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Non-technical summary

Knowledge and technological change are often assumed to be the driving forces for

long run economic growth. Regions with a higher level of knowledge compared to

other regions exhibit a higher per-capita income on average. Agglomeration effects

can lead to a steady increase of income and widen the productivity gap between rich

and poor regions.

It follows that regions are spatially related. From this point of view, it is not sur-

prising that neighbouring region’s spillover affects the own economic performance in

a positive or negative manner. Recent contributions show that particularly knowl-

edge spillover leads to an enhancing of agglomeration effects: superior regions with

respect to per capita income are attractive for company establishment, due to the

fact of superior human capital endowment compared to other regions. These core

regions play the role of so called knowledge generators because of the fact that they

may benefit from well established research density. Densely located underperform-

ing neighbouring regions may benefit from spillover created by core regions to boost

their economic performance. Of course, absolute distance towards the core region

affects underperforming regions probability of participating in knowledge spillover

potential. The implication is, that regions are not only spatially related to each other

but they are also spatially heterogeneous with respect to their knowledge potential,

which is endogenously influenced by knowledge spillovers.

One essential purpose of spatial econometrics is to uncover knowledge spillovers

from regional data. Although several empirical contributions have devoted to the

identification of spatial dependence in several contexts, the majority of them do not

control for spatial heterogeneity in the data.

The aim of this paper is to introduce a spatial model selection mechanism for cross

sectional data, which controls for both spatial heterogeneity and spatial dependence.

Furthermore this mechanism also considers the fact of spatial limited spatial effects.

So far existing model selection criteria only tackle the problem of spatial dependence.

Using regional data on German NUTS-2 regions, this paper investigates, whether

own regional economic performance - measured by per capita productivity - is in-



fluenced by neighbouring regions.

The selection mechanism which is established in this paper provides evidence of spa-

tially bounded spillover effects, particularly caused by patenting activity of neigh-

bouring regions, if we control for spatial heterogeneity of regions. If one neglects

this heterogeneity, results and, eventually conclusions regarding the significance of

determining factors of regional economic performance can be severely biased.



Nicht-technische Zusammenfassung

Wissen und technologischer Wandel sind die treibenden Kräfte für wirtschaftliches

Wachstum. Regionen, die ein im Vergleich zu anderen Regionen höheres Wissenspo-

tential aufweisen, können in der Regel durch ein im Durchschnitt zu anderen Regio-

nen höheres Pro-Kopf-Einkommen charakterisiert werden. Agglomerationseffekte

sorgen dafür, dass das Einkommens- und Produktionsdifferential dieser im Durch-

schnitt prosperierenden Regionen mit den verbleibenden Regionen im Zeitverlauf

immer größer wird.

Regionen interagieren und stehen in einer räumlichen Abhängigkeit zueinander. Es

ist folglich nicht verwunderlich, wenn man annimmt, dass die von Nachbarregio-

nen generierten Spillover die eigene ökonomische Leistungsfähigkeit beeinflussen.

In der Literatur werden insbesondere sog. Wissensspillover eine große Bedeutung

zugemessen, da sie die Agglomerationstendenzen verstärken können: Regionen mit

einem im Vergleich hohen Pro-Kopf-Einkommen sind attraktiv für Unternehmen-

sansiedelungen, da in diesen Regionen relativ viel Humankapital akkumuliert und

genutzt wird. Diese Kernregionen produzieren vermehrt Wissen, da in diesen eine

hohe Dichte an Hochschulen, Universitäten und Forschungseinrichtungen vorzufinden

ist. Schwächere Regionen, die in unmittelbarer Nachbarschaft liegen, können nun

ihre eigene Leistungsfähigkeit durch Ausnutzung von Wissenspillover der Kernregion

verbessern. Je weiter eine Region jedoch von dem Zentrum der Wissensbildung ent-

fernt liegt, desto geringer ist die Chance, an diesen Wissensspillovern teilzuhaben.

Der Wissensverbreitung sind demnach räumliche Grenzen gesetzt, selbst wenn man

annimmt, dass jede Region das generierte Wissen gleich gut absorbieren kann. Dem-

nach sind Regionen nicht nur räumlich voneinander abhängig, sie sind auch hetero-

gen bzgl. des Wissenspotentials, welches endogen durch Wissenspillover beeinflusst

wird.

Ein Anwendungsgebiet der räumlichen Ökonometrie ist nun gerade darin zu se-

hen, diese Wissensspillover in Regionaldatensätzen sichtbar zu machen. Obwohl

sich einige Beiträge der Identifikation von räumlicher Abhängigkeit von Regionen

gewidmet haben, so ist doch zu konstatieren, dass diese häufig nicht für räumliche



Heterogenität in den Daten kontrollieren.

Im Rahmen dieses Aufsatzes wird ein Modellselektionsmechanismus für räumliche

Querschnittsdaten vorgestellt, der nicht nur wie bereits bestehende Modellauswahlver-

fahren, ausschließlich für räumliche Abhängigkeit kontrolliert, sondern auch die Het-

erogenität von Regionen und für die Tatsache, dass räumliche Effekte wie Wissen-

spillover in ihrer Wirkung räumlich beschränkt sind. kontrolliert.

Für deutsche NUTS-2 Regionen wird daraufhin untersucht, ob die wirtschaftliche

Leistungsfähigkeit von heterogenen Regionen durch Nachbarregionen beeinflusst wird.

Als Ergebnis lässt sich festhalten, dass die Anwendung des Selektionsmechanis-

mus Hinweise auf räumlich beschränkte Spillovereffekte (etwa bei den Patenten)

und auf räumliche Heterogenität liefert. Würde man die Heterogenität im Rahmen

der Schätzung vernachlässigen, führt dies zu falschen Schlussfolgerungen bzgl. der

wirtschaftlichen Leistungsfähigkeit von Regionen.
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1 Introduction

It is an undisputable fact that knowledge and technological change are driving forces

for long run economic growth. It is rather intuitive that spatial barriers to knowl-

edge diffusion can be used as an argument for income and productivity differentials

between regions. That should be considered as one reason why we observe clusters

of regions or countries with similar productivity and income values and thus spatial

patterns in economic long run growth. Regions (take cities for example), which are

more productive are more attractive for innovative companies. Consequently, these

regions become more attractive for investments and this process leads to a more

and more increasing productivity differential between regions and. From this point

of view, it is not surprising that economic growth and agglomeration are positively

correlated1.

Furthermore, it is known that knowledge concentration enforces region-specific growth

differentials. As mentioned by Fujita and Thisse (2002), knowledge spillovers can

be interpreted as a source for sustainable regional growth, given that decreasing

returns of learning are excluded. The empirical literature has not paid much atten-

tion to the grasp of knowledge spillovers. Anselin et al. (1997) and Anselin et al.

(2000) are two of a few studies that mentioned concrete numbers for the scope of

knowledge spillovers. Anselin et al. (1997) found that a significant positive effect

can be detected within a 50 mile radius of metropolitan statistical areas (MSAs),

but only for university research. Concerning private R&D, such a significant effect

of knowledge transfer could not be detected. Anselin et al. (2000), using a similar

setup as Anselin et al. (1997) have shown, that not only spillovers within MSAs but

also between MSAs can be found. The key cognition of the study performed by

Anselin et al. (2000) is that without exact geographical distance measures it can be

shown that spatial influence is bounded locally. Audretsch and Mahmood (1994) for

instance, point to the limited effects of knowledge spillovers for metropolises borders.

Furthermore, applicants of spatial econometrics sometimes neglect that spatial ef-

fects can appear as two types: the first is spatial dependence, the second spatial

1See Baldwin and Martin (2003).
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heterogeneity. Spatial dependence, which is consistently assumed in the above-

mentioned studies, covers the not directly observable dependence between regions,

caused by spillovers for instance. In contrast to spatial dependence, spatial hetero-

geneity takes into account that spatial effects are not uniformly distributed across

space and that outliers could exist. From an econometrician’s view, this should

be interpreted as a spatial kind of heteroscedasticity. Although several arguments

militate in favour of the significance of spatial heterogeneity2, this aspect is not

commonly ”seen as a serious problem in spatial regression”3.

One reason could be that spatial econometrics is still a developing discipline, dom-

inated by (ML) based estimation methods, which are primarily not designed for

dealing with spatial heterogeneity. In contrast to (ML) methods, Bayesian methods

are well suited to incorporate spatial heterogeneity within the model setup and thus

provide a fruitful way of analysing spatial phenomena and could lead to a robustifi-

cation of coefficient estimates.

Another crucial issue within the spatial econometric research agenda is the topic of

adequate model selection from a pool of possible models. A widely used selection

strategy has been introduced by Florax et al. (2003). This strategy is based on

Lagrange-Multiplier tests (LM) tests but has some drawbacks: First, it suffers from

the test strategy itself, second, only spatial error or spatial lag models are possible,

but no combination of both; and third, the procedure does not control for spatial

heterogeneity. This forms the scope for future research.

Thus, the aim of this paper is first, to introduce a new model selection mechanism

which is more flexible than the method proposed by Florax et al. (2003) through

controlling for spatial dependence as well as for spatial heterogeneity. In particular,

Bayesian and (ML) methods are employed to select a suitable model. The paper

is organised as follows: After motivating spatial models and their corresponding

2Anselin (1988) for instance comment on page 13 with respect to the importance of spatial

heterogeneity in econometrics work, that ”several factors, such as central place hierarchies, the

existence of leading and lagging regions, vintage effects in urban growth [...] would argue for

modeling strategies that take into account the particular features of each location (or spatial unit).”
3Keilbach (2000), p. 122.
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spatial weights in chapter two and three and introducing the concept of higher

order spatial influence in chapter four, chapter five deals with the model selection

mechanism. The first part of chapter five is dedicated to give a brief sketch of the

method established by Florax et al. (2003), while the focus of the second part is laid

on a new spatial model selection method. Chapter six deals with an application of

the proposed method and tries to identify spatial knowledge spillovers from German

NUTS-2 data. Chapter seven provides a short summary of the obtained results and

highlights some avenues for further research.

2 Motivation

I start with the basic cross-section regression model which can be written as follows:

y = Xβ + ε, (1)

where, to make it easy, y is a non stochastic (N × 1) vector of observations, X is a

full rank (N ×K) matrix of K non-stochastic independent variables, β is a (K × 1)

vector of regression coefficients, and ε is treated as a normally and independently

distributed (N × 1) vector of errors. The drawback of a formulation like equation

(1) is that it does not control for spatial dependence. But if spatial dependence,

particularly spatial autocorrelation, exists in the data, and if it is neglected when

estimating equation (1), results may not be consistent4. This argumentation is

familiar when talking about estimation problems within a pure time series context,

for instance performing an OLS regression with non-stationary time series.

Therefore, equation (1) has to be altered and expanded for spatial processes. Gener-

ally, spatial events appear in three forms: first, spatial dependence is only observed

in the y vector. As a consequence, a spatial lag model or a spatial AR(r) model

has to be estimated, with r as the degree of spatial influence. Second, spatial de-

pendence is only observed in the error vector ε, which means that a spatial error or

equivalently, a spatial MA(r) model has to be set up. Finally a combination of both,

i.e. a spatial lag and a spatial error model can be taken under consideration. Similar
4Refer to Anselin (1988) and Anselin and Rey (1991).
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to the time series context, the third type can be labeled as an spatial ARMA(r, r)

model. The vast majority of empirical studies dealing with spatial events sets r = 1.

Given that is true, equation (1) can be expanded to a spatial ARMA(1, 1) model as

follows:

y = ρWy +XβX + X̃βX̃ + λWε+ κ, (2)

withX = [x1, x2, ..., xK ], X̃ = [x̃1, x̃2, ..., x̃M ], the (K×1) vector βX = [βX1 , β
X
2 , ..., β

X
K ]′,

the (M × 1) vector βX̃ = [β1, β2, ..., βM ]′ and κ ∼ N(0, σ2I).

The parameter ρ denotes the so called spatial autoregression coefficient, W is a

(N × N) matrix containing spatial weights, and κ is a (N × 1) vector containing

errors. Often it is assumed that M = K. We do so here.

The (N ×K) matrix X comprise non-spatial exogenous variables, whereas the (N ×

M) matrix X̃ contains the spatial lagged exogenous variables. Of course we can

write X̃ = WX. Stacking Wy, X, X̃ and Wε in X̃+ = [Wy,X, X̃,Wε] and defining

β̃ = [ρ, βX , βX̃ , λ]′ leads to

y = X̃+β̃ + κ. (3)

Expression (2) can be considered also as a spatial ARIMA(r, I, r)-model, with I as

the degree of integration if |ρ| = 1. If we observe a significant coefficient of ρ close

to one5, a spatial ARIMA(r, I, r)-model should be estimated to avoid results based

on a spurious regression.

It can be concluded that time series and spatial econometrics are closely connected.

But it has to be pointed out that, in contrast to time series phenomena, which go

in one direction by definition, spatial spillovers are often characterized by feedback-

processes, as mentioned before.

Although it is common to set κ ∼ N(0, σ2I), it is more realistic to assume κ ∼

N(0, σ2Ω) with σi = h̃(f ′iα) and h(·) > 0 as an unknown, continuous function.

5Of course it could be difficult to decide ex ante, whether one is confronted with a highly

persistent or an unit root process with respect to space.
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These elements are defined as the diagonal elements of the error covariance matrix

σ2Ω. This is one way to introduce spatial heterogeneity in the model setup.

Interestingly, Keilbach (2000) and Klotz (1996) argue that spatial heterogeneity does

not have to be seen a serious in spatial econometrics context this should not be taken

for granted. Remember for instance that some regions do not follow the same spatial

regime as other regions. This ”enclave effects” or in an econometric notation, these

”outliers” could cause severe problems such as fat-tailed errors which are not normal

of course.

The challenge of estimating a heterogeneous spatial model is that when allowing

for heteroscedasticity we have to estimate N additional parameters for each σi.

Of course, this leads to the so called ”degree of freedom” problem, because we do

not have enough observations to compute an estimate for every point located in

space. One way to deal with this problem is to refer to Bayesian econometrics.

Bayesian methods avoid the degree of freedom problem by using informative priors.

We will see later, that the prior distribution for our N diagonal elements of Ω is

independently χ2(s)
s distributed. Note, that the χ2-distribution is a single parameter

distribution where we can represent this parameter as s. This allows us to estimate

N additional parameters of the diagonal elements of Ω by adding a single parameter

r to our standard regression procedure.

Hence, the estimation strategy is defined as follows: start with an estimation of a

spatial ARMA(r, r)-model with homogeneous errors based on equation (2). Equa-

tion (2) can be consistently estimated via Maximum-Likelihood (ML) as mentioned

by Anselin and Rey (1991). Since (ML) based models are not suitable to model

spatial heterogeneity, Bayesian models with the additional assumption of heteroge-

neous errors are introduced. After performing the model selection mechanism, a

direct model comparison of the (ML) based and the Bayesian models should be

used to select the model which best fits to the data-generating process.
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3 Spatial weights

To the best of my knowledge, there is no concise theory about how to specify the

”correct” spatial weight matrix W . Of course, answering this question adequately

is the big deal in applied spatial econometrics. Therefore, the choice of the spatial

weights should be done according to the specific research topic. The first question

is how to find a proxy for spatial proximity. One approach is to say that spatial

proximity is best approximated by geographical distances. Another way is to argue

that geographical borders are less important for spatial proximity and for this reason

one should better rely on non geographical data, such as trade shares6 or data on

FDI7.

The latter strategy has two major drawbacks in this context: First, in this work, it

is primarily focused on knowledge diffusion. When talking about this issue, it is, on

the first sight, intuitive to refer to trade shares or FDI data, for instance, to find a

proxy for spatial proximity which is related to knowledge diffusion. But as noted by

Krugman (1991) ”[k]nowledge flows are invisible; they leave no paper trail by which

they may be measured and tracked[...]”. Thus, solely relying on this data, tell us

not the whole story. Second, there is a methodological problem: it is very likely that

these weights are endogenous and therefore lead to biased estimators, unless using

an IV or GMM approach8.

Hence, the majority of the literature refers to geographical weights. It is common

to use geographical distances Keller (2001), or more precisely, to use great circle

distances between regions’ centroids Anselin (1988). But this contains the inherent

assumption that knowledge spillover sources are located in the regions’ centroids.

Another way, which is also considered in this study, is simply to refer to a binary

weighting scheme9. If a region i is a neighbour of another region j, then the i-th

element of W , wij takes a 1, otherwise a 0. Of course, the definition of the weighting

scheme is irrelevant for the proposed selection method.

6Refer to Coe and Helpman (1995).
7Refer to Lichtenberg and van Pottelsberghe de la Potterie (1996).
8Finding valid and non weak instruments in this context seems to be rather difficult.
9Refer to Tappeiner et al. (2008).
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Thus, for the symmetric (N × N) matrix W with weights wij the following rule is

defined:

wij =

 1, if i and j have a common border and i 6=j

0 otherwise
. (4)

Often, this matrix is weighted or standardized because this facilitates the interpreta-

tion of the estimated coefficients10 and guarantees that the Moran’s I, which stands

for an indicator for spatial dependency, is situated in the interval [−1; 1]11. Using

the weighting scheme proposed by Anselin (1988), for the standardized elements w+
ij

of W+ it can be written:

w+
ij =

wij∑Nj
j=1wij

. (5)

In this way we have created row-standardized spatial weighting elements wij ∈W+

which are used in the following estimation exercise.

4 Higher order spatial influence specification

One major drawback of model (2) is, that it is not designed to account for higher

order spatial dependencies. To obtain a higher order weighting matrix W+r for r =

{1, ..., R} we should increase the power of the simple contiguity matrix. Labelling

the order of the spatial dependency with r = {1, 2, 3, ..., R} then X̃ can be expanded

as a (N × (R×M)) matrix as follows:

X̃++ =




x̃1
11 x̃1

12 · · · x̃1
1M

x̃1
21 x̃1

22 · · · x̃1
2M

.

.

.

.

.

.
.
. .

.

.

.

x̃1
N1 x̃1

N2 · · · x̃1
NM

 , ...,


x̃R
11 x̃R

12 · · · x̃R
1M

x̃R
21 x̃R

22 · · · x̃R
2M

.

.

.

.

.

.
.
. .

.

.

.

x̃R
N1 x̃R

N2 · · · x̃R
NM


 (6)

or in short hand notation:

X̃++ = [X̃1, X̃2, ..., X̃R]. (7)

10Anselin (1988), p. 23.
11Refer to Ord (1975) and Griffith (1996).
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Defining P = [ρ1, ρ2, ..., ρR]′, ỹ = [W+1y, ...,W+Ry], Λ = [λ1, λ2, ..., λR]′, ε̃ =

[W+1ε, ...,W+Rε], and the ((R×M)×1) dimensional vector β++ = [βX̃
1
, βX̃

2
, ..., βX̃

R
]′

with the the (M × 1) vector βX̃
r

= [βX̃
r

1 , ..., βX̃
r

M ] we can rewrite our model (2) as:

y = ỹP +XβX + X̃++β++ + ε̃Λ + κ (8)

with κ ∼ N(0, σ2Ω). For R = 1 the model collapses to model (2). From the general

SAC(r, r) model (8) we can derive three major submodels for a given degree of

higher spatial influence r = {1, ..., R}: the spatial lag SAR(r) and spatial error

SEM(r) and a spatial model with exogenous spatial variables SEV (r). For the

SAR(r) we can write:

y = ỹP + κ (9)

with κ ∼ N(0, σ2Ω). For the SEM(r) the following equation holds:

y = XβX + ε̃Λ + κ (10)

with ε = ε̃Λ + κ, and κ ∼ N(0, σ2Ω) and for the SEV (r) we notate:

y = XβX + X̃++β++ + κ (11)

with κ ∼ N(0, σ2Ω).

It has to be pointed out that the estimation of model (8) and its submodels (9),

the estimation of model (10) and model (11) could lead to biased and inconsistent

OLS estimates ∀r ∈ R. Take submodel (9) for instance: ỹP is correlated not

only with κ but also with neighbourings of κ. If all elements of ỹP are zero OLS

estimates are unbiased but inefficient ∀r ∈ R. If submodel (11) is chosen, then the

model contains only exogenous spatial lagged variables besides non spatial lagged

exogenous variables. In this case OLS is only BLUE if κ ∼ N(0, σ2I), ∀r ∈ R.

8



OLS is even more unbiased if estimating a spatial error model, thus referring on

submodel (10) ∀r ∈ R12.

5 Spatial model selection

In this section a spatial model selection strategy is introduced, which can be inter-

preted as an expansion of the proposed and well established strategy by Florax et al.

(2003). Before introducing the new model selection method, the classic method of

Florax et al. (2003) for cross section analysis is briefly sketched. As we will see, this

selection methods ignores the appearance of spatial heterogeneity.

5.1 Established method

Start by estimating an initial model y = Xβ + ε, which goes in line with the stated

assumption of model (1). Second, on the basis of the estimated model, Lagrange

Multiplier (LM) tests on the basis of of model (1) are conducted to test in favour of

a spatial lag or spatial error model. If the null hypothesis of no spatial correlation is

rejected, then spatial dependence matters and an appropriate spatial error or spatial

lag model should be estimated. If we further acknowledge higher order spatial effects,

the test statistic under the null hypothesis H := ρr = 0, ∀r for LMρr can be adopted

in the following manner:

LMρr =

(
e′W+re
s2

)2

T
, (12)

with T as the trace of (W+r ′ + W+r)W+r, e = My the residuals of regression,

M = I − X(X ′X)−1X ′ as the projection matrix, and s2 = e′e
N as the estimated

variance of the error term, and N the number of observations. On the contrary, the

test statistic for LMλr under H := λr = 0, ∀r can be written as:

LMλr =

(
e′W+ry
s2

)2

NJ
, (13)

with J = 1
Ns2

[
(W+rXb+++)′M(W+rXb+++) + Ts2

]
and b+++ as the OLS estima-

tor of model (1).
12Refer to appendix 1 for corresponding proofs of the last mentioned propositions.
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Third, if for both, the LMρr and LMλr the null hypothesis cannot be rejected,

then the initial model (1) should be used. If both tests indicate significance, it is

advisable to compute the robust versions of LMρr and LMλr statistics to come to

a final decision.

The robust variant of LMρr reads as:

˜LMρr =

(
e′W+ry − e′W+re

s2

)2

NJ − T
. (14)

For the robust variant of LMλr we can write:

˜LMλr =

(
e′W+re
s2

− T (NJ)−1 e′W+ry
s2

)2

T [1− T (NJ)]−1
. (15)

Again, if both robust test statistics are significant, then the following rule of thumb

should be employed: If ˜LMρr > ˜LMλr , then one should decide to estimate a

spatial lag model, otherwise if ˜LMρr < ˜LMλr , then one should refer to a spatial

error model.

Given, only LMρr is significant but LMλr is not, then one should use a spatial

lag model, otherwise, if LMλr is significant, then a spatial error model should be

chosen. Experiment-based simulations by Anselin and Florax (1995b) and Anselin

et al. (1996) found evidence that robust counterparts of the LM-tests have more

power in pointing out the appropriate alternative than the non-robust LM versions.

Florax et al. (2003) instead have shown that the classical top down approach, i.e.

relying on the non robust LM tests, outperforms the robust strategy in terms of

performance and accuracy. Thus, the same authors emphasize, that one should use

the classic approach when testing for spatial effects. From the discussion above, it

can be concluded that this classic strategy is not theoretically justified yet, it is the

only systematic approach of model selection provided by the literature and used in

empirical studies13.

The estimation strategy proposed by authors such as Anselin (2005) has three limita-

tions: first, the strategy lacks regarding its underlying tests strategy. More precisely,
13Refer to Kim et al. (2003) for instance.
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for both tests, the LMρr and LMε or in their robust form ˜LMρr and ˜LMε the null

hypothesis is either H0 := ρr = 0 for LMρr or ˜LMρr and H0 := λr = 0 for LMλr

or ˜LMλr . The null hypothesis H0 := λr = 0 is realized in presence of ρr for the

spatial error and H0 := ρr = 0 in presence of λr for the spatial lag model. To be

inferentially correct, one has to construct a test with the null hypothesis of a spatial

lag and the alternative hypothesis of a spatial error model, for instance. Mur (1999)

and Trivezg (2004) tackle this problem. But a drawback of the test proposed by

Trivezg (2004) is that it is only applicable for small samples, because it requires

the computation of Eigenvalues and Eigenvectors of the underlying spatial weight

matrix, which is cumbersome or even not possible for large data sets as noted by

Kelejian and Prucha (1998).

Second, the strategy is exclusive in the sense, that this strategy does not allow for

a spatial ARMA(r, r) model specification, which is as mentioned above a combi-

nation of spatial lag and spatial error models14. There is no reason, why a spatial

ARMA(r, r) model should be excluded ex ante. But if doing so and referring to

a ”from simple to complex” estimation strategy, there is an inherent potential of

misspecification15.

Third, both tests do not sufficiently control for heterogeneity of the error term; nor

do they cover the aspect of outliers. In other words, this method neglects spatial

heterogeneity entirely. Fortunately, spatial heterogeneity can be elegantly considered

in a Bayesian approach. From this way it seems reasonable to incorporate the

Bayesian approach within the model selection mechanism.

14For example, assume ˜LMρr statistic takes the significant value x and ˜LMλr statistic takes the

significant value x + ε, with a very small but positive value ε > 0. In this case we conclude to use

the spatial error model, because ˜LMλr > ˜LMρr .
15This could lead to serious problems, because even if λr differs significantly from zero but the

robust LMρr test, which exceeds the value of the robust LMλr statistic, suggests to model a spatial

lag model, we should choose, in line with Florax et al. (2003), a spatial lag model.
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5.2 Proposed method

Until today, Bayesian model selection criteria are seldom used in empirical applica-

tions. This might be due to three reasons: first, normally, spatial Bayesian model

techniques are not or only to a small extent included in standard econometricians

tool boxes, such as EViews or Stata. Second, these methods normally require ex-

tended programming techniques. In addition, their use for large sample applications

is problematic, because one is often confronted with numerical problems, particularly

when calculating the determinant of spatial weight matrix for a large N16, which

is a corner-stone of spatial model estimation17. Third, Bayesian methods are often

rejected or disregarded by the class of frequentist or ”main-stream” econometricians,

mainly because of the inherent Bayesian assumption that the vector of coefficients is

treated as random, whereas the frequentists treat the vector of coefficients estimate

as random18.

Not ignoring but for this purpose neglecting the ongoing dispute between frequentists

and Bayesian supporters, the model selection plan of the proposed strategy can be

formulated as follow:

1. First, estimate the initial model via OLS.

2. Use Moran‘s I19 and LM-test for detecting potential spatial dependence. If

the proposed tests cannot reject the null hypothesis of no spatial correlation,

then select the model estimated via OLS in step 1. Otherwise, proceed with

step 3.

3. If the null hypothesis of no spatial correlation is rejected, then expand the model
16This is also relevant for spatial panel setups.
17To avoid this problem either rely on Bayesian methods or use the Monte Carlo based method

proposed by Barry and Kelley (1999).
18See Koop (2003) for an excellent introduction to Bayesian Econometrics.
19It is worth to mention, that Moran‘s I is valid, as long as heteroscedasticity is not spatially

correlated. This is a very new insight, but until today no appropriate method is developed to test

for spatially correlated heteroscedasticity. There is only one test proposed by Kelejian and Robinson

(2004), which cover the aspect of spatially correlated heteroscedasticity, but it is only valid for large

samples and small samples properties are not known so far.
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estimated in step 1 by adding spatial counterparts of the independent variables.

Perform an OLS estimation of this model.

4. Given the model setup in step 3, use Moran‘s I and LM-test for detecting

potential spatial dependence. If tests cannot reject the null hypothesis of no

spatial correlation, then select the model estimated via OLS in step 3. Other-

wise, proceed with step 5.

5. Expand the model of step 3 with spatial error and spatial lag components.

Again, Perform an OLS estimation of this model.

6. Use Moran‘s I and LM-test for detecting potential spatial dependence. If the

tests cannot reject the null hypothesis of no spatial correlation, then select the

model estimated via OLS in step 5. Otherwise, proceed with step 7.

7. Estimate a general spatial model (SAC(r,r)) and separate spatial lag (SAR(r))

and spatial error models (SEM(r)) with MLE.

8. Use the LM power comparison mentioned by Florax et al. (2003) to select the

optimal model from the set of models estimated in step 7. This model assumes

spatial homogeneity at the end.

9. Given the optimal model found with step 8, estimate the Bayesian counterpart

of the optimal model selected in step 8 to control for spatial heterogeneity. If

both models exhibit similar results and spatial heterogeneity is rejected, then

take the optimal model found in step 8 as optimal. Otherwise, if spatial het-

erogeneity matters, take the Bayesian model as the optimal one.

6 Application

6.1 Negligence of spatial dependence

As an application for the proposed selection strategy, a cross section analysis for

German NUTS-2 regions has performed. The aim of this study is to give an answer
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to the question, whether spatial knowledge spillover affects regional labour produc-

tivity and further tries to answer the question, whether spatial heterogeneity is a

justified assumption for the data generating process.

For this purpose I construct a cross-section regression of the regional output, mea-

sured as gross value added on regional R&D-effort, human capital H, regional num-

ber of patent applications P , regional capital stock K, regional number of low qual-

ified labour force L, regional infrastructure I, spatial weighted dependent variables

X̃++ and an East-West dummy d, which covers the fact that East German regions

are less productive than West German regions20.

The initial model, based on a per capita Cobb Douglas production technique, with

ln
(
Y
L

)
as the dependent variable, can be written in log-log form as follows21:

ln
(
Y

L

)
= βc+βk ln(K)+βl ln(L)+βh ln(H)+βp ln(P )+βi ln(I)+dγ+κ, (16)

or in a more compact manner with y ≡ Y
L as

y = XβX + dγ + κ, (17)

with βX = [βc, βk, βl, βh, βp, βi]′, X = [1, k, l, h, p, i], and with κ ∼ (0, σ2Ω), σ2Ω 6=

σ2I, Ω = diag(v1, ..., vN ), and d as East-West dummy. Two remarks regarding the

specification of equation (16) or equation (17) should be made: First, as usual, the

coefficient vector βX contains constant production elasticities of the respective values

stacked in X. The elasticity of production for labour l in this context is defined as

(1 + βl). Therefore, we expect a negative sign of βl. Second, the inclusion of both

R&D expenditures and patent applications P leads to a serious endogenity problem,

because patents are produced with R&D expenditures or P = u(R&D) with u(·) as

continuous function. It is worth to mention that patents generally outperform R&D

expenditures regarding their interpretation as a quality measure of innovativeness22.

From this point of view patent data have been used for this application.

20Refer to appendix 8.4 for a detailed description of employed data and variable construction.
21For all variables X, we define x ≡ ln(X).
22See Lechevalier et al. (2007) for instance.
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Let us start with the first step of the above strategy. An OLS estimation of the

initial model has been performed first23.

Column 1 of table 6 reports a simple estimation of y on k and l and a East-West

dummy d. The values of the elasticity of production for capital and labour indicate

the expected positive sign and have the expected dimension24. Furthermore, the

dummy is positive as expected and highly significant, which indicates that West

German regions are more productive on average than East German regions.

For this specification, both Moran‘s I tests for first and second order spatial influence

cannot reject the null hypothesis of no spatial correlation.25 The findings indicate

that, the LM lags for r = 1 and r = 2 are not significant. This is also the case for

the LM error test for r = 1. For r = 2 the LM error test of no spatial correlation

under the null hypothesis can be rejected at a 5% significance level.

Thus, a certain contradiction regarding the evaluation of Moran‘s I for r = 2 and

the LM error test for r = 2 with respect to spatial influence can be detected for the

specification in first column of table 6. The second column of table 6 reports the

estimation results of a knowledge capital augmented regression. Knowledge capital

is approximated by human capital (ln(H)) and patent applications (ln(P )). Further,

in this regression it is controlled for public infrastructure (ln(I)) expenditures.

For all three additionally included variables we should expect a positive sign with

respect to their specific regressors. This is true for the estimated coefficients of

human capital and infrastructure, but not for patents, which is of course counter

intuitive at first glance. Referring to the significance level, we find that patents

are not significant at the 10% significance level. This is also true for infrastructure

which is not significant at the 10% significance level. In contrast, human capital is

significant at the 5 %. Referring to the test statistics depicted in the lower part of

the second column of table 6, it should be noted, that the LM test for spatial lag is

23All estimations have been performed with Matlab on the basis of the package provided by

LeSage with some adoptions. LM program for spatial lags as other programs are available on

request. If appropriate, results have been checked with R 2.6.2 and EViews 5.0.
24The value for the elasticity of production for labour is 1-0.19=0.81.
25The choice of the maximum dimension of R has been carried out on the basis of the variable

individual Moran‘s I. A graphical representation can be found in figure 1 and 2.
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significant at the 5% significance level. Moran’s I for r = 1 suggests, that a spatial

error model should be estimated which is underpinned by the significant LM test

for the spatial error component for r = 2.

6.2 Spatial dependence

Given our selection strategy, we should expand model (16) by exogenous spatial

lagged variables. Keeping in mind our results obtained from figures 1 and 2, first

order spatial lags of human capital ln(H+1), of patents ln(P+1) and of infrastructure

ln(I+1). Additionally, the second order spatial lag of patents ln(P+2) have been

included. Stacking these values in X̃1 = [h+1, p+1, i+1] and X̃2 = [p+2] defining

X̃++ := [X̃1, X̃2], and letting β++ = [βX̃
1
, βX̃

2
]′ with βX̃

1
= [βh

+1
, βp

+1
, βi

+1
] and

βX̃
2

= [βp
+1

], lead to the following expansion of equation (16):

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I)+ (18)

+ ln(H+1)βH
+1

+ ln(P+1)βP
+1

+ ln(I+1)βI
+1

+ ln(P+2)βP
+2

+ dγ + κ,

or again in compact notation as an expansion of equation (17):

y = XβX + X̃++β++ + dγ + κ, (19)

with βX = [βc, βk, βl, βh, βp, βi], d as East-West dummy and X = [1, k, l, h, p, i] with

κ ∼ (0, σ2Ω).

The estimation results for model (19) can be found in column 3 of table 6. Once

again, we expect positive effects from neighbouring regions. But with the exception

of patents, we find negative signs of coefficients for neighbouring human capital and

infrastructure. Moreover, the latter two coefficients are highly non-significant. The

negative second order spillover coefficient of patents is highly insignificant, too. In

contrast, the first order neighbouring patent activity has a significant positive effect

on the domestic labour productivity. If we refer to our spatial test statistics depicted

in column 3 we find that the LM test for first order spatial lag is, on the contrary
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to column 2, not significant at the 5% level anymore. This could be due to the

inclusion of the spatial lagged patent activity. Furthermore, the second order LM

error test is still significant at the 10% significance level, whereas the first order LM

error test is now significant at the 5% significance level. Also the first order Moran‘s

I test is significant at the 5% significance level.

Given that our argument is a based on a 10% significance level, this leads to the

conclusion that a first order spatial error model should be modelled because of the

fact that LMλ1 > LMλ2 . Based on a 5% significance level, a SEM(1) model seems

appropriate. The last column of table 6 shows the same regression as column 3

except of excluding the highly non significant spatial second order patent activity.

Comparing column 3 and column 4 shows that the exclusion of spatial second order

patent activity does not change the sign and significance of the estimated coefficient.

In line with the proposed model selection mechanism, we should base the further

analysis on the specifications in column 4 of table 6.

6.3 Spatial heterogeneity

From the discussion before we have concluded that we need to expand our regression

model (18) by a first order spatial lagged error component. The spatial error model

SEM(r) of order r = 1 is specified through equation (20):

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I)+ (20)

+ ln(H+1)βH
+1

+ ln(P+1)βP
+1

+ ln(I+1)βI
+1

+ dγ + ε,

with ε = λ1W
+1ε+ κ, or again in compact notation:

y = X+++β+++ + dγ + ε̃Λ + κ, (21)

with βX = [βc, βk, βl, βh, βp, βi], X = [1, k, l, h, p, i], Λ = [λ1], W++ = [W+1],

X+++ = [X, X̃], β+++ = [βX , β++] and d as West-East dummy.

With respect to the proposed estimation strategy, model (21) should be estimated

via two different ways:
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• The first approach is to estimate this model under the assumption of σ2Ω =

σ2I, implying spatial homogeneity, which is a common assumption in the lit-

erature26. As mentioned above, model (20) should be estimated via Maximum

Likelihood.

• The second approach is to estimate this model under the assumption that σ2Ω 6=

σ2I. Hence, estimation applying the Bayesian approach is required.

6.3.1 Maximum-Likelihood approach

First approach, first we have to set up our Likelihood function L. This is for model

(20):

L =

∣∣∣Ñ ∣∣∣
(2πσ2)

N
2

exp

{
1

2σ2
(y −X+++β+++)′Θ−1(y −X+++β+++)

}
, (22)

with Θ−1 = Ñ ′Ñ and |Θ|
1
2 = |Ñ | and N the numbers of observations.

The corresponding log-likelihood ln(L) for equation (22) is:

lnL = −N
2

ln 2π − N

2
(σ2) + ln |Ñ | − 1

2
ξ′ξ, (23)

with Ñ = (I−λ1W+1) and ξ = Ñ(y−X+++β+++). Expression (23) can be written

in concentrated form as

lnLc ∝ ln |Ñ | − N

2
ξ̃′ξ̃, (24)

with ξ̃ = 1
σ Ñ(y −X+++β̃+++

ML ). The (ML) based estimators can be obtained as

β̃+++
ML = (X+++′Ñ ′ÑX+++)−1X+++′Ñ ′Ñy, (25)

and

σ̂2
ML =

1
N

(ξ̃′ξ̃), (26)

26Refer for instance to Olejnik (2008) or Santolini (2008).
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obtained by maximizing equation (23). Equation (24) is highly non linear in the

parameter space λ1. Because both β+++ and κ are a function of λ1 we should use

an iterative method to estimate λ1: First, estimate β+++ via OLS, then compute

λ1 on the basis of the concentrated maximum likelihood function (24) and update

β+++. Given the updated values of β+++ estimate a new λ1, based on the updated

estimated residuals. Convergence is achieved, if values for the residuals and for the

estimated values of β+++ do not change from one to the next iteration step, which

means the difference between the estimated values of β+++
t − β+++

t−1 < ϑ for a small

value of ϑ close to zero27.

From a computational view, it is worth noting, that when referring to Maximum-

Likelihood based methods in spatial econometrics, we have to impose a restriction on

the parameter space λ1. Referring to Anselin and Florax (1995a), p. 34, reasonable

parameter values are in the range of:

1
λ̃1
min

< λ1 <
1

λ̃1
max

. (27)

λ̃1
min corresponds to the minimum Eigenvalue of the matrix W+1, whereas λ̃1

max

represents the maximum Eigenvalue of W+1. This requires a constrained Maximum-

Likelihood maximization. If W+r is row standardized, then λ1
max = 1. That proce-

dure gets extremely cumbersome with respect to computational issues. More pre-

cisely, the computational costs increase with the dimension of the weighting scheme

matrix W+1. Alternatively, one can set ex ante values for λ1, such that λ1 ∈ (0, 1)

which implies only positive spatial error dependence28.

6.3.2 The Bayesian approach

The second approach dealing with the estimation of model (21) is to rely on a

Bayesian approach, with the additional assumption of σ2Ω 6= σ2I. If spatial hetero-

geneity matters, the Bayesian estimates should lead to a robustifaction of the ML

results.
27In this application ϑ is set to ϑ = 1e-8. Further t is set to a maximum value of 500.
28In general, λ1 ∈ (−1, 1). Because of the fact that knowledge spillovers are generally assumed

to be positive, it is assumed that λ1 ∈ (0, 1) .
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Based on the Likelihood function expressed by equation (22), a corresponding spatial

Bayesian heteroscedastic model is set up. The core of Bayesian econometrics is

the Theorem of Bayes (1763). Assume that θ is a vector of unknown parameters

to be estimated. Before any data are observed, the true parameter values of θ

are uncertain, but we can express our beliefs concerning our expectations about θ.

These beliefs are called ”a priori” probabilities which are fully represented by the

probability function p(θ). The probability model itself is entirely defined by the

likelihood p(y |θ) . This likelihood can be described as the key element of Bayesian

econometrics, because it contains the entire set of information stemming from the

data. Given, we have observed y, then we should update our beliefs regarding θ. By

using the theorem of Bayes we obtain the so called ”a posteriori” distribution of θ,

labeled as p(θ|y), which is represented by

p(θ|y) =
p(y |θ)p(θ)

p(y)
, (28)

with p(y) = (y|θ)p(θ), defined by the law of total probability. Because the marginal

probability of y, p(y) does not contain any information about θ and, moreover, we

are only interested in θ itself, we can ignore p(y). Thus the ”a posteriori” probability

is proportional to the likelihood times the ”a priori” probability:

p(θ|y) ∝ p(y |θ)p(θ). (29)

Although the dimensionality of p(θ|y) depends on the number of unknown parame-

ters, we can often focus on individual parameters, such as θ1 ∈ θ, by numerically or

analytically integrating out other components29. For instance we can write:

p(θ1|y) =
∫
p(θ|y)dθ2dθ3... . (30)

The entire information needed for inference about θ1 is contained in the marginal

distribution of θ1. What is left to do is to specify the exogenously given priors and

the likelihood function.
29Refer to Geweke (1993).
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In this context, we assume normal priors for β+++ and a diffuse prior for σ. The

relative variance terms vi ∈ Ω are fixed but unknown, and therefore, we have to

estimate them. The vi have to be treated as informative priors. The distribution of

all elements of Ω are assumed to be independently χ2

s distributed, with s ∼ Γ(a, b).

As mentioned, we are confronted with a degree of freedom problem, if the number

of estimated coefficients K exceeds the number of observations N . Considering

the fact that the χ2 distribution is a single parameter distribution, we are able to

compute N additional parameters vi by adding only one single parameter s to our

model. This idea traces back to Geweke (1993), who uses this type of prior to

model heteroscedasticity and outliers in a linear regression framework. The idea

becomes more clear if one knows that the mean of this prior is unity, whereas the

variance of this prior is s
2 . Thus, if s takes a large value, then all terms of Ω tend

to unity, yielding a homoscedastic scenario, because σ is weighted equally for every

observation, hence we obtain a constant variance over space.

In this way we come back to the assumptions made by the (ML) approach. Here,

small values of s lead to a skewed parameter distribution. Therefore, the role of

vi is, as with traditional (WLS), to down-weight observations with large variances.

For this reason, the degrees of freedom s plays a crucial role when robustifying

against outliers. What kind of priors should we attach to s? One way is to assign

an improper value to s. The other possibility is to use a proper prior for s which is

Gamma distributed:

s ∼ Γ(a, b), (31)

with hyperparameter a and b. It has to be pointed out that the virtue of the first

option is that less draws compared to the second option are required for parameter

estimations and moreover convergence should be achieved quicker.

If Γ(a = s
2 , b = 2), this is equivalent to χ2(s); hence, we obtain a so called mixing

distribution controlled by s. As shown by Geweke (1993) we can write

π

(
s

vi

)
∼ i.i.d. χ2(s), ∀ i, (32)

with π(·) denoting the prior. This implies that the normal mixture model with prior
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(32) is equivalent to a model based on independently distributed Student-t values

with s degrees of freedom, known as the Theil and Goldberger (1961) model. The

spatial error parameter is assumed to follow a uniform but proper distribution with

the range N̂ as π(λ1) = 1
N̂

= 1
λ̃1
min<λ

1<λ̃1
max
∼ U [−1, 1].

Let us summarize our assumptions regarding the priors as follows:

π(β+++) ∼ N (c, T ), (33)

π

(
s

vi

)
∼ i.i.d.

χ2(s)
s

, (34)

π(λ1) ∼ U [−1, 1]. (35)

Given the priors defined above, we need the conditional posterior distributions for

each parameter β+++, σ, λ1,Ω. Using the priors, assuming that they are independent

from each other, we can define the joint posterior as:

p(β+++, σ, λ1) = p(β+++)p(σ)p(λ1) ∝

∝
∣∣I − λ1W+1

∣∣σ−Nexp{− 1
2σ2

(ξ′Ω−1ξ)
}
σ−1×

× exp
{
− 1

2σ2
(β+++ − c)′T−1(β+++ − c)

}
. (36)

From equation (36) the conditional distribution of β+++ is obtained from the stan-

dard non spatial Bayesian (WLS) approach as:

p(β+++|λ1, σ,Ω, y) ∼ N [H(X+++ÑΩ−1Ñy + σ2T−1c, σ2H)], (37)

with H = (X+++′ÑΩ−1ÑX+++ + T−1)−1, Ñ = (I − λ1W+1), mean c and the

corresponding variance covariance matrix T .

The conditional distribution of σ is

p(σ|λ1,Ω, β+++, y) ∝ σ−(N+1)exp

{
1

2σ2
ξ′Ω−1ξ

}
. (38)
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Next, the conditional distribution of every element vi of Ω is considered. Geweke

(1993) shows that the conditional distribution for vi ∈ Ω represents a χ2-distribution

with (s+ 1) degrees of freedom:

p

([
(σ−2e2

i + s)
vi

]
|β+++, λ1, v−i, λ

1

)
∼ χ2(s+ 1), (39)

with v−i = {v1, ...vi−1, vi+1, ..., vN}.

Now consider the conditional distribution for the parameter σ assuming that we

already know β+++, λ1 and Ω. This distribution reads as:

p

[
N∑
i=1

e2
i

vi
/σ2|β+++, λ1,Ω

]
∼ χ2(N). (40)

With equation (40) we adjust estimated residuals ei with estimated weights or rel-

ative variance terms vi. This approach corresponds to the simple weighted least

square procedure (WLS) known from basic econometricians toolboxes.

Finally, the conditional posterior of λ1 is calculated as follows:

p(λ1|σ,Ω, β+++, y) ∝ |Ñ |exp
{

1
2σ2

ξ′Ω−1ξ

}
. (41)

We wish to make several draws to generate a large sample from which we can ap-

proximate the posterior distributions of our parameters. Unfortunately, we cannot

approximate a posterior distribution for expression (41), because this type of distri-

bution does not correspond to any so called standard class of probability densities.

For this reason, ”Gibbs sampling” cannot be readily used. Fortunately, a method

called ”Metropolis-Hasting” sampling, which is an additional sequence in Gibbs sam-

pling procedure30, allows us to approximate the posterior distribution for λ131. The

only problem one has to solve is to find a suitable proposal density. LeSage (2000)

suggests assuming a normal or Student t-distribution. Because of the fact that λ1

has to be handled as a restricted parameter, the sampler rejects values outside the

interval (−1, 1) from the sample32. This is called ”rejection sampling”33.
30Because of this reason, the method is also called ”Metropolis-Within-Gibbs”.
31Refer to Gelman et al. (1995).
32With this assumption spatial unit roots are excluded.
33Refer to Gelfand et al. (1990).
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The question which remains is, how to select the correct Bayesian model. It is

sometimes the case that several competing models Mu with u = {1, 2, ..., U} exist.

To solve this problem, so called posterior probabilities are computed which should

give advice on which model is the correct model in terms of probability. The posterior

probability pposu for model u is given by34:

pposu ≡ p(Mu|y) =
p(y|Mu)∑U
u=1 p(y|Mu)

. (42)

Bayesian model averaging suggests to weight all possible Bayesian models Mu for u =

{1, 2, ..., U} with their corresponding posterior probabilities. In terms of probability

this means:

p(y∗|y) =
U∑
u=1

p(y∗|y,Mu)p(Mu|y), (43)

with p(y∗|y) as the posterior, p(Mu|y) as the posterior model probability and the

expression p(y∗|y,Mu) as the likelihood function of model Mu. The reason why

model averaging should be used is quite simple. The traditional (ML) approach is to

choose the single best model based on calculating posterior model probabilities with

equation (42) for every model of interest35. One has to remember that this rather

excluding approach could lead to wrong decisions, because a researcher has to decide

on the basis of model probabilities what is the ”good model” and what is the ”worse

model” from a large set of models. Additionally, only referring to the ”good model”

ignores model uncertainty. In this study, relying on model probabilities is not a good

idea, because ”posterior model probabilities cannot be meaningfully calculated with

improper non-informative priors”36. Therefore, I refer to the MCMC literature to

compute a posteriori model probabilities. This so called MC3 approach, introduced
34Refer to Hepple (2004), p. 105.
35A large bulk of literature on Bayesian model averaging (BMA) about alternative linear regres-

sion models containing differing explanatory variables exists. For instance refer to Raferty et al.

(1997), Fernandez et al. (2001b) and Fernandez et al. (2001a). The MC3 approach is set forth for

in Madigan and York (1995) for the SAR(r) and SEM(r) models.
36Koop (2003), p. 268.
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by Madigan and York (1995), is based on a stochastic Markov Chain process which

moves through the model space and samples those regions which have a superior

model support. Thus, this approach is very efficient because not the entire model

space is of interest37.

Knowing these facts, we are now able to interpret our estimation results for both

approaches, the Maximum-Likelihood and the Bayesian approach. The results for

the first approach can be found in columns 1 and 2 of table 7. The first regression

is a mixture model of spatial lag and spatial error model, the SEC(1, 1) model38.

This regression carried out in order to underpin our model selection on inductive

statistics, done in the preceding chapter.

Performing estimation runs for all possible combinations of first order and second

order spatial models39, the SEC(1, 1) model has been chosen as the appropriate

model on basis of the value of the log-likelihood as can be seen from table 5.

Leaving out the insignificant parameter ρ1, estimating a pure spatial error model

(column 2) and comparing this with column 1, it can be concluded that only minor

changes of coefficient estimates are observed in contrast to the estimate for λ1, which

is highly significant. Thus, choosing a SEM(1) seems to be the adequate choice.

The estimation results of the SEM(1) model can be found in column 2 of table 7.

Comparing the SEM(1) in column 2 of table 7 with the specification depicted in

the fourth column of table 6 we can find that with the exception of ln(I+1) all other

coefficients have roughly the same dimension, the same sign and the same level of

significance.

The results for the second approach, an estimation of the Bayesian counterpart of

equation (21) can be found in column 3 of table 7. Before discussing the results, we

first should get an intuition of how to interpret the obtained results.

To get estimates from our Bayesian approach, first simulation draws have been made.

To ensure stability of simulated results, it seems to be a good strategy to conduct

simulation studies based on informative and on non-informative priors, for which

37Refer to LeSage and Parent (2007) for an excellent contribution to this topic.
38See appendix 1 for a deviation of the log-likelihood of the SEC(1, 1) model.
39See appendix 2 for a summary.
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starting values are obtained from a corresponding Maximum-Likelihood estimation

procedure. For this reason, two Bayesian estimations, one with 10,000 draws and

one with 100,000 draws, each with informative and non informative priors have been

performed.

In total we obtain four models. For each number of draws, one should estimate a

model with informative and non informative priors40. If we refer to the probabil-

ities pposu for the relevant models which can be found in table 4, and if we further

draw attention to figure 4, which contains the simulated densities of the λ1, we can

conclude that every chosen model contains nearly the same amount of information

with respect to λ1.

Furthermore, MCMC-convergence checks of the four relevant models have been per-

formed41. If the means and variances for the posterior estimates are similar for

all runs, convergence seems to be ensured. Furthermore, convergence tests for all

regressions show that convergence of the sampler is guaranteed for all simulations.

Because of the fact that model (4, 1) has a slightly higher probability to be the

correct model and, at the same time, requires fewer runs, it is the preferred model

in this application. The estimation results for this model can be found in the third

column of table 7.

If we now turn back to table 7 and compare the heteroscedastic Bayesian counterpart

in column 3 with the homoscedastic (ML) based estimation in column 2 we can

conclude that estimation results do not differ dramatically with respect to λ1. The

Bayesian model estimates a lower value for the spatial lag component λ1 compared

to the homoscedastic Maximum-Likelihood procedure, but both coefficient values

are highly significant on the 1% significance level.

The last point we have to tackle is to ask, whether the spatial Bayesian estimation

provides us with some evidence of spatial heterogeneity in the data. Figure 5 shows

40Because of the fact, that the initial model estimation results on which Bayesian model spec-

ification is based are drawn in column (4) of table 7, we label variants of the Bayesian model as

model (4,1), (4,2), (4,3) and (4,4).
41Please refer to appendix 8.6 for a description of convergence criteria and refer to tables 8 to 11

for convergence diagnostics of all selected models.
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a plot of the mean of the vi draws, which should serve as an estimate of these relative

variance terms. If the assumption of spatial homogeneity is appropriate, all elements

of Ω should be equally weighted with value one. Obviously, this is not the case for

all four Bayesian models, as we can see from figure 5. From this point of view,

we should conclude that spatial heterogeneity matters, and thus, a robustification

of (ML)-parameter estimates can be achieved by conducting an estimation based

on Bayesian principles. With respect to the conducted study, this is achieved for

labour, human capital, physical capital, the first order spatial lagged patents, as well

as for the first order spatial error component. Thus, first order neighbouring patent

activity positively influences the region specific labour productivity. Neglecting this

fact would yield an underestimation of region specific labour productivity.

7 Conclusion

The aim of this paper was to introduce a new spatial model selection mechanism for

cross section data. In particular, Bayesian and (ML) methods have been employed

to select a suitable model. The proposed model is more flexible than the approach

introduced by Florax et al. (2003), as it incorporates the two major issues of spatial

econometrics: spatial dependence and spatial heterogeneity. Furthermore, the new

model selection mechanism framework has been used to identify spatial knowledge

spillover from German NUTS-2 regions. It has been found that first order neigh-

bouring patent activity positively influences the region-specific labour productivity,

while own patent activity does not exhibit a significant influence on own labour

productivity. Additionally, most of spatial activity cannot be explained fully by

exogenous spatial lagged knowledge. This is the case because the spatial error term

is highly significant, even if one includes spatial lagged counterparts of exogenous

variables. On the basis of a spatial Bayesian analysis it was further shown that spa-

tial heterogeneity is a reasonable assumption, and controlling for it within a spatial

Bayesian framework leads to a robustification of the parameter estimates.

Of course there are avenues for further research: first of all, the question which is a

suitable weighting matrix is a still not answered question in spatial econometric ap-
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plication. Until today, there is no concise theory about how to choose the ”correct”

weighting scheme as it is for the estimation results itself. This is from fundamental

importance due to the fact that the model selection mechanism is a dependent func-

tion of the weighting scheme. Second, Bayesian model convergence checks sometimes

lead to misleading conclusions regarding the sampler convergence. Third, it is still

unclear how model selection procedures for spatial models an sufficiently control for

spatial unit roots.
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Diskursen räumlicher Forschung und Planung. In: Raumordnung und Raum-

forschung, 59, pp. 402-411.

Kim, C. W., Phipps, T. T., and Anselin, L. (2003). Measure the benefits of air

quality improvement: A spatial hedonic approach. In: Journal of Enviornmental

Economics and Management, 45, pp. 24-39.

Klodt, H. (2000). Industrial Policy and the East German Productivity Puzzle. In:

German Economic Review, 1, pp. 315-333.
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Figure 1: Computation of Moran‘s I with corresponding p-values for dependent and

independent variable for r = 1
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Figure 2: Computation of Moran‘s I with corresponding p-values for dependent and

independent variable for r = 2
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Figure 4: Density plots of estimated λ1

Mean of vi draws (Model (4,1)) Mean of vi draws (Model (4,2))

Mean of vi draws (Model (4,3)) Mean of vi draws (Model (4,4))

Figure 5: Computation of vi draws of Ω
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Code German NUTS-2 region Location

de11 Stuttgart West

de12 Karlsruhe West

de13 Freiburg West

de14 Tübingen West

de21 Oberbayern West

de22 Niederbayern West

de23 Oberpfalz West

de24 Oberfranken West

de25 Mittelfranken West

de26 Unterfranken West

de27 Schwaben West

de30 Berlin West

de41 Brandenburg-Nordost East

de42 Brandenburg-Südwest East

de50 Bremen West

de60 Hamburg West

de71 Darmstadt West

de72 Gießen West

de73 Kassel West

de80 Mecklenburg-Vorpommern East

de91 Braunschweig West

de92 Hannover West

de93 Lüneburg West

de94 Weser-Ems West

dea1 Düsseldorf West

dea2 Köln West

dea3 Münster West

dea4 Detmold West

dea5 Arnsberg West

deb1 Koblenz West

deb2 Trier West

deb3 Rheinhessen-Pfalz West

dec0 Saarland West

ded1 Chemnitz East

ded2 Dresden East

ded3 Leipzig East

dee Sachsen-Anhalt East

def0 Schleswig-Holstein West

deg0 Thüringen East

Table 1: List of German NUTS-2 regions

Y K L H

Mean 48795.52 266105.80 627841.30 8.49

Modus – – – –

Median 41022.01 228133.0 544004.00 8.38

Max 140902.40 895491.10 1603418.00 14.01

Min 9963.63 66538.54 135678.00 4.26

Std. Dev. 33057.33 177768.70 350356.20 2.66

Skewness 1.44 1.63 1.17 0.38

Kurtosis 4.23 5.66 3.62 2.15

Observations 39 39 39 39

Table 2: Table of descriptive statistics (I) of variables used for the analysis
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P I R&D Den Dummy

Mean 330.06 43891.18 1333.87 432.76 –

Modus – – – – 1.00

Median 223.28 43586.00 612.69 211.60 –

Max 1486.63 76028.00 7035.16 3803.00 1.00

Min 26.16 4785.00 67.64 74.99 0.00

Std. Dev. 352.11 17383.47 1592.97 698.53 –

Observations 39 39 39 39 39

Table 3: Table of descriptive statistics (II) of variables used for the analysis

Bayesin model (4)[SEM(1)] Model (4,1) Model(4,2) Model (4,3) Model(4,4)

Runs 10,000 10,000 100,000 100,000

Informative Priors No Yes No Yes

ppos
u 0.2770 0.2509 0.2374 0.2374

Table 4: MC3 a posteriori model probabilities pposu for variants of model (4)[SEM(1)]

Dependent variable y: ln
(

Y
L

)
Independent variables x ∈ X

Preferred model Number of parameters ln(L) ρ̂ λ̂

Model 4 [SAC(1,1)] 12 90.47 0.133 0.697\

Model 4 [SAC(1,2)] 12 88.55 0.284 -0.989

Model 4 [SAC(2,1)] 12 90.28 -0.000 0.722\

Model 4 [SAC(2,2)] 12 87.74 -0.000 -0.987

Model 4 [SEM(1)] 11 67.93 — 0.711\

� Selected model. † indicates 10% significance. ‡ indicates 5% significance. \ indicates 1% signifi-
cance

Table 5: Comparison of selected models
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dependent variable y: ln
(
Y
L

)
independent variables x ∈ X OLS OLS OLS OLS

Column (1) (2) (3) (4))

Constant 10.50177 10.72613 10.39325 10.38857

(0.0000)� (0.0000) (0.0000) (0.0000)

ln(K) 0.251596 0.237242 0.282934 0.282665

(0.0124) (0.0139) (0.0109) (0.0088)

ln(L) -0.193904 -0.219739 -0.243889 -0.243392

(0.0483) (0.0264) (0.0186) (0.0143)

ln(I) — 0.014814 0.016332 0.016466

(—) (0.5218) (0.4653) (0.4673)

ln(H) — 0.149377 0.161219 0.161679

(—) (0.0290) (0.0076) (0.0046)

ln(P) — -0.002382 -0.023189 -0.023487

(—) (0.9373) (0.5216) (0.5011)

ln(H+1) — — -0.066795 -0.066647

(—) (—) (0.6357) (0.6286)

ln(P+1) — — 0.054656 0.054706

(—) (—) (0.0453) (0.0391)

ln(I+1) — — -0.019147 -0.019317

(—) (—) (0.8033) (0.8022)

ln(P+2) — — -0.000197 —

(—) (—) (0.9726) (—)

d 0.218824 0.273835 0.226299 0.226651

(0.0000) (0.0002) (0.0061) (0.0056)

Moran-I1 0.96 2.34 3.19 3.29

(0.2506) (0.0253) (0.0024) (0.0018)

Moran-I2 -0.11 0.26 0.21 0.27

(0.3967) (0.3860) (0.3879) (0.3850)

LMλ1 0.21 2.42 4.90 4.89

(0.6483) (0.1201) (0.0268) (0.0270)

LMλ2 5.25 3.74 3.52 3.53

(0.0219) (0.0532) (0.0601) (0.0601)

LMρ1 1.21 5.58 1.82 1.81

(0.2800) (0.0184) (0.1775) (0.1782)

LMρ2 1.82 0.11 0.97 0.01

(0.1774) (0.7350) (0.3236) (0.9202)

Observations 39 39 39 39

adjusted R2 0.69 0.74 0.75 0.76

�White heteroscedasticity-consistent p-values in ().

Table 6: Results of OLS estimation for German NUTS-2 regions
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dependent variable y: ln
(
Y
L

)
independent variables x ∈ X ML ML Bayes

Preferred Model (4)[SAC(1,1)] (4)[SEM(1)] (4)[SEM(1)]

Column (1) (2) (3)

Constant 8.531315 10.09034 10.07207

(0.0034) (0.0000) (0.0000)

ln(K) 0.306738 0.303988 0.294401

(0.0000) (0.0000) (0.0019)

ln(L) -0.232205 -0.235542 -0.231121

(0.0004) (0.0003) (0.012526)

ln(I) 0.009437 0.011475 0.006971

(0.6514) (0.5828) (0.3904)

ln(H) 0.196265 0.183675 0.187209

(0.0006) (0.0003) (0.0024)

ln(P) -0.050593 -0.043691 -0.043108

(0.0847) (0.1101) (0.1145)

ln(H+1) -0.055016 -0.071008 -0.004407

(0.5594) (0.4149) (0.4871)

ln(P+1) 0.070208 0.083117 0.062044

(0.0477) (0.0008) (0.0164)

ln(I+1) 0.028737 0.035589 0.030584

(0.6262) (0.5416) (0.3233)

d 0.261555 0.252277 0.255723

(0.0000) (0.0000) (0.0005)

ρ1 0.132883 — —

(0.5905) (—) (—)

λ1 0.696998 0.710951 0.561134

(0.0000) (0.0000) (0.0081)

Observations 39 39 39

ln(L) 90.47 67.93 —

adjusted pseudo R2 0.83 0.83 0.81

Table 7: Estimation results for German NUTS-2 regions
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8 Appendix only for review purpose

8.1 Proofs of OLS estimations for spatial cross section models

Proposition : An OLS estimation of a spatial lag model would yield inconsistent

and thus biased estimators. An OLS estimation of a spatial error model would yield

inefficient but unbiased OLS estimators. An OLS regression of a spatial model with

exogenous spatial lagged variables is unbiased but only BLUE if spatial homogeneity

is assumed. �

Let us start with

y = ỹP +X+++β+++ + ε̃Λ + κ, (44)

or with the familiar notation from expression (8):

y = ỹP +XβX + X̃++β++ + ε̃Λ + κ (45)

with

X+++ = [X, X̃++] and β+++ = [βX , β++]. Labeling parts of (8) with I, II, III, IV ,

this yields:

y = ỹP︸︷︷︸
(I)

+XβX︸ ︷︷ ︸
(II)

+ X̃++β++︸ ︷︷ ︸
(III)

+ ε̃Λ︸︷︷︸
(IV )

+κ. (46)

1. Assume, that I=II=IV=0.

This yields

y = X̃++β++ + κ, (47)

with κ ∼ (0, σ2Ω) with σ2Ω 6= σ2I. From equation (47) we can obtain an

OLS estimator b++ = (X̃++′X̃++)−1X̃++′y. This estimator is unbiased if

E[X̃++′κ] = 0 because:

E[b++] = β++ + E[(X̃++′X̃++)−1X̃++′κ] = β++. (48)
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The estimated variance covariance matrix of V [b++] is

V [b++] = E[(b++ − β++)(b++ − β++)′] = (49)

= E[(X̃++′X̃++)−1X̃++′κκ′X̃++(X̃++′X̃++)−1], (50)

or

V [b++] = [(X̃++′X̃++)−1X̃++′ΣX̃++(X̃++′X̃++)−1] 6= σ2(X̃++′X̃++)−1,

(51)

with Σ = σ2Ω. Thus, OLS is unbiased but only BLUE if σ2Ω = σ2I, thus if

spatial homogeneity is assumed.

2. Assume, that III=IV=0.

This yields

y = ỹP +XβX + κ, (52)

κ ∼ (0, σ2Ω) with σ2Ω 6= σ2I. An OLS estimation of equation (52) would

yield, under neglecting an element r ∈ R of ỹP :

bX = (X ′X)−1X ′y. (53)

After inserting y this yields the estimator bX of βX :

bX = (X ′X)−1X ′(ρrW+ry +XβX + κ). (54)

Taking the expectation of equation (54) this yields

E[bX ] = E[(X ′X)−1X ′(ρrW+ry) + βX ] 6= βX . (55)

Thus, the bias can be expressed as

E[bX − βX ] = E[(X ′X)−1X ′(ρrW+ry)] = ρrβl. (56)

The expression can be interpreted as ρr times the regression of X against

(ρrW+ry) with the corresponding βl which is equal to the expected value of

the regression (W+ry) on X. Hence, OLS is biased if only one component of

ỹP is neglected.
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3. Assume, that II=III=IV=0

In this case we obtain

y = ỹP + κ, (57)

κ ∼ (0, σ2Ω) with σ2Ω 6= σ2I. An OLS-estimator of one element ρr of P would

yield:

ρ̂r = [(W+ry)′(W+ry)]−1(W+ry)′y, (58)

or inserting expression (57) in equation (58)

ρ̂r = ρr + [(W+ry)′(W+ry)]−1(W+ry)′κ. (59)

The estimator ρ̂ is not consistent because

ρ̂
p→ ρ+

(
1
N

(W+ry)′W+ry

)−1( 1
N

(W+r)′κ
)
,

ρ̂
p→ ρ+ S−1

(W+ry)′W+ry

(
1
N
κ′W+r(I − ρrW+r)−1κ

)
. (60)

The expression
(

1
N (W+ry)′W+ry

)
converges to a regular and finite matrix

S(W+ry)′W+ry. The second term
(

1
N (W+r)′κ

)
however converges to an expres-

sion which is quadratic in the errors, unless ρr = 0. Hence, estimating a spatial

lag parameter ρr via OLS is biased and inconsistent.

4. Assume, that I=III=0

Now it results

y = XβX + ε, (61)

with ε = εΛ + κ and κ ∼ (0, σ2Ω) with σ2Ω = σ2I. An OLS estimation of βX

would be unbiased, because

E[bX − βX ] = E[(X ′X)−1X ′κ] = 0, (62)

but βX is not efficient because for a given λr from Λ for the estimated variance

covariance matrix it is obtained:

V [b++] = [(X ′X)−1X ′εε′X(X ′X)−1X], (63)
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which is

V [b++] = σ2[(X ′X)−1X ′[(I −λrW+r)′(I −λrW+r)]−1X(X ′X)−1X]. (64)

In consequence, the OLS estimator of bX is unbiased but inefficient for a given

λr from Λ. �

8.2 Derivation of the log-likelihood function for the SAC(1, 1) model

The log-likelihood function for the SAC(1, 1) can be derived as follows:42

y = ρ1W+1y +X+++β+++ + ε, (65)

with

ε = λ1W+1ε+ κ, (66)

with κ ∼ (0, σ2I). Next define

κ =
1
σ

(I − λ1W+1)−1[(I − ρ1W+1)y −X+++β+++] (67)

with κ ∼ N(0, σ2I). The corresponding determinant of the Jacobian J ≡ det∂κ∂y can

be rewritten as

J ≡ det∂κ
∂y

= | 1
σ

[I − λ1W+1] || [I − ρ1W+1]|. (68)

Employing the fact that κ ∼ N(0, σ2I) we can write the log-likelihood for the joint

distribution as

lnL = −N
2

ln 2π − N

2
(σ2) + ln |Ñ |+ ln |[I − ρ1W+1]| − 1

2
κ′κ, (69)

If ρ1 = 0 equation (23) results.

42The proof is based on Anselin (1988), p. 74 with some minor adjustments.
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8.3 Derivation of formula (78)

Using PIM, the capital stock Kt can be computed as

Kt = ι0It + ι1It−1 + ...+ ιT It−T , (70)

with It as investment in new capital Kt. It is common to set ι0 = 1 and ιt = (1− δ)t

for t > 0. Using a Koyck transformation, from equation (70) we obtain:

Kt = It + (1− δ)Kt−1, (71)

with δ = ιT−1−ιt
ιT−1

. To obtain expression (78) we assume that investment It in stock

of capital Kt is growing from t = 0 with constant rate ζ. Therefore we can write:

It = (1 + ζ)It−1 = (1 + ζ)(1 + ζ)It−2 = ... = (1 + ζ)∞
+
It−∞+ . (72)

Further it is assumed that devaluation of capital Kt follows a geometric series:

Kt = It + (1− δ)It−1 + (1− δ)2It−2 + ...+ (1− δ)∞+
It−∞+ . (73)

Using (72) and (73) leads to

Kt = It+
[

1− δ
1 + ζ

]
It+

(
1− δ
1 + ζ

)2

It+ ...+
(

1− δ
1 + ζ

)∞+

It = It

∞+∑
κ=0

(
1− δ
1 + ζ

)κ
. (74)

Rearranging equation 74 by writing:[
1−

(
1− δ
1 + ζ

)]
Kt = It

[
1−

(
1− δ
1 + ζ

)κ+1
]

(75)

and letting κ→∞ leads to

Kt = It
1[

1−
(

1−δ
1+ζ

)] , (76)

because of
(

1−δ
1+ζ

)
< 1. Noting, that It+1 = It(1 + ζ) yields

Kt =
It+1

1 + ζ

1[
1−

(
1−δ
1+ζ

)] . (77)
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8.4 Data and variables

This section gives a description of the data which have been used in this study. As

mentioned before, NUTS-2 data for all German regions for the year 2003 have been

used. The reason why one should decide to base the empirical study upon NUTS-

2 data is, that referring on so called “Kreisdaten” could result in spurious spatial

dependence, which could be caused by streams of commuters, for example43. This

problem is boosted by the empirical fact of suburbanization, which has increasingly

appeared in the last years44. That is why most similar research field studies refer

to so called “land use planning units”, such as NUTS-regions, particularly for Euro-

pean studies or “Arbeitsmarktregionen” for German investigations. Whatever of the

latter mentioned spatial unit one decides to use, the worth mentioning communality

is, that a “land use planning unit” subsumes smaller subgroups, such as “Kreise”.

Thus, referring to “land use planning units”, the spurious spatial dependence prob-

lem is of less importance or even cancelled out. The year 2003 was selected because

of reliability and accessibility of European patent data. Particularly the problem

of missing data is serious for NUTS-2 data. Of course, if data would have been

available for a longer period of time, then regression based on time averages would

be the appropriate approach. For Germany, 39 NUTS-2 regions are included in the

regression analysis.

The data stem from the online database provided by Eurostat, from the online

support of the German statistical office in Wiesbaden (genesis online), from the on-

line representation of the “Arbeitskreis “Volkswirtschaftliche Gesamtrechnungen der

Länder”” as well as from the INKAR-database CD-Rom published by the “Bunde-

samt für Bauwesen und Raumordnung”.

In detail, the following variables are specified:

1. Output (Y) is approximated with Gross Value Added. The data are published

43Keilbach (2000), p. 120-121.
44Refer to Kühn (2001) and Kaltenbrunner (2003) for a discussion.
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annually on the CD-Rom “Statistik regional” by the “Statistische Ämter des

Bundes und der Länder” and have been stated in Mio. Euros.

2. Human capital (H) is measured as the percentage of the employees on

NUTS-2 level, subject to social insurance contribution, who obtained a high

level degree, such as an university, a polytechnical or a technical college de-

gree. With the exception of Sachsen-Anhalt, the data stem from the CD-Rom

“Statistik regional” edited by the “Statistische Ämter des Bundes und der

Länder”45. To exclude the above mentioned commuter problem, the data cor-

respond to the activity area, not to the place of residence of the employees.

Naturally, this assumption implies that added value is created at the activity

area. Unfortunately, the data do not exhibit the desirable attribute that they

are restricted to the employed human capital in production sector. Hence, as

mentioned by Keilbach (2000) we have to bear in mind implicit spillovers of

employed human capital from the non-producing sectors.

3. Labour (L) is measured as number of employees in thousands on NUTS-

2 level subject to social insurance contribution less human capital, defined

above. Data have been obtained from the CD-Rom “Statistik regional” edited

by the “Statistische Ämter des Bundes und der Länder”.

4. Capital (K) stock construction for the regional NUTS-2 manufacturing sec-

tor is a serious problem. By mischance, it is not possible to hark back to

regionally disaggregated stock of capital data for NUTS-2 regions from the

official statistic suppliers. Only for the German “Bundesländer” the “Ar-

beitskreis “Volkswirtschaftliche Gesamtrechnungen der Länder”” offers capital

stock data. Naturally, on this rather aggregated level, capital stock estimation

via the perpetual inventory method (PIM) is rather easy to implement. The

fundamental idea of PIM is that different vintages of the stock of capital ex-

hibit different efficiencies being used in the production process. This idea has

45The data of Sachsen-Anhalt have been obtained directly from the “Statistisches Landesamt

Sachsen-Anhalt”.
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to be considered when calculating the stock of capital. Therefore, one has first

to determine the average durability of an asset. Next, calculation of long term

data regarding the annual investments is needed to initialize PIM. Basically,

it is common to refer to gross fixed capital formation as a proxy, because PIM

is nothing else than computing an average weighted sum of past investments.

Long term data are necessary, especially in the case of Germany, because the

cumulative investment data have to be corrected using a survival function and

depreciation function to obtain an estimation for the capital stock. In the case

of Germany the Gamma distribution has to be consulted to obtain a mea-

sure for the mortality function from which the depreciation function can be

obtained directly46. Based on the gamma function, it cannot be ruled out ex

ante that the service life of an asset oscillates more than twice of an average

service life of an asset. That is exactly the reason why it is strongly recom-

mended to use long investment data47. In this way it is possible to calculate

the stock of capital K in period t using data of gross fixed capital formation I

from the period t+ 1, a depreciation rate on stock of capital δ, obtained from

the depreciation function and an average growth rate ζ of gross fixed capital

formation. In a more formal manner the following relationship results48:

Kt = It

∞∑
κ=0

(
1− δ
1 + ζ

)κ
=

It+1

1 + ζ

1(
1−

(
1−δ
1+ζ

)) =
It+1

ζ + δ
. (78)

As mentioned above, long term data for the gross fixed capital formation are

needed to initialize PIM. Unfortunately, long term series of desired data are

not available for Germany on NUTS-2 level. EUROSTAT offers data for gross

fixed capital formation on NUTS-2 level for German regions only for the years

2002 and 200349. Concerning the above mentioned, it is not reasonable to rely
46It is suitable to set the dilation parameter of the mortality function to the value p = 9.
47The starting date for series of gross fixed capital formation is 1799 for buildings, 1899 for

machinery and equipment and 1945 or later for intangible assets. For an deeper introduction of

PIM, particularly for Germany, consult Schmalwasser and Schidlowski (2006).
48Refer to appendix 2 for a deviation of expression 78.
49The Statistische Landesamt Baden-Wurttemberg offers data for the gross fixed capital formation

from 1998 onwards online.
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on PIM estimating the stock of capital for NUTS-2 regions.

Because of that reason, the estimation of the stock of capital is performed with

a method similar to the shift analysis. The basic idea of the shift analysis is

to compute a so called structural factor and a location factor. The structural

factor should provide information about the capital intensity of branches and

furthermore, should give a hint, whether capital intensive branches are over-

or underrepresented in a specific region. Assume for the moment50 that we

have i = {1, 2, ..., I} branches and h = {1, 2, ..., N} NUTS-2 regions in each

of the j = {1, 2, ...,M} states. It is worth mentioning that a single NUTS-2

region can represent an own state51. Due to the fact that we do not analyse

specific branches, we can set i = 1.

Hence, for the structural factor SF for region h in a formal manner we can

write:

SF ht =

∑
i gt−1,iI

M
t,i∑

i gt−1,iIMt−1,i

/

∑
i I
M
t,i∑

i I
M
t−1,i

, (79)

where IMt,i stands for the gross fixed capital formation in the state M in year

t, INt,i represents the gross fixed capital formation in the NUTS-2 region N in

year t and gt,i ≡
INt,i
IMt,i

is the weight for region h. Of course,
∑

h gt,i = 1 and∑
j

∑
h gt,i must equal the number of the states M . In the case of Germany

M = 16.

Instead of the structural factor, the location factor assumes implicitly, that a

specific region, which can be characterized by high investments in the past,

must exhibit a high stock of capital relative to other regions in the present.

For the location factor LOF one can write:

LOF ht =

∑
i gt,iI

M
t,i∑

i gt−1,iIMt,i
. (80)

50Please bear in mind that the national form is only valid for presentation of shift analysis.
51This is true for Hamburg, Bremen, Berlin, Mecklenburg-Vorpommern, Schleswig-Holstein, Saar-

land, Thüringen and Sachsen-Anhalt in the case of German “Bundesländer”.
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Multiplying the structural factor with the location factor one obtains the re-

gional factor. More formally spoken, we obtain the regional factor RF :

RF ht =

∑
i I
N
t,i∑

i I
N
t−1,i

/

∑
i I
M
t,i∑

i I
M
t−1,i

=

∑
i gt,iI

M
t,i∑

i gt−1,iIMt−1,i

/

∑
i I
M
t,i∑

i I
M
t−1,i

. (81)

A value greater than one for the regional factor implies that a specific region

has grown faster than the average, a value less than one means that a specific

region has grown less than the average.

To calculate the weights for RF ht and LOF ht for every region h we have to con-

sult data of gross fixed capital formation for 2003. After calculating the region

specific weights, the regional capital stocks for the German “Bundesländer” are

weighted with these. In this way, we have estimated NUTS-2 specific stocks

of capital in Mio. Euros have been computed.

5. R&D (R&D) effort is expressed as the total R&D expenditure (GERD). The

expenditures include the business enterprise sector, the government sector, the

higher education sector as well as the private non-profit sector. Data have been

expressed in Mio. Euros and have been provided by EUROSTAT. Obviously,

relying on this data, we cannot exclude spillovers from the non-producing

sector to the producing sector. As mentioned by Keilbach (2000) this effect

should be neglectable. Although it would be reasonable on the first sight, we

should not use R&D employees as a proxy for R&D, because it is justified to

assume that within the R&D sector, more than in the manufacturing sector,

the majority of offered jobs requires a high skilled labour force, a subset of

human capital, defined above.

6. Patent (P) applications to the European Patent Office (EPO) by priority

year at the regional level have been gathered from EUROSTAT. The priority

starts after the year filing the patent application. Data are expressed as total

number of patent applications in a specific NUTS-2 region.

7. Infrastructure (I): Since Aschauer (1989) there has been a intensively lead-

ing debate about how to measure infrastructure and what effects public in-
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frastructure has on output growth using a production function approach. In

general, the studies can be grouped in national level studies and regional or

state level studies. One traditional approach is to use information about unde-

veloped areas serving for streets, railways or airways and traffic on waterways

Keilbach (2000). Additionally, other factors, such as political interest, friend-

ship ties, basic trust and quality of life etc. should flow into the regression

context. Regrettably, these data are not available on NUTS-2 regions. There-

fore, for this study on has to refer to data on highway density per squared

kilometre published by EUROSTAT.

8. Density (DEN) is measured as inhabitants per square kilometre. Data

for the average population for 2003 per NUTS-2 area as well as details for

the NUTS-2-areas in square kilometre have been obtained from the CD-Rom

”Statistik regional”.

9. Dummy : The dummy covers East-Western productivity differences. It is de-

fined as follows:

d =

 1 if region i belongs to the group of West German NUTS-2 regions

0 if region i belongs to the group of East German NUTS-2 regions
.

It is reasonable to include the dummy, because a bulk of papers have found

empirical evidence that a significant difference regarding the capital intensity

still exists between East and West German region. After initial continuous

progress concerning the productivity of East German regions right after the

German reunification and an observed stagnation in the years 1996 and 1997

this gap seems to widen again in recent years52. For instance Smolny (2003)

has found that East German capital intensity is 80% of corresponding West

German capital intensity.

52For the convergence debate of East German regions refer to the empirical based analysis of

Bellmann and Brussig (1998), Almus and Czarnitzki (2003), Klodt (2000), Smolny (2003), Sinn

(2000) and Sachverständigenrat (2005).
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8.5 ”Metropolis-Within-Gibbs”

The ”Metropolis-Within-Gibbs” sampling algorithm can be expressed as follows:

1. Set t=0.

2. Define a starting vector St=0 which contains the initial parameter of interest:

S0 = [β+++
0 , σ2

0, vi0, λ
1
i ].

3. Compute the mean and variance of β+++ using expression (37) conditional on

all other initial values stacked in S0.

4. Use the computed mean and variance of β+++ do draw from a multivariate

normal distribution a normal random vector β+++
1 .

5. Calculate equation (40) refering on β+++
1 from step 4 and use this expression

in combination with χ2(N) random draw to determine σ2
1 for i = {1, 2, ..., N}.

6. Use β+++
1 and σ2

1 to calculate equation (39) and use this value together with

a N -dimensional vector of χ2(s + 1) random draws to determine vi ∈ Ω for

i = {1, 2, ..., N}.

7. Use metropolis within Gibbs sampling to calculate λ1 using values vi ∈ Ω for

i = {1, 2, ..., N}, β+++
1 and σ2

1.

8. Set t=t+1.

8.6 MCMC convergence checks

In the relevant literature, there are some convergence checks for convergence of

MCMC based samplers for linear models. In this section there is given a short

motivation of some convergence checks instruments. All below mentioned diagnostic

tools are implemented in the Matlab function ”coda”.

8.6.1 Autocorrelation estimates

From time series it is known that if ρ is a stationary correlated process, then ρ̂ =
1
N

∑N
i=1 ρi is a consistent estimate of E(ρ). Therefore it is allowed to simulate some

57



correlated draws from our posterior distribution to get a hint how many draws we

need for uncorrelated draws for our Gibbs sampler. A high degree of correlation

should cause someone to carry out more draws which should result in a sample

which allows to draw correct posterior estimates.

8.6.2 Raftery-Lewis diagnostics

Raftery and Lewis (1992b), Raftery and Lewis (1992a) and Raftery and Lewis (1995)

have suggested a set of diagnostic tools which they have first implemented in FORTRAN

named ”Gibbsit”. This function was converted in Matlab and called ”raftery”.

Raftery and Lewis (1992b), Raftery and Lewis (1992a) and Raftery and Lewis (1995)

have focused on the quantiles of the marginal posterior. The diagnostic itself is

based on the properties of a two state Markov-Chain, because for a given quantile

the chain is dichotomized using a binary time series that is unity, if ρi ≤ qquant

and zero otherwise, where qquant denotes the quantile which has to be chosen from

the researcher ex ante. For an independent chain, the zeros and ones should be

appear randomly. The ”coda” function prints the so called thinning-ratio, which is

an indicator of autocorrelation in the draws. ”Thinning” means, that only every

third, fifth,... draw for instance are saved for inference, because the draws from

a Markov Chain are not independent. Additionally, the number ”burn-in-draws”

are reported. The number of ”burn-in-draws” are excluded from sampling based on

inference. Finally, the I-statistic is reported which is the ratio of the number of total

draws and the minimum number of draws to ensure an i.i.d. chain, represented by

the draws. Raftery and Lewis (1992b), Raftery and Lewis (1992a) and Raftery and

Lewis (1995) indicate that values larger than 5 exhibit convergence problems of the

sampler and therefore, more draws should be carried out.

8.6.3 Geweke diagnostics

The Matlab function ”coda” additionally estimates the numerical standard errors

and relative numerical standard errors based on the work of Geweke (1992). The

code can be found at http://www.biz.uiowa.edu/cbes/code.htm, which is based on
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BACC. The BACC code itself as Matlab, R and S-Plus routines can be found at

http://www2.cirano.qc.ca/ bacc/bacc2003/index.html. This diagnostics are based

on elements of spectral analysis. From time series analysis we know, that an estimate

of variance of ρ is based on V ar[ρ̂i] = ∆(0)
k with ∆0 as the spectral density of ρi

evaluated at ω0 of ∆(ω). The question is, how to approximate ∆(ω). For this

reason, alternative tapering of the spectral window should be used. Using numerical

standard errors and relative numerical i.i.d. standard errors and compare them with

numerical standard errors and relative numerical standard errors from the tapered

version. If the relative numerical standard error of the tapered version is close to

one, then convergence seems to be ensured.

8.6.4 Geweke-χ2 test

Geweke’s-χ2 test is based on the intuition that sufficiently large draws have been

taken, estimation based on the draws should rather identical, provided the Markov

chain has reached an equilibrium state. This test is a simple comparison of the

means for each split of the draws. In this work, the χ2 test, based on the null

hypothesis of equality of the means of splits is carried out for each tapered case. It

should be mentioned that the diagnostic tools introduced here are not foolproof and

sometimes MCMC diagnostic tools lead to misleading decisions53.

53Refer for this topic to Koop (2003), p. 66.
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