-frequency surprises

by Swanson (2021), even though we use a different identification scheme. Both approaches

show similar effects on the exchange rate and other variables. This suggests that our two-step

approach is a valid alternative for countries and periods where high-frequency data is missing

or the exact intraday timing of monetary policy announcements is unknown.

A monetary policy tightening, independent of the specific dimension, generally appreciates

the US dollar exchange rate. However, there is a difference between daily and monthly

models. While there is no delayed overshooting puzzle in the daily data, which may be due

to estimation uncertainty, the delayed response appears in monthly local projection estimates.

In addition, the monthly response is more delayed for the target than for the path shock. This

contrasts with monthly SVAR models that often find no delayed overshooting on modern data

samples (see, e.g., Kim et al., 2017).

Our approach can be extended in various ways. First, we detected weak instruments problems

for path and term premium shocks. This may be alleviated by removing more background

noise. Therefore, using our approach with intraday (e.g. close – open) rather than daily data

would be interesting. In addition, it would be interesting to allow the impact matrix to change

over time, for example, imposing that the short-term interest rate does not respond to a target

shock at the ELB or that the term premium shock is present only after 2008.47 Finally, it would

be interesting to apply the approach to longer sample periods, where monetary policy events

are known, but high-frequency data and the exact intraday timing of the announcements are

unknown.
46It would be an interesting avenue for future research to assemble more financial market data and events to

estimate monetary policy shocks further back in time.
47For example, Cloyne et al. (2023) explore time-varying differences in the fiscal multiplier in a local projections

framework.
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Appendix

A Extension daily model

The model can be extended to include control variables, such as lags of the dependent variables,

in the information set. Let the model comprise 𝑀 control variables and a vector of constant

terms (𝛼):

𝑦𝑡 = 𝛼 +∑𝐿
𝑙=1Φ𝑙𝑥𝑡−𝑙 +Ψ𝜀𝑡 + Γ𝑣𝑡 for 𝑡 ∈ 𝑃 (3)

𝑦𝑡 = 𝛼 +∑𝐿
𝑙=1Φ𝑙𝑥𝑡−𝑙 + Γ𝑣𝑡 for 𝑡 ∈ 𝐶

where Φ𝑙 are 𝑁 × 𝑀 matrices of coefficients for every lag 𝑙 = 1, . . . , 𝐿. Then, we simply add

constant terms and 𝑥𝑡−𝑙 , for 𝑙 = 1, . . . , 𝐿 as additional regressors in the IV estimation. The

construction of the instruments remains unchanged.

Following Jordà (2005), we can also estimate dynamic effects by iterating the dependent

variable forward:

𝑦𝑡+ℎ = 𝛼ℎ +
∑𝐿
𝑙=1Φ

(ℎ)
𝑙
𝑥𝑡−𝑙 +

∑ℎ
𝑛=0Ψ

(ℎ−𝑛)𝜀𝑡+𝑛 + Γ(ℎ−𝑛)𝑣𝑡+𝑛 for 𝑡 ∈ 𝑃 (4)

𝑦𝑡+ℎ = 𝛼ℎ +
∑𝐿
𝑙=1Φ

(ℎ)
𝑙
𝑥𝑡−𝑙 +

∑ℎ
𝑛=0 Γ

(ℎ−𝑛)𝑣𝑡+𝑛 for 𝑡 ∈ 𝐶

where Ψ(ℎ) and Γ(ℎ) are the impulse response functions after ℎ periods and Φ
(ℎ)
𝑙

are coefficients

on the control variables, which differ for every horizon ℎ.48

The error term in the IV estimation includes future monetary policy and other shocks. The

exclusion restriction is still valid as the instruments are only affected by current shocks, not

by future shocks.49 We can use the same first stages and then replace the dependent variables

in the second stage with 𝑦𝑡+ℎ to estimate the impulse response after ℎ periods. For the same

reason, we can estimate cumulative responses by using
∑ℎ
𝑛=0 𝑦𝑡+𝑛 as the dependent variable

with the same instruments.
48For example, if the data generating process is a VAR(1) we have that 𝑦𝑡+ℎ = 𝛼ℎ + Φℎ𝑦𝑡−1 +∑ℎ

𝑛=0Φ
ℎ−𝑛Ψ𝜀𝑡+𝑛 +

Φℎ−𝑛Γ𝑣𝑡+𝑛 , with Ψ(ℎ) ≡ ΦℎΨ and Γ(ℎ) ≡ ΦℎΓ.
49However, the error term is autocorrelated, such that it is important to use a HAC-consistent variance estimator

(see Newey and West, 1987).
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B Simulation study

A simulation study illustrates that we can estimate the impulse responses of a

multi-dimensional monetary policy shock with IV. We simulate 5’000 observations for 𝑁 = 3

variables using a VAR with 𝑃 = 2 lags. 𝑅 = 3 i.i.d. structural shocks occur on all periods

and 𝐸 = 2 i.i.d. structural shocks occur every third period. Both impact matrices are lower

triangular. The specific values of the impact matrices and VAR coefficients are drawn randomly,

subject to the constraint that the VAR is stationary.

Figure 5 shows that we can estimate the impulse responses of the three variables to the two

shocks (first two rows). The red dotted line shows the actual impulse response. The impact

effect is accurately estimated, while there are somewhat larger deviations and wider confidence

intervals at longer horizons. We also estimate the impulse response to a non-existing third

dimension (third row). The confidence intervals are wide and mostly include zero. For the

third variable, the normalization leads to a significant response in the first period. This suggests

that if we estimate the dynamic causal effect to a non-existing dimension, we expect significant

responses of the variables on which we impose the normalization, which corresponds to the

assumption in heteroscedasticity-based identification schemes that the shock increases the

variance of the variable on event days. Meanwhile, the other variables are not significantly

affected.

Can we detect more formally whether we estimate the dynamic causal effects to a non-existing

dimension? Wright (2012) proposes a bootstrap-based test on the difference of the

variance-covariance matrix to test whether there is a single monetary policy dimension at the

effective lower bound. Alternatively, note that the instrument we construct for the non-existing

third dimension should be weak, as shocks 1 and 2 already explain the variation of variable 3.

Table 6 indeed shows that the test for weak instruments in the presence of multiple endogenous

regressors suggested by Lewis and Mertens (2022) does not reject the null hypothesis of weak

instruments for the third equation, where we have three endogenous regressors and three

heteroscedasticity-based instruments. In contrast, we reject the null for equations 1 and 2.

We also conducted a simulation study to test our strategy to extract the shocks using the

Kalman filter. The data have been simulated with the same structure as above, except that

we simulate separate data sets for 𝑁 = 3, 10, 20 to test whether increasing the number of

variables increases the prediction’s accuracy. In this exercise, we set 𝑅 = 𝑁 . Figure 6 shows

the first 100 observations and predictions of the structural shocks, respectively, where every
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Fig. 5: Impulse responses for simulated data 𝐸 = 2
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Notes: Cumulative impulse responses two-dimensional shock occurring every third period estimated using
IV-LP. The red dotted lines give the true impulse responses. 90% and 95% confidence intervals are based on
HAC-robust standard errors. 𝑇𝑝 , 𝑇𝑐 , 𝑇𝑜 denote the number of policy event days, control days, and other days,
respectively.
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Tab. 6: Tests for weak instruments for simulated data 𝐸 = 2

Equation 1 Equation 2 Equation 3

Test statistic 425.1 261.6 0.3

Critical value 23.1 23.4 23.3

Notes: Tests for weak instruments allowing for heteroscedasticity and autocorrelation with multiple
endogenous regressors (Lewis and Mertens, 2022). The endogenous regressors are the first, second, and third
variables in the system. The tests shown in the first, second, and third columns are based on one, two, and
three instruments. We impose the recursive zero restrictions used to disentangle the multiple dimensions of
monetary policy shocks with heteroscedasticity. The significance level is set to 5% and the tolerance level to
10%.

column stands for a different underlying structural shock, and every row varies the number of

variables (𝑁). We can relatively accurately extract the underlying shocks with three variables.

However, increasing the number of variables increases the accuracy of the prediction. This

may be related to the fact that the response to the structural shocks varies across variables in

the simulation, providing independent information on the underlying shocks. Of course, if

every variable responds identically to the structural shocks, adding a variable will not improve

the prediction.

Finally, we follow Bu et al. (2021) and use Fama and MacBeth (1973) regressions to extract the

shocks with 𝑁 = 20. Note that in these simulations, the orthogonality condition is satisfied

because we randomly draw the coefficients of the impact matrices. However, the approach

does not deliver the linear minimum MSE prediction of the shocks. Figure 7 shows that the

correlation with the actual shocks is lower than the Kalman-filter predictions.
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Fig. 6: Simulated and extracted shocks for simulated data 𝐸 = 2 using the Kalman filter
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Notes: Actual (red solid line) and extracted (blue dashed line) structural shocks using the Kalman filter.
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Fig. 7: Simulated and extracted shocks 𝐸 = 2 using Fama-MacBeth regressions
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Notes: Actual (red solid line) and extracted (blue dashed line) structural shocks using Fama-MacBeth
regressions.
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C Data

Tables 7 and 8 summarize the sources for the time series, policy events, and control days. The

baseline data set covers the period 1988 – 2022. We construct a more experimental data set for

robustness tests over a longer sample period.

Tab. 7: Time series

Category Source Variants Time
stamp

Comments

Treasury bill
yields

Board of
Governors

3M, 6M, 1Y,
2Y, 3Y, 5Y, 7Y,
30Y

4pm EST www.federalreserve.gov/releases/h15/. We
do not use the 20Y yield as it comprises
missing data

Treasury bill
yields

Gürkaynak
et al. (2007)

1Y to 30Y End of day www.federalreserve.gov/data/nominal-
yield-curve.htm

Federal Funds
Rate

Board of
Governors

4pm EST www.federalreserve.gov/releases/h15/

Exchange
rates

Board of
Governors

NEER,
USD/CHF,
USD/JPY,
USD/GBP,
USD/EUR

Noon EST www.federalreserve.gov/releases/h10/. For
the nominal effective exchange rate, we
linked the discontinued series with FRED
identifier DTWEXM with DTWEXAFEGS.
For the USD/EUR exchange rate, we
linked the USD/DEM with the USD/EUR
exchange rate using the official changeover
exchange rate from www.eu-info.de/euro-
waehrungsunion/5007/5222/5170/.

Stock prices S&P Dow
Jones,
NASDAQ
OMX

S&P 500,
NASDAQ

4pm EST de.tradingview.com/symbols/SPX/. FRED
variable keys: SP500, NASDAQCOM

Corporate
bond spreads

Moody’s AAA, BAA Unclear FRED variable keys: DAAA, DBAAA. We
computed the spreads as the difference to the
10Y government bond yield

Commodity
price index

Dow Jones,
Bloomberg

Eikon
Datastream

Close We link the Dow Jones spot commodity price
index with the Bloomberg spot commodity
price index (BCOM)

Oil price
index

US Energy
Information
Administration

Crude oil WTI Close FRED variable key: DCOILWTICO

Industrial
production

Board of
Governors

FRED variable key: INDPRO

CPI BLS FRED variable key: CPIAUCSL

A few comments are in order. Besides a nominal effective exchange rate, we also examine the

USD exchange rate vis-à-vis the CHF, GBP, JPY, CAD, and EUR. Before the euro-changeover, we

used the USD/DEM exchange rate. The USD/DEM is transformed to a hypothetical USD/EUR

using the official euro-changeover exchange rate. All exchange rates are defined as one USD in

terms of foreign currency. A decrease in the exchange rate is an appreciation of the USD.
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Tab. 8: Events

Category Source Start Comments

FOMC
announcements

1982 to 1987: www.federalreserve.gov/
monetarypolicy/fomc_historical_year.htm,
1988 to 2019: Bauer and Swanson (2022), from
2020: www.federalreserve.gov/monetarypolicy/
fomccalendars.htm

1982 Longer samples
possible

Discount rate
changes

Monetary Policy and Open Market Operations
1982 - 1989, FRBNY Quarterly Review, 1983 -
1990, www.newyorkfed.org/research/quarterly_
review/75th.html

1982 Longer samples
possible

Speeches and
Congressional
Testimony

Up to 1996: alfred.stlouisfed.org/, from 1997:
www.federalreserve.gov/newsevents/speeches.
htm

1982 Longer samples
possible

FOMC minutes www.federalreserve.gov/monetarypolicy/
fomccalendars.htm

1988

ECB decisions Altavilla et al. (2019) 1999

BoE decisions Braun et al. (2024) 1997

CPI releases www.bls.gov/bls/news-release/cpi.htm, alfred.
stlouisfed.org/

1982 Longer samples
possible

PPI releases www.bls.gov/bls/news-release/ppi.htm 1994

Employment
situation releases

www.bls.gov/bls/news-release/empsit.htm 1994

Employment cost
releases

www.bls.gov/bls/news-release/eci.htm 1982 Longer samples
possible

GDP releases www.bea.gov/index.php/news/archive?field_
related_product_target_id=All&created_1=All&
title=gross%20domestic%20product&page=0

1996 Includes first, second
and third releases

Industrial production
releases

www.federalreserve.gov/releases/g17/release_
dates.htm

1982 Longer samples
possible

Notes: Prior to 1994, the FOMC did not explicitly announce its target for the FFR, but implemented changes
in its target via open market operations. These open market operations were conducted at 11:30 am the next
morning (see, e.g., Swanson and Jayawickrema, 2023). Therefore, we used the day after an FOMC meeting as
the day of the event from 1982 to 1987.
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In a robustness test, we also use dates of relevant speeches and testimony before Congress

by the Chair and the Vice-Chair of the Federal Reserve. Recent work by Swanson (2023a)

and Swanson and Jayawickrema (2023) shows that these speeches are an important source of

variation in US monetary policy. In contrast to Swanson and Jayawickrema (2023) who read

the newspaper the following day to judge whether the speech had implications for monetary

policy, we use a more data-driven approach to identify relevant speeches. We use a topic

modeling approach, identifying transcripts mainly concerning monetary policy decisions. A

detailed description of how relevant articles are identified can be found in Appendix D. We

aim to exclude transcripts that refer mainly to the state of the economy or regulatory changes.

In total, we add 81 speeches to our event dataset.50

As a robustness test, we assembled data over a longer sample. Between 1982 and 1988, we

identified 17 additional speeches, 48 scheduled FOMC meetings, and 19 discount rate changes

that we used as event days. However, because some financial market data is only available on

a shorter sample, the sample for the robustness tests starts in 1986.

For the monthly model, we aggregate the financial market variables (3M, 2Y interest rates,

10Y-2Y term spread, and nominal effective exchange rate) using the last observation of the

month. Then we add two monthly macroeconomic variables (consumer price index and

industrial production). The sources are given in Table 7.

50Two of them take place on the same date as a FOMC announcement.
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D Identification of relevant speeches

Swanson (2023a) and Swanson and Jayawickrema (2023) show that speeches and

Congressional testimony (henceforward just speeches) of the Chair and the Vice-Chair of

the Federal Reserve Board are an important source of variation in US monetary policy.

Therefore, we augment the event dataset with relevant speeches. In contrast to Swanson and

Jayawickrema (2023) who read the newspaper the next morning to judge whether the speech

had implications for monetary policy, we use a more data-driven approach to identify relevant

speeches.

To identify speeches of the Chair and the Vice-Chair of the Federal Reserve, we apply a

Correlated Topic Model (CTM).51 We downloaded all speeches by officials of the Federal

Reserve from 1996 onwards from the website of the Federal Reserve.52 Speeches before 1996

are collected from ALFRED. 53 We then identify and link together words that often appear

together (e.g., interest rate or Federal Reserve) by calculating bigrams (contiguous sequences

of two words). Finally, we apply the CTM after cleaning the corpus from stopwords, numbers,

and punctuation.

The CTM was initially developed by Blei and Lafferty (2007). Here, we use the algorithm

described in Roberts et al. (2016, 2019). We estimate a Structural Topic Model (STM), which

reduces to a fast implementation of the CTM if estimated without covariates.54 The CTM is

a statistical model used to analyze large sets of documents. It assumes that each document

in the collection comprises a mixture of different topics, and each topic is a probability

distribution over the words in the vocabulary. It is superior in this context to other topic

modeling approaches, such as Latent Dirichlet Allocation (LDA), because it explicitly models

the correlations between the topics, which may be important for understanding the underlying

structure of the data. For classifying speeches of Federal Reserve officials, there may be topics

frequently discussed together (such as inflation and monetary policy) or strongly influencing

each other.

We follow the notation by Roberts et al. (2016) denoting documents using the index 𝑑 ∈

{1, . . . , 𝐷} and words (or positions within the documents) using the index 𝑛 ∈ {1, . . . , 𝑁}.

Each word in a document, represented as 𝑤𝑑,𝑛 , is an instance of distinct words drawn from a

51We follow Swanson and Jayawickrema (2023) and focus on the most influential members of the FOMC: the Federal
Reserve Board Chair and the Federal Reserve Board Vice Chair. However, to estimate the topic model, we used
speeches given by Board Governors.

52www.federalreserve.gov/newsevents/speeches.htm
53alfred.stlouisfed.org
54See Roberts et al. (2016, 2019) for more details on the STM.
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vocabulary that is indexed by 𝑣 ∈ {1, . . . , 𝑉}. Additionally, the model assumes the selection of

a certain number of topics, 𝐾, which are indexed by 𝑘 ∈ {1, . . . , 𝐾}.

The CTM is a generative model assuming that each document 𝑑, given the number of topics 𝐾

and observed words 𝑤𝑑,𝑛 , is generated in the following way:

𝜂𝑑 ∼ 𝒩𝐾−1(𝜇,Σ)

𝜃𝑑,𝑘 =
exp(𝜂𝑑,𝑘)∑𝐾
𝑖=1 exp(𝜂𝑑,𝑖)

where 𝜂𝑑 is the latent topic proportion vector for document 𝑑, transformed to the simplex via

a logistic function to get 𝜃𝑑. 𝜂𝑑,𝐾 is fixed to zero to identify the model. 𝜇 is the mean vector,

and Σ is the covariance matrix (capturing topic correlations) of the topic proportion. Given the

topic proportion vector, 𝜃𝑑, for each word, indexed by 𝑛, within document 𝑑, a topic indicator

is sampled from

𝑧𝑑,𝑛 ∼ Multinomial𝐾(𝜃𝑑)

whose positive component indicates the topic associated with that particular position.

Conditional on such a topic indicator, a word is sampled from

𝑤𝑑,𝑛 ∼ Multinomial𝑉 (𝛽𝑧𝑑,𝑛 )

where 𝑉 is the size of the vocabulary and 𝛽 is the 𝐾 × 𝑉 matrix representing the distributions

of terms in the vocabulary corresponding to the K topics.

The objects of interest in a CTM include the distributions of topics within documents (𝜃𝑑), the

distributions of words across topics (𝛽), the topic assignments for each word (𝑧𝑑,𝑛), and the

parameters (𝜇, Σ) of the logistic normal distribution. Estimating these components allows us to

understand the thematic structure in a text corpus. However, inference in a CTM is challenging

due to the non-conjugate nature of the logistic normal and multinomial distributions. We use

an approximate variational EM algorithm based on a Laplace approximation developed by

Roberts et al. (2016).

Following Roberts et al. (2019) we set the number of topics to 𝐾 = 50. Figure 8 illustrates the

identified topics in terms of their frequency of occurrence within the text corpus and the words

that most accurately describe them. From a human standpoint, the top words are perceived

as coherent and meaningful, resulting in the interpretability of the topics. Therefore, we use
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the top words to identify the topics associated with monetary policy. We explicitly choose only

those topics that are directly related to monetary policy. According to our judgment, six topics

can be associated with monetary policy: 6, 20, 30, 31, 36, 46. Accordingly, we identify and

include 81 speeches in the event dataset.

Fig. 8: Topic prevalence with the top words that contribute to topics
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E Additional results

Tab. 9: Tests for weak instruments monthly data

Target Path Term premium

Test statistic 44.5 2.4 1.4
Critical value 23.1 26.9 28.6

Swanson FFR Swanson path Swanson LSAP

Test statistic 13.0 0.3 0.2
Critical value 23.1 24.1 25.7

Notes: Tests for weak instruments allowing for heteroscedasticity and autocorrelation with multiple
endogenous regressors (Lewis and Mertens, 2022) based on monthly data. The endogenous regressors are
the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The tests in the first, second, and third columns are
based on one, two, and three instruments. We impose the recursive zero restrictions used to disentangle the
multiple dimensions of monetary policy shocks with heteroscedasticity. The first panel shows the results for
the heteroscedasticity-based instruments. The second panel shows the results based on the high-frequency
surprises by Swanson (2021). The significance level is set to 5% and the tolerance level to 10%.

Tab. 10: Tests for weak instruments starting in 1986

Target Path Term premium

Test statistic 30.8 16.6 2.7
Critical value 23.1 27.7 31.2

Notes: Tests for weak instruments allowing for heteroscedasticity and autocorrelation with multiple
endogenous regressors (Lewis and Mertens, 2022) using data starting in 1986. The endogenous regressors
are the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The tests in the first, second, and third columns
are based on one, two and three instruments. We impose the recursive zero restrictions used to disentangle
the multiple dimensions of monetary policy shocks with heteroscedasticity. The significance level is set to 5%
and the tolerance level to 10%.
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Fig. 9: Heteroscedasticity-based and high-frequency shocks (monthly frequency)
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Notes: Monthly sum of the daily shocks extracted using the Kalman filter (KF) and high-frequency surprises
by Swanson (2021). All series normalized to a mean of zero and a standard deviation of one.
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Fig. 10: Impulse responses to high-frequency surprises with and without zero restrictions
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Notes: Impulse responses to high-frequency monetary policy surprises by Swanson (2021). The responses are
normalized to a 25 bp increase in the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The blue solid line
shows the unrestricted responses. The red dotted lines additionally impose the recursive zero restrictions. The
horizontal axis measures working days (excluding weekends and holidays). The models are estimated in first
(log-)differences, but the impulse responses are cumulated. Therefore, all interest rate responses are measured
in percentage points and the exchange rate responses are measured in percent. 90% and 95% confidence
intervals are based on HAC-robust standard errors. 𝑇𝑝 , 𝑇𝑐 , 𝑇𝑜 denote the number of policy event days, control
days, and other days, respectively.
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Fig. 11: Heteroscedasticity-based impulse responses using random event dates as placebo test
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Notes: Impulse responses using randomly selected event dates. The responses are normalized to a 25 bp
increase in the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The blue solid lines show the responses
to the placebo events. The red dotted lines show the responses from our baseline specification. The
horizontal axis measures working days (excluding weekends and holidays). The models are estimated in first
(log-)differences, but the impulse responses are cumulated. Therefore, all interest rate responses are measured
in percentage points and the exchange rate responses are measured in percent. 90% and 95% confidence
intervals are based on HAC-robust standard errors. 𝑇𝑝 , 𝑇𝑐 , 𝑇𝑜 denote the number of policy event days, control
days, and other days, respectively.
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Fig. 12: Monthly impulse responses (continued on next page)
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Fig. 12: Monthly impulse responses (continued from previous page)
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Notes: Monthly impulse responses to monetary policy shocks (target, path, and term premium). The responses
are normalized to a 25 bp increase in the 3M rate, 2Y rate, and 10Y - 2Y spread, respectively. The blue solid
line shows the IV estimates using the heteroscedasticity-based shocks extracted using the Kalman filter. The
red dotted lines are the IV estimates to the high-frequency surprises by Swanson (2021). In both models,
we impose the recursive zero restrictions on the monthly impact response. The models are estimated in first
(log-)differences, but the impulse responses are cumulated. Therefore, all interest rate responses are measured
in percentage points and the other responses are measured in percent. 90% and 95% confidence intervals are
based on HAC-robust standard errors.
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Fig. 13: Heteroscedasticity-based shocks starting in 1986
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Notes: Daily shocks extracted using the Kalman filter (KF) on a sample starting in 1988 and a more
experimental sample starting in 1986. All series normalized to a mean of zero and a standard deviation of
one. 51
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