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Forecasting worldwide empty container 
availability with machine learning techniques
Christoph Martius1*  , Lutz Kretschmann1,2, Miriam Zacharias1, Carlos Jahn1 and Ole John1 

Introduction
Background

Freight transport within supply chains and to consumers is a critical component of 
a globalised world. The timely availability of raw materials and finished goods plays 
an essential role for most companies. Accordingly, the efficient movement of cargo 
supports production, trade, and consumption (Crainic 2003: pp.1–3). Transport 
companies depend on the availability of empty containers with suitable characteris-
tics in terms of equipment size, type, and condition to fulfil any transport order. In 

Abstract 

Due to imbalances in the global transport of containerised goods, liner shipping 
companies go to great lengths to match the regional supply and demand for empty 
containers by transporting equipment from surplus to deficit regions. Making accurate 
forecasts of regional empty container availability could support liner companies and 
other involved actors by making better relocation decisions, thus avoiding unneces-
sary transport costs of empty equipment. Previously proposed container availability 
prediction models are limited to the application in individual regions and typically 
characterized by a high degree of temporal aggregation. Against this background, this 
paper introduces two novel approaches based on machine learning and probabilistic 
techniques to predict the future weekly availability of empty containers for more than 
280 locations worldwide. The machine learning and probabilistic prediction models are 
built by analysing a unique data set of more than 100 million events from past con-
tainer journeys. These events represent different stages during the transport process 
of a container. Both models use a two-step forecast logic. First, the expected future 
location of a container is predicted. Second, the expected timestamp for arriving at 
that location is estimated. The machine learning model uses artificial neural networks 
and mixture density networks to forecast the movements of containers. The models 
are quantitatively assessed and compared to the actual availability of containers and 
two more conventional forecasting approaches. The results indicate that the probabil-
istic prediction approach can keep up with conventional approaches while the neural 
network approach significantly outperforms the other approaches concerning every 
evaluation metric.
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the ideal case–the balanced trade–containers would be stripped and filled with new 
cargo at the same location shortly after. Where this is impossible, empty equipment 
must either be stored in a depot until its subsequent use or transported to a region 
with an empty container deficit. Such relocations of containers from import-domi-
nant to export-dominant areas take place locally (e.g. from one terminal to another), 
regionally (e.g. from one location to another) or globally (e.g. from one country to 
another) (Theofanis and Boile 2009; Di Francesco et al. 2009). High costs are associ-
ated with container repositioning, primarily due to over-land and marine transport 
and storage and handling of containers (Karmelić et al. 2012; Moon et al. 2013).

Empty containers make up a significant part of the container transports—up to 
40% in over-land and 20% of marine transports (Konings and Thijs 2001; Karmelić 
et al. 2012: p.223). It is estimated that costs of empty container relocations amount 
to $15 billion to $20 billion annually, representing around 5% to 8% of the carriers’ 
total costs (Sanders et al. 2015). Hence, liner shipping companies go to great lengths 
to match the regional supply and demand for empty containers by optimising equip-
ment repositioning to minimise costs. Additionally, the carrier reduces the risk of 
a competitor receiving an order and can realise the transports himself by satisfying 
the empty container demand at each port (Crainic 2003).

Liner shipping companies have various options to reduce the costs related to 
empty container logistics. Most common, lower transport costs in import-dominant 
regions, sharing equipment between companies, or collaborating with competitors 
are used in practice. Another opportunity arises from recent advances in data-driven 
and machine learning approaches. Due to transport processes digitalisation in the 
maritime industry 4.0, an increasing amount of transport-related data is collected 
daily. This enables the application of data-driven decision support models in vari-
ous use cases, e.g. stowage planning (Shen et al. 2017), fuel management (Fagerholt 
et al. 2015), and container inspection (Klöver et al. 2020). In other logistic domains, 
such models, especially using machine learning techniques, are already applied to 
support business decisions, such as guiding self-driving vehicles (van Meldert and 
Boeck 2016; Jeon et  al. 2011) or optimise warehouse picking operations (Seward 
2015). Where predictive models succeed in estimating supply and demand for empty 
containers, they possibly enable shipping companies to:

• Realise container relocations in time if a surplus or deficit is foreseeable,
• Adjust transport prices to meet expected market developments (dynamic pric-

ing),
• Plan transport processes by considering future container availability to minimise 

transport costs.

Overall, an accurate estimation of empty containers’ future demand and supply 
contributes to container fleets’ efficient utilisation. Moreover, reducing regional and 
interregional equipment repositioning can also lower transport emissions (Crainic 
2003; Schlingmeier 2017).
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Related literature

Several scientific papers still cover data-driven approaches to forecast container trans-
port and port handling volumes. This also includes machine learning-based predic-
tion models. For example, Shankar et  al. (2020) use long-short-term-memory neural 
networks (LSTMs) to forecast container handling at the port of Singapore based on 
the historic quarterly throughput from 1995 to 2018 and compare the performance of 
their model to various time-series forecasting approaches. Tsai and Huang (2017) use an 
artificial neural network approach to predict container movements between ten Asian 
ports. They train a regression model using features extracted from more than one mil-
lion port-to-port container transports recorded in Taiwanese customs clearance docu-
ments. Additionally, they use financial data, like the gross domestic product, interest 
rates and the industrial production index, as features.

Another example is found in Xiao et al. (2012), who use a hybrid model which com-
bines autoregressive integrated moving average (ARIMA) (cf. Box et al. 2015) with artifi-
cial neural networks to forecast univariate container throughput data from Tianjin Port. 
Chan et al. (2019) compare various data-driven models to forecast container throughput 
of the port of Ningbo-Zhoushan; their data basis is the yearly handling volumes between 
2004 and 2015. Starting from a similar database of quarterly container throughput in 
North Adriatic ports, Dragan et al. (2014) test different data-driven approaches, includ-
ing ARIMA, to forecast regional container throughput on a port level.

Research design

Even though several authors proposed and tested methods to forecast container 
throughput at ports, most are characterised by:

• Relatively small data volume, which prevents training robust models,
• High degree of temporal aggregation (e.g. yearly or quarterly throughput),
• No differentiation of container types, and
• Predictions that cover only small regions or even individual ports.

This paper tries to overcome these shortages. Two novel data-driven models are 
introduced–a deep learning model and a probabilistic model–to estimate the future 
availability of empty containers of different types for more than 280 locations world-
wide. The machine learning model consists of feed-forward neural networks (cf. 
Bishop 2006) and mixture density networks (Bishop 1994). The prediction models are 
built by analysing a unique data set of more than 100 million events from past con-
tainer movements. The data set is part of the research project C-TIMING (ConTainer 
Availability Index Made In Germany),1 which is funded by the Federal Ministry of 
Education and Research of Germany. The data was collected by the project partner 
xChange Solutions (xChange),2 an online platform for leasing and trading contain-
ers. The transport information was gathered from liner shipping companies by using 
Application Programming Interfaces (APIs) and tracking-crawlers. The events in the 

1 https:// www. cml. fraun hofer. de/ de/ forsc hungs proje kte1/C_ TIMING. html
2 https:// www. conta iner- xchan ge. com/ conta iner- leasi ng/

https://www.cml.fraunhofer.de/de/forschungsprojekte1/C_TIMING.html
https://www.container-xchange.com/container-leasing/
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data set represent different states of the transport process of a container, in particu-
lar, these are: ‘dispatch at container depot’, ‘loading on ship’, ‘discharge from ship’ and 
‘return to container depot’.

While related work mainly proposes forecasting the port throughput based on his-
torical economic data of the ports (e.g. Dragan et  al. 2014; Pang and Gebka 2017; 
Shankar et al. 2020), the models presented in this paper are built on journey data of 
individual containers. The subsequent events of each container are predicted for a 
large set of containers by forecasting the expected event location and realisation time. 
Based on the individual forecasts for a high number of containers, the supply and 
demand for various types of empty containers at worldwide locations are estimated. 
The proposed approach uses heterogeneous features for the prediction and enables 
the estimation of container availability for any port in the world.

The remainder of the paper is structured as follows: First, the data set used to train and 
evaluate the prediction models is introduced in Sect. Data set. Subsequently, Sect. Gen-
eral prediction approaches briefly describes the general prediction approach and intro-
duces the two prediction models. Next, the performance of the models is evaluated in 
Sect. Results. Section Discussion of results discusses the results and practical and aca-
demic implications are provided. Finally, Sect. Conclusions summarises this article.

Data set
Events in the data set

The machine learning and statistical prediction models are built by analysing a unique 
data set of more than 102 million events from past container journeys. These events 
represent different states during the transport process of a container, in particu-
lar the events ‘dispatch at container depot’ (event name: dispatch), ‘loading on ship’ 
(loading), ‘discharge from ship’ (discharge) and ‘return to container depot’ (return). 
Between these four events, different actions might take place. Usually, the container is 
taken out of a depot, transported to the customer, filled by the customer, and returned 
to the port between a dispatch at the container depot and the subsequent loading on 
the ship. After loading, the container is transported from the origin to the destination 
before it is discharged from the ship. Subsequently, the container is transported to the 
customer, emptied and returned to the depot’s location. The container is stored in the 
depot between a return and a subsequent dispatch from the container depot. Even-
tually, an empty transport to another location can occur between these two events. 
However, every action between the four main event types is not captured in the data 
set. Figure 1 depicts the events of a container journey.

Each event in the data set can be identified by a unique ID and belongs to a specific 
container. The type of the event (dispatch, loading, discharge, return) is provided and 
the location and time stamp. The events of the data set represent the movements of 
laden containers solely. The transport of empty containers is not included in the data 
set. Therefore, a container ID can identify the containers in the data. Additionally, the 
type (e.g. forty-foot high cube) and the owner (carrier) of the container is provided. 
Figure  2 visualises the information related to an event with an entity-relationship 
model (cf. Chen 1976).
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Descriptive analysis of the data

Insights of a descriptive analysis of the data set are provided in the following sec-
tion. The average time between two subsequent events of a container in the data 
set is 19.7 days. However, the duration between subsequent events differs for each 
event type. For example, while the average time between a loading and a subsequent 
discharge (transport time) corresponds to 23.5  days (lower quartile: 9  days, upper 
quartile: 34 days), the time between a return and a dispatch (dwell time) averages to 
35.2 days (lower quartile: 5 days, upper quartile: 55 days). Figure 3 depicts the dura-
tion distribution between subsequent events with box and whiskers plots (cf. Tukey 
1977).

The data’s transport events occurred at more than 100,000 locations worldwide. 
These locations include most of the ports and container terminals in the world. How-
ever, several locations’ data quantity was insufficient to train prediction models robustly. 
Transport events’ geographic information was preprocessed to mitigate this issue; the 
locations were mapped either to a port or a country. Therefore, based on their domain 

Fig. 1 Events during the transport process of containers. Source: Own figure

Fig. 2 Entity-relationship model of events. Source: Own figure
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knowledge, 83 ports were selected by xChange’s domain experts representing the world’s 
most important ports like Shanghai, Ningbo, and Rotterdam. The remaining locations 
were mapped to their corresponding country. A total of 204 countries are included in 
the data set.

The containers part of the data set belong to one of 60 liner shipping companies, 
including container movements of each of the 14 largest liner shipping companies.3 
However, the share of the events of a carrier does not correspond to its market share: 
For example, even though COSCO’s market share corresponds to 12.2% as of July 2021,4 
24.4% of the events relate to a COSCO container while just 12.9% of the events are of 
containers of the largest market player Maersk. Figure 4 visualises the share of the events 
of the liner shipping companies in the data.

Containers of 23 different types are included in the data. These container types include 
the most common variations of containers (e.g. dry container, reefer, flat rack, open top) 
with a length of either twenty-, forty- or forty-five-foot. According to Che et al. (2011: 
p. 506), twenty-foot, forty-foot dry and forty-foot high cube containers are among the 
most commonly used container types. These three container types account for 92.5% of 
the events in the data.

Figure 5 visualises the share of the events of the different container types.
The events in the data set are collected over more than 30 months: The first events 

date back to 1st January 2019 and the last to the 22nd July of 2021. 102,214,134 events 
of 12,893,347 containers are included in the data. Even though it covers a long period 
and contains a large number of total events, several challenges are associated with the 

Fig. 3 Duration between subsequent events. Source: Own figure

3 According to https:// de. stati sta. com/ stati stik/ daten/ studie/ 28853/ umfra ge/ kapaz itaet en- der- conta iners chiff sflot te- der- 
groes sten- reede reien/ (accessed on 09.09.2021).
4 According to https:// www. stati sta. com/ stati stics/ 198206/ share- of- leadi ng- conta iner- ship- opera tors- on- the- world- 
liner- fleet/ (accessed on 12.08.2021).

https://de.statista.com/statistik/daten/studie/28853/umfrage/kapazitaeten-der-containerschiffsflotte-der-groessten-reedereien/
https://de.statista.com/statistik/daten/studie/28853/umfrage/kapazitaeten-der-containerschiffsflotte-der-groessten-reedereien/
https://www.statista.com/statistics/198206/share-of-leading-container-ship-operators-on-the-world-liner-fleet/
https://www.statista.com/statistics/198206/share-of-leading-container-ship-operators-on-the-world-liner-fleet/
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available data set. The most important challenge is that the weekly events increase con-
siderably over the available period. While 219,653 events are tracked over the first two 
months of the covered period, 19,108,155 events are tracked in May and June 2021, cf. 

Fig. 4 Share of liner shipping companies by number of movements. Source: Own figure

Fig. 5 Share of container types. Source: Own figure
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Fig. 6. Hence, most of the containers in the data are not tracked over the whole period 
but only for some sporadic events over some weeks or months.

Furthermore, there are both missing events (or completely missing journeys) and 
inconsistencies in the data on a limited but not negligible level, even though the qual-
ity and completeness of the data increase continuously over the period covered by the 
data set. All these aspects represent challenges to extracting information on the future 
demand and supply of empty containers and thus influence the quality of the models 
trained with the data.

General prediction approaches
To support the determination of the regional empty container availability, the forecast-
ing approaches aim to estimate the number of containers returned to the container 
depot and dispatched at the container depot at any location in the data set. The approach 
to estimating the number of returns and dispatches at the container depots presented in 
this paper is to forecast individual containers’ movements (events). For each movement 
of a container, the location and date of the subsequent events has to be estimated. Then, 
based on the forecasts of the individual containers, the total number of returns and dis-
patches at the regional container depots can be derived, e.g. by a database query. The 
novelty of this prediction approach is that the future container throughput is forecasted 
by considering the current state of the global container fleet. Thereby, the model should 
anticipate the effects of the current situation. For example, suppose that a significant 
container shortage in an export-dominant region is observed at a certain point in time. 
In that case, the model can anticipate that this shortage causes the import to decline at 
the port, which mainly receives the freight from this region.

The prediction approach of a single container movement consists of five steps: First, 
features representing descriptive characteristics are derived from the last event, e.g. 

Fig. 6 Weekly number of events in the data set. Source: Own figure
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container type, location, or the time passed. Subsequently, a destination prediction 
model processes these features, producing a probability for each considered location 
to be the destination. Based on this probability distribution, one location is sampled as 
the destination. Next, the defining features and the predicted destination are passed to 
a duration prediction model, which outputs another probability distribution represent-
ing the transition times of the container from the origin to the predicted destination. 
Again, one duration is sampled from the probability distribution. Finally, the date of the 
next container event is determined by adding the sampled duration to the date of the 
last event of the container. Subsequently, multiple upcoming container events can be 
estimated by repeating the prediction process with already forecasted events. This paper 
introduces two different prediction models, which implement the described prediction 
approach. The first model uses two artificial neural networks to forecast the locations 
and dates of future events, while the second is a probabilistic model.

Neural network approach

The first approach combines two different types of neural networks to forecast the 
movements of an individual container as described by the general prediction approach. 
First, a feed-forward neural network (Bishop 2006, cf. Chapter 5 ff.) is used to predict 
the next event’s location. Subsequently, a mixture density network (cf. Bishop 1994) is 
utilised to estimate the transition time based on the descriptive features of the last event 
and the predicted location. An extensive grid search determined the hyperparameters 
of the neural networks presented in the following. Information about the grid search is 
provided at the end of this section.

Destination prediction

To generate a probability distribution representing the probability pl of each location 
li ∈ L to be the location of the next container event, where L corresponds to the set of all 
locations in the data set, a feed-forward neural network is used. The models’ inputs are 
descriptive features representing selected characteristics of the last event and the associ-
ated container. Table 1 briefly describes the features used to train the destination predic-
tion model. The column type indicates whether the feature is categorical or numeric. A 
categorical feature can only take on a limited number of values. E.g. for the categorical 
feature event type, the set of possible values consists of the four event types dispatch, 

Table 1 Features of the destination prediction model. Source: Own elaboration

Feature Description Type Unique values

Origin Location of the last event of the container. This can either be a 
specific port or the country were the event occurred

Categorical 287

Container type String-based indicator of the type of the container, e.g. FORTY-
DRY-CONTAINER

Categorical 23

Carrier String-based indicator of the carrier of the container, e.g. MSC Categorical 60

Days passed Number of days passed between the last event of the container 
and the date the forecast is made

Numeric N.A

Event type String-based indicator of the type of the last event, either dis-
patch, loading, discharge, or return

Categorical 4
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loading, discharge, and return. The column unique values shows the amount of unique 
values for each categorical feature based on their presence in the data set. Numeric val-
ues are not restricted to a limited number of values.

An individual feed-forward neural network is trained for each of the four event types 
in the presented approach. Even though it is expected that the forecasting approach can 
be successfully applied if the event type is included as a feature; hence, only one destina-
tion prediction model needs to be trained. Each categorical feature is passed as a one-
hot encoded vector to the model.

The destination prediction models are utilised to output a probability distribution 
given the descriptive features of an event as input. Each probability distribution is sup-
posed to assign a probability pli , with 0 ≤ pli ≤ 1 for each location li ∈ L , in such a way 
that |L|

i pli = 1 . The output of the neural network is scaled with the softmax activation 
function (cf. Nwankpa et al. 2018) to satisfy this constraint.

The features are processed by three fully-connected layers consisting of 750 neu-
rons with Rectified Linear Unit (ReLu) (cf. Nair and Hinton 2010) as activation func-
tion before they are passed to the output layer. The models are trained with the historic 
events of the data set. Thereby, the single location of the next event serves as target. The 
proposed model can learn to assign a probability for each location even though only a 
single destination is passed as target by learning from multiple events described by the 
same or similar features. The destination prediction models are trained for 10 epochs 
with the adam optimiser with a batch size of 1028.

Duration prediction

Mixture density networks are used to estimate the date of the next event. Mixture den-
sity networks are a special type of neural network designed to output a mixture model 
given some input features (cf. Bishop 1994). A mixture model can be thought of as a 
probabilistic model consisting of k components C1, . . . ,Ck (or subpopulations) which 
describe the characteristics of a collection of elements (population). Each component 
itself is a probabilistic model (e.g. probability density function) representing the charac-
teristics of a subgroup of the overall population (Baxter 2010).

A component can be parametrised by different values depending on the type of prob-
ability distribution of the component (e.g. Gaussian distribution, exponential distribu-
tion). For example, if the component C1 is a Gaussian distribution, the component can 
be represented by two values: mean ( µ1 ) and standard deviation ( σ1 ), hence C1 = N (µ1 , 
σ1) . Additionally, each component of a mixture model is weighted by a weighting factor 
α1, . . . ,αk , with 

∑k
i αi = 1 . Figure 7 visualises a mixture model consisting of two com-

ponents, mm1 = P(x|C1,C2,α1,α2). The first component is a Gaussian distribution with 
a mean of 5 and a standard deviation of 2 ( C1 = N (5, 2) ) and the second component a 
Gaussian distribution with a mean 15 and standard deviation of 3 ( C2 = N (15, 3) ). The 
first component is weighted by α1 = 0.3 and the second component by α2 = 0.7 (cf. Bax-
ter 2010).

Mixture density networks estimate the parameters of a mixture model. Hence, the 
mixture density network needs to output for each component a weighting factor α 
and the parameters of the distribution, e.g. µ and σ . In case all components can be 
parametrised by µ1, . . . ,µk and σ1, . . . , σk the output o of the mixture density network 
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can be thought of as a vector o =
{

M,�, A
}

 , where M = [µ1, . . . ,µk ] , � = [σ1, . . . , σk ] 
and [A = α1, . . . ,αk ] . To satisfy the constraint that 

∑k
i αi = 1 , softmax is applied to Α. 

A slightly modified exponential linear unit (ELU) activation (cf. Clevert et al. 2015) is 
applied to the remaining output values of the model ( �1(x), �2(x)) to prevent that the 
values of M and � become smaller or equal to zero (cf. Borchers 2019):

The model learns the values of M,�, and A by minimising the average negative log-
likelihood of the ground truth values (transition times of the containers between the 
events) to be represented by the mixture model constructed by the mixture density 
network (cf. Borchers 2019). Thereby, the model is supposed to learn to construct the 
mixture model to reflect the distributions of the historical data.

The presented models are composed of three fully-connected layers with 450 neu-
rons. The input to the model is a vector representing the one-hot encoded origin, 
destination, carrier, and container type. Thereby, the model is supposed to learn to 
output a mixture model for each input feature vector to reflect the distributions of the 
historical data. Our best-performing mixture density networks are combined from 
two Cauchy distributions and one Gaussian distribution. One mixture density net-
work is trained for each event type as for the destination prediction. The models are 
trained for 30 epochs with the adam optimiser and a batch size of 1024. During the 
inspection of the model’s output, it was observed that the model could learn realistic 
distributions even for feature combinations that are not part of the historical data by 
generalising from historical data of similar feature combinations.

M(x) = ELU(�1(x))+ 1, respectively

�(x) = ELU(�2(x))+ 1.

Fig. 7 Exemplary mixture model. Source: Own figure
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Figure 8 depicts the mixture model for the transport time learnt by the mixture den-
sity network and the distribution of the actual values of the following features: the port 
of Shanghai is selected as the origin, the United States as the destination, Wan Hai as the 
carrier, and no specific container type is provided. Three thousand five hundred eighty-
nine events with this feature combination are within the training data.

To determine the date of the next event of a container, a duration dsel is sampled from 
the mixture model provided by the mixture density network—given the descriptive fea-
tures of the last event of the container—and added to the date of the last event. The 
selected duration dsel has to satisfy the constraint dsel > δevent , where δevent corresponds 
to the days that have passed since the last event. Thereby, it is ensured that the next 
event will happen.

Hyperparameter optimization

The presented hyperparameters of the destination and location prediction model were 
proposed by a grid search (cf. Montgomery 2020). The grid search was organized in mul-
tiple iterations. In the first iteration, a sparsely populated set of hyperparameter values 
was definded for each hyperparameter listed in Table 2. For example, the initial hyper-
parameter values of the hyperparameter number of layers included 1, 3, 9, 27, 54, and 81 
layers. Next, a set of initial hyperparameter values was specified for each hyperparam-
eter similarly. The hyperparameter search space was defined by the cartesian product of 
hyperparameter values of each hyperparameter. Finally, one model was trained for each 
hyperparameter combination of the hyperparameter space.

Hyperparameters that negatively influenced the models’ metrics were excluded from 
the hyperparameter space for the following iterations while additional hyperparameters 
with similar values to the best performing values were added. For example, the values 

Fig. 8 Predicted mixture model for transport time from Shanghai to the United States. Source: Own figure
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1, 27, 54, and 81 were discarded, and the values 2, 4, 6, 8, and 12 were included for the 
second iteration for the hyperparameter number of layers. The described process was 
simultaneously carried out for all the hyperparameters listed in Table 2. Table 2 shows 
the hyperparameter combination for the destination and duration prediction model 
yielding the best performance.

Probabilistic model

The probabilistic model follows the same prediction procedure as the neural network 
approach. However, the learning process is simpler than the neural networks. The gen-
eral idea is that the predicted location and duration is the same as one historical event 
described by the same or similar descriptive features. Thus, the probabilistic model used 
three features (origin, event type and days passed) to predict the location and four fea-
tures (origin, destination, event type and days passed) to estimate the date of the next 
event.

The probabilistic model learns a probability distribution for each feature combina-
tion from the historic container movements. Thereby, the feature combination serves as 
input for the probabilistic model. The probabilistic model outputs a location duration 
based on the input feature combination. The probability distribution assigns a probabil-
ity pli , with 0 ≤ pli ≤ 1 for each location li ∈ L , in such a way that 

∑|L|
i pli = 1 . The prob-

ability distribution for each feature combination depends on the historic destinations 
and respectively duration of containers with feasible feature combinations. A feature 
combination is considered feasible if the location-based features and the event type are 
the same as the descriptive features of the last event of the container and the duration is 
larger than the days passed since the last event of the container under consideration.

Following the historical data, consider the following example in which 10 containers 
were shipped from Lisbon. Three of those were discharged from the ship 50 days later 
in Shanghai, and two after 70 days in Shanghai. Three arrived in New York after 28 days. 
The remaining two were sent to Hamburg, Germany, and discharged after 17 days. If 
the probabilistic model is used to predict the next location and duration of a container 
that was loaded in Lisbon 20 days ago, then the probability that Shanghai is selected as 

Table 2 Hyperparameters of the best-performing neural networks. Source: Authors

Hyperparameter Destination prediction modell Duration prediction modell

Number of layers 3 3

Number of neurons 750 450

Epochs 10 30

Batch size 1028 1024

Activation function ReLu ReLu

Activation function (last layer) Softmax Softmax and NNelu

Loss function Categorical cross-entropy Negative log-likelihood

Optimizer Adam Adam

Initialization Xavier Xavier

Mixture model – 3 distributions (2 × moyal 
distribution, 1 × normal distri-
bution)
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a destination corresponds to 58 = 62.5% . In case Shanghai is sampled as the destination, 
the statistical model selects a shipment duration of 50 days with a probability of 35 = 60%

.

Evaluation approach

The objective of the forecasts is to estimate a weekly container availability index of spe-
cific container types (either twenty-foot or forty-foot) at each location in the data set. 
The container availability index (CAX) is calculated following the approach used by 
xChange,5 which is defined as the number of containers of a given type ct (e.g. twenty-
foot standard container) returned at a specific location l during a certain week w 
( returnsl,ct,w ) divided by the sum of returns returnsl,ct,w and the number of dispatches of 
containers with the same type ct at location l within week w ( dispatchesl,ct,w).

The absolute error and squared error between the predicted and actual container 
availability for each evaluation feature combination (combination of location l , week w 
and container type ct ) in the evaluation set is calculated to quantify the quality of the 
container availability index predicted by the models. The mean absolute error (MAE) 
respectively mean squared error (MSE) is computed by averaging the absolute errors 
respectively squared errors over all evaluation feature combinations of the evaluation 
set. A small MAE and MSE indicate that the predicted container availability indices are 
similar to the actual data values in the evaluation set. If the MAE of two different models 
are quite similar, but the MSE of one model is significantly larger than the MSE of the 
other, it indicates that the model with the higher MSE predicts for at least one evaluation 
feature combination a significantly different container availability index than reflected by 
the actual data.

The models are evaluated on rolling forecasting origins (cf. Hyndman and Athanaso-
poulos 2018): multiple evaluation data sets representing different time spans are used to 
quantify the performance of the two prediction models. The evaluation data is selected 
following the sample-out approach for each forecasting origin: events that took place 
before the forecasting origin are used for training the models, while the objective of the 
models is to predict the event after the forecasting origin. Each evaluation data set cov-
ers the events of a time span of 12 weeks. Containers in the evaluation data set have 4 
to 5 transport events on average during 12  weeks with a maximum of 20 events. The 
prediction models are trained and evaluated on 18 forecasting origins. The first forecast-
ing origin is 01.11.2020 and the last 28.02.2021.6 The training data includes all the events 
dating back to January 2019.

In addition to the actual values, the quality of the two prediction models is compared 
to two benchmark functions, Benchmark Naïve and Benchmark SES. Benchmark Naïve 

CAXl,ct,w =
(returnsl,ct,w)

(

returnsl,ct,w
)

+ (dispatchesl,ct,w)

5 https:// conta iner- xchan ge. com/ featu res/ cax/
6 18 forecasting origins are used since an insufficient data quantity prevented to evaluate the models with forecasting 
origins before November 2020 while preprocessing criterion 2 did not allow to utilise forecasting origins later than Feb-
ruar 2021 as the latest events of the data set date back to July 2021.

https://container-xchange.com/features/cax/
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predicts the same number of events for each evaluation feature as in the last week before 
the forecasting origin. Benchmark SES instead applies a simple exponential smoothing 
on the amounts for each feature combination over the 12 weeks before the forecasting 
origin (cf. Hyndman and Athanasopoulos 2018, Chapter 7.1).

The number of events in the data set increases weekly, and the share of four event 
types is not evenly distributed due to missing data, as described in Sect. Data set. This 
leads to a bias regarding the number of events happening at the ports each week. There-
fore, each time span’s evaluation data must be cleaned to mitigate this issue. The basic 
idea of the cleaning process is that containers are only included in the evaluation data, 
which are (probably) constantly tracked over a time span and thereby show realistic 
movements. Four criteria are defined that must be satisfied by a container to be included 
in the evaluation data set:

1. The container is tracked at least 150 days before the forecasting origin.
2. The events of the container happen in the expected order (dispatch → loading → dis-

charge → return → dispatch).
3. The time between two consecutive container events is never larger than 150 days.
4. The container has at least one event during the 150  days after the last day of the 

evaluation time span.

Criterion 1 mitiages issues related to the data collection process: The amount of con-
tainers tracked increases weekly, and the tracking of a container typically begins if a 
container is dispatched from depot. This leads to the issue that the first events of the 
transport process are over-represented in the data set. By only considering contain-
ers already tracked for 150 days,7 this challenge can be significantly mitigated. Criteria 
2–4 aim to ensure that the container is constantly tracked. Therefore, the events have 
to occur in the expected order (criterion 2). Furthermore, there should be no missing 
container transports (criterion 3) without excluding empty container transports–which 
are not included in the data set. The cut-off for this criterion was set to 150  days by 
domain experts because it is more likely that the container is no longer tracked than 
that it does not have a single transport event within this period. Criterion 4 ensures that 
the container is still tracked after the evaluation period. If criterion 4 is not applied, it 
was observed that there is an over-representation of return events in the evaluation data 
since most of the missing data issues originate from absent dispatch events after the 
return to the depot of a container.

Results
This section presents the forecast results of our two prediction models over the 18 fore-
casting origins compared to the predictions of the benchmarking approaches, and some 
insights are highlighted. Table 3 shows the MAE and MSE averaged over the 18 fore-
casting origins for the two prediction approaches and the two benchmarks for locations 
where at least 50 containers are returned or dispatched from the depot.

7 150 days approximately corresponds to twice the time of an average transport process – from one dispatch to the sub-
sequent dispatch of a container.
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The forecasts of the neural network approach significantly outperform the other three 
approaches with a MAE of 0.0753 for the twenty-foot container (MSE: 0.0093 ) and 
0.0711 for the forty-foot container (MSE: 0.0086 ). While the prediction performance of 
the neural network is promising, the accuracy of the probabilistic approach is similar to 
the accuracy of the two benchmark models. Even though the observation that the proba-
bilistic model performs similarly to the two benchmarks is still promising: it indicates 
that the applied prediction approach, which derives the container availability based on 
forecasts of individual containers, can compete with predictions at port level.

As shown in Table 3, the prediction quality of each model is better for forty-foot con-
tainers than twenty-foot containers. Larger training and evaluation data availability for 
forty-foot containers might explain this observation, cf. Fig. 5. Generally, it was noticed 
during evaluation that the performance of the neural network approach seems to be 
positively influenced by the higher availability of training and evaluation data.

Figures 9 and 10 show the twelve-week container availability forecasts of the four 
approaches starting from the forecasting origin  1st March 2021 for the ports of Qing-
dao and Tokyo. Over the depicted time period, the container availability index at 

Table 3 MAE and MSE over the evaluation period. Source: Authors

Mean absolute error Mean squared error

Approach Twenty-foot Forty-foot Twenty-foot Forty-foot

Neural Network 0.0753 0.0711 0.0093 0.0086

Probabilistic Model 0.1048 0.0870 0.0170 0.0122

Benchmark Naive 0.1086 0.0925 0.0194 0.0147

Benchmark SES 0.1018 0.0864 0.0176 0.0131

Fig. 9 Predicted container availability for the port of Qingdao (forecasting origin: 01.03.2021). Source: Own 
figure
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the port of Qingdao increased from 0.21 to 0.35 . The neural network approach and 
Benchmark SES accurately anticipate the increase while the other two models fail 
to forecast the observed pattern accurately. The observation is also captured by the 
MAE (cf. Table 4): The neural network approach and Benchmark SES have a MAE of 
0.0160 respectively 0.0202 followed by Benchmark Naïve (0.0426) and the probabilis-
tic model (0.0460).

The container availability index development at the Tokyo port is more volatile and 
does not follow a strict pattern. All four approaches do not accurately forecast container 
availability in Tokyo. The predictions made by the neural network approach are the most 
accurate according to the MAE (0.0499), followed by the naïve benchmark (0.0680). The 
average weekly amount of containers in the evaluation data set handled at the port of 
Tokyo corresponds to 115 containers. In comparison, on average, 795 containers of the 
evaluation data set are dispatched or returned each week at the port of Qingdao. Hence, 
the volatility of the container availability index at the port of Tokyo might originate from 
the relatively small number of events at this port.

Fig. 10 Predicted container availability for the port of Tokyo (forecasting origin: 01.03.2021). Source: Own 
figure

Table 4 MAE of the prediction models for the port of Qingdao and Tokyo. Source: Authors

Mean absolute error

Approach Qingdao Tokyo

Neural Network 0.0160 0.0499

Probabilistic Model 0.0460 0.0712

Benchmark Naive 0.0426 0.0680

Benchmark SES 0.0202 0.0752

Total container 12,729 1,843
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To test the hypotheses that the forecast quality increases with a higher number of 
container events at the locations, the MAE was computed for different subsetsk of the 
evaluation data set. In each subsetsk locations with less than k weekly events were 
excluded from the evaluation data set. For example, subsets50 only includes the ports 
and countries where at least 50 container events occur weekly. Figure 11 depicts the 
MAE of subsets of the evaluation data set with different thresholds k , in such a way 
that it holds that 0 ≤ k ≤ 1200.

It can be seen in Fig.  11 that the predictive performance of the neural network 
approach, Benchmark Naïve and Benchmark SES–expressed by the MAE–nearly 
constantly increases with a higher number of container events at the locations of the 
evaluation data set. Only the probabilistic model does not follow this pattern. Instead, 
the prediction quality of the probabilistic model slightly decreases if k is greater than 
400 . Additionally, it can be observed that the MAE of all four approaches is relatively 
high if all locations are included in the evaluation set, indicating that the models do 
not accurately predict the container availability for locations with only a few weekly 
container events. This can mainly be attributed to the volatility of the container 
availability index at these locations. However, it can be seen that the predictive per-
formance significantly increases if low-volume locations are excluded from the evalu-
ation data set. At locations with more than 200 weekly container events, the neural 
network approach achieves an MAE of approximately 0.05 . The metric even improves 
to 0.03 if only locations with more than 800 weekly events are included.

Furthermore, it can be seen that the model using neural networks outperforms the 
other three approaches for each threshold k . This observation also indicates that fore-
casts made on the individual container level can outperform predictions on the port 
level. The advantage of the neural network approach compared to predictions on the 
port level especially is that the presented approach can forecast the movements of the 

Fig. 11 MAE for different subsets of the evaluation data set. Source: Own figure
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containers given the current state of the global container fleet. For example, if only a 
relatively small number of containers were loaded on vessels in Chinese ports over 
the last weeks, the presented prediction approach can anticipate that this situation 
will decrease discharged containers at ports that mainly import goods from China. 
Furthermore, the prediction approach can estimate the implications of this situation 
over the following weeks at every considered port and country.

In addition to the MAE of the forecasted container availability index over the 18 
forecast origins, the mean absolute percentage error (MAPE) was used to quantify 
the ability of four models to forecast the absolute number of containers dispatched 
and returned at the locations around the world. The MAPE indicates the relative dif-
ference between one event type’s absolute and predicted number of events (dispatch, 
loading, discharge, return). For example, if 10 containers are dispatched from a con-
tainer depot in one week at a specific location and 20 containers at another, and the 
model forecasts 12 dispatches for the first location and 15 for the second location, 
the absolute percentage error of the first location corresponds to |12−10|

10 = 0.2, and 
the absolute percentage error of the second location equals |15−20|

20 = 0.25 . Hence, 
the MAPE of the dispatches in this example is 0.2+0.25

2 = 0.225 . Figure 12 shows the 
MAPE of the four models for each of the four event types over the 18 forecasting ori-
gins for locations with more than 50 weekly events.

It can be seen in Fig. 12 that the neural network approach outperforms the other 
three prediction approaches regarding the prediction of the absolute number of con-
tainer events at the locations in the evaluation set with a MAPE between 0.2909 and 
0.3460 , followed by Benchmark Naïve with a MAPE between 0.3797 and 0.5246 . How-
ever, the probabilistic model is last for three of the four event types with a MAPE 
between 0.4929 and 0.5606 . Even though the neural network performs better than 
the other three models, the MAPE of all models is still relatively high: a MAPE of 
approximately 0.3 for the neural network approach indicates that the model either 
over or underestimates the absolute number of container events at the locations by 

Fig. 12 MAPE of the prediction models over the 18 forecasting origins. Source: Own figure
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30% . Similarly, the observation was made for the container availability index that the 
forecasts improve for locations with more data.

Discussion of results
Related literature in the area of container availability forecasts has focused on predicting 
the future development of container throughput in specific locations to derive informa-
tion about the availability of empty containers. This article presented a novel predic-
tion approach that derives information about container availability from estimations 
of future movements of many individual containers. The advantage of the proposed 
approach is that the current state of the global container fleet is considered during pre-
diction. This enables the model to anticipate short- and mid-term effects on the con-
tainer availability’s future development, like the implications of container shortages or 
temporal closures of specific ports. It was shown in Sect. Results that the novel predic-
tion approach can provide more accurate forecasts than predictions made at the port-
level. However, there are two challenges related to the proposed prediction approach. 
First, a huge amount of data is required to train the model robustly. Second, the process-
ing time tends to be significantly longer since the utilised data is of higher granularity 
than the input of conventional prediction models.

Most related studies are characterized by one or more of the following aspects:

• relatively small data volume, which prevents training robust models,
• high degree of temporal aggregation (e.g. yearly or quarterly throughput),
• no differentiation of container types, and
• predictions that cover only small regions or even individual ports.

A machine learning model able to forecast the supply and demand of empty containers 
for different types of containers on a weekly basis was trained enabled by the data corpus 
consisting of more than 100 million transport events. The utilised data set made it pos-
sible to derive container availability for more than 280 locations worldwide. In addition, 
the concept of the model permits to predict the container movements for an even higher 
number of individual ports and regions. However, not enough data was available in the 
data set, especially for a port with a lower container throughput.

Even though it was shown that the proposed approach implemented with feed-for-
ward neural networks and mixture density networks is able to outperform port-based 
models, the accuracy of the forecasts can be improved even further. It was shown that 
the quality of the predictions increases with the amount of data available for a location, 
cf. Fig. 11. It is expected that this trend continues if a larger share of the ports’ container 
throughput can be used for training and validation.

Especially if the absolute number of containers is utilised for evaluation instead of 
a container availability index, it is desired to improve the quality of the forecasts. We 
expect that the discrepancy between the absolute container throughputs’ forecasts and 
the actual amount is mainly explained by two factors. First, both the training and valida-
tion data are influenced by several irregularities, including the covid-19 pandemic, tem-
poral closures of ports, consumption changes, and the general reduction of the global 
container fleet’s size. Second, a not negligible number of containers is not continuously 
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tracked during the data collection process; thus, several movements of containers are 
not included in the database – especially over the first months covered. Since machine 
learning models learn patterns of historical events and forecast them for the future, the 
models struggle with changes in the data quality as well as shifts in global trade relations. 
Hence, we argue that the models’ forecasts would be even more accurate if the utilised 
data is more consistent and contains fewer outliers. This statement will be verified in 
future research.

Practical implications

A model able to forecast container availability could be used as decision support for var-
ious stakeholders in the maritime industry. In addition, such a model could be included 
as an additional software service in existing applications. Some potential valuable appli-
cation scenarios are listed in the following:

• Liner shipping and leasing companies could utilise the information provided by the 
service as decision support for the timely planning and realization of container relo-
cations to or from locations if a deficit or a surplus is foreseeable.

• Leasing and transport companies could apply dynamic pricing to adjust transport 
prices based on expected market developments to maximise their profits.

• Liner shipping companies could plan transport processes by considering the pre-
dicted future container availability to minimise transport costs.

• Terminal operators could utilise container availability forecasts to optimise the plan-
ning of their capacities and resources.

In addition to the visualisation of the container availability forecasts of ports with indi-
vidual charts, cf. Figs. 9 and 10, a visualisation of the actual or predicted global container 
availability could be valuable for decision-makers, cf. Fig. 13. Such a depiction enables 
users to quickly obtain an overview of surplus and deficit regions, analyze future devel-
opments, and make empty container disposition decisions.

Academic implications

It was shown in this article that forecasts on the container level could yield better predic-
tion quality compared to port-based predictions. The proposed prediction process offers 

Fig. 13 Forecasts of the container availability index on 7th June 2021 made on 9th May 2021 for forty-foot 
containers. Source: Own figure
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advantages over conventional methods, especially for short- and mid-term forecasts. 
Both approaches – on container-level and port-based forecasts – are expected to result 
in similar performance if long-term developments (more than one year) are investigated 
due to the probabilistic nature of both approaches. Even though the proposed approach’s 
overall prediction quality is superior to conventional methods, it comes at the cost of 
higher computational requirements.

Future research could focus on further improving the prediction quality of the dura-
tion and location prediction models. For example, the use of additional characteristic 
features, e.g. financial indicators or time-related information, is expected to improve the 
prediction quality of the forecasting approaches. Additionally, a more extensive hyperpa-
rameter optimisation, primarily focusing on the distribution used by the mixture density 
network, might emend the accuracy of the models. Furthermore, it would be interesting 
to include more individual ports in the training and evaluation process. However, the 
number of ports that can be used for training and evaluation depends on the availability 
of sufficient data.

Another avenue for future research is the development of additional measures and 
evaluation metrics to quantify the supply and demand of empty containers. Such meas-
ures could be used as target variables during the evaluation of both conventional pre-
diction approaches and the proposed method and would provide valuable insights into 
regional container availability.

Conclusions
Liner shipping companies frequently transport empty containers from import-domi-
nant regions to export-dominant regions to match the local demand for empty contain-
ers. These empty container relocations cause significant financial and capacity-related 
expenses for the carriers. A novel data-driven prediction approach to support the deci-
sion-making process related to empty container logistics was presented in this paper. 
While previous related work estimated the future container throughput on a port level, 
the container availability is derived from forecasts of movements of individual contain-
ers in the presented approach. Thereby, the models can incorporate knowledge of the 
current situation of the global container fleet when forecasting the container throughput 
at the port around the world.

Two prediction models implementing the novel prediction approach were introduced 
and compared to two conventional methods which estimate the container throughput 
based on historical data on a port level. The neural network model outperforms the 
other three approaches, which underlines the applicability of the introduced prediction 
approach. The prediction quality of the probabilistic model instead is similar to the con-
ventional approaches.

The presented approach using neural networks can approximate the container avail-
ability for the selected locations with an average MAE of around 0.05. It was shown 
that predictions tend to be more accurate if more training and evaluation data are avail-
able. While the neural network approach can relatively accurately predict a container 
availability index, all models fail to estimate empty containers’ absolute weekly supply 
and demand. The forecasts of the best-performing model differ from the actual values 
by 30% on average. However, the prediction quality is expected to increase with more 
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high-quality data and fewer exceptional circumstances (i.e. COVID pandemic) repre-
sented in the training and evaluation data set.
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