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Abstract

The inefficiency of health care provision presents a major health policy con-
cern in Germany. In order to address the issue of efficiency comprehensively —
i.e.at the level of the entire system of health care provision rather than individ-
ual service providers — empirical analyses are often based on data at the re-
gional level. However, regional efficiencies might be subject to spatial depend-
ence, rendering any analysis biased that aims at identifying the determinants
of efficiency differentials. We address this issue by specifying a spatial auto-
regressive model to explain efficiency scores for German districts which we
derive through data envelopment analysis. Regression results suggest that
spatial dependence is not a dominant feature in the data. Hence, ignoring spa-
tial interdependence is unlikely to severely bias results of efficiency analyses
based on regional data. This holds, in particular, for the role of the states in the
efficiency of health production. Significant heterogeneity among states is
found in the data regardless of whether or not spatial dependence is accounted
for.
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1 Introduction

The efficiency of health care provision has in recent years become a major concern of health policy
and applied health economics. Several empirical analyses address this issue at the level of individual
health care providers such as hospitals (e.g. Staat, 2006 and Herr, 2008). However, rather than the
inefficiency of individual providers, poor coordination e. g. between outpatient and inpatient care
might in fact present the prime source of technical and economic inefficiency. This applies in
particular to Germany, where a rigid separation of inpatient and outpatient care, free and direct
access to medical specialists, and generous coverage by social health insurance are frequently
blamed for generating inefficiencies such as the over-use of services, redundant medical treatments,
and medical malpractice due to insufficient exchange of information.

These potential sources of inefficiency evidently cannot be addressed using data at the level of
individual providers. Recent analyses based on regional data do comprehensively study quality,
effectiveness and efficiency of health care provision in Germany, taking into account the
interdependence of different health care sectors (e.g. Augurzky et al., 2009b; Schwierz & Wibker,
2008; Busse, 2009). However, by using regionally aggregated data, the implicit assumption - inherent
in conventional regression analyses - of statistically independent observation units becomes almost
indefensible.! Rather, health care efficiency at the regional level is likely to be shaped by different
sources of spatial interdependence, as regional health care systems are not strictly separated.
Patients can be provided with services in regions other than the one they reside in, thus net patient
flows between regions will most evidently bias figures on regional efficiency. Typically, regions
exhibiting net patient inflows fully account for inputs (e.g. medical infrastructure or services), while
the corresponding outputs (e.g. reductions in mortality or morbidity) are partly assigned to the
sending regions. While little is known about patient-flows in outpatient care in Germany, Augurzky et
al. (2009a) provide detailed figures on flows for the hospital sector. Indeed, in some regions the
share of patients treated within the region’s border is substantially lower than 50% (cf. Augurzky et
al., 2009a).

Furthermore, health care infrastructure is likely to be regionally specialized. Medical specialists and
specialized hospital departments not available in all regions will provide services to patients from
neighbouring regions, even if net patient flows are small. Regions are thus likely to benefit in terms
of reduced morbidity and mortality from efficient and high quality service in adjacent regions. Hence,
when analyzing the quality and efficiency of health care provision at the regional level ignoring
potential spatial interdependence may result in misleading empirical evidence in two ways. Firstly,
efficiency figures may be biased, due in particular to net patient flows. Secondly, the determinants of
regional efficiency differentials may be biased. The question of whether states? differ in the efficiency
of health care provision has recently attracted much interest, as health inequality is a controversial
issue in the public debate. Institutional factors do suggest such differences: Firstly, the states are
responsible for investments in inpatient care such as the construction and closure of hospitals.

! Tosome degree Schwierz & Wiibker (2008) allow for inter-regional correlation by carrying out a ‘multi-level analysis’. But
in fact they account for correlation at the state level rather than spatial dependence.
% The term ‘state’ refers here to the German ‘Lander’, while ‘federal’ denotes the German ‘Bund’.
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Secondly, the availability of outpatient care is organized on the state level, the number of resident
doctors effectively restricted by public demand planning in many regions.®> Moreover, empirical
analyses (cf. Augurzky et al. 2009b) report substantial differences in state-level efficiency. This result,
however, might represent an artefact of spatial dependence. Our analysis is concerned with this
issue, focusing on whether state-specific heterogeneity can be identified even if spatial dependence
is accounted for.

The empirical analysis follows a two step approach. Firstly, we calculate health care efficiency figures
for Germany at the district level employing data envelopment analysis (DEA). These efficiency scores
are likely to be biased as they ignore spatial interdependence. This first step, however, mimics
conventional efficiency analysis and hence does not correct for such biases. The second step then
addresses spatial interdependence using a Cliff-Ord (Cliff & Ord, 1973) modeling framework where
the DEA efficiency scores derived in step one serve as dependent variable. The remainder of the
paper is organized as follows: section 2 introduces the data; section 3 discusses our two step
empirical approach; section 4 presents and discusses the estimation results; section 5 concludes.

2 The Data

The empirical analysis is based on district-level data from Germany. In 2004, Germany was sectioned
into 449 districts (‘Kreise’®) with an average of 180,000 inhabitants and 800 km? in area. Districts
exhibit pronounced heterogeneity with respect to both population and size. This is partly due to the
typical pattern of large and medium-size — sometimes even small — cities and towns constituting one
district (urban district, ‘Stadtkreis’) and the surrounding countryside constituting another (rural
district, ‘Landkreis’). Thus, large rural districts often directly border on densely populated urban
districts. The two largest German cities, Berlin and Hamburg, are urban districts as well. District
populations hence range from less than 35,000 to almost 3.5 million people.

Comprehensive district-level data is provided by the Federal Statistical Office (‘Statistisches
Bundesamt’)’ as well as the Federal Office for Building and Regional Planning (‘Bundesamt fiir
Bauwesen und Raumordnung’)®. We combine data from both sources and add information from the
German Hospital Register (‘Verzeichnis der Krankenhduser und der Vorsorge- oder Rehabilitations-
einrichtungen’) that is also provided by the Federal Statistical Office. Specifically, we use (i)
demographic information, i.e. population and deaths by gender and age, (ii) territory, from which we
calculate population density, (iii) per capita income, (iv) district unemployment rates, (v) the number
of physicians by medical specialty, (vi) the number of hospital beds by medical specialty, (vii) the
share of hospital beds by type of ownership (private, public, non-profit). The state a district is located
in is also considered in the regression analysis. The ‘city states’ Berlin, Hamburg and Bremen, each a
single district in their own right’, serve as reference. We focus on the year 2004, for which
comprehensive information on these variables is available. Some districts were excluded due to

Resident doctors' associations organized at state level, rather than state governments themselves, are responsible for the
provision of outpatient care.

Due to mergers, the number of districts has constantly been reduced.

See database ‘Statistik Regional’.

See database 'INKAR’.

Except for Bremen, which is divided into two urban districts, i.e. the ‘City of Bremen’ and ‘Bremerhaven’.
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missing data. Our analysis is thus based on a data set of 435 individual districts. Table 1 displays
descriptive statistics for the variables included in the empirical analyses.

Table 1: Descriptive statistics (435 districts)

Variable Mean s.d. min max
standardized mortality 1.014 0.087 0.787 1.264
hospital beds (per 10.000 inhabitants) 67 12 2 228

general practitioners (per 10.000 inhabitants) 54 8 31 84

resident medical specialists (per 10.000 inhab.) 100 51 23 328

output-oriented technical efficiency (DEA score) 0.827 0.076 0.652 1.000
population (million people) 0.188 0.220 0.035 3.388
population density (1.000 people per kmz) 0.509 0.657 0.040 4.024
per capita disposable income (10.000 € per year) 1.413 0.185 1.085 2.304
unemployment rate 0.111 0.055 0.040 0.293
non-profit hospital ownership (share in beds) 0.279 0.329 0.000 1.000
private hospital ownership (share in beds) 0.141 0.258 0.000 1.000

Carrying out spatial regression analysis requires a spatial-weighting matrix that parameterizes the
distance between spatial units. We use a matrix based on distances in terms of average travel time
by car between two districts’ centroids. We believe that travel time is far more important for patient
flows and efficiency spillovers than geographical distance alone. We distinguish two variants of
spatial-weighting matrices, one including squared inverse distances and another using a contiguity
matrix design. The latter assigns a value of 1 for contiguous neighbours and a value of 0 for all other
elements. ‘Contiguous’ is defined here as a travel time between two districts of less than 30 minutes,
thus allowing for the inclusion of ‘island districts’ without any factually contiguous neighbours.

3 The Empirical Approach

3.1 Data Envelopment Analysis

The first step of our empirical analysis is to perform a ‘conventional’ efficiency analysis without
taking into account any potential spatial interdependence. The purpose is to generate district-specific
performance figures (efficiency scores) rather than to identify structural parameters of the
underlying production technology. For this reason, we prefer data envelopment analysis to a
stochastic frontier approach. Policy makers regularly demand such descriptive analyses from applied
research. We therefore use DEA as a descriptive tool for aggregating information on inputs and
outputs for health production into a single dependent variable capturing efficiency. In technical
terms, data envelopment analysis represents a nonparametric linear programming approach to
efficiency analysis (see e.g. Seiford & Thrall, 1990). In the present application, DEA does not impose
the restriction of constant returns to scale in production.

The limited availability of data at the district level unfortunately limits the opportunities for
formulating a rich model of efficiency that includes measures of morbidity as outcome variables.
Instead, we use the number of deaths per year and district as a single output variable of health



production capturing mortality.® Clearly, the raw number of deaths does not tell us much about the
efficiency or quality of health care provision, as district populations substantially differ in size and
demographic composition. We therefore standardize the number of deaths to national gender- and
age-specific death rates.” Figure 1, a map of the districts in Germany, indicates substantial
heterogeneity in standardized mortality across districts. While for some districts mortality is 21%
lower than expected on the basis of demographic structure alone, others exhibit mortality rates as
much as 26% above the expected level. Standardized mortality is highest in the north-east of the
country — the former GDR — and lowest in the south-west - the state of Baden-Wurttemberg and
southern Bavaria. As DEA requires at least one desired output rather than an unwanted 'bad’, we use
the inverse of standardized deaths as left-hand side variable (cf. Scheel, 2000).

<098 Eosoe 0% 108 [ <ar [ [ Ry
B osios s [ missing [ . [ vissing

Figure 1: Standardized mortality, 2004 Figure 2: Hospital beds per capita, 2004

Source: Statistisches Bundesamt, own calculations Source: Statistisches Bundesamt (Statistic Regional)

As comprehensive quantitative information on health care utilization (e.g. the number of physician
consultations) is not available to us at the district level, we use medical infrastructure to measure the
inputs to health production.’ Specifically, hospital beds, the number of general practitioners, and
the number of resident medical specialists - each per 10,000 inhabitants - enter the data
envelopment analysis (see Figures 2 trough 4). Figures 2 and 4 show the typical pattern of hospitals
and medical specialist located in cities or towns, with a much weaker supply of medical infrastructure
in the countryside. This pattern is most distinct in Franconia (marked red in Figures 2 and 4) and
some bordering regions, where the arrangement of districts adheres closely to the ’Stadtkreis-
Landkreis’ scheme. Though the distribution of general practitioners (Figure 3) exhibits some

8 This is not uncommon in applied health economics; see Hall and Jones (2007) for a recent example.

o Unfortunately, the data available to us include precise age only up to 75 years. For the population older than this, figures
are reported in age-classes, i.e. 75 to 80, 80 to 85, and > 85 years.

10 As with patient flows, publically available information on inpatient care is much better than information on outpatient
care.
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interesting regional features — e.g. remarkably low numbers for the western state of North Rhine-
Westphalia — there is no distinct difference between urban and rural districts.

Figure 5 displays the corresponding DEA results in terms of output-oriented technical efficiency
scores (0 < DEA score£ 1). These scores can be interpreted as the factor by which mortality might be
reduced, relative to other districts, without changing the inputs considered here'’. On average,
districts reach an efficiency level of 0.827 while the worst score is 0.652. The share of districts
classified as fully efficient (unity efficiency score) is only 3%.'? The regional pattern of efficiency
scores to some degree mirrors the distribution of standardized mortality. That is, while the share of
highly efficient districts is rather large in the south-west, many of the least efficient ones are located
in the north-east of the country.

[ < Bl -5 [ By [ <sn s s
[ B .o [ missing . e . [ Missing
Figure 3: General practitioners per capita, 2004 Figure 4: Resident medical specialists per capita, 2004
Source: BBR (INKAR 2006) Source: BBR (INKAR 2006)

Interestingly, especially in the region of Franconia, DEA results exhibit a pattern of relatively less
efficient urban districts surrounded by rural ones featuring high, in some cases even perfect,
efficiency scores (see Figure 6 and Table 2).

Table 2: DEA efficiency scores for some Franconian urban and contiguous rural districts

Bamberg Bayreuth Coburg Hof Schweinfurt Wurzburg
urban district 0.821 0.782 0.854 0.675 0.846 0.815
rural district 0.914 1.000 0.975 0.735 1.000 1.000

™ As we conceptualize DEA in terms of a descriptive tool rather than a causal model, this interpretation should not be
overstretched.

12 Since the share of fully efficient districts is very low, censoring from the right is not a major problem for the subsequent
regression analysis that uses DEA scores as left-hand side variable.
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This corresponds to the regional distribution of hospitals and medical specialists and supports our
original hypothesis of a strong influence of net patient flows on district-specific efficiency scores.
Inhabitants of rural Franconia thus receive medical treatment in urban district such as Bamberg,
Bayreuth, Schweinfurt and Wurzburg, leading to a downward bias in the urban efficiency scores
while the rural contiguous neighbours seem highly efficient. Indeed, applying Moran’s | test to the
raw™ efficiency scores indicates a highly significant spatial correlation, regardless of the type of
spatial weighting matrix used.

Coburg T ‘};
3
£
{

Schweinfurt

Bayreuth
Bamberg

Waurzburg

[<ovs [ o7s-os1 [N 051~ oss [ oss- o7 N >057

<oz Ecreos [ oso-08s
B ocoss oo [ wissing

Figure 5: DEA efficiency scores, 2004 Figure 6: DEA efficiency scores, 2004 (enlarged detail)
Source: Own calculations Source: Own calculations

3.2 A Spatial Regression Model

If spatial interdependence occurs in health care provision, it must be considered in the regional
analyses of health care efficiency so as to achieve unbiased and conclusive results. In a spatial
regression model explaining regional efficiency, unobserved net patient flows might most
appropriately be modelled with spatially negatively correlated errors. In contrast, potential spillover
effects from one region to another may be captured by including the efficiency scores of
neighbouring districts as right-hand side variables in the regression model. The spatial autoregressive
model with autoregressive disturbances (see Kelejian & Prucha, 1998) accommodates both types of
spatial interdependence. The basic structure of the model is given by:

y=XpB+AWy+u
u=pMu+e

(1)

with E(g)=0, var(e)=0", and cov(g,£,)=0 Vi#j

2 That is, no covariates enter the initial regression from which residuals for calculating the test statistic are obtained.
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Here, y indicates the N X1 vector of the dependent variables (DEA scores), where N denotes the
number of observations (districts). As usual, # denotes the corresponding vector of error terms and
X denotes the N Xk regressor matrix, where ﬂ is a vector of coefficients subject to estimation.
W and M represent NXN spatial weighting matrices, capturing the pattern of spatial

dependence. Hence, the endogenous variable y enters the right hand side of the equation (1) via Wy
that represents a N X1 vector of spatial lags of y,, i.e. weighted sums of y;, with j =1...N, j#i.

Hence, the efficiency of any district i potentially depends on the efficiency of any other district under
consideration.

An appropriate spatial weighting matrix must satisfy certain requirements (see e.g. Kelejian& Prucha,
2008). In particular, the diagonal elements w,, and m,; must be zero and the intensity of spatial
dependence must be restricted and decline sufficiently with increasing distance between two spatial
units. Formally, each row and column sum must be uniformly bounded if the number of spatial units
grows to infinity, and (/ —AW) as well as (I — pM) must be non-singular. Yet, W and M need
not be symmetric, allowing for different travel times between two districts depending on the
direction of travel.® The model further allows for the special case W =M , in which the same

pattern of spatial dependence applies to the covariance structure among the error terms u; and to
the pattern of direct spillover between the dependent variables y,. In practical applications, both W

and M are typically exogenously given and not subject to estimation, except for rare cases where
panel data are available and the number of cross-sectional units is small compared to the number of
periods.

In applied work spatial weighting matrices are typically normalized, in order to allow for a
straightforward interpretation of the model parameters. The most common approach is row
standardization, where all matrix elements w, and m, are divided by the corresponding row sum,

yielding uniform ones that equal unity. Other approaches are (i) minmax standardization, i.e.
standardization by the minimum of the largest row and the largest column sum, and (ii) eigenvalue
standardization, i.e. standardization by the modulus of the largest eigenvalue of the relevant matrix.
Through minmax- as well as eigenvalue standardization heterogeneity in the total relevance of
spatial dependence is left unchanged across observations. In contrast, by using row standardization,
one implicitly assumes uniform total importance of spatial interdependence. Thus, the choice of row
standardization might substantially affect estimation results. Kelejian& Prucha (2008) therefore
argue against row-normalization — despite its popularity — unless this implicit assumption is clearly
suggested by economic theory.

Finally, 4 and o are unknown scalar coefficients that are estimated along withﬂ. Clearly, no
spatial autoregression — i.e. no direct spillover effects — is present for the case A =0, while for
P =0 the errors are spatially uncorrelated. In many applications, the unit-interval is regarded as the
valid and relevant parameter space for 4 and p, which has much intuitive appeal. Indeed, the valid

parameter space depends on how the spatial weighting matrix is normalized (see Kelejian& Prucha
(2008) for a detailed discussion). Nevertheless, for row-, minmax-, and eigenvalue-normalized

YToa very limited degree, this applies to our data.
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matrices, any value within the unit-interval is valid, though some other values (smaller than -1) may
also meet the relevant regularity requirements.

The spatial autoregressive model exhibits a close analogy to familiar autoregressive time-series
models. Hence, (1) and (2) allow for inversion, yielding a reduced form, moving average
representation of the model:

y=(I-AW ) [XB+ul=(1+AW + °W’ +..)[ X B+u] 3)
u=(I-pM) e=(I+pM+p’M*+..)e 4)
from which the conditional mean E(y| X) is directly derived as:

E(y | X)=(I-AW) XB=(1+AW + W +..) X B (5)
Thus, in the spatial autoregressive model a change in an exogenous variable x; exerts an effect not
only on region i but — potentially — on any other region j . Moreover, due to feedback effects from

j to i, B does not represent the total effect on region i.

The spatial autoregressive model does not allow for straight forward estimation of equation (1) by
OLS as the endogenous variable y enters the right-hand-side via the spatial lag, for which
E(Wy'u) #0 holds. Thus, in order to avoid endogeneity bias, we follow the approach suggested by
Kelejian & Prucha (1998). This three-stage estimator rests on initially estimating equation (1) using a
conventional instrumental variables approach, with X, WX, WZX, MX, M*X, and WMX
serving as instruments for the endogenous spatial lag Wy.15 Secondly, based on the residuals
obtained from the initial two-stage least-squares (2SLS) regression, Kelejian & Prucha (1998) derive a
set of moment restrictions that allow for estimating p and o7 via non-linear least squares. Finally,
with an estimate for p in hand, a Cochrane-Orcutt transformation can be applied and 2SLS

estimation carried out again using the transformed data. Here, the transformed left-hand side

variable is ; = y—%My, while the transformed right-hand side variables are defined analogously.

4 Estimation Results

Table 3 displays results from the spatial autoregressive regression model explaining efficiency scores
derived by data envelopment analysis. Several model variants are estimated using differently
specified spatial weighting matrices. The reported variants all consider the case W = M ,as theory

in our application does not clearly argue in favour of a particular pattern of spatial dependence with
respect to spatial spillovers and spatial error correlation. We consider an inverse-squared-distance
matrix as our preferred specification. Alternatively, a contiguity matrix is used, with contiguous
neighbours defined in terms of travel time less than 30 minutes between the two.® 30 minutes
clearly represents an arbitrary choice. More generally speaking, the concept of ‘contiguous
neighbours’ is hard to define in the case of irregular spatial units where location does not follow a

1 Evidently, if W = M holds, the number of available instruments is reduced.
*® Additional variants were estimated, specifying either W or M as inverse-squared-distance matrix and choosing the
contiguity matrix specification for the other. Results are available upon request.
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grid-structure and where ‘economic integration’ is, what really matters. For districts, one might think
of a joint border as the relevant criterion defining contiguity. However a joint border (or its absence)
does not necessarily indicate connection (or distance) in economic terms. Thus, the preferred
inverse-squared-distance design has more intuitive appeal. All reported results are based on
eigenvalue-standardized matrices."

Table 3: Regression results for the spatial auto-regressive model without state dummies

OLS (no spatial dependence) inverse-squared-distance contiguity
estimate s.e. estimate s.e. estimate s.e.
population 0.018 0.015 0.026 0.025 0.017 0.014
population density -0.004 0.005 -0.011 0.010 -0.009 0.006
unemployment rate -0.496*** 0.076 -0.541%** 0.138 -0.536*** 0.077
income 0.133*** 0.023 0.114*** 0.040 0.121%** 0.022
hospitals non-profit -0.007 0.009 0.001 0.016 -0.003 0.009
hospitals private 0.003 0.011 0.006 0.019 0.004 0.011
constant 0.694*** 0.038 0.718*** 0.066 0.717*** 0.038
spatial lag () - - 0.013 0.029 -0.001 0.006
P - - 0.488** 0.200 0.203*** 0.069

Notes: *, **, and *** indicate significance at the 0.1, 0.05 and the 0.001 level, respectively.

We start with a simple model variant that ignores any potential spatial dependence and estimates 3
by OLS. These estimation results do not indicate any role of hospital ownership for the efficiency in
health production at the district level. By contrast, the unemployment rate and average net income
are highly significant predictors of a districts’ efficiency. Moreover, both exhibit the expected signs,
i.e. unemployment is negatively and income positively correlated with efficiency. These coefficients
are unlikely to capture a pure causal effect. Rather, unobserved morbidity might enter the model via
these two controls, as morbidity is typically inversely related to unemployment while wealthy people
tend to be of better health. From a spatial point of view, income may also serve as proxy for mobility,
i.e. well paid employees are likely to travel longer distances to go to work. Long distance commuters
in fact represent prime candidates for generating net-patient-flows — especially with respect to
outpatient care — as they tend to visit physicians at the place of work rather than the place of
residence. This argument analogously applies to the unemployment rate, as unemployed individuals
more likely consult physicians at the place of residence. Finally, neither population size nor
population density exhibits a significant impact on efficiency.

Turning to the model specifications that consider spatial dependence, the value of the 3 coefficients
are close to the initial OLS ones. Moreover, the spatial lag is clearly insignificant for either
specification. However, the estimation results indicate substantial and statistically significant spatial
error-correlation for both the variant based on an inverse-squared-distance matrix and the one using
a contiguity matrix design. The relevant estimates for p are positive. This seems to contradict our
hypothesis that unobserved net patient flows leads to negatively correlated error terms. Hence,
other unobserved factors are likely to drive the error correlation.

” While minmax standardization yields similar results, row standardization provides substantially different patterns of
estimated spatial dependence.
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Table 4 presents the estimation results for an extended model that includes state dummies. The
results indicate jointly significant deviations in efficiency across states. Yet, when individually
compared to the reference category ’city states’, only Saxony is significantly more efficient than the
reference.

Table 4: Regression results for specification with state dummies included

OLS (no spatial dependence) inverse-squared-distance contiguity
estimate s.e. estimate s.e. estimate s.e.
population 0.019 0.016 0.022 0.028 0.021 0.016
population density 0.003 0.005 -0.002 0.009 -0.002 0.006
unemployment rate -0.762*** 0.129 -0.799*** 0.206 -0.808*** 0.123
income 0.122%*** 0.024 0.112%*** 0.039 0.121*** 0.023
hospitals non-profit 0.012 0.010 0.014 0.017 0.012 0.010
hospitals private -0.001 0.012 0.000 0.018 0.000 0.011
Schleswig-Holstein 0.014 0.048 0.008 0.061 0.003 0.037
Lower Saxony 0.031 0.047 0.018 0.059 0.018 0.035
North Rhine- 0.017 0.046 0.002 0.056 0.002 0.034
Westphalia
Hesse 0.025 0.047 0.006 0.060 0.008 0.036
Rhineland-Palatinate 0.021 0.049 0.001 0.062 0.007 0.037
Baden-Wurttemberg 0.065 0.047 0.050 0.059 0.049 0.035
Bavaria 0.031 0.048 0.013 0.061 0.017 0.036
Saarland -0.052 0.048 -0.066 0.071 -0.066 0.043
Brandenburg 0.078 0.048 0.073 0.061 0.071** 0.036
Mecklenburg- 0.076 0.050 0.072 0.062 0.069* 0.038
West Pomerania
Saxony 0.097** 0.048 0.086 0.060 0.089** 0.036
Saxony-Anhalt 0.054 0.049 0.040 0.062 0.043 0.037
Thuringia 0.047 0.049 0.033 0.061 0.039 0.036
constant 0.691*** 0.065 0.707*** 0.095 0.709*** 0.057
spatial lag () - - 0.032 0.022 0.005 0.005
P - - -0.030 0.224 0.087 0.073
joint significance (p-value):
states 0.000 0.023 0.000
hospital ownership 0.472 0.716 0.482

Notes: *, ** and *** indicate significance at the 0.1, 0.05 and the 0.001 level, respectively.

Unlike in the first models, spatial dependence does not appear to be a relevant issue, as the
estimates for 4 and p are statistically insignificant regardless of the type of spatial weighing matrix
used. In addition, Moran’s | test applied to the original OLS-residuals does not indicate strong spatial
error correlation, either. Hence, correlation among district-specific efficiency scores that in our first
models is attributed to spatially correlated errors seems to actually originate from state fixed effects.
As the distance between districts belonging to the same state is on average smaller than the distance
between two arbitrary districts, disentangling spatial dependence from state effects generally is
ambitious. Nevertheless, our results clearly point to state fixed effects rather than spatial error
correlation being of prime importance for district-specific efficiency. Hence, state-level efficiency
does affect efficiency on the district level. And, most importantly, our results do not support the
hypothesis that state effects are an artefact of spatial dependence, as the finding of significant state
dummies turns out to be robust to any specification of spatial inter-relation among districts.
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However, standard errors indicate that the relevant estimates for A and in particular p are quite
imprecise (see Table 4). One might therefore argue that the available data are insufficient to reveal
two distinct channels of spatial dependence simultaneously. Table 5 displays results for more
parsimoniously parameterized models that allow either for spatial error correlation or for spatial
spillovers, i.e. either 4 or p is restricted to the value of zero. If the restriction p =0 is imposed
and inverse-squared-distances enter the spatial weighting matrix 7, estimation results indeed
indicate statistically significant and positive, though moderate, spillover effects. This result remains in
line with our previous reasoning that the effectiveness of health care provision is likely to benefit
from good services in neighbouring regions and vice versa. However, estimates for the remaining
coefficients [ are still more or less equal to those obtained from the simple OLS estimation.
Moreover, the pattern of significance among the controls does not change. For any other restricted
model variant, neither spatial spillovers nor spatial error-correlation are statistically significant, while
the estimated coefficients are in line with the previously obtained ones. Hence, model variants that
parameterize potential spatial dependence more parsimoniously do not point at any bias originating
from ignoring spatial interdependence either.

Table 5: Regression results for restricted model variants

inverse-squared-distance Contiguity
p=0 A=0 p=0 A=0
estimate s.e. estimate s.e. estimate s.e. estimate s.e.

Population 0.022 0.016 0.019 0.028 0.022 0.016 0.018 0.016
population density -0.003 0.006 0.002 0.009 0.000 0.006 0.000 0.005
unemployment rate  -0.803*** 0.127 -0.771*** 0.211 -0.770*** 0.127 -0.807*** 0.124
income 0.112*** 0024  0.121** 0039  0.120***  0.024  0.122***  0.023
hospitals non-profit ~ 0.014 0.010 0.012 0.018 0.013 0.010 0.011 0.010
hospitals private 0.000 0.012 -0.001 0.019 0.000 0.012 -0.001 0.011

Schleswig-Holstein ~ 0.007 0.048 0.013 0.063 0.009 0.047 0.006 0.037

Lower Saxony 0.018 0.047 0.030 0.060 0.026 0.046 0.021 0.035

North Rhine- 0.001 0.046 0.015 0.057 0.009 0.045 0.006 0.033

Westphalia

Hesse 0.005 0.048 0.024 0.061 0.018 0.047 0.013 0.035

Rhineland- 0.001 0.049 0.020 0.063 0.013 0.048 0.012 0.037

Palatinate

Baden- 0.049 0.047 0.063 0.060 0.059 0.046 0.053 0.035

Wourttemberg

Bavaria 0.012 0.048 0.029 0.061 0.024 0.047 0.021 0.035

saarland -0.067 0.048 -0.054 0.072 -0.059 0.047 -0.062 0.043

Brandenburg 0.072 0.048 0.077 0.063 0.075 0.047 0.073** 0.037

Mecklenburg- 0.072 0.050 0.075 0.064 0.072 0.049 0.071* 0.038

West Pomerania

Saxony 0.086* 0.048 0.096 0.061 0.092%* 0.047  0.093***  0.036

Saxony-Anhalt 0.039 0.049 0.053 0.063 0.047 0.047 0.047 0.037

Thuringia 0.033 0.049 0.046 0.062 0.041 0.047 0.042 0.036
constant 0.709***  0.064  0.695*** 0098  0.697***  0.063  0.706***  0.057
spatial lag (1) 0.032** 0.016 - - 0.005 0.005 - -
P - - 0.056 0.176 - - 0.094 0.059
joint significance (p-value):

states 0.000 0.063 0.000 0.000

hosp. ownership 0.367 0.786 0.402 0.532

Notes: *, ** and *** indicate significance at the 0.1, 0.05 and the 0.001 level, respectively.
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Though our results argue against spatial dependence representing a dominant feature of regional
efficiency, some regional patterns found in the data remain unexplained. This in particular holds for
the striking pattern of highly efficient rural districts directly adjoined to less efficient urban ones
pointing at negative spatial error correlation. The absence of such correlations in our results, even if
income and unemployment — which to some degree might capture unobserved net patient flows —
are dropped from the regressions, remains a puzzle. Moreover, the case of spatial spillovers, i.e.
direct interdependence between regional efficiency scores, remains vague. While the majority of
specifications do not yield significant coefficients for the spatial lag, a single one does. Yet, in this
single case the degree of spatial spillovers is still very small in absolute terms.

5 Conclusions

This paper investigates the possible spatial dependence of district-specific efficiency of health
production in Germany. If spatial dependence held, this might bias empirical analyses and result in
misleading policy advice. Our initial descriptive analysis of efficiency at the district level reveals
patterns that seem to indicate the presence of spatial error correlation and/or spatial spillovers.
However, the subsequent regression analysis does not support this initial impression. Rather,
significant spatial error correlation is only found if state effects are not controlled for. Thus, what
appears as spatial dependence in the raw data might better be explained by state-level fixed-effects.
This does not seem implausible, as several decisions concerning the supply of health care are made
at the state level. Moreover, the result does not argue in favour of spatial spillovers representing a
major determinant of regional efficiency of health production either.

We conclude that analyses based on district-level data are unlikely to suffer from severe bias if
regional interdependence is not explicitly accounted for. This holds in particular for the finding of a
significant influence that states exert on the efficiency of health care provision. In our analysis this
result, which has been found previously, turns out to be robust to various ways of modelling spatial
dependence. Hence, regional differences in the efficiency of health production, and especially the
role of state-level policies, seem not to represent an artefact of spatial dependence. However, some
striking spatial patterns found in the raw data remain unexplained by the present analysis, implying a
need for further research in this field. And, evidently, our key result only applies to efficiency at the
district level in Germany. Spatial dependence might play a more prominent role under a different
definition of spatial units.
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