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1 Introduction
Panel event study designs are commonly used to analyze the dynamic effects of a

policy on an outcome variable. For instance, Roth (2022) reviews the publications

in three leading economic journals between 2014 and 2018 and finds 70 papers that

include event-study designs. Schmidheiny and Siegloch (2023) review 5 top journals in

economics since 1990 and they observe a gradual increase in the share of papers using

event study designs, with an important increasing popularity since 2010, where this

share approximately quadrupled between 2010 and 2018. This rising use of event study

designs has taken place in a broad range of settings: for instance, to study the mobility

responses to tax reforms (Mart́ınez, 2022), the effect of minimum wage increases on

poverty (Burkhauser et al., 2023), the effect of school closures on parental mental health

(Gupta et al., 2024), the effect of armed conflict on trade (Korovkin and Makarin, 2023),

the economic impact of dismissing city councils (Fenizia and Saggio, 2024), and the

effect of the introduction of fast internet on employment (Hjort and Poulsen, 2019).

The popularity of this method raises the necessity of having computational tools that

facilitate the implementation of the event study designs.

In this article, we introduce xtevent, a Stata package which enables the estimation

of linear panel models with dynamic policy effects under various identifying assumptions.

It further enables the construction of the corresponding event-study plots following the

suggestions in Freyaldenhoven et al. (Forthcoming).

We are interested in learning the dynamic effect of a scalar policy zit on some outcome

yit in an observational panel of units i ∈ {1, ...,N} observed in a sequence of periods

t ∈ {1, ..., T}. We consider the following model:

yit = αi + γt + q′itψ +
M

∑
m=−G

βmzi,t−m +Cit + εit. (1)

Here, αi denotes a unit fixed effect, γt a time fixed effect, and qit a vector of controls with

conformable coefficients ψ. The scalar Cit denotes a (potentially unobserved) confound

that may be correlated with the policy, and the scalar εit represents an unobserved

shock uncorrelated with the policy. The parameters {βm}Mm=−G encapsulate the dynamic

effects of the policy. Specifically, the outcome at time t can be directly affected by the

policy variable’s value at most M ≥ 0 periods before t and at most G ≥ 0 periods after t.

Typical event-study plots used to visualize the dynamic effects of the policy rely on

the following variation of (1) (see Freyaldenhoven et al. Forthcoming):
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yit =
M+LM−1
∑

k=−G−LG

δk∆zi,t−k + δM+LM
zi,t−M−LM

+ δ−G−LG−1(1 − zi,t+G+LG
)

+αi + γt + q′itψ +Cit + εit,
(2)

where ∆ denotes the first difference operator. In (2), the parameters {δk}k=M+LM

k=−G−LG−1 mea-

sure the cumulative effect of the policy at different horizons (Schmidheiny and Siegloch,

2023). The corresponding event-study plot then depicts estimates of the cumulative

treatment effects at different horizons k. Thus, the x-axis corresponds to different values

of k, and the y-axis corresponds to estimates of policy effects {δ̂k}
k=M+LM

k=−G−LG−1
. We refer

to k as event-time, to the vector δ = (δ−G−LG−1, . . . , δM+LM
)′ as the event-time path of

the outcome, and to its estimated counterpart δ̂ as the estimated event-time path.

To permit the visualization of overidentifying information, (2) includes the estimated

cumulative effects of the policy at horizons outside of the range of horizons over which

the policy is thought to affect the outcome. For example, it is common to rule out effects

of the policy at time t on the outcome in periods before t (G = 0). By including LG

additional periods in (2), we allow a visualization of pre-event trends (“pre-trends”) that

are generally inconsistent with the model in (1) (Freyaldenhoven et al., 2019). Similarly,

the estimating equation in (2) permits visualizing the estimated cumulative effect for an

additional LM periods after the cumulative treatment effect is assumed to be constant

in (1).

While (2) allows for general (e.g., non-binary) policy variables zit, it is instructive to

consider the particular case of staggered adoption, by which we mean that the policy is

binary, all units begin without the policy; and once a given unit adopts the policy it

is never reversed. Then, ∆zi,t−k is an indicator for whether unit i adopted the policy

exactly k periods before period t, zi,t−M−LM
is an indicator for whether unit i adopted

at least M +LM periods before period t, and (1 − zi,t+G+LG
) is an indicator for whether

unit i will adopt more than G +LG periods after period t.

Our package complements many other recent contributions to estimation and vi-

sualization of panel event studies in Stata, such as csdid (Rios-Avila et al., 2021),

did imputation (Borusyak, 2023), didmultiplegt (de Chaisemartin et al., 2019),

did2s (Butts, 2023), eventdd (Clarke and Tapia-Schythe, 2021), eventstudyinteract

(Sun, 2023), jwdid (Rios-Avila, 2022), lpdid (Busch and Girardi, 2023), staggered

(Cáceres Bravo, 2023), and wooldid (Hegland, 2023), as well as the native
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xthdidregress command recently introduced in Stata 18. Many of these focus on

the case of staggered adoption, and by default, they require the user to specify a unit-

specific treatment period, time relative to treatment, or an indicator for observations

subject to treatment. By contrast, our package allows for general policy variables zit,

such as continuous variables, allowing both estimation and visualization in a wide range

of settings outside staggered adoption. We note that our package can be used in the

staggered adoption case by setting zit equal to a unit-period-specific indicator for periods

after treatment.

Our package also allows for estimation with pre-event trends using approaches based

on trend extrapolation (Dobkin et al., 2018) or proxy variables (Freyaldenhoven et al.,

2019). Moreover, our package includes tools to enhance event-study plots and ease their

interpretation, such as calculation of uniform confidence bands and plotting of plausible

confound trajectories consistent with the estimated event-time path.

There are advantages to implementations designed to ensure desirable economet-

ric properties in more specialized settings such as staggered adoption. Our package

incorporates one such procedure as an option if the policy indeed follows staggered

adoption.

In the following section, we briefly discuss several estimation strategies for (2),

provide more details on constructing the corresponding event-study plots, and introduce

some additional features of the xtevent package. In section 3, we illustrate usage of the

package in simulated data from Freyaldenhoven et al. (Forthcoming) and by estimating

the effect of a tax reform using data from Mart́ınez (2022). Then, in the appendix, we

give a more detailed description of the syntax and options for the xtevent package.

The appendix also includes additional details on the implementation and functionality

of the package.

2 Methods

2.1 Estimation Strategies

In general, identification of the parameters δ will require some form of restriction on

how observable and latent variables relate to the confound Cit and the policy zit. The

appropriate restriction will depend on the economic setting and typically cannot be

learned from the data. In turn, the choice of restriction will determine what type of

estimator is appropriate to estimate δ (see Freyaldenhoven et al. Forthcoming for a more
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detailed discussion). The package xtevent includes the following estimators.

Two-way fixed effects estimator. If Cit = 0, equation (2) may be estimated by OLS

using a standard two-way fixed effects estimator. With only one group of fixed effects,

xtevent uses areg for estimation. xtevent further allows for estimation using xtreg

or the reghdfe command (Guimarães and Portugal, 2010; Correia, 2016, 2019) to allow

for multiple or high-dimensional fixed effects.

Controlling for unit-specific trends. If Cit = λ′if(t), where f(⋅) is a known low-

dimensional set of basis functions (e.g. f(t) = t ), then (2) may be estimated by including

unit-specific time trends. These can be included in the regression using factor variables

(e.g., i.crosssectionid#c.time) or absorbing them using reghdfe.

Controlling for event-time trends. If Cit can be written as

Cit = α̃i + γ̃t + q′itψ̃ +∑
m

ϕ′f(m)zi,t−m (3)

for a known set of basis functions f(⋅) and unknown parameters α̃i, γ̃t and ψ̃, then

equation (2) may be estimated by including the appropriate terms from (3) directly in a

regression model, or by GMM in a second step following estimation of (2) via two-way

fixed effects.

Intuitively, suppose that a trend in event-time can approximate the confound. In

that case, we can learn about the trend in periods where the policy is inactive and

extrapolate it to later periods. The differences between the outcome variable and the

extrapolated trend are then informative of the policy effects (Dobkin et al., 2018). For

example, consider a staggered adoption setting where the confound follows a linear trend

in time; this trend starts three periods before the policy activates and continues for three

periods afterward. We can represent this situation by taking f(m) = 1 if m ∈ [−3,3] and
f(m) = 0 otherwise. In this case, we can extrapolate the trend to post-adoption periods

and subtract it to account for the confound.

We allow zit to be continuous, and adoption may not be staggered. If equation (3)

holds, then the estimand of a standard two-way fixed effect estimator of equation (2) is

given by

dk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ′fk, if k < −G

δk + ϕ′fk, if −G ≤ k ≤M

δM + ϕ′fk, otherwise,

(4)

where fk = ∑km=−∞ f(m).

4



Given estimates of dk, d̂k, we can recover the trend parameters ϕ from the estimates

d̂k in the LG unaffected periods. Let TG ≤ LG be the number of periods prior to G used

to estimate the trend parameters and TM ≤M be the number of “post-event” periods

where the trend is active. We assume fk ≠ 0 for k ∈ [−G − TG, TM] and 0 otherwise. We

can recover the trend parameters by using the TG moment conditions d̂k − ϕ′fk = 0 for

k = −G − TG, . . . ,−G − 1. We can then calculate an adjusted estimated event-time path

δ̂ that accounts for the confound by subtracting ϕ′fk from the unadjusted coefficients

dk for k ∈ [−G − TG, TM]. Appendix B provides further details about this estimator.

IV estimation with multiple proxies. If multiple additional variables are available

that may serve as proxies for the confound Cit, such that

xit = αxi + γxt + ϕxqit +ΞxCit + uit (5)

with unknown parameters αxi , γ
x
t ,Ξ

x and an unobserved vector uit (which is uncorrelated

across proxies), then xtevent permits estimating equation (2) by two-stage least squares,

including one of the proxies in (2), and using the other proxy variable as an excluded

instrument (Freyaldenhoven et al., 2019).

IV estimation with single proxy. If only a single additional variable is available that

may serve as proxy for the confound Cit, with the error in equation (5) conditionally

mean-independent of the policy, then xtevent permits estimating equation (2) using a

two-stage least squares estimator, instrumenting for the proxy with leads of the policy

variable (Freyaldenhoven et al., 2019).

In principle, all leads of the policy variable further out than G are potential instru-

ments. To select a default choice, xtevent estimates (2) via two-way fixed effects, with

the proxy as the outcome variable. The default excluded instrument for estimation of (2).

is then the variable with the largest absolute t-statistic among the leads {∆zi,t+k}G+LG

k=G+1

and zi,t+G+LG
.

2.2 Event-Study Plots

The auxiliary command xteventplot includes functionality to visualize the event-study

plots based on any of the estimators from the previous section. It further includes the

enhancements to these plots suggested in Freyaldenhoven et al. (Forthcoming).

Normalization. Because the policy variables in (2) are collinear, a normalization is
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required to identify the event-time path {δk}k=M+LM

k=−G−LG−1 (Schmidheiny and Siegloch, 2023;

Freyaldenhoven et al., Forthcoming). xtevent normalizes δ−1 = 0 by default. In the case

of staggered adoption, this normalization implies that the plotted coefficients can be

interpreted as estimated effects relative to the period before policy enactment.

Outcome variable level. To ease the interpretation of the estimated policy effects,

xtevent includes a parenthetical label for the normalized coefficient that reflects the

mean of the dependent variable. For instance, in the case of staggered adoption, under

our default normalization, the label corresponds to the sample mean of yit one period

before adoption. More generally, the label corresponds to the value

∑(i,t)∶∆zi,t−k⋆≠0 yit
∣(i, t) ∶∆zi,t−k⋆ ≠ 0∣

where k⋆ corresponds to the normalized event-time coefficient δk⋆ .

Uniform inference. In addition to standard pointwise confidence intervals for the

coefficients δk, xtevent allows plots of uniform sup-t confidence bands (Freyberger

and Rai, 2018; Montiel Olea and Plagborg-Møller, 2019). Including these bands allows

for visual tests of hypotheses about the entire coefficient path instead of just single

coefficients. We provide details about the calculation of sup-t confidence bands in

Appendix C.

Overidentification and testing. The estimating equation in (2) includes LG additional

periods before policy adoption to visualize potential pre-trends. Evidence of such pre-

trends is, in practice, often seen as evidence for the presence of a confound that invalidates

the research design (Freyaldenhoven et al., 2019). The estimating equation in (2) also

includes LM additional periods after the policy effects end to assess if the dynamic effects

have leveled off after the M postulated periods for which the policy has a direct effect.

xtevent displays the p-values of Wald tests for “pre-trends” (δk = 0 for −G −LG − 1 ≤
k < −G) and for dynamic effects “leveling-off” (δM = δM+k for 0 < k ≤ LM ). The auxiliary

command xteventtest allows for testing additional hypotheses, such as hypotheses

about cumulative effects, whether effects are constant, and whether the effects follow

linear trends.

Least wiggly path of confounds consistent with the estimates. To help visualize

whether a confound can plausibly explain all of the event time dynamics of the outcome

variable, xtevent allows for adding a representation of the “most plausible” confound

trajectory consistent with the absence of policy effects. Our choice of “most plausible”
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confound is the least “wiggly” polynomial in event-time that passes through the Wald

confidence region of the event-time path. The idea is that if a “smooth” path exists,

this suggests that a confound could plausibly explain the entire event time path of the

outcome, even absent any policy effects. On the other hand, if no “smooth” path exists,

this may indicate that a confound cannot plausibly explain the entire event-time path

of the outcome and, therefore, that the policy does affect the outcome. We describe the

computation of the least wiggly path in detail in Appendix D.

Overlay plots. xteventplot allows event-study plots with overlays in different esti-

mation scenarios. For estimation with event-time trends, xteventplot creates plots

overlaying the trend. For IV estimation with proxies, xteventplot allows overlaying

the dynamics implied by the proxy variable. xteventplot also allows overlays of a

constant-effects model to assess if the policy effects are constant over time.

2.3 Additional Features

The package includes the following additional capabilities.

Imputation of missing values in the policy variable and its leads and lags.

Because equation (1) includes leads and lags of the policy variable zit and its first

difference, the estimation sample may be smaller than the entire sample available

(Schmidheiny and Siegloch, 2023). In general, if the outcome variable is observed for

t ∈ {t, . . . , t}, we need to observe the policy variable zit from t−G−LG to t+M +LM − 1
to avoid dropping observations from the estimation sample. In a typical setup, this may

imply that we must restrict the estimation window to calculate the necessary leads and

lags of zit. However, the user may have additional information that allows imputation

of the policy variable.

xtevent allows for the following imputation schemes:

1. If the policy variable is declared to follow staggered adoption, xtevent can:

(a) Automatically impute any missing values in the policy variable outside the

observed data range, assuming no policy changes outside the sample period.

For example, if we observe zjt = 1, under staggered adoption, this implies

that zjs = 1 for s > t. We provide an example of this functionality in section

3.1.
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(b) Automatically impute missing values of the policy variable inside the observed

data range. For example, if zjt = 1 and zj,t+2 = 1, under staggered adoption,

this implies that zj,t+1 = 1. We provide examples of this functionality in

Appendix E.

2. Even absent staggered adoption, if the policy variable is declared not to change

values outside the observed sample, xtevent can automatically impute zit outside

the observed sample. For example, if the sample starts at t and z1t = 0 for unit 1,

we set zit = 0 for t ∈ {t −G −LG, ..., t − 1}.

Estimation with repeated cross-sectional data. Some setups involve repeated

cross-sectional data instead of panel data, with treatment varying at a higher level of

aggregation. For example, we may have a series of repeated cross-sections of individuals

for each US state s and a state-level policy zst. In this environment, estimating (2) with

individual fixed effects is unfeasible, but xtevent allows estimation of a related model

with fixed effects by state:

yit =
M+LM−1
∑

k=−G−lG
δk∆zs(i),t−k + δM+LM

zs(i),t−M−LM
+ δ−G−LG−1(1 − zs(i),t+G+LG

)

+αs(i) + γt + q′itψ +Cs(i)t + εit,
(6)

where the parameters αs(i) are fixed effects corresponding to state s where unit i belongs.

An alternative (Amemiya, 1978; Hansen, 2007) is to regress yit on a set of state-time

indicators, plus any control variables qit that vary at the individual level, and then

estimate (2) with the estimated state-time effects as dependent variables, and including

state fixed effects, time fixed effects, and controls that vary at the state level. The

auxiliary command get unit time effects facilitates this approach. We provide an

example of this command’s usage in Appendix F.

Heterogeneous treatment effects in staggered adoption settings. The model

in equation (1) assumes that the causal effect of the policy is homogeneous over units i.

Recent literature has highlighted that if treatment effects are heterogeneous by treatment

time, then the effects estimated with equation (1) may not be properly-weighted averages

of the cohort-level treatment effects (Athey and Imbens, 2022; Callaway and Sant’Anna,

2021; Goodman-Bacon, 2021; Sun and Abraham, 2021). Sun and Abraham (2021)

propose to estimate event studies for each treated cohort separately, comparing each

one to an untreated cohort, and then to average the effects, weighting by the percentage
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of treated units in each cohort, to arrive at a treatment effect on the treated. For the

two-way fixed effects case, and under staggered adoption, xtevent allows for estimation

of cohort-specific effects, in which case it reports an average weighted by the number of

treated observations in each cohort, which is an estimate of a weighted average treatment

effect on the treated under assumptions discussed in Sun and Abraham (2021). We

provide an example of estimation with heterogeneous treatment effects in section 3 and

provide details about the estimation in Appendix G.

In Appendix A, we give a more detailed description of the syntax and options for

the xtevent package.

3 Examples
This section provides two examples of xtevent usage. First, we display the basic func-

tionality of the package using simulated data from Freyaldenhoven et al. (Forthcoming).

Then, we show additional options using real data from Mart́ınez (2022).

3.1 Simulated Data Example

We first use the “Jump at the time of the event” data from Freyaldenhoven et al.

(2022). The data is a balanced panel of 2,000 observations from 50 units observed over

40 periods, where the policy initially affects the units at different periods. Units are

randomly treated in the sample period. The coefficient on the treatment variable is one.
We start by loading the dataset and specifying the unit and time variables.

. use simulation_data_dynamic.dta, clear

. xtset id t

Panel variable: id (strongly balanced)

Time variable: t, 1 to 40

Delta: 1 unit

Below, we show a glimpse of the dataset. The variable id indexes the cross-sectional

units, t indexes time, y is the outcome variable, z is the policy variable, and x is a

control variable.

. list id t z y x if id==2 & t<=10, noobs

id t z y x

2 1 0 42.02239 -.0102958

2 2 0 42.83109 .1713373
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2 3 0 42.82665 -.197851

2 4 1 42.59289 -.5887834

2 5 1 43.3557 -.3722385

2 6 1 42.74355 .355894

2 7 1 42.82405 -2.047098

2 8 1 42.34953 -.3757658

2 9 1 42.14841 -1.976451

2 10 1 41.79388 -1.16444

Notice that the time variable t is calendar time, not event time. xtevent does not

require normalization of the time variable, as the specification in equation (2) allows

discrete or continuous policy variables and single or multiple changes.

Basic functionality

We estimate equation (2) setting M +LM = 5 and G +LG = 5, so we are looking at the

effects of the policy on the outcome five periods before and five periods after policy

adoption. To estimate a basic panel event study with dynamic effects of policy variable

z on y using x as control and plot the results, we write:

. xtevent y x, panelvar(id) timevar(t) policyvar(z) window(5) impute(nuchange) ///

> plot

No proxy or instruments provided. Implementing OLS estimator

Linear regression, absorbing indicators Number of obs = 2,000

Absorbed variable: id No. of categories = 50

F(52, 1898) = 2.81

Prob > F = 0.0000

R-squared = 0.0980

Adj R-squared = 0.0500

Root MSE = 0.7181

y Coefficient Std. err. t P>|t| [95% conf. interval]

_k_eq_m6 .2008833 .1138905 1.76 0.078 -.0224803 .424247

_k_eq_m5 .2935611 .1499538 1.96 0.050 -.0005306 .5876528

_k_eq_m4 .1172962 .1490125 0.79 0.431 -.1749493 .4095416

_k_eq_m3 .0874992 .1472188 0.59 0.552 -.2012285 .3762268

_k_eq_m2 .0415972 .1472521 0.28 0.778 -.2471958 .3303902

_k_eq_p0 .8160009 .1472673 5.54 0.000 .5271782 1.104824

_k_eq_p1 .8400974 .1475249 5.69 0.000 .5507695 1.129425

_k_eq_p2 .5699733 .1497108 3.81 0.000 .2763583 .8635883

_k_eq_p3 .2665183 .1507838 1.77 0.077 -.0292011 .5622377

_k_eq_p4 .0915933 .1547402 0.59 0.554 -.2118855 .3950721

_k_eq_p5 .091785 .1564831 0.59 0.558 -.215112 .398682

_k_eq_p6 .1405872 .1192801 1.18 0.239 -.0933466 .374521

x .0076964 .0302145 0.25 0.799 -.0515607 .0669535

t
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(output omitted )

_cons 41.91144 .1507874 277.95 0.000 41.61572 42.20717

F test of absorbed indicators: F(49, 1898) = 1.082 Prob > F = 0.325

The panelvar and timevar options indicate the cross-sectional and time dimensions

of the dataset. The window option specifies the event-time periods to include. By

specifying the impute(nuchange) option, we ask xtevent to assume that the policy

does not change outside the estimation window and to impute the leads and lags of the

policy variable accordingly. We discuss alternative imputation schemes in Appendix E.

xtevent automatically creates event-time dummies for event-times -5 to 5, denoted

by k eq m5, k eq m4,..., k eq p5, plus endpoint dummies for event-times ≤ −6 and

≥ 6 ( k eq m6, k eq p6) and includes them as independent variables. The normalized

coefficient for event-time = -1 is omitted. By default, xtevent includes unit and time

fixed effects in the regression, but these can be excluded using the note and nofe

options. In this case, xtevent used areg to estimate the regression, so the unit fixed

effects are not reported. The default output includes conventional standard errors.

Figure 1: Event-study plot

Source: Authors’ elaboration with data from Freyaldenhoven et al. (2022).
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The plot option requests an event-study plot after estimation, shown in figure 1.

The plot can also be obtained by writing xteventplot after the xtevent call. The

default plot shows the values of the estimated coefficients along with pointwise confidence

intervals (inner whiskers) and sup-t confidence bands for the entire event-time path (outer

spikes). By default, xtevent normalizes δ−1 = 0, and the y-axis includes a parenthetical

label indicating the mean of the dependent variable one period before adoption. At the

bottom, the graph includes p-values for a pre-trends test and a leveling-off test.

With the reghdfe option, the user can ask xtevent to estimate the model using

the community-contributed command reghdfe from Correia (2016). The user can also

specify additional variables to be absorbed through the option addabsorb(varlist).

To ask xtevent to estimate with reghdfe and additionally absorb the variable eta r2,

we write:

. gen eta_r2=round((eta_r+1)*2)

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) window(5) ///

> reghdfe addabsorb(eta_r2) impute(nuchange)

Choosing different windows

We can also specify an asymmetric window. For instance, for an estimation of 4 pre-event

periods, 7 post-event periods, and two endpoints:

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) window(-4 7) ///

> impute(nuchange)

With the notation from equation (2), this estimation corresponds to setting G,

the number of pre-event where anticipated effects can occur, to 0; LG, the number of

pre-event periods to use for visualizing pre-event effects, to 4. Analogously, it sets M

the number of post-event periods for lagged effects, to 7, and LM , the number of periods

to test if effects are leveling off, to 1. This is equivalent to explicitly specifying the

values of G, LG, M , and LM :

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) pre(0) overidpre(4) ///

> post(7) overidpost(1) impute(nuchange)

Linear trend adjustment

The option trend(#1 [, subopt]) allows extrapolation of a linear trend in event-time

from period #1 before the policy change, as in Dobkin et al. (2018). The estimated
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effect of the policy is the deviation from the extrapolated linear trend. We estimate

the linear event-time trend using three pre-event periods (−3,−2,−1) and using the

method(gmm) suboption to use a Generalized Method of Moments estimator. We also

save the overlay data for plotting:

. xtevent y x, panelvar(id) timevar(t) policyvar(z) window(5) ///

> impute(nuchange) trend(-3, method(gmm) saveoverlay)

No proxy or instruments provided. Implementing OLS estimator

Linear regression, absorbing indicators Number of obs = 2,000

Absorbed variable: id No. of categories = 50

F(52, 1898) = 2.81

Prob > F = 0.0000

R-squared = 0.0980

Adj R-squared = 0.0500

Root MSE = 0.7181

y Coefficient Std. err. t P>|t| [95% conf. interval]

_k_eq_m6 -.0178682 .3123965 -0.06 0.954 -.6305449 .5948085

_k_eq_m5 .1185599 .1499569 0.79 0.429 -.1755379 .4126576

_k_eq_m4 -.0139547 .2002518 -0.07 0.944 -.4066915 .378782

_k_eq_m3 -1.45e-06 .1496187 -0.00 1.000 -.2934359 .293433

_k_eq_m2 -.0021531 .1281336 -0.02 0.987 -.2534507 .2491444

_k_eq_p0 .8597512 .1953144 4.40 0.000 .4766977 1.242805

_k_eq_p1 .927598 .256436 3.62 0.000 .4246719 1.430524

_k_eq_p2 .7012242 .3242324 2.16 0.031 .065335 1.337113

_k_eq_p3 .4415195 .3940669 1.12 0.263 -.3313303 1.214369

_k_eq_p4 .3103449 .4663886 0.67 0.506 -.6043433 1.225033

_k_eq_p5 .3542868 .5386234 0.66 0.511 -.7020694 1.410643

_k_eq_p6 .4468393 .6017334 0.74 0.458 -.733289 1.626968

x .0076964 .0302145 0.25 0.799 -.0515607 .0669535

t

2 .090792 .1439829 0.63 0.528 -.1915894 .3731734

(output omitted )

To visualize the original estimates, the extrapolated trend and the linear-trend-

adjusted estimates, xtevent can produce an overlay plot: We use xteventplot to

produce an overlay plot with the extrapolated trend and an adjusted plot. In both

figures, xtevent excludes the endpoints. We show the overlay and adjusted event-study

plots in figure 2.

Pretrends adjustment with proxy variables

xtevent allows estimation when a pre-trend is present using the instrumental variables

estimator of Freyaldenhoven et al. (2019). For this, we need to specify the option

proxy(varname) to indicate the proxy variable(s) for the confound. As a default,
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Figure 2: Linear trend adjustment

(a) Overlay extrapolation line (b) Subtract extrapolated trend

Source: Authors’ elaboration with data from Freyaldenhoven et al. (2022).

xtevent regresses the proxy variable on leads of the differenced policy variable and

chooses the lead with the highest absolute t-statistic to use as an instrument for the

proxy variable. Alternatively, the user can specify a specific lead or different variables

to be used as instruments in the proxyiv(string) option. xtevent uses xtivregress

to estimate this model.

. xtevent y, panelvar(id) timevar(t) policyvar(z) window(5) impute(nuchange) ///

> proxy(x)

Proxy for the confound specified. Implementing FHS estimator

proxyiv=select. Selecting lead order of differenced policy variable to use as inst

> rument.

Lead 4 selected.

The coefficient at -1 is normalized to zero.

For estimation with proxy variables, an additional coefficient needs to be normali

> zed to zero.

The coefficient at -4 was selected to be normalized to zero.

Fixed-effects (within) IV regression Number of obs = 1,800

Group variable: id Number of groups = 50

R-squared: Obs per group:

Within = . min = 36

Between = 0.0557 avg = 36.0

Overall = 0.0335 max = 36

Wald chi2(47) = 5.83e+06

corr(u_i, Xb) = -0.0155 Prob > chi2 = 0.0000
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y Coefficient Std. err. z P>|z| [95% conf. interval]

x .3772094 .5069244 0.74 0.457 -.6163441 1.370763

_k_eq_m6 .1009198 .1046026 0.96 0.335 -.1040974 .3059371

_k_eq_m5 .2344818 .1356115 1.73 0.084 -.0313119 .5002755

_k_eq_m3 .0187142 .1328999 0.14 0.888 -.2417649 .2791932

_k_eq_m2 .0189579 .13511 0.14 0.888 -.2458528 .2837686

_k_eq_p0 .8122546 .1805533 4.50 0.000 .4583766 1.166133

_k_eq_p1 .9546866 .2887189 3.31 0.001 .3888079 1.520565

_k_eq_p2 .7687619 .3744836 2.05 0.040 .0347875 1.502736

_k_eq_p3 .4715529 .4518123 1.04 0.297 -.413983 1.357089

(output omitted )

32 -.1106802 .1948427 -0.57 0.570 -.492565 .2712045

33 -.0372759 .2005944 -0.19 0.853 -.4304338 .3558819

34 -.0579759 .1700988 -0.34 0.733 -.3913634 .2754116

35 -.1346377 .1744911 -0.77 0.440 -.476634 .2073585

36 .2059306 .1766346 1.17 0.244 -.1402669 .5521281

_cons 41.96931 .1359876 308.63 0.000 41.70278 42.23584

sigma_u .12123774

sigma_e .74115015

rho .02606123 (fraction of variance due to u_i)

F test that all u_i=0: F(49,1703) = 0.88 Prob > F = 0.7137

Endogenous: x

Exogenous: _k_eq_m6 _k_eq_m5 _k_eq_m3 _k_eq_m2 _k_eq_p0 _k_eq_p1 _k_eq_p2

_k_eq_p3 _k_eq_p4 _k_eq_p5 _k_eq_p6 2.t 3.t 4.t 5.t 6.t 7.t 8.t

9.t 10.t 11.t 12.t 13.t 14.t 15.t 16.t 17.t 18.t 19.t 20.t 21.t

22.t 23.t 24.t 25.t 26.t 27.t 28.t 29.t 30.t 31.t 32.t 33.t 34.t

35.t 36.t _fd4__00000M

xteventplot can create several plots to illustrate this estimator. We first use
xteventplot, y to create an unadjusted event-study plot for the outcome. This plot is
shown in Figure 3 panel a). Second, using the option proxy, we illustrate the dynamics
of the proxy by creating an event-study plot for the proxy (shown in Figure 3 panel
b)). Third, using the option overlay(iv), we create a plot that aligns the dynamics
of the proxy and the outcome between the coefficient used as an instrument and the
normalized coefficient (shown in Figure 3 panel c)). Finally, using xteventplot and
no additional options, we create a plot that shows the coefficients of the outcome after
subtracting the rescaled event-study coefficients for the proxy (shown in Figure 3 panel
d)).

. xteventplot, y ytitle("Coefficient") xtitle("Event time")

. xteventplot, proxy ytitle("Coefficient") xtitle("Event time")

. xteventplot, overlay(iv) ytitle("Coefficient") xtitle("Event time")

. xteventplot, ytitle("Coefficient") xtitle("Event time")

Estimation with heterogeneous effects by cohort

xtevent allows estimation in settings with heterogeneous effects that vary by cohort

using Sun and Abraham’s (2021) estimator through the cohort and control cohort
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Figure 3: Pre-trends adjustment using proxy variables for the confound following
Freyaldenhoven et al. (2019)

(a) Event-study plot for outcome (b) Event-study plot for proxy

(c) Align proxy to outcome (d) Subtract rescaled confound from outcome

Source: Authors’ elaboration with data from Freyaldenhoven et al. (2022).

options.

In the cohort option, the user must specify the variable that identifies the cohorts,

and in the control cohort option, the variable that identifies the cohort to use as the

control group. In the following example, we first create the time of treat variable to

identify the cohorts and then create the variable last treat to indicate the control

group, which in this case are the last treated units.

. gen timet=t if z==1

(1,059 missing values generated)

. by id: egen time_of_treat=min(timet)

. gen last_treat=time_of_treat==39
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. replace time_of_treat = . if last_treat

(80 real changes made, 80 to missing)

. xtevent y, panelvar(id) timevar(t) policyvar(z) window(5) impute(nuchange) ///

> cohort(variable time_of_treat) control_cohort(variable last_treat)

No proxy or instruments provided. Implementing OLS estimator

You have specified the cohort or the sunabraham option

Event-time coefficients will be estimated with the Interaction Weighted Estimator

> of Sun and Abraham (2021)

Linear regression, absorbing indicators Number of obs = 2,000

Absorbed variable: id No. of categories = 50

F(329, 1621) = 1.33

Prob > F = 0.0003

R-squared = 0.2347

Adj R-squared = 0.0562

Root MSE = 0.7158

y Coefficient Std. err. t P>|t| [95% conf. interval]

_k_eq_m6 .1688391 .1394638 1.21 0.226 -.1047091 .4423872

_k_eq_m5 .3559271 .2014006 1.77 0.077 -.0391058 .7509601

_k_eq_m4 .1412944 .1802456 0.78 0.433 -.2122445 .4948332

_k_eq_m3 .1332897 .1908158 0.70 0.485 -.2409819 .5075613

_k_eq_m2 .1268691 .1961503 0.65 0.518 -.2578657 .5116038

_k_eq_p0 .8289953 .1805352 4.59 0.000 .4748883 1.183102

_k_eq_p1 .8549653 .1870247 4.57 0.000 .4881298 1.221801

_k_eq_p2 .6015642 .1858662 3.24 0.001 .237001 .9661274

_k_eq_p3 .287782 .1883399 1.53 0.127 -.0816333 .6571973

_k_eq_p4 .090265 .185755 0.49 0.627 -.2740801 .45461

_k_eq_p5 .090156 .2027774 0.44 0.657 -.3075774 .4878894

_k_eq_p6 .2033672 .1394957 1.46 0.145 -.0702436 .4769781

The output is analogous to standard xtevent output. The estimated event-time

path corresponds to the weighted average of event-study estimates comparing each

treatment cohort to the control cohort. xtevent stores the estimates by cohort in the

matrices e(b interact) and e(V interact).

Least wiggly path of confounds consistent with the estimates

xteventplot allows for estimation and display of the least wiggly path of confound con-

sistent with the estimates discussed in section 2, through the smpath([type, subopt]))

option. The default plot type is line. With the additional suboptions maxorder, max-

iter, and technique, we can control the maximum polynomial order for the confound

path and the optimization process.

. qui xtevent y x , panelvar(id) timevar(t) policyvar(z) window(5) ///

> impute(nuchange)
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. xteventplot, ytitle("Coefficient") xtitle("Event time") ///

> smpath(line, maxorder(9) maxiter(200) technique(nr 10 dfp 10))

Note: Smoothest line drawn for system confidence level = 95%

Wald Critical Value 21.0260698

Order 0

Wald value 99.1427915

Order 1

Wald value 99.1021008

Order 2

Wald value 77.664952

Order 3

Wald value 64.4768055

Order 4

Wald value 50.446398

Order 5

Wald value 26.7712056

Order 6

Wald value 19.9659905

(setting technique to nr)

Iteration 0: f(p) = 42803.512 (not concave)

(output omitted )

In this case, the minimum polynomial order required to pass through the confidence

region is of order 6. Figure 4 shows the resulting smoothest path. If all of the dynamics

of the estimated event-time path of the outcome variable were due to this unobserved

confound, the jump at the time of the event implies that the confound would also have

to jump at the time of the event. Such a confound path suggests that the estimated

effects may be due to an effect of the policy and not to a confound.

3.2 Empirical Application

Mart́ınez (2022) analyzes the effect of a tax reform in the Swiss canton of Obwalden

in 2006. The reform modified the income tax schedule, reducing the tax rate for high-

income taxpayers. We focus on the reform’s effect on Obwalden’s tax revenue from

wealth taxes, following Figure 9 in Mart́ınez (2022). We use the data from Mart́ınez

(2023).

The data is a balanced panel of 702 observations from 26 cantons from 1990 to 2016.

Only one canton –Obwalden– is treated. We estimate a version of equation (2):

yit =
9

∑
k=−5,k≠−1

δk∆zi,t−k + δ10zi,t−10 + δ−6(1 − zi,t+6) + αi + γt + εit. (7)

Here, the outcome yit is per-capita revenue from wealth taxes in canton i and year
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Figure 4: Least wiggly path through the confidence region

Source: Authors’ elaboration with data from Freyaldenhoven et al. (2022).

t, normalized to 100 in 2005. The policy variable zit is one for Obwalden in 2006 or

after and zero otherwise. The δ parameters are estimates of the cumulative effect of the

reform at various horizons. We normalize δ−1 = 0. The parameters αi and γt represent

canton and year fixed effects, respectively, and εit is an error term.

We start by loading the dataset, specifying the unit and time variables, and displaying

some values of the dependent and policy variables around the treatment year:

. use martinez.dta, clear

. xtset cant year

Panel variable: cant (strongly balanced)

Time variable: year, 1990 to 2016

Delta: 1 unit

. list cant year pcrev_weatax policyvar if cant==6 & inrange(year,2003,2009),

> ab(19) noo sep(7)

cant year pcrev_weatax policyvar

OW 2003 98.06313 0

OW 2004 99.06337 0

OW 2005 100 0
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OW 2006 92.90456 1

OW 2007 87.39193 1

OW 2008 64.9511 1

OW 2009 73.20993 1

We now estimate equation (7) to capture the dynamic effects of the reform on tax

revenues. To adjust for pretrends, we use a linear trend adjustment based on the five

immediate pre-event periods. The unit and time variables do not need to be specified

because the data was xtset previously. With the option reghdfe, we can estimate this

equation using the reghdfe command of Correia (2016). Using reghdfe enables two-way

clustered standard errors through the vce option. We also specify the imputation rule

stag and add weights.

. xtevent pcrev_weatax [aweight = weight_pcrev_weatax], panelvar(cant) ///

> timevar(year) policyvar(policyvar) window(-5 9) impute(stag) reghdfe ///

> vce(cluster cant) trend(-5, method(ols))

No proxy or instruments provided. Implementing OLS estimator

(MWFE estimator converged in 3 iterations)

HDFE Linear regression Number of obs = 702

Absorbing 2 HDFE groups F( 13, 25) = 98.29

Statistics robust to heteroskedasticity Prob > F = 0.0000

R-squared = 0.8426

Adj R-squared = 0.8265

Within R-sq. = 0.0043

Number of clusters (cant) = 26 Root MSE = 30.0172

(Std. err. adjusted for 26 clusters in cant)

Robust

pcrev_weatax Coefficient std. err. t P>|t| [95% conf. interval]

_k_eq_m6 19.42696 9.159563 2.12 0.044 .5624837 38.29143

_k_eq_p0 -21.213 5.02208 -4.22 0.000 -31.55617 -10.86983

_k_eq_p1 -40.46391 7.878604 -5.14 0.000 -56.6902 -24.23762

_k_eq_p2 -69.30378 11.09302 -6.25 0.000 -92.15027 -46.45728

_k_eq_p3 -65.53987 15.00997 -4.37 0.000 -96.45348 -34.62627

_k_eq_p4 -55.14003 17.70663 -3.11 0.005 -91.60752 -18.67253

_k_eq_p5 -57.77175 21.48921 -2.69 0.013 -102.0296 -13.51388

_k_eq_p6 -51.15706 21.70713 -2.36 0.027 -95.86374 -6.450375

_k_eq_p7 -43.37057 24.54034 -1.77 0.089 -93.91234 7.17121

_k_eq_p8 -54.18095 29.12688 -1.86 0.075 -114.1689 5.806996

_k_eq_p9 -53.77577 29.91591 -1.80 0.084 -115.3887 7.8372

_k_eq_p10 -44.05725 14.69578 -3.00 0.006 -74.32377 -13.79073

_ttrend 2.528577 2.67721 0.94 0.354 -2.985241 8.042394

_cons 123.7051 9.13919 13.54 0.000 104.8826 142.5276

Absorbed degrees of freedom:

Absorbed FE Categories - Redundant = Num. Coefs
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cant 26 26 0 *

year 27 0 27

* = FE nested within cluster; treated as redundant for DoF computation

We use xteventplot to display an event-study plot. xtevent allows for several

options to modify the plot’s appearance. We modify the plot to suppress the sup-t

confidence bands and the p-values from overidentification tests. We also change the

colors and add axis titles.

. xteventplot, ytitle("Coefficient") xtitle("Event time") ///

> nosupt noprepval nopostpval ///

> scatterplotopts(lcolor(maroon) recast(connected) mcolor(maroon) msymbol(circle))

> ///

> ciplotopts(recast(rarea) fcolor(maroon*0.2)) ///

> graphregion(fcolor(white))

option nosupt has been specified. Sup-t confidence bands won´t be displayed or cal

> culated

option noprepval has been specified. The p-value for a pretrends test won´t be dis

> played

option nopostpval has been specified. The p-value for a test of effects leveling-o

> ff won´t be displayed

Figure 5 indicates that the introduction of the regressive tax reform in Obwalden

decreased its government’s tax revenues (measured per capita and relative to the level

in 2005). The most substantial decrease was 69% and came two years after the reform.

Hypothesis tests

We can use xteventtest to test for different hypotheses about the event-study coef-

ficients after xtevent. For instance, we repeat the estimation with standard errors

clustered by canton and use the coefs option to test if the coefficients for event times

0, 1, 2, and 3 are equal to zero jointly.

. xteventtest, coefs(0 1 2 3)

( 1) _k_eq_p0 = 0

( 2) _k_eq_p1 = 0

( 3) _k_eq_p2 = 0

( 4) _k_eq_p3 = 0

F( 4, 25) = 22.82

Prob > F = 0.0000

The test indicates that the effects are different from zero. We can also test if the

estimated policy effects are constant across time:

. xteventtest, constanteff
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Figure 5: Dynamic effect of a Swiss tax reform following Mart́ınez (2022)

Source: Authors’ elaboration with data from Mart́ınez (2022).

Test for constant post-event coefficients

( 1) _k_eq_p0 - _k_eq_p1 = 0

( 2) _k_eq_p0 - _k_eq_p2 = 0

( 3) _k_eq_p0 - _k_eq_p3 = 0

( 4) _k_eq_p0 - _k_eq_p4 = 0

( 5) _k_eq_p0 - _k_eq_p5 = 0

( 6) _k_eq_p0 - _k_eq_p6 = 0

( 7) _k_eq_p0 - _k_eq_p7 = 0

( 8) _k_eq_p0 - _k_eq_p8 = 0

( 9) _k_eq_p0 - _k_eq_p9 = 0

F( 9, 25) = 73.46

Prob > F = 0.0000

This test suggests that the effects are not constant over time. Last, we conduct an

overidentification test to see if the effects level off. To do this, we ask xteventtest to

use the last two post-event coefficients.

. xteventtest, overidpost(2)
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Overidentification test for effects leveling off: 2 last post-event coefficients a

> re equal

( 1) - _k_eq_p8 + _k_eq_p9 = 0

F( 1, 25) = 0.01

Prob > F = 0.9086

This test suggests that the effects level off and that the number of post-event periods

in the model may be sufficient to capture the dynamic effects of the policy.

4 Conclusions
This article introduces the xtevent command to estimate linear panel models and

visualize the results in event-study plots. The package allows for estimation and plotting

with general policy variables, accommodating settings such as continuous policy variables

and reversible treatments.

The versatility of the package and the estimation approaches we suggest rely on

the assumptions behind the structure of equation (1), such as the fact that the policy

variable has homogeneous, linear effects that are separable from those of the confound.

There are other approaches in the literature, such as Callaway et al. (2024), to estimate

treatment effects in settings with continuous treatments and where equation (1) may

not hold. The development of tools to implement these approaches and to estimate and

visualize policy effects in general settings while relaxing parametric assumptions like

those in equation (1) is a potential area for future research.
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A The xtevent Package
The xtevent package includes the commands xtevent for estimation, xteventplot for

visualization, and xteventtest for postestimation hypothesis testing. It also includes

get unit time effects, an auxiliary command to use in combination with xtevent in

repeated cross-section settings. This section describes the syntax and options of each of

these commands.

A.1 The xtevent Command

The xtevent command has the following syntax:

xtevent depvar [ indepvars ] [ if ] [ in ] [weight ] , policyvar(varname) panelvar(varname)

timevar(varname) [ options ]

A.1.1 Options

A.1.2 Main

policyvar(varname) specifies the policy variable of interest. policyvar() is required.

panelvar(varname) specifies the cross-sectional identifier variable that identifies the

panels. panelvar() is required if the data have not been previously xtset. See

xtset.

timevar(varname) specifies the time variable. timevar() is required if the data have

not been previously xtset. See xtset.

window(numlist) specifies the window around the policy change event to estimate

dynamic effects.

window(k) with a single positive integer k > 0 uses a symmetric window of k periods

around the event. For example, if k = 2, there will be five coefficients in the

window (−2,−1,0,1,2) and two endpoints: −3 and +3.
window(k1 k2) with two distinct integers k1 ≤ 0 and k2 ≥ 0 uses an asymmetric

window with k1 periods before the event and k2 periods after the event. For

example, with k1 = −1 and k2 = 2, there will be four coefficients in the window

(−1,0,1,2) and two endpoints: −2 and +3.
window(max) uses the largest possible window with the minimum and maximum

event times in the estimation sample, accounting for the endpoints. window(max)

27



is only allowed if the policy follows staggered adoption and requires impute(stag)

or impute(instag) to be specified (see below).

window(balanced) uses the largest possible window with the minimum and maxi-

mum event times in the estimation sample for which all cross sectional units have

data. window(balanced) is only allowed if the policy follows staggered adoption

and requires impute(stag) or impute(instag) to be specified (see below).

window() is required unless static is specified, or if the estimation window is specified

using options pre(), post(), overidpre() and overidpost() (See below).

pre, post, overidpre and overidpost offer an alternative way to specify the estima-

tion window:

pre is the number of pre-event periods where anticipation effects are allowed. With

window, pre is 0.

post is the number of post-event periods where policy effects are allowed. With

window, post is the number of periods after the event (not including the period

for the event, e.g., event time = 0), except the last two periods (assigned to

overidpost for the leveling-off test).

overidpre is the number of pre-event periods for an overidentification test of pre-

trends. With window, overidpre is the number of periods before the event.

overidpost is the number of post-event periods for an overidentification test of

effects leveling off. With window, overidpost is 2.

Only one of window or pre, post, overidpre and overidpost can be declared.

static estimates a static panel data model and does not generate or plot event-time

dummies. static is not allowed with window, pre, post, overidpre, overidpost,

or diffavg.

impute(type, [saveimp]) imputes leads, lags, and missing values in policyvar and uses

this new variable as the actual policyvar. type determines the imputation rule. The

suboption saveimp adds the new variable to the database as policyvar imputed. The

following imputation types are available:

impute(nuchange) imputes missing values in policyvar according to no unobserved

change: it assumes that for each unit: i) in periods before the first observed value,

the policy value is the same as the first observed value and; ii) in periods after

the last observed value, the policy value is the same as the last observed value.

impute(stag) applies no unobserved change if policyvar satisfies staggered-adoption

assumptions for all units: i) policyvar must be binary, and ii) once policyvar

reaches the adopted-policy state, it never reverts to the unadopted-policy state.
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See Freyaldenhoven et al. (Forthcoming) for a detailed explanation of the staggered

adoption case.

impute(instag) applies impute(stag) and additionally imputes missing values

inside the observed data range: a missing value or a group of them will be

imputed only if they are both preceded and followed by the unadopted-policy

state or by the adopted-policy state. See Appendix section E for a detailed

example of the impute option.

norm(integer) specifies the event-time coefficient to be normalized to 0. The default is

to normalize the coefficient on -1.

diffavg calculates the difference in averages between the post-event estimated coeffi-

cients and the pre-event estimated coefficients. It also calculates its standard error

with lincom. diffavg is not allowed with static.

savek(stub [,subopt]) saves variables for time-to-event, event-time, trend, and inter-

action variables. Event-time dummies are stored as stub eq m# for the dummy

variable # periods before the policy change, and stub eq p# for the dummy variable

# periods after the policy change. The dummy variable for the policy change time

is stub eq p0. Event time is stored as stub evtime. The trend is stored as stub trend.

For estimation with the Sun and Abraham (2021) method, such that cohort and

control cohort or sunabraham are active, the interaction variables are stored as

stub m# c# or stub p# c#, where c# indicates the cohort. The following suboptions

can be specified:

noestimate saves variables for event-time dummies, event-time, and trends without

estimating the model. This option is helpful if the users want to customize their

regressions and plots.

saveinteract saves interaction variables if cohort and control cohort, or

sunabraham are specified. noestimate and saveinteract cannot be specified

simultaneously.

replace replaces variables for time-to-event, event-time, trend, and interaction

variables starting with stub.

kvars(stub) uses previously used event-time dummies saved with prefix stub. This can

be used to speed up estimation.

reghdfe uses reghdfe for estimation, instead of areg, ivregress, and xtivreg.

reghdfe is useful for large datasets. By default, it absorbs the panel fixed ef-

fects and the time fixed effects. For OLS estimation, the reghdfe option requires

reghdfe and ftools to be installed. For IV estimation, it also requires ivreghdfe
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and ivreg2 to be installed. Note that standard errors may differ and singleton

clusters may be dropped using reghdfe. See Correia (2016).

addabsorb(varlist) specifies additional fixed effects to be absorbed when using reghdfe.

By default, xtevent includes time and unit fixed effects. addabsorb requires

reghdfe.

plot displays a default event-study plot with standard confidence intervals and sup-t

confidence bands (Montiel Olea and Plagborg-Møller, 2019). Additional options are

available with the postestimation command xteventplot.

nofe excludes panel fixed effects.

note excludes time fixed effects.

additional options: Additional options to be passed to the estimation command. When

proxy is specified, these options are passed to ivregress. When reghdfe is specified,

these options are passed to reghdfe. Otherwise, they are passed to areg or to

regress if nofe is specified. This option is useful for calculating clustered standard

errors or changing regression reporting.

A.1.3 Instrumental Variable Estimation with Proxy Variables (Freyalden-

hoven et al., Forthcoming)

proxyiv(proxyiv spec) specifies instruments for the proxy variable for the policy. prox-

yiv() admits three syntaxes to use either leads of the policy variable or additional

variables as instruments. proxy is not allowed with cohort, control cohort or

sunabraham.

proxyiv(select) selects the lead with the strongest first stage among all possible

leads of the differenced policy variable to be used as an instrument. prox-

yiv(select) is the default for the one proxy, one instrument case, and it is only

available in this case.

proxyiv(# ...) specifies a numlist with the leads of the differenced policy variable

as instruments. For example, proxyiv(1 2) specifies that the two first leads of

the difference of the policy variable will be used as instruments.

proxyiv(varlist) specifies a varlist with the additional variables to be used as

instruments.
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A.1.4 Controlling for Event-Time Trends

trend(#1 [,subopt]) extrapolates a linear trend using the periods from period #1

before the policy change to one period before the policy change, as in Dobkin et al.

(2018). For example, trend(-3) uses the coefficients on event times -3, -2, and -1

to estimate the trend. The estimated effect of the policy is the deviation from the

extrapolated linear trend. #1 must be less than -1. trend is only available when the

normalized coefficient is -1 and pre = 0. The following can be passed as suboptions:

method(string) sets the method to estimate the linear trend. It can be Ordinary

Least Squares (ols) or Generalized Method of Moments (gmm). (ols) omits the

event-time dummies from trend(#1) to -1 and adds a linear trend ( ttrend) to

the regression. (gmm) uses the GMM to compute the trend for the event-time

dummy coefficients. The default is method(gmm).

Note that the coefficients for negative-event time will differ between method(ols) and

method(gmm). method(ols) omits the event-time coefficients used to calculate

the trend, while method(gmm) expresses them as differences from the estimated

linear trend.

saveoverlay saves estimations for the overlay plot produced by xteventplot,

overlay(trend).

A.1.5 Heterogeneous Treatment Effects (Sun and Abraham, 2021)

cohort(cohort spec) specifies how to identify the treatment cohorts used for estimation

of heterogenous effects by cohort using the estimator from Sun and Abraham (2021).

cohort requires the Stata module avar.

cohort(variable varname ,[,force]) specifies that the categorical variable var-

name identifies each treatment cohort. By default, xtevent checks for consistency

of the cohort variable and the policy variable. force forces xtevent to skip this

check. This can be useful when estimating heterogenous treatment effects across

groups not defined by treatment cohorts.

cohort(create,[,save replace]) asks xtevent to create the categorical treatment

cohort variable based on values of the policy variable. save adds the new cohort

variable to the dataset as policyvar cohort. replace replaces the cohort variable

if it already exists. The automatic creation of the cohort variable is only available

in the staggered adoption case.

control cohort(control cohort spec) specifies how to identify the control cohort
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used for estimation of heterogenous effects by cohort using the estimator from Sun and

Abraham (2021). control cohort requires cohort to be specified. control cohort

is not allowed with proxy or proxyiv.

control cohort(variable varname ,[,force]) specifies that the binary variable

varname identifies the control cohort. By default, xtevent checks for consistency

of the control cohort variable and the policy variable. force forces xtevent to

skip this check. This can be useful when estimating heterogenous treatment

effects across groups not defined by treatment cohorts.

control cohort(create,[,save replace]) asks xtevent to create the binary con-

trol cohort variable based on the missing values of the cohort variable. save adds

the new control cohort variable to the dataset as policyvar control cohort.

replace replaces the control cohort variable if it already exists. control co-

hort(create) is the default if cohort(create) is specified but control cohort

is not specified.

sunabraham is a shorthand to specify estimation with heterogenous treatment effects by

cohort using the estimator from Sun and Abraham (2021). sunabraham is equivalent

to cohort(create) and control cohort(create).

A.1.6 Estimation with Repeated Cross Sectional Data

repeatedcs indicates that the dataset in memory is repeated cross-sectional. In this

case, panelvar should indicate the groups at which policyvar changes. For instance,

panelvar could indicate states at which policyvar changes, while the observations

in the dataset are individuals in each state. An alternative method to estimate the

event study in a repeated cross-sectional dataset involves using get unit time -

effects first, and then xtevent. See the description of the get unit time effects

command below. For fixed-effects estimation, repeatedcs enables reghdfe.

A.1.7 Saved Results

xtevent saves the following in e():
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Scalars

e(lwindow) left endpoint for estimation window

e(rwindow) right endpoint for estimation window

Macros

e(names) names of the variables for the event-time dummies

e(y1) mean of dependent variable at event-time = -1

e(x1) mean of proxy variable at event-time = -1, when only one proxy is specified

e(trend) “trend” if estimation included extrapolation of a linear trend

e(trendmethod) method used to estimate the linear trend: can be “ols” or “gmm”

e(cmd) estimation command: can be “regress”, “areg”, “ivregress”, “xtivreg”, or “reghdfe”

e(df) degrees of freedom

e(komit) list of lags/leads omitted from regression

e(kmiss) list of lags/leads to omit in the plot

e(ambiguous) list of cross sectional units omitted because of ambiguous event times

e(method) “ols” or “iv”

e(cmd2) “xtevent”

e(depvar) dependent variable

e(pre) number of periods with anticipation effects

e(post) number of periods with policy effects

e(overidpre) number of periods to test for pre-trends

e(overidpost) number of periods to test for effects leveling off

e(stub) prefix for saved event-time dummy variables

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix

e(delta) coefficient vector of event-time dummies

e(Vdelta) variance-covariance matrix of the event-time dummies coefficients

e(deltax) coefficients for proxy event study to be used in overlay plot

e(deltaxsc) scaled coefficients for proxy event study to be used in overlay plot

e(deltaov) coefficients for event study to be used in overlay plot

e(Vdeltax) variance-covariance matrix of proxy event study coefficients for overlay plot

e(Vdeltaov) variance-covariance matrix of event study coefficients for overlay plot

e(mattrendy) matrix with y-axis values of trend for overlay plot, only when trend(#1) is specified

e(mattrendx) matrix with x-axis values of trend for overlay plot, only when trend(#1) is specified
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e(b ir) each column vector contains estimates of each cohort-relative-time interaction and

controls included in the interaction regression. The interaction variables are named

interact m# c# or interact p# c#, where m# indicates # periods before the

policy change, p# indicates # periods after the policy change, and c# indicates

the cohort. Available only when cohort and control cohort, or sunabraham are

specified

e(V ir) covariance matrix of the cohort-relative-time interactions and controls included in the

interaction regression. The interaction variables are named interact m# c# or

interact p# c#, where m# indicates # periods before the policy change, p#

indicates # periods after the policy change, and c# indicates the cohort. Available

only when cohort and control cohort, or sunabraham are specified

e(b interact) each column vector contains estimates of cohort-specific effect for the given relative

time, only when cohort and control cohort, or opt sunabraham are specified

e(V interact) each column vector contains variance estimate of the cohort-specific effect estimator

for the given relative time, only when cohort and control cohort, or sunabraham

are specified

e(ff w) each column vector contains estimates of cohort shares underlying the given relative

time, only when cohort and control cohort, or sunabraham are specified

e(Sigma ff) variance estimate of the cohort share estimators, only when cohort and control cohort,

or sunabraham are specified

Functions

e(sample) marks estimation sample

A.2 The xteventplot Command

The xteventplot command produces event-study plots after xtevent. The syntax is

the following:

xteventplot, [ options ]

A.2.1 Options

suptreps(integer) specifies the number of repetitions to calculate Montiel Olea and

Plagborg-Møller (2019) sup-t confidence bands for the dynamic effects. The default is

10000.

overlay(string) creates overlay plots for trend extrapolation, instrumental variables

estimation in the presence of pre-trends, and constant policy effects over time.

overlay(trend) overlays the event-time coefficients for the trajectory of the de-

pendent variable and the extrapolated linear trend. overlay(trend) is only

available after xtevent, trend(, saveoverlay).

overlay(iv) overlays the event-time coefficients trajectory of the dependent variable

and the proxy variable used to infer the trend of the confounder. overlay(iv)
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is only available after xtevent, proxy() proxyiv().

overlay(static) overlays the event-time coefficients from the estimated model and

the coefficients implied by a constant policy effect over time. These coefficients

are calculated by (i) estimating a model where the policy affects the outcome

contemporaneously and its effect is constant, (ii) obtaining predicted values of

the outcome variable from this constant effects model and (iii) regressing the

predicted values on event-time dummy variables.

y creates an event-study plot of the dependent variable in instrumental variables

estimation. y is only available after xtevent, proxy() proxyiv().

proxy creates an event-study plot of the proxy variable in instrumental variables

estimation. proxy is only available after xtevent, proxy() proxyiv().

levels(numlist) customizes the confidence level for the confidence intervals in the

event-study plot. By default, xteventplot draws a standard confidence interval

and a sup-t confidence band. levels allows different confidence levels for standard

confidence intervals. For example, levels(90 95) draws both 90% and 95% level

confidence intervals, along with a sup-t confidence band for Stata’s default confidence

level.

smpath([type, subopt]) displays the “least wiggly“ path through the Wald confidence

region of the event-time coefficients. type determines the line type, which may be

scatter or line. smpath is not allowed with noci.

The following suboptions for smpath control the optimization process. Because of the

nature of the optimization problem, optimization error messages 4 and 5 (missing

derivatives) or 8 (flat regions) may be frequent. Nevertheless, the approximate results

from the optimization should be close to the results that would be obtained with

convergence of the optimization process. Modifying these optimization suboptions

may improve optimization behavior.

postwindow(scalar > 0) sets the number of post-event coefficient estimates to use

for calculating the smoothest line. The default is to use all the estimates in the

post-event window.

maxiter(integer) sets the maximum number of inner iterations for optimization.

The default is 100.

maxorder(integer) sets the maximum order for the polynomial smoothest line.

maxorder must be between 1 and 10. The default is 10.

technique(string) sets the optimization technique for the inner iterations of the

quadratic program. “nr,” “bfgs,” “dfp,” and combinations are allowed. See
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maximize. The default is “nr 5 bfgs.”

overidpre changes the tested coefficients in the pre-trends overidentification test. The

default is to test all pre-event coefficients. overidpre(#1) tests if the coefficients for

the earliest #1 periods before the event are equal to 0, including the endpoints. For

example, with a window of 3, overidpre(2) tests that the coefficients for event-times

-4+ (the endpoint) and -3 are jointly equal to 0. #1 must be greater than 0. See the

xteventtest command below.

overidpost changes the coefficients to be tested for the leveling-off overidentification

test. The default is to test that the rightmost coefficient and the previous one are

equal. overidpost(#1) tests if the coefficients for the latest #1 periods after the

event are equal to each other, including the endpoints. For example, with a window

of 3, overidpost(3) tests that the coefficients for event-times 4+ (the endpoint), 3,

and 2 are equal to each other. #1 must be greater than 1. See the xteventtest

command below.

The following options control the appearance of the plot:

noci omits the display and calculation of both Wald and sup-t confidence band. noci

overrides suptreps if it is specified. noci is not allowed with smpath.

nosupt omits the display and calculation of sup-t confidence bands. nosupt overrides

suptreps if it is specified.

nozeroline omits the display of the reference line at 0. Note that reference lines with

different styles can be obtained by removing the default line with nozeroline and

adding other lines with yline. See added line options.

nonormlabel suppresses the vertical-axis label for the mean of the dependent variable

at event-time corresponding to the normalized coefficient.

noprepval omits the display of the p-value for a test for pre-trends. By default, this is

a Wald test for all the pre-event coefficients being equal to 0, unless overidpre is

specified.

nopostpval omits the display of the p-value for a test for effects leveling off. By default,

this is a Wald test for the last post-event coefficients being equal unless overidpost

is specified.

scatterplotopts specifies options to be passed to scatter for the coefficients’ plot.

ciplotopts specifies options to be passed to rcap for the confidence interval’s plot.

These options are disabled if noci is specified.

suptciplotopts specifies options to be passed to rcap for the sup-t confidence band

plot. These options are disabled if nosupt is specified.

36



smplotopts specifies options to be passed to line for the smoothest path through the

confidence region plot. These options are only active if smpath is specified.

trendplotopts specifies options to be passed to line for the extrapolated trend overlay

plot. These options are only active if overlay(trend) is specified.

staticovplotopts specifies options to be passed to line for the static effect overlay

plot. These options are only active if overlay(static) is specified.

addplots specifies additional plots to overlay to the event-study plot.

textboxoption specifies options to pass to the textbox of the pre-trend and leveling-off

tests. These options are disabled if noprepval and nopostval are specified. See

textbox options.

additional options: Additional options to be passed to twoway. See twoway.

A.3 The xteventtest Command

The xteventtest command performs hypothesis testing after the xtevent command.

The syntax is the following:

xteventtest, [ options ]

A.3.1 Options

coefs(numlist) specifies a numeric list of event-times to be tested. These are tested to

be equal to 0 jointly, unless otherwise requested in testopts().

cumul requests a test of equality to 0 for the sum of every coefficient for each event-time

in coefs().

allpre tests that all pre-event coefficients are equal to 0. With cumul, it tests that the

sum of all pre-event coefficients is equal to 0.

allpost tests that all post-event coefficients are equal to 0. With cumul, it tests that

the sum of all post-event coefficients is equal to 0.

linpretrend requests a specification test to see if the coefficients follow a linear trend

before the event.

trend(#1) tests for a linear trend from time period #1 before the policy change. It

uses xtevent, trend(#1, method(ols)) to estimate the trend. #1 must be less

than -1.

constanteff tests that all post-event coefficients are equal.
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overid tests overidentifying restrictions: a test for pre-trends and a test for effects

leveling-off. The periods to be tested are those used in the xtevent call.

overidpre(#1) tests the pre-trends overidentifying restriction. It tests that the coef-

ficients for the earliest #1 periods before the event are equal to 0, including the

endpoints. For example, with a window of 3, overidpre(2) tests that the coefficients

for event-times -4+ (the endpoint) and -3 are jointly equal to 0. #1 must be greater

than 0.

overidpost(#1) tests the effects leveling off overidentifying restriction. It tests that the

coefficients for the latest #1 periods after the event are equal, including the endpoints.

For example, with a window of 3, overidpost(3) tests that the coefficients for event-

times 4+ (the endpoint), 3, and 2 are equal to each other. #1 must be greater than

1.

testopts(string) specifies options to be passed to test. See test.

A.3.2 Saved Results

xteventtest stores the following in r():
Scalars

r(p) two-sided p-value

r(F) F statistic

r(df) test constraints degrees of freedom

r(df r) residual degrees of freedom

r(dropped i) index of ith constraint dropped

r(chi2) chi-squared

r(drop) 1 if constraints were dropped, 0 otherwise

Macros

r(mtmethod) method of adjustment for multiple testing. This macro is inherited from test.

Matrices

r(mtest) multiple test results. This matrix is inherited from test.

A.4 The get unit time effects Command

The get unit time effects command generates group and time effects in a repeated

cross-sectional dataset. It produces a Stata data file with the variables panelvar, timevar,

and unittimeeffects. The variable unittimeeffects contains the group-time effects.

Hansen (2007) describes a two-step procedure to obtain the coefficient estimates of

covariates that vary at the group level within a repeated cross-sectional framework. The

two-step procedure can be used to obtain the coefficient estimates of an event-study
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when the data is repeated cross-sectional. get unit time effects implements the first

part of the two-step procedure. Then, xtevent can be used for the second part of the

procedure to obtain the event-study coefficient estimates. See Appendix F. The syntax

of the get unit time effects command is the following:

get unit time effects depvar [ indepvars ] [ if ] [ in ] [weight ] , panelvar(varname)

timevar(varname) [ options ]

A.4.1 Options

panelvar(varname) specifies the group variable. The policy variable should vary at

this group level.

timevar(varname) specifies the time variable.

saving(filename [, replace]) specifies the name of the Stata data file to store the

unit-time effects estimates. If saving is not specified, the file is saved in the current

directory with the name unit time effects.dta. The suboption replace overwrites

the unit-time effects file.

nooutput omits the regression table.

clear replaces the dataset in memory with the unit-time effects file.

B Details on Trend Extrapolation
The default method to extrapolate a linear trend uses GMM and is implemented as

follows. Let TG ≤ LG be the number of periods prior to G used to estimate the trend

parameters and TM ≤ M be the number of “post-event” periods where the trend is

active. We assume fk ≠ 0 for k ∈ [−G − TG, TM] and 0 otherwise. We then have moments

given by

δ̂k − ϕ′fk = 0

for k = −G − TG, ...,−G − 1. Let δ̂TG be the TG-vector collecting δ̂k. Let HTG be the

TG × dim (ϕ) matrix whose jth row is f
′

k for k = j − 1 −G − TG.
A minimum distance estimator ϕ̂ of ϕ solves

ϕ̂ = argmin
ϕ
ĥ (ϕ)′ Ŵ ĥ (ϕ)

ĥ (ϕ) = δ̂TG −HTGϕ.
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Solving the FOC gives

0 = −H ′LŴ (δ̂TG −HLϕ̂)
ϕ̂ = (H ′TGŴHTG)−1H ′TGŴ δ̂

Under suitable regularity conditions, we have that

√
n
⎛
⎝

ϕ̂ − ϕ0

δ̂TG − δL0
⎞
⎠
→ N

⎛
⎝
0,

⎡⎢⎢⎢⎢⎣

ΛTGΩTGΛ
′
TG

ΛTGΩTG

ΩTGΛ
′
TG

ΩTG

⎤⎥⎥⎥⎥⎦

⎞
⎠

where

ΛTG = (H ′TGWHTG)−1H ′TGW

and ΩTG is the asymptotic variance of δ̂TG . The feasible efficient weighting matrix is

Ŵ = Ω̂−1TG → Ω−1TG , and with W = Ω−1TG we have that ΛTGΩTGΛ
′
TG
= (H ′TGΩ

−1
TG
HTG)−1.

B.1 Estimation and Inference on Adjusted Event-Time Path

Now let δ̂ be the vector containing the entire estimated event-time path, so dim (δ̂) =
dim (δ) =M +LM +G+LG + 2. Let H be the dim (δ) × dim (ϕ) matrix whose jth row is

f
′

k for k = j − 2 −G −LG. Given the estimate ϕ̂ we obtain the plugin estimate δ̂∗ of the

adjusted event-time path by

δ̂∗ = δ̂ −Hϕ̂.

Let Λ = [0 ΛTG 0], with 0 conformable matrices of 0s (dim (ϕ) × 1 and dim (ϕ) ×
(dim (δ) −LG), respectively), Λ̂ be its sample analogue, and I be a dim (δ) × dim (δ)
identity matrix. Hence δ̂∗ = δ̂−Hϕ̂ = (I −HΛ̂) δ̂ and it follows that (again under suitable

conditions)
√
n (δ̂∗ − δ∗0) → N (0,Ω −HΛΩ −ΩΛ′H ′ +HΛΩΛ′H ′)

where Ω is the asymptotic variance matrix of δ̂ and

δ∗0,k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, k < −G

∑km=−G βm, −G ≤ k ≤M

∑Mm=−G βm, k >M.

Hypothesis testing for pre-trends and dynamics leveling off can now proceed as in the

TWFE case, replacing δ̂ with δ̂∗.
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B.2 Covariance of Adjusted Event-Time Path and Coefficients

on Controls

For some purposes we may be interested in testing hypotheses jointly on (δ∗0 , ψ0). Since
δ̂∗ = (I −HΛ̂)δ̂, we have

√
n
⎛
⎝
δ̂∗ − δ∗0
ψ̂ − ψ0

⎞
⎠
=
⎛
⎝
I −HΛ̂ 0

0 I

⎞
⎠
√
n
⎛
⎝
δ̂ − δ0
ψ̂ − ψ0

⎞
⎠
→
⎛
⎝
I −HΛ 0

0 I

⎞
⎠
N(0, V ),

with 0 conformable matrices of zeros (dim(δ)×dim(ψ) for the upper right and dim(ψ)×
dim(δ) for the lower left) and I conformable identity matrices (dim(δ) for the upper left
and dim (ψ) for the lower right). Finally, let Ωψ denote the dim(ψ)×dim(ψ) asymptotic

variance of ψ̂ and Ωδ,ψ denote the dim(ψ) × dim(δ) asymptotic covariance between δ̂, ψ̂.

We can express

V =
⎛
⎝

Ω Ω′δ,ψ
Ωδ,ψ Ωψ

⎞
⎠

and the asymptotic variance of (δ̂∗, ψ̂) is

⎛
⎝
I −HΛ 0

0 I

⎞
⎠
⎛
⎝

Ω Ω′δ,ψ
Ωδ,ψ Ωψ

⎞
⎠
⎛
⎝
I −Λ′H ′ 0

0 I

⎞
⎠
=

⎛
⎝
(I −HΛ)Ω(I −Λ′H ′) (I −HΛ)Ω′δ,ψ

Ωδ,ψ(I −Λ′H ′) Ωψ

⎞
⎠
.

C Sup-t Confidence Bands
We use sup-t bands for uniform inference (see Freyberger and Rai (2018), Montiel Olea

and Plagborg-Møller (2019), and the references therein for additional background).

These bands are constructed by adding (subtracting) a constant times the vector of

standard errors of δ̂ from δ̂, such that the simultaneous confidence band at each coefficient

δk is equal to

B̂k(α) ≡ [δ̂k − cασ̂k, δ̂k + cασ̂k]

for a chosen significance level α, where cα denotes the corresponding sup-t critical value.

To compute cα, we use a simple plug-in estimator (Montiel Olea and Plagborg-Møller
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(2019)).

1. DrawN i.i.d vectors V̂ (ℓ), ℓ = 1, . . . ,N of dimensionK = dim(δ̂) from a multivariate

normal with mean 0K and variance Ω̂ given by the estimated variance of δ̂.

2. For each replication ℓ = 1, . . . ,N , let tℓ = max
k=1,...,K

∣Ω̂−1/2kk V̂
(ℓ)
k ∣.

3. Set cα = Q1−α (tℓ), ℓ = 1, . . . ,N , where Q is the quantile function.

D Details for Least Wiggly Path

D.1 The Least Wiggly Path Proposal

We denote the dimension of δ as K ≡ G +M +LG +LM + 2. For v, a finite-dimensional

coefficient vector, and k, an integer, define the polynomial term

δ∗k(v) =
dim(v)

∑
j=1

vj(
k − s1
s2
)j−1,

where vj denotes the jth element of coefficient vector v and dim(v) denotes the dimension

of this vector. s1 and s2 denote constants that shift and scale the event time (range of

the polynomial). We set s1 = −G−LG−1 and s2 =M +LM +G+LG+2. Let δ∗(v) collect
the elements δ∗k(v) for −G − LG − 1 ≤ k ≤M + LM , so that δ∗(v) reflects a polynomial

path in event time with coefficients v.

xtevent plots the least “wiggly” confound whose path is contained in the Wald

region CR(δ) for the event-time path of the outcome. Specifically, it plots δ∗(v∗), where

p∗ =min{dim(v) ∶ δ∗(v) ∈ CR(δ)} and (8)

v∗ = argmin
v
{v2p∗ ∶ dim(v) = p∗, δ∗(v) ∈ CR(δ)}. (9)

Intuitively, the Wald confidence region represents the set of event time paths for

which a joint F -test of the observed point estimates is not rejected. Since this region is

an ellipsis, there is no straightforward graphical illustration of this region in an event

plot.

To plot the least wiggly path, we solve a two-part problem. In (8), we find the

smallest order p∗ such that a polynomial of order p∗ is entirely contained in the Wald
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region CR(δ). In (9), we then choose the polynomial with the lowest coefficient on the

highest order term of that polynomial.

In practice we normalize the event path, such that δk = 0 for at least one k (e.g.

usually at k = −1). We will use N to denote the set of size ∣N ∣ that collects all

normalized coefficients, such that δ∗k(v) = 0 for k ∈ N . Throughout, we only consider

the case ∣N ∣ ∈ {1,2}, i.e., we allow for at most two normalizations.

D.2 Implementation

D.2.1 Finding p∗

We start with the problem of finding p∗ in (8). We define Σ as the covariance matrix of δ̂

with added zeros in the rows and columns corresponding to the normalized coefficients.

Since p∗ is generally small, it is feasible to solve (8) iteratively as follows:

Algorithm 1 Finding p∗

p∗ ← 0
feasible ← 0
while feasible = 0 do

p∗ ← p∗ + 1
feasible ← SolutionInWaldRegion(δ̂, p∗, α)

end while

function SolutionInWaldRegion(δ̂, p∗, α)
W ∗ =minv∶dim(v)=p∗[δ∗(v) − δ̂]′Σ−1[δ∗(v) − δ̂] s.t. δ∗kn(v) = 0 for n ∈ N

▷ Σ−1 denotes the generalized inverse.
return 1(W ∗ ≤ c1−α)

▷ c1−α is the 1 − α quantile of a random variable τ ∼ χ2(K − ∣N ∣).
end function

Note that p∗ is less than K = dim(δ) by construction, and thus the loop in Algorithm

1 is (at least theoretically) guaranteed to converge after at most K rounds. To ensure

numerical stability, we restrict p∗ to be less than or equal to ten in our implementation

(with a user option to reduce the upper bound further). If p∗ > 10, we conclude “no

smooth path exists.”

To find W ∗ in practice, we use the first-order conditions of the minimization of the

Wald statistic subject to the constraints on the normalized coefficients.
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To do this, we write the least wiggly path polynomial in matrix notation as δ∗(v) =
F

K×p∗
v

p∗×1
, where Fkj = (k−s1s2

)j−1 for k = 1, . . . ,K. The rows of F collect the polynomial

terms for a given (shifted) event time k, and the vector v collects the polynomial

coefficients. The problem for finding W ∗ can be rewritten as:

min
v
[Fv − δ̂]

′
Σ−1 [Fv − δ̂] s.t. δ∗k(v) = 0 for k ∈ N . (10)

From the Lagrangian, the first-order conditions are:

F ′Σ−1Fv = F ′Σ−1δ̂ + 1

2
λA′norm

Anormv = 0

Here, Anorm is the matrix with the rows of F corresponding to the normalized

coefficients. Algebra then shows that v(λ) = (F ′Σ−1F )−1[F ′Σ−1δ̂ + 1
2λA

′
norm], and

plugging this back into the second first order condition above yields

λ = −2[Anorm(F ′Σ−1F )−1A′norm]−1Anorm(F ′Σ−1F )−1F ′Σ−1δ̂.

Thus, the solution for v is given by

ṽ = (F ′Σ−1F )−1

[F ′Σ−1δ̂ −A′norm[Anorm(F ′Σ−1F )−1A′norm]−1Anorm(F ′Σ−1F )−1F ′Σ−1δ̂] .

We can write the solution for v as a matrix product. Let XX ≡
⎡⎢⎢⎢⎢⎢⎣

2F ′Σ−1F A′norm

Anorm 0
∣N ∣×∣N ∣

⎤⎥⎥⎥⎥⎥⎦

and Xy ≡
⎡⎢⎢⎢⎢⎢⎣

2F ′Σ−1δ̂

0
∣N ∣×∣N ∣

⎤⎥⎥⎥⎥⎥⎦
. Then the solution for v is the vector with the first K rows of

ṽ = (XX)−1Xy.

D.2.2 Finding the Optimal Path Given p∗

Once we have found a solution to (8) using Algorithm 1, the next step is to find the

polynomial with the lowest coefficient on the p∗ term that is still contained in the Wald

region (see equation 9). First note that by construction v2p∗ ≠ 0 (If not, Algorithm 1

would have found a solution at p∗−1). v∗ can then be found through a simple constrained
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minimization on the vector v (of dimension p∗):

v∗ = argmin
v
v2p∗ (11)

such that [δ∗(v) − δ̂]Σ−1[δ∗(v) − δ̂] ≤ c1−α} (12)

and δ∗k(v) = 0 for k ∈ N , (13)

with Σ and c1−α defined as above.

First, if p∗ ≤ ∣N ∣, the constraint in (13) implies that v∗ = 0 and we are done. Next,

if p∗ > ∣N ∣, we note that v∗ will always be on the boundary of the Wald region. Thus,

the constraint in (12) will always be binding, and we can substitute both constraints

directly to solve for v∗. In particular, given a set N of normalized coefficients and the

constraint in (12), we can solve for some of the other coefficients. If p∗ > ∣N ∣ + 1, we use

an unconstrained optimization to solve for the remaining ones after that.

Specifically, partition the matrices Anorm and F into three parts as follows

Anorm = [ Ab
∣N ∣×(p∗−∣N ∣−1)

, A1
∣N ∣×∣N ∣

, A2
∣N ∣×1
]

F = [ Fb
K×(p∗−∣N ∣−1)

, F1
K×∣N ∣

, F2
K×1
],

with the vector v partioned accordingly into v = [vb; v1; v2]. We will solve for the

coefficients v1 and v2 using the constraints in (13) and (12) respectively, and then solve

for the coefficients vb by unconstrained minimization. To do so, first note that, because

Anorm contains the rows of F associated with the normalized coefficients,

Anormv = Abvb +A1v1 +A2v2 = 0 and thus v1 = A1
−1(−Abvb −A2v2). (14)

It follows that

δ∗(v) = Fv = Fbvb + F1v1 + F2v2 = Fbvb − F1[A1
−1(Abvb +A2v2)] + F2v2,

and the constraint in (12) becomes
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0 =([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(Fb − F1A1

−1Ab)vb − δ̂] − c1−α)

+ 2([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(F2 − F1A1

−1A2))v2

+ v′2([(F2 − F1A1
−1A2)]′Σ−1[(F2 − F1A1

−1A2)])v2.

This is a quadratic expression for (the scalar) v2 in terms of vb and, defining the scalars

d0, d1 and d2 as

d0 = [(F2 − F1A1
−1A2)]

′
Σ−1[(F2 − F1A1

−1A2)],

d1(vb) = 2([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(F2 − F1A1

−1A2)),and

d2(vb) = ([(Fb − F1A1
−1Ab)vb − δ̂]′Σ−1[(Fb − F1A1

−1Ab)vb − δ̂] − c1−α)

simplifies to d0v22 + d1(vb)v2 + d2(vb) = 0.
Using the quadratic formula, we can then solve for v2 by solving the minimization

problem,

v2(vb) =
−d1(vb) ±

√
d1(vb)2 − 4d0d2(vb)
2d0

. (15)

Note that, by definition, v2 = vp∗ .
Further, if p∗ = ∣N ∣ + 1, vb is empty and thus v2 does not depend on vb. (15) results

in two solutions, v+2 and v−1 , corresponding to the sign ambiguity in (15). We choose the

solution v∗2 with the smaller absolute value.

If p∗ > ∣N ∣+1, the constrained optimization in (11)-(13) is equivalent to the following:

v22 =min
vb

min
{+,−}
(
−d1(vb) ±

√
d1(vb)2 − 4d0d2(vb)
2d0

)
2

, (16)

where the inner minimization is over the sign in the quadratic formula.

At this point, we have both v∗2 and v∗b . Recovering v∗1 using (14), we obtain v∗ =
[v∗b , v∗1 , v∗2 ].
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E Policy Variable Imputation
Panel event study estimation requires assumptions about the behavior of the policy

variable outside the observed time range. In section 3.1 of the article, we estimated

panel event studies assuming no unobserved changes in the policy variable outside the

estimation period. This imputation scheme is implemented using the impute(nuchange)

option.

xtevent allows for other schemes to impute the policy variable. For example,

xtevent can assume that the policy variable follows staggered adoption, using the

impute(stag) option. It can also impute missing values of the policy variable inside

the observed date range using the impute(instag) option.

To illustrate these options, we use the simulated data example of section 3 of the

article and show the implied event-time dummies under the different imputation schemes.

For the example, we add some missing values to unit 19. Then, we differentiate the

policy variable. xtevent uses leads and lags of the differentiated policy variable to

generate the event-time dummies, following equation (2).

First, we ask xtevent to generate the event-time dummies without any imputation

and specify the option savek(stub, noestimate) to save them without estimating the

model.

. use simulation_data_dynamic.dta, clear

. qui xtset id t

. qui replace z=. if id==19 & (t==35 | t>=39)

. qui gen z_d=d.z

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z)

> window(5) savek(v, noestimate)

The event-time dummies with a “v” prefix and ending in m# or p# correspond to

leads and lags of the differentiated policy variable, as described in section A of the

article. Now, we display these event-time dummies for unit 19 in some periods.

. list id t z z_d v_eq_m6 -v_eq_m1 if id==19 & t>=29, ///

> separator(4) noobs

id t z z_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3 v_eq_m2 v_eq_m1

19 29 0 0 1 0 0 0 0 0

19 30 0 0 . . 0 0 0 0

19 31 0 0 1 . . 0 0 0

19 32 0 0 0 1 . . 0 0
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19 33 0 0 0 0 1 . . 0

19 34 0 0 . . 0 1 . .

19 35 . . . . . 0 1 .

19 36 0 . . . . . 0 1

19 37 1 1 . . . . . 0

19 38 1 0 . . . . . .

19 39 . . . . . . . .

19 40 . . . . . . . .

Notice that the event-time dummies have missing values at the bottom of the table

because we have not made any assumptions about the policy variable outside the

observed time range. Besides, notice that the event-time dummies have some missing

values inside the observed time range due to the missing value in the policy variable in

period 35. From equation (2), this latter missing value translates into two inner missing

values in the event-time dummies and one missing value in the case of the left endpoint.

To impute the policy variable under staggered adoption, we use the impute(stag)

option. xtevent verifies that the policy variable follows staggered adoption. If so,

xtevent imputes the policy variable outside the observed time range. Then, it uses

the imputed policy variable to generate the event-time dummies and endpoints. We

add the suboption saveimp to save the imputed policy variable as z imputed. We also

differentiate the new imputed policy variable to see how its leads and lags translate to

new event-time dummies.

. cap drop v*

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///

> window(5) savek(v, noestimate) impute(stag, saveimp)

. qui gen z_imputed_d=d.z_imputed

Below, we compare the original policy variable, the imputed policy variable, the

differentiated imputed policy variable, some event-time dummies, and the left endpoint

generated using the imputed policy variable. First, the policy variable has been imputed

in the observed time range. Nonetheless, the imputation also assumes that the policy

variable in periods after t = 40 would have the same value as the one in that last

period. This imputation can be seen in the event-time dummies, which now have zeros

corresponding to leads of the differentiated policy variable in periods after 40.

. list id t z z_imputed z_imputed_d v_eq_m6 -v_eq_m3 if id==19 & t>=29, ///

> separator(4) noobs ab(11)

id t z z_imputed z_imputed_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3
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19 29 0 0 0 1 0 0 0

19 30 0 0 0 . . 0 0

19 31 0 0 0 1 . . 0

19 32 0 0 0 0 1 . .

19 33 0 0 0 0 0 1 .

19 34 0 0 0 0 0 0 1

19 35 . . . 0 0 0 0

19 36 0 0 . 0 0 0 0

19 37 1 1 1 0 0 0 0

19 38 1 1 0 0 0 0 0

19 39 . 1 0 0 0 0 0

19 40 . 1 0 0 0 0 0

We now ask xtevent to impute the policy variable using the impute(instag)

option. This imputation scheme lets us impute missing values in the policy variable

outside and inside the observed time range. As described in section A of the article,

the impute(instag) option implements the impute(stag) option, but it also imputes

missing values inside the observed time range in cases where it is possible to assume some

value based on the policy values in surrounding periods. As in the previous example, we

also generate the differentiated imputed policy variable for comparison.

. cap drop v* z_imputed z_imputed_d

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///

> window(5) savek(v, noestimate) impute(instag, saveimp)

. qui gen z_imputed_d=d.z_imputed

Below, we compare the original policy variable, the imputed policy variable, the

differentiated imputed policy variable, some event-time dummies, and the left endpoint

generated with the imputed policy variable. First, the imputed policy variable does

not have missing values inside or outside the event-time range. As in the example

using impute(stag), the event-time dummies have zeros corresponding to leads of

the differentiated policy variable in periods greater than 40. Additionally, now the

event-time dummies do not have missing values inside the event-time range.

. list id t z z_imputed z_imputed_d v_eq_m6 -v_eq_m3 if id==19 & t>=29, ///

> separator(4) noobs ab(11)

id t z z_imputed z_imputed_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3

19 29 0 0 0 1 0 0 0

19 30 0 0 0 1 0 0 0

19 31 0 0 0 1 0 0 0

19 32 0 0 0 0 1 0 0
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19 33 0 0 0 0 0 1 0

19 34 0 0 0 0 0 0 1

19 35 . 0 0 0 0 0 0

19 36 0 0 0 0 0 0 0

19 37 1 1 1 0 0 0 0

19 38 1 1 0 0 0 0 0

19 39 . 1 0 0 0 0 0

19 40 . 1 0 0 0 0 0

F Estimation in Repeated Cross-Sectional Datasets
xtevent allows estimation with repeated cross-sectional datasets when policyvar varies

at the group level, and panelvar identifies the groups. For instance, panelvar could

indicate states at which policyvar changes, while the observations in the dataset could

be individuals in each state. xtevent allows estimations in these settings directly with

the repeatedcs option. It also allows for using the two step procedure described in

Hansen (2007). To use the latter method, the user should first use the get unit time -

effects command to estimate unit-time effects and then use these estimations as input

for xtevent.

We illustrate the use of get unit time effects. First, we create a variable state

that represents groups where individuals receive the treatment in the same period. Then,

we call get unit time effects. It saves a dta file with the unit-time effects.

. gen state=eventtime

. xtset, clear

. get_unit_time_effects y x, panelvar(state) timevar(t)

> saving("effect_file.dta", replace)

(output omitted )

Then, we keep one observation per state-time in the repeated cross-sectional data

and merge the dataset with the unit-time effects. Afterwards, we execute xtevent.

Since we use a smaller dataset to estimate the event-study, this method can be faster

than using the repeatedcs option.

. qui bysort state t (z): keep if _n==1

. keep state t z

. qui merge m:1 state t using effect_file.dta, nogen

. xtevent _unittimeeffects, panelvar(state) timevar(t) policyvar(z) window(5)

(output omitted )
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G Estimation with Heterogenous Treatment Effects

in Staggered Adoption Settings
xtevent allows estimation permitting heterogeneous treatment effects in staggered

adoption settings. Following the approach of Sun and Abraham (2021), we introduce

a setting with heterogeneous treatment effects across treatment cohorts as follows: let

t⋆(i) be the cohort for unit i, namely, the period when unit i adopts the policy. Denote

the effects of the policy on the outcome for cohort t⋆ as {βm,t⋆}Mm=−G. The equation for

the outcome becomes:

yit = αi + γt + q′itψ +
M

∑
m=−G

βm,t⋆(i)zi,t−m +Cit + εit.

To estimate the event-study path of the outcome in this setting, xtevent estimates

an extended version of equation (2) interacting the event-time dummies with cohort

indicators as proposed in Freyaldenhoven et al. (2021):

yit = ∑
c

M+LM−1
∑

k=−G−LG

(1{t⋆(i) = c}) (δk,c∆zi,t−k + δM+LM ,czi,t−M−LM
+ δ−G−LG−1,c(1 − zi,t+G+LG

))

+αi + γt + q′itψ +Cit + εit,
(17)

Using the two-way fixed effects estimator to estimate (17), this is equivalent to the

estimator proposed in Sun and Abraham (2021). xtevent further allows to estimate

(17) using any of the estimation strategies outlined in Section 2.1., except IV estimation.

xtevent estimates (17) on a sample defined by the cohort and control cohort

options. In staggered adoption settings, the option cohort(create) asks xtevent

to automatically generate a categorical variable for treatment cohorts. xtevent sets

the value of this categorical variable to the value of the time variable the first time

a unit is treated. For units that are never treated, xtevent sets the value of this

variable to missing. Similarly, the control cohort(create) option asks xtevent to

automatically generate an indicator for the control cohort. xtevent sets this indicator

to 1 for never-treated units and zero otherwise.

If the cohort in control cohort is a never-treated cohort, xtevent estimates equa-

tion (17) on the whole sample. Otherwise, xtevent estimates (17) on the subset of
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periods when observations in the control cohort have not yet been treated. By default,

the estimation excludes always-treated cohorts.

After obtaining estimates δ̂k,c for k = −G − LG − 1, ...,M + LM and for each cohort

c, xtevent obtains the estimate of the average treatment effect at event-time k, δ̂k, as

an average of the δ̂k,c estimates weighting by the share of observations from cohort c in

each relative time k (Sun and Abraham, 2021):

δ̂k = ∑
c

δk,cP̂ r {t⋆(i) = c ∣ t⋆(i) ∈ [−k, T − k]} .

The variance of δ̂k is obtained using the formulas in Appendix C.1 of Sun and Abraham

(2021).

To permit greater flexibility, xtevent also allows estimation of (17) outside staggered

adoption settings or in settings where the user wants to aggregate treatment cohorts

for user-provided cohort and control cohort variables through the cohort(variable

varname, [,force]) and control cohort(variable varname, [,force]) options.
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