
Bertolotti, Fabio; Lanteri, Andrea; Villa, Alessandro T.

Working Paper

Investment-goods market power and capital accumulation

Working Paper, No. WP 2024-13

Provided in Cooperation with:
Federal Reserve Bank of Chicago

Suggested Citation: Bertolotti, Fabio; Lanteri, Andrea; Villa, Alessandro T. (2024) : Investment-goods
market power and capital accumulation, Working Paper, No. WP 2024-13, Federal Reserve Bank of
Chicago, Chicago, IL,
https://doi.org/10.21033/wp-2024-13

This Version is available at:
https://hdl.handle.net/10419/300498

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.21033/wp-2024-13%0A
https://hdl.handle.net/10419/300498
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
Investment-Goods 
Market Power and 
Capital Accumulation 
 

Fabio Bertolotti, Andrea Lanteri, and  
Alessandro T. Villa 

 
May 2024 

WP 2024-13 

https://doi.org/10.21033/wp-2024-13 

*Working papers are not edited, and all opinions are the 
responsibility of the author(s). The views expressed do not 
necessarily reflect the views of the Federal Reserve Bank 
of Chicago or the Federal Reserve System. 



Investment-Goods Market Power and

Capital Accumulation*

Fabio Bertolotti§ Andrea Lanteri¶ Alessandro T. Villa�

May 2024

Abstract

We develop a model of capital accumulation in an open economy that imports

investment goods from large foreign firms with market power. We model investment-

goods producers as a dynamic oligopoly and characterize a Markov Perfect Equilib-

rium with a Generalized Euler Equation. We use this optimality condition to analyze

the joint evolution of investment, prices, and markups. The markup on investment

goods decreases as the economy accumulates capital toward its steady state, gener-

ating a state-dependent capital adjustment cost. We analyze the role of commitment

to future production of investment goods for the dynamics of markups and invest-

ment. We use a calibrated version of the model to simulate the effects of shocks to

the demand for durable goods and semiconductors during the post-2020 world re-

covery. Finally, we perform counterfactual analyses on the effects of expanding the

production capacity. The model highlights the separate roles of increasing marginal

costs—akin to capacity constraints—and market power.
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1 Introduction

The post-2020 global recovery has been a stark reminder of the dependence of the macroe-

conomy on the supply of critical inputs that most countries import from highly concentrated

industries, such as semiconductors. When demand for durable goods increased during the

recovery, prices soared, thereby dampening capital accumulation, contributing to the in-

crease in inflation, and leading to the design of ambitious policy plans to modify the global

production structure.1

Figure 1: Semiconductor and Equipment Price Dynamics
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Notes: The figure displays the US Producer Price Index of Semiconductors and the US Producer Price

Index of Machinery and Equipment during 2016-2023. Both series are deflated using the US GDP deflator

and displayed in percent deviations from a linear trend fitted during 2012-2019.

Figure 1 portrays the dynamics of the US Producer Price Index of semiconductors (solid

line) and of machinery and equipment (dashed line), both deflated using the GDP deflator.

Starting in 2020, semiconductor prices increased dramatically, reaching a 20% deviation

from their trend in 2023. Over the same period, the overall price of equipment goods also

increased significantly and was 7% higher than its trend in 2023.

Semiconductors are necessary components of equipment goods and it is likely that

future economic growth will increasingly rely on them. More in general, many important

1In 2021, the two largest semiconductor manufacturers—TSMC and Samsung—jointly accounted for
approximately 70% of global sales. In the US, the CHIPS and Science Act of 2022 aimed at generating hun-
dreds of billions of dollars of investment in semiconductor manufacturing to rebalance the global patterns
of production of semiconductors, which is concentrated in Asia.
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types of durable inputs are produced by highly concentrated industries. As examples,

consider commercial aircraft, commercial ships, electric vehicles, or construction and mining

machinery. For all of these investment goods, a relatively small number of large global

producers supply the world economy.

What is the role of market power in investment-goods markets for the dynamics of

prices, capital accumulation, and output? The goal of this paper is to develop a framework

to address this question. To this end, we combine a neoclassical growth model of capital

accumulation with a dynamic oligopoly model of investment-goods producers and use it to

analyze the aggregate dynamics of investment, prices, and markups.

In the model, an open economy accumulates capital by importing investment goods

according to a standard investment Euler equation. Investment requires an input produced

by an oligopolistic industry. Foreign producers of this input face a convex cost function and

maximize the present discounted value of profits, internalizing the effects of their production

decisions on prices through the Euler equation. We analyze a Markov Perfect Equilibrium,

in which strategies depend on a natural state variable, namely the level of capital in the

domestic economy.

Because of the durable nature of capital, investment-goods producers effectively compete

with the undepreciated stock of capital—equivalently, the secondary market for investment

goods—, as well as among themselves, and choose the level of production trading off current

and future profits. By focusing on differentiable policy functions, we characterize the

optimal trade-off with a Generalized Euler Equation, which relates the markup to the

derivatives of the equilibrium policy functions. We then leverage this characterization to

understand the evolution of markups along the equilibrium path of capital accumulation.

We calibrate the model interpreting the foreign oligopoly as the semiconductor industry

and perform a quantitative exploration of the role of market power for the dynamics of in-

vestment. When the level of capital in the domestic economy is low, the price of investment

and the markup are high because there is high demand for investment goods. Then, as the

domestic economy accumulates capital toward its steady state, prices and markups decline

over time.

This mechanism generates a state-dependent capital adjustment cost, as endogenous

markups contribute to slow convergence to steady state. Forward-looking investment-goods

producers anticipate future demand conditions along the transition path and internalize

the competition with the future capital stock. This feature of our model reinforces the
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endogenous capital-accumulation friction.

We contrast these findings with a version of the model in which investment-goods pro-

ducers commit to future production plans. In this case, the internalization of competition

with past undepreciated production leads to markups that are higher in levels and do

not decrease as the economy grows. This comparison sheds light on the nature of time

inconsistency in our model and its macroeconomic implications.

Our analysis of the transitional dynamics is useful to understand the response of the

economy to aggregate shocks that shift the optimal level of capital. Specifically, we perform

several experiments in the calibrated model to reproduce salient features of the post-2020

global recovery, which featured strong demand for durable goods.

We first simulate an increase in Total Factor Productivity (TFP) in the domestic econ-

omy, which drives a rise in demand for investment goods. One interpretation of this shock

is the significant expansion in work from home, which led to higher demand for computing

and communication equipment. We find that markups increase in response to the shock

and then decrease over time, consistent with empirical evidence on the profitability of semi-

conductor producers in the recent recovery. However, the calibrated model suggests that

the equilibrium price increase is predominantly driven by increasing marginal costs.

We also analyze the effects of shocks to the production of investment goods and then

extend our model to stochastic, persistent productivity shocks and perform simulations

that confirm the main insights of our parsimonious baseline model in a richer business-

cycle framework.

The experience of the recent recovery has motivated several policy interventions that

may reduce the concentration of some critical sectors, such as semiconductors, and expand

their productive capacity. We thus use our model to simulate the effects of entry of one

additional large producer. Marginal costs decrease because the production of investment

goods is spread across more units, and, critically, so do markups because of enhanced

competition pressure. In contrast, we find that a relaxation of capacity constraints that

does not affect the number of producers has a smaller impact on equilibrium prices. These

counterfactual analyses confirm the importance of analyzing market power and capital

accumulation in a dynamic equilibrium framework.

The rest of the paper is organized as follows. Section 2 discusses our contributions

to the literature. Section 3 presents the model environment. Section 4 characterizes the

dynamic oligopoly in investment goods. Section 5 presents the quantitative analysis of the
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role of market power for capital accumulation. Section 6 discusses the effects of aggregate

shocks. Section 7 concludes.

2 Related Literature

This paper contributes to several strands of the literature. A growing body of work in

macroeconomics analyzes the aggregate effects of producer market power. De Loecker,

Eeckhout, and Unger (2020) studies the evolution of markups over time in the US economy.

Edmond, Midrigan, and Xu (2023) provide a quantitative analysis of the social cost of

markups. While many studies focus on imperfect competition and price dynamics in output

markets (e.g., Mongey, 2021; Wang and Werning, 2022; Burstein, Carvalho, and Grassi,

2023), several recent paper focus on market power and firm granularity in input markets,

such as the labor market (e.g., Berger, Herkenhoff, and Mongey, 2022; Jarosch, Nimczik,

and Sorkin, 2023), and the credit market Villa (2023). Our contribution is to focus on

market power in the production of dynamic inputs such as investment goods. We develop

a framework to analyze the effects of market power on capital accumulation.

The literature on investment dynamics typically focuses on frictions on the demand side

of the market for investment goods, such as adjustment costs at the firm level (e.g., Cooper

and Haltiwanger, 2006; Khan and Thomas, 2008; Baley and Blanco, 2021; Winberry, 2021)

or financing constraints (e.g., Buera and Shin, 2013; Moll, 2014; Lanteri and Rampini, 2023),

as well as on the role of firm heterogeneity. We explore a complementary approach and

analyze distortions stemming from the supply side of investment goods—namely, market

power of producers. To gain tractability of the Markov Perfect Equilibrium, we abstract

from firm heterogeneity, but our analysis can be extended to the case of heterogeneous

firms in future work. Fiori (2012) analyzes the role of fixed adjustment costs on the supply

side of investment goods in a model with heterogeneous firms. Our focus on competition

on the production side of investment-goods markets builds on the work Bertolotti and

Lanteri (2024), which models endogenous product innovation, but abstracts from strategic

interactions.

This paper also contributes to the large literature on international trade and macroe-

conomic dynamics (e.g. Ghironi and Melitz, 2005; Atkeson and Burstein, 2008). Several

papers analyze the role of investment-goods trade and prices in open economies. Since the

work of Eaton and Kortum (2001), the literature has emphasized the high degree of geo-
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graphic concentration in the global production of investment goods. Restuccia and Urrutia

(2001) and Hsieh and Klenow (2007) study the effects of investment prices on investment

rates and growth across countries. Engel and Wang (2011) emphasizes the critical role of

trade in durable goods for the comovement between aggregate activity and trade flows.

Burstein, Cravino, and Vogel (2013) focuses on the effects of investment-goods imports

on wages. Lanteri, Medina, and Tan (2023) analyzes the effects of trade shocks on cap-

ital reallocation in a small open economy. Our paper contributes to this body of work

by analyzing market power in investment-goods markets as a source of friction in capital

accumulation. Our application on demand for investment goods and capacity constraints

during the recent recovery is related to the analyses of Comin, Johnson, and Jones (2023),

Fornaro and Romei (2023) and Darmouni and Sutherland (2024).

Our methodology combines a neoclassical growth model with a model of dynamic

oligopoly in durable-goods markets and we analyze a Markov Perfect Equilibrium (Maskin

and Tirole, 2001). A large theoretical literature in industrial organization investigates

monopoly pricing for durable goods with and without commitment (e.g., Coase, 1972;

Stokey, 1981; Kahn, 1986; Suslow, 1986) and several papers leverage the insights of this

literature to provide quantitative analyses of durable-good oligopolies (e.g., Esteban and

Shum, 2007; Goettler and Gordon, 2011). We build on this literature to analyze the ag-

gregate capital-accumulation effects of market power, in particular in response to shocks

to the demand for investment goods. Consistent with the literature, our assumptions on

discounting, depreciation, and convex costs of production ensure that investment-goods

producers exert market power, despite the durability of their output. In similar spirit to

the dynamic financial oligopoly characterized by Villa (2023), investment-goods producers

internalize the effect of their decisions on future prices through a dynamic demand equa-

tion. Following the approach of Villa (2023), we characterize the equilibrium dynamics

with an interpretable Generalized Euler Equation, a tool introduced in the literature on

optimal fiscal policy (Klein, Krusell, and Ŕıos-Rull, 2008). We also consider the case of

commitment to future production, which we solve recursively using the multiplier on the

investment Euler equation as a state variable (Marcet and Marimon, 2019).
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3 Model

In this section, we present our model of an open economy that accumulates capital by

importing investment goods from a finite number of large producers. We then characterize

the efficient allocation. We focus on a deterministic model to make the analysis clearer and

then extend the model to stochastic shocks in our quantitative analysis.

3.1 Investment Demand in an Open Economy

We begin by describing the demand side of the market for investment goods. A determin-

istic open economy is populated by a representative household with utility function

∞∑
t=0

βtu(Ct),

where β ∈ (0, 1) denotes the discount factor, Ct is aggregate consumption, and uc > 0,

ucc ≤ 0, where subscripts denote first and second derivative respectively.

The budget constraint of the household reads

Ct + P I
t It +Bt = WtL+RK

t Kt−1 +RBt−1 +Dt,

where P I
t is the price of investment It, Bt are bonds that offer the exogenous world gross

interest rate R, Wt is the wage, L is a constant endowment of labor, RK
t denotes the rental

rate of capital Kt−1, and Dt are profits obtained from ownership of domestic firms. We

assume that the household is only subject to the natural debt limit.

Investment adds to the capital stock, which depreciates at rate δ:

Kt = (1− δ)Kt−1 + It. (1)

We assume that investment has to be non-negative and restrict attention to a region of the

parameter space where this constraint is not binding.

The first-order conditions of the utility maximization problem with respect to bonds

7



and investment are

1 = β
uc(Ct+1)

uc(Ct)
R (2)

P I
t = β

uc(Ct+1)

uc(Ct)

(
RK

t+1 + (1− δ)P I
t+1

)
. (3)

A representative firm rents capital from the representative household and hires labor to

produce output with a constant-returns to scale production function:

Yt = F (Kt−1, L). (4)

The first-order conditions of the profit maximization problem are

FK(Kt−1, L) = RK
t (5)

FL(Kt−1, L) = Wt.

For notational convenience, we define f(Kt−1) ≡ F (Kt−1, L). Because of constant returns

to scale, the representative firm makes zero profits in equilibrium—i.e., Dt = 0.

We assume that the interest rate satisfies R = β−1. By combining the household

and firm optimality conditions (2), (3), and (5), we obtain the following investment Euler

equation that describes optimal capital accumulation in the open economy:

P I
t = R−1

(
fk(Kt) + (1− δ)P I

t+1

)
. (6)

Equation (6) implicitly expresses the demand for investment goods as a function of the

capital stock Kt−1 as well as current and future investment prices Pt and Pt+1.

We stress that our assumptions on ownership of the capital stock are immaterial and

we can equivalently derive this condition assuming that firms accumulate capital instead

of households.

We also highlight that the open economy is small in the sense that the world interest

rate is exogenous. We make this assumption to focus on the determination of the price

of investment goods, which is instead endogenous and is affected by the path of capital

accumulation in the open economy. The exogeneity of the interest rate allows us abstract

from the possible internalization of interest-rate changes in the decisions of large investment-
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goods producers, which would add technical complexity, but appears less relevant for our

question of interest.

3.2 Investment-Goods Production

We now describe the supply side of the market for investment goods.

Assembly of investment. A perfectly competitive representative firm combines an

amount Qt of imported investment goods and an amount Xt of output good to assem-

ble domestic investment with a Leontief production function:

It = min

{
Qt

θ
,

Xt

1− θ

}
,

where θ ∈ [0, 1] denotes the share of imported investment goods, which trade at price Pt.

Profit maximization implies Qt

θ
= Xt

1−θ
and the equilibrium investment price must satisfy

P I
t = θPt + 1− θ, (7)

which implies that the investment assembling firm makes zero profits. It is thus immaterial

whether this technology is owned by domestic or foreign investors. Notice that our model

nests a standard small-open-economy neoclassical growth model when θ = 0.

Production of imported investment goods. We assume that there is an integer num-

ber N ≥ 1 of identical producers of a homogeneous good, which we refer to as “investment-

goods producers.” Equivalently, there is a fixed cost of entering the industry and the level

of this cost is such that entry is profitable for N firms, but would yield negative profits

with a larger number of entrants. We analyze the effects of firm entry in Section 6. These

firms are owned by foreign investors.

The production of investment requires output goods. Specifically, each investment-

good producer has a cost function c(qt), where qt is the quantity produced at date t and

we assume cq > 0 and cqq ≥ 0. Hence, static profits at date t are given by πt ≡ Ptqt− c(qt).

We will consider several alternative assumptions on competition and strategic interac-

tions. Across all of these assumptions, we maintain that the objective of investment-goods

producers is to maximize the present discounted value of profits:

∞∑
t=0

R−tπt. (8)
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Our analysis can be extended to domestic investment-goods producers owned by the rep-

resentative household. However, in this case the objective function (8) would not coincide

with the objective of the firm owner when firms do not take prices as given.2

3.3 First Best

Before analyzing the effects of market power, we briefly introduce the competitive bench-

mark, which coincides with the solution to the problem of a planner who maximizes house-

hold welfare in the domestic economy taking as given the cost function to produce invest-

ment goods. We formulate this problem explicitly in Appendix A.1.

In a competitive equilibrium without market power, investment-goods producers choose

a sequence of production levels {qt}∞t=0 to maximize (8) taking as given the sequence of prices

{Pt}∞t=0. Thus, the equilibrium price satisfies Pt = cq
(
θIt
N

)
and optimal capital accumulation

satisfies

θcq

(
θIt
N

)
+ 1− θ = R−1

(
fk(Kt) + (1− δ)

(
θcq

(
θIt+1

N

)
+ 1− θ

))
. (9)

Notice that if the cost function c is convex, it acts as a capital adjustment cost. Fur-

thermore, convexity implies that it is efficient to produce the same amount in all of the

investment-goods firms, which motivates our focus on symmetric equilibria in the remainder

of the paper.

4 Investment-Goods Oligopoly

We now analyze the case of investment-goods producers that act as oligopolists and inter-

nalize the residual demand for investment. We describe the Markov Perfect Equilibrium

and derive the optimality conditions of the investment-goods producers. We then use these

optimality conditions to relate markups and capital accumulation. Finally, we contrast this

problem with the case of commitment to future production.

2For an analysis of common ownership in oligopoly in general equilibrium models, see Azar and Vives
(2021).
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4.1 Markov Perfect Equilibrium and Generalized Euler Equation

To focus on time-consistent decisions in the absence of commitment to future production

levels, we analyze a symmetric Markov Perfect Equilibrium with Cournot competition, in

which quantities produced are functions of a single natural state variable, the capital stock

in the domestic economy. To obtain a sharper characterization, we further restrict attention

to differentiable decision rules.

Combining equations (6) and (7) and using recursive notation, we can express the

investment Euler equation—i.e., the demand curve for investment goods—as follows:

P = R−1
(
θ−1fk(K

′) + (1− δ)P (K ′)
)
− κ, (10)

where κ ≡ θ−1(1− θ) (1−R−1(1− δ)).

For a generic investment-goods producer, we denote by q−(K) the quantity produced

by each other producer as a function of the capital stock K. Furthermore, investment-

good producers anticipate the equilibrium price function P (K ′) and the continuation value

function V (K ′), encoding the present discounted value of profits (8). Each producer solves

the following problem:

max
P,q,K′

Pq − c (q) +R−1V (K ′),

subject to the Euler equation (10) and the law of motion for capital

K ′ = (1− δ)K + θ−1 ((N − 1)q−(K) + q) , (11)

where we used the market-clearing condition (N − 1)q−(K) + q = Q = θI to express

aggregate production of the investment good. This formulation of the capital accumulation

equation clarifies that each firm effectively competes with the other N − 1 as well as the

existing stock of undepreciated capital.

The optimality condition for the production level can be represented as the following

Generalized Euler Equation (GEE):

θP − θcq(q) + qR−1
(
θ−1fkk(K

′) + (1− δ)Pk(K
′)
)
+R−1Vk(K

′) = 0. (12)

This is a functional equation that involves the derivative of the future price with respect

to the capital stock, reflecting the fact that investment-good producers cannot commit

to future actions, but internalize the effect of current production on future equilibrium
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outcomes.

In a symmetric equilibrium, the maximum value of this problem coincides with V (K).

Thus, the envelope condition reads:

Vk(K) = −θ

(
1− δ +

(
N − 1

N

)
Ik(K)

)(
P − cq

(
θI(K)

N

))
, (13)

where I(K) denotes aggregate investment and we have used the fact that in a symmetric

equilibrium each firm produces a fraction N of the total amount of imported investment

goods—i.e., q(K) = q−(K) = θI(K)
N

. The term Ik(K) encodes the strategic interactions

among oligopolistic firms, which, in a Markov Perfect Equilibrium, are mediated by changes

in the state variable: Each firm internalizes the effect of its current production on future

competitors’ production through changes in the level of capital in the open economy.

To gain intuition on the GEE (12), consider a marginal increase in the quantity produced

q (and an associated increase in future capital K ′). This increase in production has three

effects on the present discounted value of profits. First, it yields additional profits equal to

the current markup P − cq(q).

Second, it moves the equilibrium of the market for investment goods along the demand

curve, reducing the market-clearing price. The effect of this price change on profits is

encoded in the term qR−1 (θ−1fkk(K
′) + (1− δ)Pk(K

′)).

Third, it leads to a higher future level of capital, which in turn shifts downward the

future residual demand curve, with an effect on future profits given by R−1Vk(K
′), which

the envelope condition (13) relates to the future markup. This last term highlights that

oligopolistic firms producing a durable good internalize that their future production will

compete with the undepreciated fraction of the current production, as well as with their

competitors.

We define a Markov Perfect Equilibrium as follows.

Definition 1 A Symmetric Markov Perfect Equilibrium is a set of functions map-

ping the capital stock K to the present discounted value of profits for each oligopolist V (K),

the quantity produced q(K), the associated level of aggregate investment I(K) = Nq(K)
θ

, and

the price P (K) that satisfy the investment Euler equation (10), the capital accumulation

equation (11), the oligopoly Generalized Euler Equation (12), and envelope condition (13).
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4.2 Dynamic Markup Rule and Static Markup

We now use the GEE to express the price in terms of the marginal cost and a markup rate.

To this end, we first rewrite equation (12) as follows:

P

1 +
θ−1q

P
·R−1

(
θ−1fkk(K

′) + (1− δ)Pk(K
′)
)︸ ︷︷ ︸

dP
dK′

 = cq(q)−R−1θ−1Vk(K
′).

We then observe that dP
∂Q

= dP
dK′

dK′

dQ
= θ−1 dP

dK′ , as one additional unit of output of the

oligopolistic industry translates into θ−1 additional unit of future capital. Thus, defining

the inverse price elasticity of demand

η ≡ −Q

P

dP

dQ
= −Q

P
θ−1R−1

(
θ−1fkk(K

′) + (1− δ)Pk(K
′)
)
, (14)

and using q = Q
N

we get

P =
N

N − η︸ ︷︷ ︸
Dynamic Markup

·
(
cq(q)−R−1θ−1Vk(K

′)
)︸ ︷︷ ︸

Dynamic Marginal Cost

. (15)

Equation (15) expresses the price as a dynamic markup rule. Notice that the appropriate

notion of marginal cost is composed of two terms. First, we have the “static” marginal

cost cq(q), which is the cost of producing one additional unit at the current date. Second,

because of the dynamic nature of the oligopolist’s problem, we have the discounted marginal

value, which encodes the loss in future profit due to the fact that one additional unit will

shift residual demand in the future.

We define the dynamic markup rate as a share of the marginal cost as µD ≡ η
N−η

, where

the superscript D stands for “dynamic.” In equilibrium, the inverse elasticity η varies with

the level of aggregate capital K, and so does the markup rate µD.

Using the envelope condition (13), we can also express the static markup rate µS, over

the static marginal cost cq(q), as follows:

µS ≡ P − cq(q)

cq(q)
= µD

(
1− NR−1θ−1Vk(K

′)

ηcq(q)

)
(16)

The term in parenthesis on the right-hand side of equation (16) adjusts the dynamic markup
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to account for the effect of future competition on the overall marginal cost.

4.3 Prices and Markups Around Steady State

To gain further insight into the effect of the level of capital on the equilibrium price, let

us define the equilibrium law of motion of capital, g(K) ≡ K(1 − δ) + I(K). We proceed

under the regularity condition that a stable steady-state level of capital exists and capital

converges to it monotonically from below (at least locally). We will verify this condition

numerically. In a neighborhood of the steady state, we then have 0 ≤ gk(K) < 1. A

steady-state level of capital and price satisfy

(θP + 1− θ) (R− 1 + δ) = fk(K).

Differentiating the Euler equation (6) with respect to K, we obtain

Pk(Kt−1) =
(
R−1θ−1fkk(Kt) +R−1(1− δ)Pk(Kt)

)
gk(Kt−1) (17)

=
∞∑
s=0

R−s−1(1− δ)s
(
Πt−1+s

τ=t−1gk(Kτ )
)
θ−1fkk(Kt+s),

which expresses the slope of the equilibrium price function as a present discounted value

of the second derivatives of the production function moving forward in time along the

equilibrium capital accumulation path.

In steady state, equation (17) becomes

Pk(K) =
R−1θ−1fkk(K)gk(K)

1−R−1gk(K)
. (18)

The numerator of (18) is negative by concavity of the production function. The denomi-

nator is positive. Hence the equilibrium price is decreasing in the level of capital, Pk < 0,

in a neighborhood of a steady state. This result, together with fkk < 0, ensures that the

inverse elasticity η is positive in a neighborhood of a steady state.

Furthermore, in steady state we can use the envelope condition (13) together with

equation (16) to express the static markup rate as follows:

µS =
µD

1− N
N−η

R−1(1− δ +
(
N−1
N

)
Ik(K))

.
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4.4 Capital Level and Price Elasticity of Investment

We now investigate the relation between the level of capital and the price elasticity of

investment, which is a key determinant of the markup on new investment goods. Whereas

it is necessary to examine this relation numerically in our model, we can make analytical

progress in a simplified setting.

Consider the limiting case of full depreciation, δ = 1, and assume there is a monopoly,

i.e. N = 1 and that θ = 1. Moreover, assume the economy has an endowment of capital

K0 that is not purchased from the monopolist. This endowed capital acts as stand-in for

undepreciated capital from the past in our model with partial depreciation and shifts the

demand for investment.

In this case, taking logs of the investment Euler equation, we can write

log(P ) = − log(R) + log (fk(K0 + I)) .

Thus, the inverse price elasticity is

η = −fkk(K0 + I)I

fk(K0 + I)
.

Assume further that the production function is Cobb-Douglas, f(K) = AKα with α ∈
(0, 1), as we will maintain in our quantitative analysis. Then,

η = (1− α)
I

K0 + I
,

which is decreasing in K0 for a given level of quantity demanded I. Hence, investment

demand is less elastic with respect to the price for low K0 and the optimal markup is

decreasing in K0.

More in general, the sign of the derivative of the inverse elasticity with respect to K0

depends on the the first three derivatives of the production function:

∂η

∂K0

= I

(
(fkk)

2 − fkkkfk
(fk)2

)
,

and is negative when f 2
kk − fkkkfk < 0. Intuitively, the first derivative of the production

function appears in the Euler equation, which is the demand schedule for investment goods.

Thus, the second derivative determines the price elasticity. Finally, the third derivative is a
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determinant of the slope of the elasticity with respect to the predetermined level of capital.

4.5 Commitment to Future Production

We now analyze the role of commitment to a future production plan. We consider the

following game. At t = 0, each investment-good producer commits to an infinite sequence

of production levels {qt}∞t=0 taking as given a sequence of competitors’ production levels

{q−,t}∞t=0. We then impose symmetry across investment-goods producers in equilibrium.

We interpret this setup as the limiting case of a world with long-lived managers that

formulate production plans and face high costs of deviating from them, for instance because

of large costs of changing the production capacity.

In this formulation, we assume that investment-goods producers cannot collude because

of coordination costs that we do not explicitly model. In Appendix A.2 we consider the

case of collusion with commitment, in which case the objective is to maximize the present

discounted value of total profits. The two problems coincide if N = 1.

The oligopolist’s maximization problem is

max
{Pt,qt,Kt}∞t=0

∞∑
t=0

R−t (Ptqt − c (qt))

subject to the demand schedule (or, using the language of Ramsey-optimal policy, “imple-

mentability constraint”)

Pt = R−1
(
θ−1fk(Kt) + (1− δ)Pt+1

)
− κ

for t = 0, 1, .., with multiplier R−tγt, and the law of motion

Kt = (1− δ)Kt−1 + θ−1 ((N − 1)q−,t + qt) .

The first-order conditions of this problem are:

qt − γt + γt−1(1− δ) = 0 (19)

θPt − θcq(qt) + γtR
−1θ−1fkk(Kt)−R−1θ(1− δ) (Pt+1 − cq(qt+1)) = 0, (20)

with initial condition on the multiplier γ−1 = 0. These optimality conditions trade off

present and future profits, similar to the GEE (12). However, we highlight two important
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differences between the dynamics under commitment and the ones we obtained in a Markov

Perfect Equilibrium.

First, equation (19) reveals the nature of the time inconsistency of the optimal pro-

duction plan under commitment. A higher price at t relaxes the past implementability

constraint allowing a higher price at t − 1. However, at t = 0, the producer is not bound

by any past commitment. Then, over time, past commitments, encoded in the multiplier

γt, accumulate, thereby making it increasingly costly to reduce prices. In contrast, in a

Markov Perfect Equilibrium, firms always disregard the competition with their past selves

and only internalize future equilibrium decision rules.

Second, because under commitment we assume that firms take as given the whole path

of competitors’ decisions, they do not internalize the effect of their production levels on

future competitors’ production, which accounts for the term Ik(K
′), which is present in the

envelope condition (13) but absent in equation (20).

We define a symmetric equilibrium with commitment as follows.

Definition 2 A Symmetric Equilibrium with Commitment is a sequence of allo-

cations, prices, and multipliers on the investment Euler equation {Kt, qt, It, Pt, γt}∞t=0 that

satisfy the investment Euler equation, the capital accumulation equation, and the oligopoly

first-order conditions (19) and (20).

As in the no-commitment case, we can use the optimality conditions (19) and (20) to

express the price in terms of the marginal cost and a markup rate. To this end, we first

rewrite equation (20) as follows:

Pt

1 +
θ−1 (qt + (1− δ)γt−1)

Pt

·R−1θ−1fkk(Kt)︸ ︷︷ ︸
dPt
dKt

 = cq(qt) +R−1(1− δ) (Pt+1 − cq(qt+1)) .

We then observe that dPt

dQt
= θ−1 dPt

dKt
. Thus, defining the inverse price elasticity of demand

ηFC ≡ −Q

P

dPt

dQt

= −Q

P
R−1θ−2fkk(Kt),
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we get

Pt =
N

N −
(
1 + N(1−δ)γt−1

Qt

)
ηFC︸ ︷︷ ︸

Dynamic Markup

·
(
cq(qt) +R−1(1− δ) (Pt+1 − cq(qt+1))

)︸ ︷︷ ︸
Dynamic Marginal Cost

. (21)

Equation (21) expresses the price as a dynamic markup rule that is both forward looking

and backward looking. In particular, the commitment problem features the backward-

looking term N(1−δ)γt−1

Qt
that was not present in the Markov Perfect Equilibrium. This term

captures the fact that the firm internalizes that a marginal increase in price at time t has

an effect on the demand schedule at time t− 1. Notice also that the appropriate notion of

marginal cost is composed of two terms. First, we have the “static” marginal cost cq(qt),

which is the cost of producing one additional unit at the current date. Second, because of

the dynamic nature of the oligopolist’s problem, we have the discounted future markup.

Similarly to the no-commitment case, we can also define the dynamic markup rate under

commitment as a fraction of the marginal cost.

5 Quantitative Analysis

In this section, we calibrate the model and solve it numerically to explore the implications

of market power in investment-goods markets for capital accumulation. We focus on the

dynamics of markups along the transition path to steady state in the domestic economy.

5.1 Solution Method

We begin this section by briefly discussing our global solution method.

Markov Perfect Equilibrium. We solve the Markov Perfect Equilibrium using a ver-

sion of the time-iteration algorithm to approximate the policy functions I(K) and P (K).

Specifically, we guess a polynomial approximation for I(K). Given this candidate policy

function, we obtain an associated guess for P (K) by doing time iteration on equation (6),

recursively solving for the left-hand side on a grid for K and then plugging the obtained

price function in the right-hand side. Once we obtain a converged price function, we use it

to numerically approximate the derivative Pk(K). Then, to update I(K), we apply time

iteration to the GEE (12) substituting in it the envelope condition (13) with an approxi-

mation of the derivative Ik(K). We repeat these steps until all policy functions converge.
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Commitment. In this case, we solve the model recursively by adding the multiplier on the

past investment Euler equation as a state variable. We then solve the equilibrium under

commitment using a time-iteration algorithm on equations (19) and (20) to approximate

the policy functions I(K, γ) and γ′(K, γ) with polynomials.

5.2 Calibration

We proceed to describe our choices of functional forms and parameter values, which we

report in Table 1. The length of a period is one year. We assume that the production

function in the domestic economy is Cobb-Douglas: F (Kt−1, L) ≡ AKα
t−1L

1−α and nor-

malize the labor endowment L = 1. We interpret capital as the stock of nonresidential

private equipment in the US. We set the capital share in the production function and the

depreciation rate to match the ratio of the stock of equipment to GDP and the average

depreciation rate of equipment using data from the NIPA Asset Tables. In Appendix A.4

we provide our main results based on an alternative calibration, which refers to a broader

definition of capital, including structures, as in standard real-business-cycle models.

We calibrate the share of imported investment goods in total investment using US

data on investment-goods prices as follows. We first deflate the Producer Price Index

of semiconductors and the Producer Price Index of machinery and equipment using the

GDP deflator. We fit a linear trend in both series during 2012-2019. We then match

the pass-through of the cumulative increase in the real price of semiconductors to the

real price of machinery and equipment during 2019-2023. Relative to trend, we observe

a 20% increase in the real price of semiconductors and a 7% increase in the real price

of machinery and equipment. In Appendix A.5 we provide our main results based on an

alternative calibration, which interprets the imported oligopolistic input more narrowly as

wafers, a key component in the production of semiconductors, for which we can use detailed

data on production and unit margins.

We set the number of foreign investment-goods producers to closely resemble the highly

concentrated market structure in semiconductor manufacturing. We then experiment with

a change in market structure in Section 6.4. We assume that the cost function to produce

investment goods is quadratic: c(q) = c1q +
c2
2
q2. Given a calibrated value for the slope of

the marginal cost c2, we set the intercept c1 to normalize the marginal cost of investment

to one in the first-best steady state. We calibrate c2 so that the ratio of profits to sales in

steady state closely matches the ratio of operating income to sales in balance-sheet data
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Table 1: Parameters Values

Parameter Symbol Value

Investment Demand Discount Factor β 0.96

Depreciation δ 0.1354

Capital Share α 0.0645

Oligopolistic Capital Share θ 0.366

Total Factor Productivity A 2.743

Investment Supply Number of Producers N 3

Marginal Cost (Intercept) c1 0.6369

Marginal Cost (Slope) c2 22

Notes: The table reports the parameter values used in the quantitative analysis.

for the major semiconductor manufacturers. Specifically, using ORBIS data on TSMC and

Samsung, we obtain a ratio of approximately 30%. This calibration strategy implies that

the steady-state elasticity of the marginal cost with respect to the quantity produced is

equal to 0.35%.

5.3 Capital Accumulation, Prices, and Markups

Figure 2 illustrates some key properties of the Markov Perfect Equilibrium. The left panel

portrays the law of motion of aggregate capital, comparing the oligopoly outcome (solid

line) with the first-best allocation (red circle). The right panel portrays the equilibrium

price (solid line) and the marginal cost (dashed line) as functions of the capital level.

In the Markov Perfect Equilibrium, the steady-state level of capital is lower than in

first best because of the presence of a markup. Moreover, as the economy grows toward its

steady state, the price of investment declines faster than the marginal cost, which implies

that the static markup is decreasing in the level of capital. As a consequence, capital

accumulation is slower in the presence of market power than in the first-best allocation.

Hence, less competition among investment-goods suppliers dampens capital accumulation

and growth. This mechanism is related to the one that arises in the presence of dynamic

oligopoly in the credit market, which Villa (2023) analyzes.

Overall, the model predicts a 0.3% permanent-consumption loss in the Markov Perfect

Equilibrium relative to first best.

Next we investigate the dynamics of markups, which Figure 3 displays. We distinguish
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Figure 2: Markov Perfect Equilibrium: Capital Accumulation, Price, and Marginal Cost
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Notes: The figure displays capital accumulation and prices in the Markov Perfect Equilibrium (MPE).

Panel (a) illustrates the law of motion of capital in the domestic economy. The solid line represents next-

period capital (y-axis) as a function of current capital (x-axis). Its intersection with the 45-degree dashed

line identifies the steady-state MPE. The red circle marks the equilibrium capital stock in the first-best

steady state. Panel (b) displays price P (solid line) and marginal cost cq(q) (dashed line) as functions of

the aggregate capital stock. The red circle marks the equilibrium price in the first-best steady state.

between the static markup µS
t (solid line) and the dynamic markup µD

t , which we defined

in Section 4.2. The static markup is larger than the dynamic markup because it has to

cover the part of marginal cost due to competition with the future undepreciated capital

stock. Both markup rates decline as aggregate capital increases. When the level of capital

is low, the price elasticity of investment is low, consistent with the analytical insights of

Section 4.4 in a simplified setting. This feature accounts for the negative slope of µD
t .

Furthermore, a low level of capital, combined with low elasticity, implies that investment-

goods producers can extract rents from the domestic economy for a relatively long time,

while capital accumulates toward the steady state. This anticipation of future markups

accounts for the decreasing gap between µS
t and µD

t in the figure. Overall, both the price

elasticity and the anticipation of future markups contribute to generate a larger distortion

for lower levels of capital.

Quantitatively, our results imply that when the level of capital is approximately half of

its steady-state target, the price of investment and the static markup rate are approximately

35% and 45% higher than in steady state, respectively.
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Figure 3: Static and Dynamic Markup Rates
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Notes: The figure illustrates the static markup rate µS (solid line) and the dynamic markup rate µD in

the Markov Perfect Equilibrium as functions of the aggregate capital stock K.

5.4 Role of Commitment

We now investigate the difference between the Markov Perfect Equilibrium and the case

of full commitment to future production (Section 4.5). Figure 4 displays the dynamics of

aggregate capital, multiplier on the investment Euler equation (γt), price of investment,

and static markup. The figure compares the Markov Perfect Equilibrium (solid lines) with

the case of commitment (dashed lines).

First, we notice that in the presence of commitment the price of investment and the

markup are substantially higher than in the Markov Perfect Equilibrium. As a result,

capital converges to a lower steady-state level. In steady state, the static markup rate

is approximately 130% with commitment and 16% in the Markov Perfect Equilibrium.

Accordingly, in the presence of commitment the welfare cost of the oligopoly is significantly

higher and equal to 2.3% of permanent consumption.

Second, by comparing the transition dynamics in the two regimes, we uncover the source

of time inconsistency of the commitment plan. Under full commitment, at the beginning

of the transition, when the multiplier is zero, each oligopolist has an incentive to set a

relatively high level of production and, accordingly, a lower price than in the long run. As

a consequence the domestic economy experiences an investment boom and overshoots its

long-run level of capital. Over time, as the promise-keeping multiplier accumulates, prices
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and markups grow and the economy reverts to its steady-state level of capital.

These dynamics display a sharp contrast with the outcome in the absence of commit-

ment, which, as we have seen, features decreasing price and markup as capital accumulates

to the steady state.

Figure 4: Role of Commitment
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Notes: The figure compares the transition of the economy to the steady-state equilibrium without commit-

ment (Markov Perfect Equilibrium, solid lines) and with full commitment (dashed lines). In both settings,

we assume that the initial level of capital equals half of the first-best steady-state value. Panels (a), (b),

(c), and (d) plot the transitions of aggregate capital Kt−1, demand schedule multiplier γt, price Pt, and

static markup rate µS
t , respectively.
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5.5 Inspecting the Mechanism: Markup Decomposition

We now provide a decomposition of markups along the equilibrium capital-accumulation

path. This decomposition highlights the main forces at play in the evolution of markups,

namely shifts in the demand for investment goods and changes in the slope of the demand

curve.

In the Markov Perfect Equilibrium, we can reformulate the GEE (12) along the tran-

sition path in terms of future sequences of three objects: quantities produced, deriva-

tives of the demand function dPt

dQt
≡ θ−1R−1 (θ−1fkk(Kt) + (1− δ)Pk(Kt)), and an en-

dogenous discount factor, which we define recursively as follows: Bt,t = 1, Bt,t+1 =

R−1(1 − δ + (N−1
N

)Ik(Kt)), and Bt,t+s = Bt,t+s−1R
−1(1 − δ + (N−1

N
)Ik(Kt+s−1)). We ex-

press the difference between price and marginal cost as follows:

Pt − cq(qt) = −
∞∑
s=0

Bt,t+sqt+s
dPt+s

dQt+s

. (22)

To quantify the role of each factor for the dynamics of markups, we then compute coun-

terfactual markups using steady-state values for two of the three determinants and letting

the third one vary according to the equilibrium path.

Similarly, we can reformulate the commitment first-order condition (20) as follows:

Pt − cq(qt) = −
∞∑
s=0

R−s(1− δ)sγt+s

(
dPt+s

dQt+s

)
(23)

with dPt

dQt
= R−1θ−2fkk(Kt) and decompose the roles of quantities and slopes of the demand

curve along the equilibrium path.

Figure 5 illustrates this decomposition for the Markov Perfect Equilibrium (left panel)

and the case of commitment (right panel). In the absence of commitment, quantities decline

over time because investment is initially high and then decreases as the economy approaches

steady state. This path contributes to declining markups over time. Furthermore, rotations

in the demand curve amplify the effect of the decline in investment, leading to a steeper

decline in markups. In contrast, in the presence of commitment, the multiplier γt grows as

capital is accumulated, leading to an increasing gap between price and marginal cost.
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Figure 5: Markup Decomposition in the Markov Perfect Equilibrium vs. Commitment

0 5 10 15 20

-4

-2

0

2

4

6

8

10

12

14

16

(a) Markov Perfect Equilibrium

0 5 10 15 20

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

(b) Full Commitment

Notes: The figure displays a decomposition of the evolution of the static unit markup Pt − cq,t over the

transition of the economy to steady state. Panel (a) refers to the Markov Perfect Equilibrium. Leveraging

equation (22), the figure disentangles variation in the static unit markup (solid line) driven by: (i) quantities

qt+s produced by each oligopolist (dashed line); (ii) the derivative of inverse demand with respect to

quantities dPt+s/dQt+s (dash-dotted line); and (iii) implicit discounting Bt,t+s (dotted line). Panel (b)

refers to the full commitment equilibrium. Leveraging equation (23), the figure disentangles variation in

the static unit markup (solid line) driven by: (i) the demand multiplier γt+s (dashed line); and (ii) the

derivative of inverse demand with respect to the quantity produced dPt+s/dQt+s (dash-dotted line).

6 Shocks, Marginal Costs, and Market Power

In this section, we analyze the effects of aggregate shocks. We simulate an increase in the

demand for investment goods, similar to the one experienced in the post-2020 recovery. We

highlight the roles of increasing marginal costs—akin to capacity constraints—and market

power for the dynamics of investment and prices. We also consider an investment-cost

shocks and a stochastic version of our model with persistent business-cycle shocks. Finally,

we simulate the effects of a change in the number of investment-goods producers and a

relaxation of capacity constraints.

6.1 Investment-Demand Shock

We now leverage the model to gain insight into the dynamics of the post-2020 recovery,

when a rise in demand for durable goods (and thus for semiconductors) led to a dramatic
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increase in the price of equipment. Two factors likely contributed to this pattern. First,

producers of semiconductors as well as other manufacturers overall experienced tight capac-

ity constraints, which we interpret as steeply increasing marginal costs in our parsimonious

model. Second, these producers could exert market power and extract profits from the

period of high demand. The calibrated model allows us to decompose these channels.

To this end, we simulate a positive unexpected shock to the demand for investment

goods. Specifically, we calibrate a permanent increase in the level of TFP in the domestic

economy to match a 20% increase in the price of semiconductors during 2019-2023. Figure

6 displays the aggregate dynamics in the model. The increase in productivity stimulates

capital accumulation toward a higher steady-state level. On impact, the price of invest-

ment goods jumps and overshoots its long-run value. We find that the price dynamics are

predominantly accounted for by changes in the marginal cost.

At the same time, markups also increase, although moderately, by approximately 2.5

percentage points on impact. The observed overshooting of markups is consistent with

our analysis of the transition to steady state in the previous section. The demand shock

effectively initiates a new transition to a higher steady-state level of capital. Thus, markups

are initially high and then decline as the domestic economy converges to the new steady

state.

Overall, this analysis shows that in spite of the presence of market power and endogenous

markups, the increase in the relative price of investment is largely driven by technological

features, such as capacity constraints. Because of the convexity of the cost function, the

model predicts that average (i.e., per unit sold) profits of investment-goods producers also

increase in response to the shock.

All of these patterns are consistent with empirical evidence on production levels and

profitability of semiconductor manufacturers during the post-2020 recovery, which we doc-

ument in Appendix B. Specifically, we show that there was positive comovement of prices,

quantities, and profit margins both using a broader notion of semiconductors and using

more detailed data on a narrower category, namely wafers (for which we also perform a

separate model calibration in Appendix A.5). This positive comovement of prices and

production volumes confirms the important role of demand conditions in the recovery.

We also analyze the effects of the investment-demand shock when investment-goods

producers have full commitment. We report the results in Appendix A.7. In the presence

of full commitment, markups decline in response to the shock. This scenario confirms that
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increasing marginal costs play a major role for the increase in the price of equipment.

Figure 6: Investment-Demand Shock
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

increase in TFP in the Markov Perfect Equilibrium. Panel (a) plots the exogenous change in TFP At.

Panel (b) plots the transition of aggregate capital Kt−1 to the new steady state in the domestic economy.

Panel (c) plots the transition of the price Pt (solid line) and producers’ marginal cost cq,t (dashed line)

to the new steady state. Panel (d) plots the transition of the static markup rate µS
t (solid line) and of

the dynamic markup rate µD
t (dashed line) to the new steady-state. We assume that the shock occurs at

t = 0, that the economy is in the initial steady state at t = −1, and that agents have perfect foresight of

the evolution of all variables after the unexpected shock occurs.
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6.2 Investment-Cost Shock

Next, we investigate the effects of a shock that hits the production side of investment goods

in the model. Specifically, we assume that the cost function is Ztc(qjt), with Zt = 1 in the

initial steady state. We then calibrate an increase in Zt to match the same equilibrium

price increase as in the previous subsection.

Figure 7 displays the aggregate effects of this shock in the model. The increase in the

cost of producing investment goods induces a decline in the level of capital in the domestic

economy. As the price of investment goods increases, markups decline, suggesting that the

increase in cost reduces profitability at the margin. Nevertheless, the model predicts that

average profits increase. Overall, we find that the demand shock better accounts for the

empirical dynamics in the semiconductor industry during the post-2020 recovery, because

both prices and quantities produced increased.

We also consider the contemporaneous occurrence of an investment-demand shock and

an investment-cost shock and report the results in Appendix A.6. Because both shocks

have a positive effect on prices, shocks of a smaller magnitude are needed to account for

the large increase in the price of semiconductors we observe in the data. Furthermore,

in the presence of both shocks the model can quantitatively account for both the price

increase and the increase in the production of semiconductors during the recovery.

6.3 Business Cycles

We now extend our model to include stochastic productivity shocks in the domestic econ-

omy. To this end, we assume that the production function is Yt = AtK
α
t−1L

1−α and that

productivity follows an AR(1) process in logs: log(At) = (1− ρ)µA + ρ log(At−1) + εt. We

parameterize the autocorrelation and standard deviation of innovations following the cal-

ibration of TFP shocks for the US economy in Khan and Thomas (2013)—i.e., ρ = 0.909

and σε = 0.014. We provide all derivations of the stochastic model in Appendix A.3. In the

presence of stochastic shocks, the GEE of a generic investment-goods producer becomes:

θP − θcq(q) + qR−1E
[
θ−1fkk(A

′, K ′) + (1− δ)Pk(K
′, s′)|s

]
+R−1E[Vk(K

′, s′)|s] = 0,

28



Figure 7: Investment-Cost Shock
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

25% increase in the cost function coefficient Z. Panel (a) plots the exogenous change in Zt. Panel (b) plots

the transition of aggregate capital Kt−1 to the new steady state in the domestic economy. Panels (c) plots

the transition of the price Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new steady

state. Panel (d) plots the transition of static markup rate µS
t (solid line) and of the dynamic markup rate

µD
t (dashed line) to the new steady state. We assume that the shock occurs at t = 0, that the economy is

in the initial steady state at t = −1, and that agents have perfect foresight of the evolution of all variables

after the unexpected shock occurs.

whereas the optimality conditions with commitment become:

qt − γt + γt−1(1− δ) = 0

θPt − θcq(qt) + γtR
−1Et

[
θ−1fkk(At+1, Kt)

]
−R−1θ(1− δ)Et [(Pt+1 − cq(qt+1))] = 0,
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Table 2: Stochastic Productivity: Business Cycle Moments

FB MPE FC

Mean I 0.046 0.044 0.031

Mean P 1.000 1.095 2.172

Mean Markup 0 0.100 1.261

St. Dev. I/St. Dev. Y 4.063 3.494 4.705

St. Dev. P 0.004 0.005 0.002

St. Dev. Markup 0 0.001 0.004

Corr. Y and I 0.916 0.940 0.887

Corr. Y and P 0.921 0.934 0.887

Corr. Y and Markup 0 0.901 -0.904

Notes: The table reports several moments related to investment, the price of the oligopolistic investment
good, and the static markup rate, from a long a simulation of the model with stochastic productivity
in the domestic economy. The first column refers to the first-best allocation, the second column to the
Markov Perfect Equilibrium, and the third column to the case of full commitment. Standard deviations
and correlations are computed for the logarithm of the variables, except for the markup rate, and the
simulated data are HP-filtered with a smoothing coefficient equal to 6.25 for annual frequency.

Table 2 reports several business-cycle moments from a long simulation of the stochastic

model. The stochastic model confirms the main insights that we have highlighted in the

previous section. Prices and markups are higher on average in the presence of commitment.

The model predicts a moderate business-cycle volatility and high procyclicality of prices

and markups in response to productivity shocks, consistent with our findings on the effect

of a permanent investment-demand shock.

In Appendix A.8, we extend the stochastic model to feature both TFP shocks and cost

shocks in the production of investment goods, calibrated using data on equipment prices.

The cost shock counters the procyclicality of the price of equipment and adds significant

volatility to investment.

6.4 Counterfactual Analyses: Market Power vs. Capacity Con-

straints

Our findings on the implications of market power for capital accumulation motivate us to

analyze the effects of a change in the number of producers. We now use our model to shed

light on the likely effects of policies, such as the CHIPS and Science Act, that affect the

market structure and productive capacity for dynamic inputs.

To this end, we first simulate an increase in the number of competitors from N = 3
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to N = 4 and compute the equilibrium transitional dynamics after this regime change

in the Markov Perfect Equilibrium. We interpret this experiment as the outcome of a

policy intervention that reduces the perceived entry cost for investment-good producers.

To quantify the implicit subsidy, we assume that the present discounted value of steady-

state profits with N = 3 firms exactly offsets the entry cost. To induce entry of one

additional firm, a flow subsidy paid to each investment-good producer in every period must

equal 0.2% of steady-state consumption in the domestic economy.

Figure 8 displays the transition of the capital stock (left panel) as well as price and

marginal cost of investment (right panel). As the number of producers increases, total

capacity expands and competition rises. Given any level of aggregate investment, a larger

production capacity reduces individual quantities, thus reducing the marginal cost. This

contributes to a decline in the price, inducing more capital accumulation in the domestic

economy. Furthermore, over time, higher competition depresses markups, and thus the

equilibrium price drops by approximately 60% more than the marginal cost. In turn, this

price decline further stimulates capital accumulation. The welfare gain in the domestic

economy, without accounting for subsidies, equals 0.3% of permanent consumption.

We also simulate this increase in competition in the case of full commitment and report

the results in Appendix A.7. In this case, we obtain an even larger effect of entry on

markups, prices, and capital accumulation.

Next, we investigate an alternative scenario in which we engineer a reduction in the

marginal cost of the same magnitude by flattening the cost function instead of increasing

the number of firms. Specifically, we approximate the effects of a relaxation of capacity

constraints with a reduction in the value of c2, thus reducing the cost convexity, and focus

on the Markov Perfect Equilibrium.

Figure 9 displays the results. Although we match the induced decline in the marginal

cost, the comparison of this figure with Figure 8 reveals that only the change in market

structure generates an additional price reduction due to the endogenous compression in

markups.

In terms of welfare, the increase in the number of producers leads to a permanent-

consumption gain that is approximately one third larger than the one implied by the

counterfactual in which we flatten the cost curve. Strikingly, the increase in N approxi-

mately closes the gap between the Markov Perfect Equilibrium and the first-best allocation
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Figure 8: Increase in the Number of Investment-Goods Producers
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Notes: The figure illustrates the response of the economy in the Markov Perfect Equilibrium to an unantic-

ipated and permanent increase in the number of investment-goods producers from N = 3 to N = 4. Panel

(a) plots the transition of domestic economy’s aggregate capital stock Kt−1 to the new steady state. Panel

(b) plots the transition of the investment price Pt (solid line) and producers’ marginal cost cq,t (dashed

line) to the new steady state. We assume that the shock occurs at t = 0, that the economy is in the initial

steady state at t = −1, and that agents have perfect foresight of the evolution of all variables after the

unexpected shock occurs.

associated with N = 3.3 This analysis shows that market power plays a critical role in

the transmission of policy interventions aimed at expanding capacity in the semiconductor

manufacturing industry

7 Conclusion

We have developed an open-economy model with market power in the global production

of investment goods. In so doing, we were motivated by the post-2020 global recovery,

which featured a large increase in demand for inputs produced by a highly concentrated

industries, such as semiconductors.

In our framework, the price of investment goods equals the sum of a marginal cost—

which can be affected by capacity constraints—and an endogenous markup, which depends

critically on the level of demand for investment goods. When investment-goods producers

3The first-best allocation associated with N = 4 implies an even higher level of welfare.
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Figure 9: Relaxation of Capacity Constraints
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Notes: The figure illustrates the response of the economy in the Markov Perfect Equilibrium to an unantic-

ipated and permanent decline in the slope of the marginal cost function from c2 = 22 to c2 = 16.8. Panel

(a) plots the transition of the aggregate capital stock Kt−1 to the new steady state. Panel (b) plots the

transition of the investment price Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new

steady state. We assume that the shock occurs at t = 0, that the economy is in the initial steady state at

t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected shock

occurs.

behave as oligopolists without commitment, the markup rises in response to positive shocks

to investment demand, thereby generating a microfounded aggregate capital adjustment

cost.

However, when we calibrate the model to the post-2020 recovery, we find that increasing

marginal costs likely played a major role in the increase in equipment prices, leaving a

more limited role for markup hikes, despite an overall increase in profits. By allowing this

decomposition, our model contributes to the debate on the so-called “greedflation” in the

recovery.

The model also provides a useful laboratory to analyze policy interventions that aim to

increase the productive capacity in the global semiconductors industry. Our counterfactual

analyses show that interventions that increase the number of producers may be particularly

effective in stimulating capital accumulation because they expand aggregate capacity and

reduce market power.
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APPENDIX

A Additional Model Analyses

A.1 First-Best Planning Problem

The social planner chooses sequences {Ct, Bt, qjt, Kt} for j = 1, .., N and t = 0, ..,∞ to

maximize household utility (1) subject to the resource constraint

Ct +
N∑
j=1

c(qjt) +Xt +Bt = f(Kt−1) + β−1Bt−1,

with multiplier βtλt, where Xt = θ−1(1− θ)
∑N

j=1 qjt and where we used R = β−1, as well

as the capital accumulation equation

Kt = θ−1

N∑
j=1

qjt + (1− δ)Kt−1,

with multiplier βtνt.

The optimality conditions are

uc(Ct) = λt

λt = λt+1

λt

(
cq(qjt) + θ−1(1− θ)

)
= θ−1νt

νt = β (λt+1fk(Kt−1) + (1− δ)νt+1) ,

which imply symmetric production qjt = qt =
θIt
N

for all j if cqq > 0, and can be combined

to obtain equation (9):

θcq

(
θIt
N

)
+ 1− θ = R−1

(
fk(Kt) + (1− δ)

(
θcq

(
θIt+1

N

)
+ 1− θ

))
.
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A.2 Commitment with Collusion

A planner chooses sequences of prices and quantities for all N producers, {Pt, qjt}, for

t = 0, ..,∞ and j = 1, .., N to maximize

∞∑
t=0

R−t

(
Pt

N∑
j=1

qjt −
N∑
j=1

c(qjt)

)
, (A1)

subject to

Pt = R−1
(
θ−1fk(Kt) + (1− δ)Pt+1

)
− κ,

for t = 0, 1, .., with multiplier R−tΓt, and

Kt = (1− δ)Kt−1 + θ−1

N∑
j=1

qjt,

with multiplier R−tνt.

The first-order conditions with respect to Pt, qjt, and Kt are:

N∑
j=1

qjt − Γt + (1− δ)Γt−1 = 0

Pt − cq(qjt)− θ−1νt = 0

ΓtR
−1θ−1fkk(Kt) + νt −R−1(1− δ)νt+1 = 0,

which imply qjt = qt for all j (as long as cqq > 0) and

θPt − θcq

(
θIt
N

)
= −ΓtR

−1θ−1fkk(Kt) +R−1θ(1− δ)

(
Pt+1 − cq

(
θIt+1

N

))
. (A2)

Notice the similarity between equation (A2) and equation (20). The key difference between

these two optimality conditions is given by the multiplier on the investment Euler equation,

which under collusion accounts for the aggregate capital accumulation path.
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A.3 Stochastic Model

Let st be a vector of shocks. Given s0, and history of shocks st = {st−1, st}, a stochastic

open economy is populated by a representative household with utility function

∞∑
t=0

∑
st

βtu(C(st))Pr(st), (A3)

where β ∈ (0, 1) denotes the discount factor, Ct = C(st) is aggregate consumption, and

uc > 0, ucc ≤ 0, where subscripts denote first and second derivative respectively.

We assume the household has access to state contingent bonds. Given st, the budget

constraint of the household at time t reads

C(st)+P I(st)I(st)+
∑
st+1

B(st+1|st) = W (st)L+RK(st)K(st−1)+Rb(st|st−1)B(st|st−1)+D(st),

(A4)

where P I(st) = P I
t is the price of investment goods I(st) = It, Bt = B(st+1|st) are state-

contingent bonds that pays Rb(st|st−1), Wt = W (st) is the wage, L is a constant endowment

of labor, RK
t = RK(st) denotes the rental rate of capital Kt−1 = K(st−1), and Dt = D(st)

are profits obtained from ownership of domestic firms. We assume that the household

is only subject to the natural debt limit. For ease of notation, we drop the dependency

from the history of shocks and simply indicates all variables with their corresponding time

subscript.

Investment adds to the capital stock, which depreciates at rate δ:

Kt = (1− δ)Kt−1 + It. (A5)

As in the deterministic model, we assume that investment has to be non-negative and

restrict attention to a region of the parameter space where this constraint is not binding.

The first-order conditions of the utility maximization problem with respect to bonds

and investment are

∀st+1 : 1 = β
uc(C(st+1))

uc(C(st))
Rb(st+1|st)Pr(st+1) (A6)

P I
t = Et

[
β
uc(Ct+1)

uc(Ct)

(
RK

t+1 + (1− δ)P I
t+1

)]
. (A7)
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A representative firm rents capital from the representative household and hires labor to

produce output with a constant-returns to scale production function:

Yt = F (At, Kt−1, L). (A8)

The first-order conditions of the profit maximization problem are

FK(At, Kt−1, L) = RK
t (A9)

FL(At, Kt−1, L) = Wt.

For notational convenience, we define f(At, Kt−1) ≡ F (At, Kt−1, L). Because of constant-

returns to scale, the representative firm makes zero profits in equilibrium—i.e., Dt = 0.

We assume that the risk-free interest rate satisfiesR = β−1 and thatRb(st+1|st)Pr(st+1) =

R. Given our choice of R, equation (A6) implies that ∀st+1 : uc(C(st+1))
uc(C(st))

= 1. Hence, by

combining the household and firm optimality conditions (A6), (A7), and (A9), we obtain

the following investment Euler equation that describes optimal capital accumulation in the

stochastic version of the economy:

P I
t = R−1Et

[
fk(At+1, Kt) + (1− δ)P I

t+1

]
. (A10)

Equation (6) implicitly expresses the demand for investment goods as a function of the

capital stock Kt−1 as well as current and future investment prices (P I
t ,P

I
t+1) and future

shocks.

As in the deterministic case, as long as markets are complete, our assumptions on

ownership of the capital stock are immaterial and we can equivalently derive this condition

assuming that firms accumulate capital instead of households.

A.3.1 Investment-Goods Producers

We now describe the supply side of the market for investment goods. We assume that

there is an integer number N ≥ 1 of identical investment-goods producers owned by for-

eign investors. The objective of investment-goods producers is to maximize the present

discounted value of profits:
∞∑
t=0

∑
st

R−tπt(s
t)Pr(st). (A11)
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Similarly to the deterministic case, we assume that a perfectly competitive representa-

tive firm combines an amount Qt and an amount Xt of output good to assemble domestic

investment with a Leontief production function. Hence, P I
t = θPt + 1 − θ, as in equation

(7). Equation (A10) becomes:

θPt + 1− θ = R−1Et [fk(At+1, Kt) + (1− δ)(θPt+1 + 1− θ)] . (A12)

Divide everything by θ and factor out the constant to get:

Pt = R−1Et

[
θ−1fk(At+1, Kt) + (1− δ)Pt+1

]
− θ−1(1− θ)(1−R−1(1− δ))︸ ︷︷ ︸

≡κ

. (A13)

A.3.2 First Best

Before analyzing the effects of market power, we briefly introduce the competitive bench-

mark, which coincides with the solution to the problem of a planner who maximizes welfare

in the open economy taking as given the cost function to produce investment goods.

In a competitive equilibrium without market power, investment-goods producers choose

a plan of production levels {q(st)}∞t=0 to maximize (A11) taking as given the sequence of

prices schedules {P (st)}∞t=0. Thus, the equilibrium price satisfies Pt = cq
(
It
N

)
and optimal

capital accumulation satisfies

θcq

(
θIt
N

)
+ 1− θ = R−1Et

[
fk(At+1, Kt) + (1− δ)θcq

(
θIt+1

N

)
+ 1− θ

]
. (A14)

A.3.3 Markov Perfect Equilibrium and Generalized Euler Equation

A generic investment-goods producer solves the following problem:

max
P,K′,q

Pq − c (q) +R−1E[V (K ′, s′)|s] (A15)

subject to the demand schedule

P = R−1E
[
θ−1fk(A

′, K ′) + (1− δ)P (K ′, s′)|s
]
− κ,

the market-clearing condition

(N − 1)q−(K) + q = Q = θI,
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and the law of motion for capital

K ′ = (1− δ)K + I.

First, substitute investment I from the market-clearing condition in the law of motion

for capital. Second, use the derived equation to substitute q in the objective function.

Third, substitute P in the objective function using the demand schedule. Hence, take the

first-order condition with respect to K ′ to get the following Generalized Euler Equation

(GEE):

θP−θcq(q)+qR−1E
[
θ−1fkk(A

′, K ′) + (1− δ)Pk(K
′, s′)|s

]
+R−1E[Vk(K

′, s′)|s] = 0, (A16)

which involves the derivative of the future price with respect to capital in every possible

future realization of shocks.

A.3.4 Commitment to Future Production

Given K−1, the oligopolist’s problem involves finding sequences {P (st), K(st)}∞t=0 such that

∞∑
t=0

∑
st

R−t (Pt (θ(Kt − (1− δ)Kt−1)− (N − 1)q−,t)− c (θ(Kt − (1− δ)Kt−1)− (N − 1)q−,t))Pr(st)

(A17)

is maximized subject to the demand schedule (or, using the language of Ramsey-optimal

policy, “implementability constraint”)

Pt = R−1Et

[
θ−1fk(At+1, Kt) + (1− δ)Pt+1

]
− κ

for t = 0, 1, .., with multiplier R−tγt. The first-order conditions with respect to price

Pt = P (st) and capital level Kt = K(st) are:

qt − γt + γt−1(1− δ) = 0

θPt − θcq(qt) + γtR
−1Et

[
θ−1fkk(At+1, Kt)

]
−R−1θ(1− δ)Et [(Pt+1 − cq(qt+1))] = 0,

with initial condition on the multiplier γ−1 = 0.
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Table A1: Parameters Values

Parameter Symbol Value

Investment Demand Discount Factor β 0.96

Depreciation δ 0.08

Capital Share α 0.333

Oligopolistic Capital Share θ 0.122

Total Factor Productivity A 0.365

Investment Supply Number of Producers N 3

Marginal Cost (Intercept) c1 0.6747

Marginal Cost (Slope) c2 100

Notes: The table reports the parameter values of an alternative calibration of the model whereK represents
aggregate capital, i.e., the sum of equipment and structures.

A.4 Alternative Calibration to Aggregate Capital Stock

In this subsection, we analyze the transition of the economy to the steady state and its

response to an investment demand shock, assuming the alternative calibration summarized

in Table A1. We now interpret K as aggregate capital, i.e., as the sum of equipment and

structures.

Calibration. We follow the calibration strategy used in the main text. We set the capital

share of income and the rate of physical depreciation to standard values in the real-business-

cycles literature. We then calibrate the productivity level such that the capital stock is

equal to one in the first-best steady state. We adjust the steepness of the marginal cost

function to match a ratio of operating income over sales of around 30% and the marginal

cost intercept so that capital price equals one in the first-best steady state equilibrium.

Finally, we divide the baseline weight of the imported oligopolistic input in total investment

by three because equipment represents approximately one third of the capital stock in US

data.

Transition to Steady State. Figure A1 depicts the transition of the economy to the

steady state. Solid lines refer to the Markov Perfect Equilibrium and dashed line to the

full commitment case. We assume that at t = 0 capital is half of its first-best steady-state

level and that the demand multiplier is zero in the full commitment model.

The behavior of the economy is consistent with the results of our main calibration. In
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the Markov Perfect Equilibrium, capital increases monotonically to the steady state. In

contrast, prices and markups start high and monotonically decline because demand for

the oligopolistic investment good is at first strong and less elastic than in the new steady

state. As in the main calibration, price and markup are significantly higher in the full

commitment equilibrium. Moreover, they increase to the new steady state because the cost

of charging lower price increases over time, as represented by the evolution of the demand

multiplier.

Investment Demand Shock. Figure A2 illustrates the response of the economy to a

positive investment demand shock. We consider a 10.7% TFP increase in the domestic

economy, which we calibrate to match an approximate 20% increase in the real price of

semiconductors in the US over 2019-2023.

As in the main calibration, the percent increase in capital between the old and new

steady state exceeds the increase in TFP. Prices and marginal costs overshoot their new

steady-state levels and increase by a similar factor. Therefore, marginal costs determine

most of the observed price dynamics following an investment demand shock. Accordingly,

static and dynamic markup only increase by 2.5 and 1 percentage points on impact, re-

spectively.

A.5 Alternative Calibration with Oligopolistic Wafer Production

In this subsection, we analyze the transition of the economy to the steady state and in re-

sponse to an investment demand shock considering an alternative calibration of the model

where the imported oligoplistic input represents wafers. These constitute the physical sup-

port of chips, thus being a key component in semiconductors manufacturing. We leverage

the data described in Appendix B.2 Table A2 summarizes the parameter values.

Calibration. We calibrate the parameters of investment demand consistently with the

main calibration of Table 1. We change the parameter governing the share of the oligopolis-

tic input in total investment so that the observed cumulative increase in the real price of

wafers over 2019-2023 (62%) induces an approximate 7% increase in the real price of equip-

ment.

We obtain data on unit prices for wafers from Taiwan’s Ministry of Economic Affairs,
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Figure A1: Transition to Steady-State with Calibration to Aggregate Capital
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Notes: The figure compares the transition of the economy to the steady-state equilibrium without com-

mitment (Markov Perfect Equilibrium, solid lines) and with full commitment (dashed lines) under the

alternative calibration of Table A1. In both settings, we assume that the initial level of capital equals half

of the first-best steady-state value. Panels (a), (b), (c), and (d) plot the transitions of aggregate capital

Kt−1, demand schedule multiplier γt, price Pt, and static markup rate µS
t , respectively.

which publishes detailed statistics on both physical volumes and value of production at the

product level. Specifically, we focus on three detailed product categories, namely wafers

with size smaller than 6nm, equal to 8nm, or larger than 12nm, and aggregate them.

Figures B2 and B3 represent the evolution of volumes and unit price around the 2020
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Figure A2: Investment-Demand Shock with Calibration to Aggregate Capital Stock
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

10.7% increase in TFP in the Markov Perfect Equilibrium under the alternative calibration summarized

by Table A1. Panel (a) plots the exogenous change in TFP At. Panel (b) plots the transition of aggregate

capital Kt−1 to the new steady state in the domestic economy. Panel (c) plots the transition of the price

Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new steady state. Panel (d) plots the

transition of the static markup rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to

the new steady-state. We assume that the shock occurs at t = 0, that the economy is in the initial steady

state at t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected

shock occurs.
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Table A2: Parameters Values

Parameter Symbol Value

Investment Demand Discount Factor β 0.96

Depreciation δ 0.1354

Capital Share α 0.0645

Oligopolistic Capital Share θ 0.1206

Total Factor Productivity A 2.743

Investment Supply Number of Producers N 3

Marginal Cost (Intercept) c1 0.7073

Marginal Cost (Slope) c2 55

Notes: The table reports the parameter values of an alternative calibration of the model where wafers
represent the oligopolistic input.

Covid recession.4

Moreover, we adjust the slope of the marginal cost function to match a ratio of operating

income over sales of around 33% observed in Orbis data for Taiwanese chips manufactur-

ers (TSMC and Mediatek). We restrict our attention to Taiwanese manufacturers to be

consistent with detailed price and quantity data used in the calibration of the oligopolistic

investment share. Finally, we set the marginal cost intercept so that the price of investment

equals one in the first-best steady-state equilibrium.

Transition to Steady State. Figure A3 depicts the transition of the economy to the

steady state. Solid lines refer to the Markov Perfect Equilibrium and dashed line to the

full commitment case. We assume that at t = 0 capital is half of its first-best steady-state

level and that the demand multiplier is zero in the full commitment model.

The behavior of the economy is consistent with the results of the main calibration. In

the Markov Perfect Equilibrium, price and markup are initially high and monotonically

decline to the new steady state because demand elasticity is initially low but increases as

capital approaches its steady state level. In contrast, in the full commitment setting price

and markups converge to the new steady state from below because the return from a high

price increases over time, as represented by the evolution of the demand multiplier.

4To obtain real unit prices, we first convert Taiwanese dollars to US dollars using yearly averages of
FRED’s series DEXTAUS and then divide by US GDP deflator.
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Figure A3: Transition to Steady-State with Calibration to Oligopolistic Wafer Production
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Notes: The figure compares the transition of the economy to the steady-state equilibrium without com-

mitment (Markov Perfect Equilibrium, solid lines) and with full commitment (dashed lines) under the

alternative calibration of Table A2. In both settings, we assume that the initial level of capital equals half

of the first-best steady-state value. Panels (a), (b), (c), and (d) plot the transitions of aggregate capital

Kt−1, demand schedule multiplier γt, price Pt, and static markup rate µS
t , respectively.

Investment Demand Shock. Figure A4 illustrates the response of the economy to a

positive investment demand shock. We calibrate an increase in TFP to match an approxi-

mate 60% increase in the real price of wafers over 2019-2023.

As in the main calibration, capital slowly adjusts to the new, higher steady-state level,
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while prices and marginal costs overshoot their new steady-state levels. While the marginal

cost determines most of the observed price dynamics, in this alternative calibration endoge-

nous markups also rise significantly. On impact, they overshoot the new steady state and

increase by around 10 percentage points.

The dynamics implied by the model with this alternative calibration are broadly con-

sistent with the empirical patterns that we report in Appendix B.2.

A.6 Contemporaneous Demand and Supply Shocks

In this subsection, we analyze the response of the economy to the contemporaneous oc-

currence of an investment-demand shock and an investment-cost shock. Specifically, we

consider an unanticipated and permanent increase in TFP At and an unanticipated and

permanent increase in the cost-function shifter Zt. We calibrate the size of the shocks

(+14.1% in TFP and +12.5% in cost) to match the cumulative increase in the real price of

semiconductors (+20%) depicted in Figure 1 and the rise in semiconductors real quantities

(+18% in deviation from trend in 2022) depicted in Figure B1b.5.

Consistent with the results of Section 6, both shocks increase investment price, reducing

the size of each individual shock required to match the observed increase in semiconductors

price. Furthermore, the two shocks have opposite effects on quantities. As the invest-

ment demand shock dominates quantitatively, investment and capital increase. However,

relative to Figure 6b, the size of the response is dampened by the action of the investment-

cost shock. Finally, both the static and the dynamic markups decline, even though their

contribution to price dynamics is limited.

A.7 Aggregate Shocks with Full Commitment

In this subsection, we analyze the response of the economy to aggregate shocks when

investment-goods producers can commit to future production. We compare the effects

of an aggregate demand shock and a change in market structure to the Markov Perfect

Equilibrium case examined in Section 6.

Figure A6 displays the evolution of the aggregate variables in response to a positive

productivity shock of the same size as in Figure 6. The increase in capital demand in the

5We fit a linear trend over 2012-2019 on nominal billings of semiconductors to Americas (source:
Semiconductors Industry Association) divided by the US Semiconductors PPI (source: FRED series
PCU334413334413A).

49



Figure A4: Investment-Demand Shock with Calibration to Oligopolistic Wafer Production
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

50% increase in TFP in the Markov Perfect Equilibrium under the alternative calibration summarized by

Table A2. Panel (a) plots the exogenous change in TFP At. Panel (b) plots the transition of aggregate

capital Kt−1 to the new steady state in the domestic economy. Panel (c) plots the transition of the price

Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new steady state. Panel (d) plots the

transition of the static markup rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to

the new steady-state. We assume that the shock occurs at t = 0, that the economy is in the initial steady

state at t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected

shock occurs.
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Figure A5: Contemporaneous Investment-Demand and Cost-Function Shocks
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Notes: The figure illustrates the aggregate response of the economy to two contemporaneous shocks in the

Markov Perfect Equilibrium. First, an unanticipated and permanent 14.1% increase in TFP At. Second,

an unanticipated and permanent 12.5% increase in the cost shock Zt. Panel (a) plots the exogenous change

in At and Zt. Panel (b) plots the transition of aggregate capital Kt−1 (solid line) and oligopolistic input Qt

(dashed line) to the new steady state in the domestic economy. Panel (c) plots the transition of the price

Pt (solid line) and producers’ marginal cost cq,t (dashed line) to the new steady state. Panel (d) plots the

transition of the static markup rate µS
t (solid line) and of the dynamic markup rate µD

t (dashed line) to

the new steady-state. We assume that the shocks occur at t = 0, that the economy is in the initial steady

state at t = −1, and that agents have perfect foresight of the evolution of all variables after the unexpected

shocks occur.
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domestic economy induces an increase in quantities produced and static marginal cost, as

in the Markov Perfect Equilibrium. However, the price increases by less than the marginal

cost, which determines a significant compression (-14 percentage points) in static markups.

At the same time, the dynamic markup is barely affected by the investment demand shock.

Overall, this analysis confirms that increasing marginal costs are largely responsible for the

equilibrium price increase, irrespective of the different assumptions on commitment.

Next, we analyze a shock to the market structure, namely a change in the number of

investment-goods producers from 3 to 4, in the full commitment setting. Figure A7 displays

the response of capital, price, and marginal cost to the shock. Although the expansion

in production capacity induces a smaller decline in the static marginal cost in the full

commitment equilibrium (4%) compared to the Markov Perfect Equilibrium (around 7%),

the decline in price is significantly larger in the presence of commitment (20% vs. 12%).

This finding suggests that the competition channel is even stronger under full commitment,

and that the effects of changes in market structure presented in Subsection 6.4 represent a

lower bound. Accordingly, we also find that the larger compression in markups generates

an increase in the level of capital that is more than twice as large under commitment than

in the Markov Perfect Equilibrium.

A.8 Business Cycles with TFP and Cost Shocks

We now extend the stochastic model of section 6.3 to include both stochastic productivity

shocks in the domestic economy and cost function shocks in the production of investment

goods. As in the main text, we assume that productivity follows an AR(1) process in logs:

log(At) = (1−ρ)µA+ρA log(At−1)+ εAt and we consider the same stochastic process to the

cost-function shock: log(Zt) = (1− ρ)µZ + ρZ log(Zt−1) + εZt . Table A3 reports the values

of the stochastic processes parameters used in the simulations. We parameterize them to

match five data moments, summarized by Table A4.

We estimate a VAR(1) model using (i) the natural logarithm of US real GDP and (ii)

Machinery and Equipment real US Producers Price Index and we HP-filter both series at

yearly frequency. We restrict the lagged effects of each series on the other to be zero but

allow for a non-zero covariance among residuals. The second column of Table A4 reports

the empirical estimates. We then find through indirect inference the vector of parameters of

log(At) and log(Zt) stochastic processes that minimize the distance between the empirical

moments and those implied by a long simulation of the model. The third column of Table
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Figure A6: Investment-Demand Shock with Full Commitment
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Notes: The figure illustrates the aggregate response of the economy to an unanticipated and permanent

increase in TFP in the full commitment equilibrium. Panel (a) plots the exogenous change in TFP At.

Panel (b) plots the transition of aggregate capital Kt−1 to the new steady state in the domestic economy.

Panel (c) plots the transition of the price Pt (solid line) and producers’ marginal cost cq,t (dashed line)

to the new steady state. Panel (d) plots the transition of the static markup rate µS
t (solid line) and of

the dynamic markup rate µD
t (dashed line) to the new steady-state. We assume that the shock occurs at

t = 0, that the economy is in the initial steady state at t = −1, and that agents have perfect foresight of

the evolution of all variables after the unexpected shock occurs.

A4 compares model performance to the data.

The parameters of TFP stochastic process are similar to the calibration of section 6.3.
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Figure A7: Increase in the Number of Investment-Goods Producers with Commitment
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Notes: The figure illustrates the response of the economy in the full commitment equilibrium to an unantic-

ipated and permanent increase in the number of investment-goods producers from N = 3 to N = 4. Panel

(a) plots the transition of domestic economy’s aggregate capital stock Kt−1 to the new steady state. Panel

(b) plots the transition of the investment price Pt (solid line) and producers’ marginal cost cq,t (dashed

line) to the new steady state. We assume that the shock occurs at t = 0, that the economy is in the initial

steady state at t = −1, and that agents have perfect foresight of the evolution of all variables after the

unexpected shock occurs.

Moreover, we find a small negative correlation of TFP shocks with cost-function shocks,

which are less persistent but significantly more volatile than TFP shocks.

Table A5 reports several business-cycle moments from a long simulation of the richer

stochastic model. Consistent with Subsection 6.3, prices and markups are higher on average

in the presence of commitment. The model predicts a moderate business-cycle volatility

of prices and markups in response to productivity shocks, consistent with our findings on

the effect of a permanent investment-demand shock. Moreover, cost shocks dampen the

comovement between prices, investment, and output generated by TFP shocks. At the

same time, in this richer stochastic environment the model generates significantly higher

volatility of investment relative to GDP.
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Table A3: Parameter Values for the Stochastic Processes

Parameter Symbol Value

TFP Stochastic Process Autocorrelation ρA 0.830

Standard Deviation σA 0.017

Cost Level Stochastic Process Autocorrelation ρZ 0.575

Standard Deviation σZ 0.085

Correlation Correlation
σA,Z

σAσZ
-0.130

Notes: The table reports the parameter values for the stochastic processes of TFP At and cost-level Zt

used in simulations.

Table A4: Stochastic Processes Calibration: Data and Model Moments

Parameter Data Model

log(GDP) Autocorrelation 0.086 0.136

log(GDP) Standard Deviation 0.010 0.014

Equipment Price Autocorrelation 0.024 0.024

Equipment Price Standard Deviation 0.020 0.022

log(GDP)-Equipment Price Correlation 0.002 0.002

Notes: The table illustrates the performance of the calibrated stochastic model against the targeted empir-
ical moments. The Data column reports empirical estimates of a yearly VAR(1) model with two variables:
(i) HP-filtered natural logarithm of real US GDP and (ii) HP-filtered Machinery and Equipment US Pro-
ducers Price Index deflated by the US GDP deflator. We restrict the lagged effects of each series on the
other to be zero. The Model column reports the model counterparts of the empirical moments, obtained
by estimating the same VAR(1) model on the HP-filtered natural log of GDP (Yt) and the HP-filtered
investment price P I

t obtained from a long simulation of the stochastic model given parameters of Tables 1
and A3.
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Table A5: Stochastic Productivity and Cost: Business Cycle Moments

FB MPE FC

Mean I 0.045 0.044 0.032

Mean P 0.998 1.098 2.130

Mean Markup 0 0.100 1.214

St. Dev. I/St. Dev. Y 33.826 10.447 73.203

St. Dev. P 0.037 0.048 0.032

St. Dev. Markup 0 0.007 0.016

Corr. Y and I 0.018 0.362 -0.029

Corr. Y and P -0.133 0.001 -0.044

Corr. Y and Markup 0 0.239 0.240

Notes: The table reports several moments related to investment, the price of the oligopolistic investment
good, and the static markup rate, from a long a simulation of the model with both stochastic domestic
economy productivity and stochastic cost-level. The first column refers to the first-best allocation, the
second column to the Markov Perfect Equilibrium, and the third column to the case of full commitment.
Standard deviations and correlations are computed for the logarithm of the variables, except for the markup
rate, and the simulated data are HP-filtered with a smoothing coefficient equal to 6.25 for annual frequency.
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B Additional Empirical Evidence

B.1 Dynamics of Equipment and Semiconductors Investment

In this subsection we examine the dynamics of US investment during the post-2020 recovery

and we connect them with the evolution of equipment and semiconductors prices presented

in Figure 1.

Figure B1a plots real industrial equipment investment in the US. Its dynamics suggest

that investment demand has been strong during the post-2020 recovery. After the sharp

7.6% decline between 2019 and 2020, the series displays a robust recovery in both 2021

(+10% relative to 2020) and 2022 (+16% relative to 2020). Consistent with such strong

recovery, in 2021 real investment in industrial equipment was approximately 5% higher than

its long-run trend.6 Therefore, the 7% rise in the real price of machinery and equipment

shown by Figure 1 accompanies an increase in real quantities.

Figure B1b illustrates similar dynamics for semiconductors, a key component of in-

dustrial equipment. Specifically, the figure plots real semiconductors billings to Americas

as a proxy for real investment in semiconductors.7 We obtain data on the nominal value

of billings from the Semiconductors Industry Association and deflate them using the US

Semiconductors Producer Price Index (FRED series PCU334413334413A). Consistent with

the rise of investment in industrial equipment in the post-2020 recovery, semiconductors

demand increased by approximately 40% between 2020 and 2022, being 45% above trend

in the latter year.8 Therefore, both the quantity and the price of semiconductors rose after

2020.

Finally, we observe similar dynamics for US real investment in Information Technology

equipment, tightly linked to demand for semiconductors, as well as in worldwide semicon-

ductors billings.

B.2 Quantities, Prices, and Profitability in Wafer Production

In this subsection, we zoom in on wafer foundries. Wafers are a crucial component of chips

manufacturing for which we can measure physical quantities produced and unit prices more

precisely. Specifically, we leverage Taiwan’s Ministry of Economic Affairs data on yearly

6We estimate a linear trend over the period 2000-2019.
7The geographical granularity of the data does now allow us to focus specifically on the US, which,

however, should count for the vast majority of recorded orders to Americas.
8We estimate a linear trend over the period 2000-2019.
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Figure B1: Equipment and Semiconductors Investment
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Notes: Panel (a) displays real US Industrial Equipment Investment, computed as nominal US Indus-

trial Equipment Investment (FRED series A680RC1Q027SBEA) divided by US Equipment Price Deflator

(FRED series Y033RD3Q086SBEA). Panel (b) displays Semiconductors Billings to Americas provided by the

Semiconductors Industry Association, converted to real 2017 US dollars by dividing the series by the US

Semiconductors Producers Price Index (FRED series PCU334413334413A).

production and sales of three detailed product categories: wafer foundry of 12 inches and

above (300mm); wafer foundry of 8 inches (200mm); and wafer foundry of 6 inches and

below (150mm).9.

Wafer production is very concentrated globally. Taiwan Semiconductors Manufacturing

Corporation (TSMC), whose plants are largely based in Taiwan, is the only player among

the largest 10 producers in terms of installed capacity in all foundry categories (300mm,

200mm, 150mm).10 Therefore, focusing on Taiwan provides an accurate account of the

dynamics of global production volumes and unit prices.

First, in Figure B2 we analyze the dynamics of physical production distinguishing by

wafer size. After a decline in production in 2019, which narrative industry accounts link to

a decline in global demand, production volumes display a fast rise in 2020 and during the

9We downloaded the data from https://dmz26.moea.gov.tw in April 2024. The relevant product
codes are 2611110, 2611120, and 2611130.

10As of December 2020, TSMC had the second-largest installed capacity (15% of global capacity) after
Samsung (21%) for 300mm wafers; it had the largest installed capacity (10%) for 200mm wafers; and it
had 3% of installed capacity for 150mm wafers. Source: https://www.design-reuse.com/news/49551/

tsmc-top-10-capacity-three-wafer-size-categories.html.
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post-2020 recovery. This is consistent with strong demand for semiconductors and overall

higher final demand for manufacturing goods.11

Figure B2: Volumes of Production by Wafer Size
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Notes: The figure displays the dynamics of wafers production volumes in Taiwan, sourced from Taiwan’s

Ministry of Economic Affairs. Panel (a) refers to wafer size smaller or equal than 200mm (8 inches) and it

is computed as the sum of production volumes for product codes 2611110 and 2611120. Panel (b) refers to

wafer size larger or equal than 300mm (12 inches) and it corresponds to product code 2611130 in the data.

Next, we leverage information on production values to infer unit prices. Specifically,

we divide production values by physical volumes to obtain average nominal prices (in New

Taiwan Dollars) and we covert them to real US Dollars using FRED’s exchange rate series

(DEXTAUS) and US GDP deflator. The solid line in Figure B3 displays average price dynam-

ics around 2020, expressed in percent deviation from 2019 level. The real price of wafers in-

creases dramatically starting from 2020, with a cumulative change of approximately +60%

between 2019 and 2023. Therefore, we observe the same positive comovement between

prices and quantities already documented for industrial equipment and semiconductors in

the US.

Finally, we investigate the evolution of real unit margins and profits by combining

production volume data with balance-sheet variables for TSMC and Mediatek, the other

Taiwanese foundry. Specifically, we retrieve from Orbis the time series of Operating Profits

(EBIT)—i.e., the difference between total sales and cost of goods sold plus depreciation

11Sales volumes display similar dynamics with the ones reported for production.
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and amortization—for these two companies, and deflate their nominal US Dollar values

by US GDP deflator. We then compute average unit margins by dividing total operating

profits by sales volumes from Ministry of Economic Affairs data.

This strategy requires combining balance sheet data on individual companies with

country-wide administrative data on production volumes. To address potential concerns,

we first note that TSMC and Mediatek account for virtually all wafer production capac-

ity in Taiwan. Therefore, government’s statistics should provide an accurate account for

TSMC and Mediatek production volumes. Moreover, to validate our approach we compute

an alternative measure of average unit prices combining balance sheet data for TSMC and

Mediatek total sales divided by production volumes from Ministry of Economic Affairs’

data. We then compare this alternative measure to average unit prices computed using ad-

ministrative data only. Although the levels of the two series may differ for various reasons,

their dynamics are consistent with the findings displayed in Figure B3 (solid line).

Therefore, the dashed line of Figure B3 depicts real unit margins in percent deviation

from their level in 2019. The cumulative increase over 2023-2019 equals approximately

110%, which is almost twice as large as the increase in unit prices. The relative magnitude

of the price and unit margin effect is consistent with the model predictions in response to a

demand shock, which we study in Appendix A.5 for an alternative calibration of the model

where wafers represent the oligopolistic investment good.

In response to a positive demand shock calibrated to match an approximate 60% rise

in wafer price on impact, the expansion in quantities increases the marginal cost, which

in turn drives the similarly-sized increase in price. However, while the latter applies to all

inframarginal units, the former implies a limited increase in the average cost, thus widening

the average unit margin, which increases in the model by around 120%.

Finally, Figure B3’s dashed-dotted line represents the evolution of aggregate real oper-

ating profits for TSMC and Mediatek in percent deviation from 2019. Total profits result

from the combination of changes in average unit margin (dashed line) and volumes sold

(Figure B2). As quantities also increase markedly during the post-2020 recovery, the in-

crease in total operating profits exceeds the increase in average unit margins. This finding is

also qualitatively consistent with the model’s response to a positive demand shock studied

in Appendix A.5.
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Figure B3: Price, Profits, and Quantities
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Notes: The figure represents the dynamics of average real unit prices (solid line), average real unit operating

profit (dashed line), and total real operating profit (dashed-dotted line) for wafer foundry in Taiwan.

Average unit price in New Taiwan Dollars is computed as the value of sales divided by the physical volume

sold of 6, 8, and 12 inches wafers produced in Taiwan (source: Ministry of Economic Affairs). We convert

nominal prices in Taiwan’s currency to real US Dollars by using FRED’s exchange rate series DEXTAUS and

US GDP deflator. Average unit margin is computed as Operating Profits (EBIT) by TSMC and Mediatek

(source: Orbis) divided by the physical volume sold of 6, 8, and 12 inches wafers produced in Taiwan

(source: Ministry of Economic Affairs). To convert nominal to real US Dollars we divide by US GDP

deflator. Total real operating profits are computed as the sum of Operating Profits (EBIT) by TSMC and

Mediatek (source: Orbis) divided by by US GDP deflator. All series are expressed in percent deviation

from their level in 2019.
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