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Abstract Addressing recent calls by European regulatory and supervisory author-
ities, we develop a new bottom-up climate risk assessment method to examine the
resilience of the European banking industry regarding transitory climate risks. We
illustrate our approach by estimating the impact of a 50–100 EUR carbon tax per
tCO2 equivalent on the valuation and default risk of STOXX Europe 600 firms. For
about 5% of the sample firms, we find asset devaluation shocks larger than 30% and
for about 16% of the firms probabilities of default (PDs) dropping below investment-
grade level of 3%. At the sector level, our results yield asset devaluations shocks of
15–36% and new PDs of 5–34% for the six most affected sectors. Running a stress
test on credit risk based on these results, we find a decrease in capital ratios between
�1.2 and �1.6 percentage points for key regulatory capital ratios in the most adverse
scenario while only addressing 36% of the bank’s total risk-weighted assets. Our
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analysis sheds light on the substantial transitory climate risk for asset portfolios of
banks and contributes to the pressing question how to integrate climate risk into risk
management and regulation of financial institutions.

Keywords Climate Transition Risk · Risk Management · Climate Stress Test ·
Financial Stability · ESG

MSC-Classification JEL classification · G21 · G28 · G32

1 Introduction

Climate change is an “existential threat [...]. There’s no threat like it. [...] It’s an
economic imperative. I think it’s a moral imperative to future generations.” (Biden
2021b). With these words, US President Biden once again emphasized the urgent
need for joint international climate action at the Virtual Leaders Summit on Cli-
mate in April 2021. Climate change and the dependency on fossil energy resources
have gained new momentum in light of skyrocketing energy prices in 2022 and
the widespread stop of gas imports from Russia. However, action still lags behind
climate ambition, such as the Paris climate agreement targets of limiting global
warming to 1.5 ıC. Greenhouse Gas (GHG) emissions will have to be cut signif-
icantly within this decade to limit the occurrence of natural catastrophes and to
stabilize the global temperature in the long run. Otherwise, the damage to the world
and the global economy in the next decades will be drastic (World Meteorological
Organization 2021).1

Consequently, sustainability has become a dominating topic in society, politics,
the economy, and academia. Polls in Europe, North America, and Asia stating cli-
mate change as by far the largest threat of the decade show that climate change is
deeply anchored in national societies (Fagan and Huang 2019; IMF 2021). The USA
rejoined the Paris agreement and initiated the analysis of climate risk for the national
economy (Shalal and Mason 2021; Biden 2021a) while China committed to stronger
climate targets (World Resources Institute 2020). In Europe, the European Commis-
sion pursues the “European Green Deal”, launched the “Sustainable Finance Action
Plan” (European Commission 2018) and gradually extends the scope of the EU
Emissions Trading Scheme (EU ETS) as the world’s first and biggest carbon market
to reduce EU’s GHG emissions. Businesses face increasingly strict regulations on
emissions reduction and acknowledge the relevance of sustainability. For example,
the Value Balancing Alliance (VBA)2 attempts to measure the impact of companies
on society and capture it in the balance sheet (VBA 2021). In the academic stream,

1 Estimates of the long-run impact vary, but for example, the Swiss RE Institute (2021) estimates the cost
to be 18% of GDP in the next 30 years.
2 The VBA consists of 20 large international companies such as BMW, SAP, or Deutsche Bank, the Big
4 Accounting firms, the Organisation for Economic Cooperation and Development (OECD), and some
academic institutions.
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there is a new research agenda on measuring non-financial risk in a broader context
(Franke 2020).

Climate change and the fight against it may turn into financial risk. This financial
risk due to climate change, or environmental risk, arises primarily because of two
major types of risks. While transitory risk occurs in the transition to a low-carbon
economy (this includes, for example, climate policy instruments such as a CO2 price
or tax, or a shift to more expensive, low-carbon technology), physical risk includes
sudden extreme weather events (flooding or heavy storms, etc.,) or evolving effects
(rise in temperature or sea level) (NGFS 2019, 2020a, b). The economic damage
from these two risks, such as stranded assets (transitory risk) or business disruptions,
capital scrapping, (uninsured) reconstruction, and replacement (physical risk), put
the profitability and financial health of companies at risk. This, in turn, may also
hurt the financial sector as a lender of capital for these companies and endanger the
resiliency of financial institutions.3

This is why financial practitioners, key regulatory and supervisory authorities such
as the European Banking Authority (EBA) and the European Central Bank (ECB),
have started to integrate environmental risk into risk assessments because climate
change together with the two very recent shocks, the COVID-19 pandemic and the
energy crisis due to the war between Ukraine and Russia, poses a considerable risk
for the resiliency of financial institutions (Kasinger et al. 2021). The EBA announced
to include ESG (Environmental, Social, Governance) risks in the supervisory review
process and to expect financial institutions to disclose climate risks and run climate
stress tests (EBA 2019, 2021). The ECB required financial institutions to establish
climate risk-management governance and to rapidly develop suitable climate-related
stress test approaches by 2022 (ECB 2020; ESRB 2020). The results of the first
stress test exercise, published in July 2022, indicate combined credit and market
risk losses for 41 tested banks up to around C70 billion in a three-year time horizon
for transition risk and two physical risk types. However, 90% of the climate risk
assessment practices of financial institutions were not yet in line with the ECB’s
expectations as of February 2022 (Elderson 2022), and around 60% of banks lacked
well-integrated climate risk stress-testing frameworks as of July 2022 (ECB 2022).

We address the issue of climate risk assessment methods and test the resiliency
of the financial sector against transitory climate risk on the firm level. We focus
on transitory climate risk because this type of risk appears more pressing in light
of rising European and national environmental regulation in the near future. We
develop a new generic 6-step climate risk assessment method that allows researchers,
practitioners, and regulators to analyze the impact of transitory climate risk on the
firm level. We apply this 6-step climate risk assessment method and run a climate
stress test for credit risk of financial institutions in a classical stress test time horizon
of 1–3 years by assuming national carbon tax levels of 50–100 EUR per CO2 ton
equivalent on top of the current European Trading Scheme (ETS) for the companies
in the STOXX Europe 600 index. We collect all company-specific information in

3 Even more, through reduced capital availability, the damage to the financial sector may feed back to
the overall economy through reduced capital availability (contagion) and cause even more severe second-
round effects that may put the resiliency of the financial sector even further at risk.
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an extensive data set from Refinitiv Datastream. We end up with a final sample of
404 European firms after excluding 69 financial corporations due to their unique
capital structure and excluding 127 firms due to their incomplete CO2, financial or
emission data. We construct four scenarios and capture the financial impact on the
remaining 404 STOXX Europe companies through a Net Present Value (NPV) of
future carbon tax payments. We put these NPVs in relation to the original asset value
to yield firm-specific asset devaluation shocks and integrate them into the classical
Merton model to calculate new probabilities of default (PDs).

We find for about 5% of the 404 companies asset devaluation shocks larger than
30% while about 16% of the firms face new PDs dropping below an investment
grade level of 3% (Monnin 2018). On the sector level, we find asset devaluations
of 15–36% in the most adverse scenario for the six most affected sectors (Travel &
Leisure, Construction & Materials, Utilities, Basic Resources, Chemicals, Energy)
that are also the most carbon-intensive ones. This leads to new PDs of 5–34% for
those sectors after the transitory climate risk shock in the most adverse scenario that
can be solely attributed to the carbon tax shock.4 We run two robustness checks on
the asset variance parameter. We bootstrap the volatility parameter and allow the
asset variance to increase by 50% in reference to the most severe financial crisis
experiences from the past. The substantial increase in the variance parameter would
put many sectors, partly independent of their carbon-intensity, into financial distress
through higher PDs across all four scenarios. The bootstrapped asset variance results
remain robust and consistent with our main estimates.

We take these new “after transitory climate shock PDs” one step further and run
a stress test for credit risk in line with Basel III and EBA requirements with publicly
available exposure data on the sector level of a large European bank. By addressing
36% of the bank’s risk-weighted assets (RWA) for corporate credit risk exposure, we
find a drop in CET1 percentage points up to �1.2%, in Tier1 up to �1.4% and in total
capital ratio up to �1.6%, respectively. The results vary substantially by scenario.
We find the most drastic results in our most adverse scenario 4 with a carbon tax
of 100 EUR per CO2 ton equivalent, an abrupt introduction of the tax, a pass-
through rate onto consumers of 50%, and no adaptation capabilities of companies
to reduce their carbon footprint in the next three years. In light of the typical stress
test time horizon of 1–3 years, we do not integrate macroeconomic development
into our model.5 We discuss further assumptions and input parameters feeding into

4 The partially high PDs in our analysis compared with empirically observed PDs can be explained by the
original Merton model with its strict default assumption once the value of assets falls below the value of
debt and by the expectations of market participants that may have priced in, to some extent, higher carbon
tax levels (Delis et al. 2018).
5 An unfavourable macroeconomic development due to climate change is likely to worsen the results in the
model. The multi-macroeconometric National Institute Global Econometric Model (NiGEM) model pro-
vided by the National Institute of Economic and Social Research of the University of Oxford puts together
various macroeconomic models about commodities, labour markets, trade, or public households based
on the NGFS climate scenarios and their forecasts of macroeconomic development. These are built on
the Intergovernmental Panel on Climate Change (IPCC) predictions (Intergovernmental Panel on Climate
Change 2000).
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our analysis and the resulting magnitude of impact in Sect. 4.8 “Reconciliation and
discussion”.

Our study is one of the first to combine the impact of transitory climate risk on
the valuations of a cross-European firm sample (“bottom-up”) with a standard stress
test of a large European bank. Our paper is targeted at researchers, practitioners, and
regulatory agents and contributes to the existing literature in two ways.

First, we consolidate and summarize the enormous diversity in different climate
stress test approaches for transitory climate risk from the literature and develop one
generic, overarching 6-step approach as an umbrella. This 6-step approach may serve
as starting point to assess the impact of (long-term) transitory climate risk on credit
risk “bottom-up” or “top-down” in the short run of 1–3 years. Our 6-step approach
addresses three substantial shortcomings of current climate risk assessments: Firstly,
these are often “top-down” as they measure the climate risk-related credit risk on
the country or sector level, for instance, Vermeulen et al. (2018, 2019); Reinders
et al. (2020), and are thus arguably too aggregated for granular, idiosyncratic risk
assessment on the issuer or firm level. Our 6-step approach is a major contribution
because financial institutions measure their operational idiosyncratic credit risk on
the issuer or firm level rather than the country or sector level. Secondly, most
approaches (Vermeulen et al. 2018, 2019; Reinders et al. 2020) project climate risk
far into the future up to 10–50 years, and do not allow practitioners to measure their
climate risk exposure along the credit lending cycle in a short-run stress test time
horizon of 1–3 years.6 This holds in part also for the current stress test approaches
by the ECB (ECB 2021, 2022). Thirdly, the majority of prior studies stop after
computing the impact of climate risk for selected P&L or balance sheet items without
computing the actual credit risk in the next step. This does not suit the core purpose
of a stress test to measure the resiliency of financial institutions against climate risk
for credit risk.

Second, we apply our 6-step approach and provide detailed estimations of the
impact of transitory climate risk on the valuations of the largest European firms and
the credit risk of one financial institution based on its 2019 Pillar III disclosure. Our
results with asset devaluations of 15–36% and new PDs 5–34% generally confirm
the substantial climate risk exposure of companies and financial institutions in the
few existing studies. Our results also show that the exposure to transitory climate
risk differs not only across sectors but also across firms within a given sector. We
find that the most affected sectors, on average, are also the ones with the largest
heterogeneity across firms within the sectors.

Our results are below the maximum impact of previous academic studies, mainly
due to the assumptions regarding the level of the carbon tax (50–100 EUR in our
case) and the stable macroeconomic environment. For example, Vermeulen et al.
(2019) find a loss in asset values of EUR 48–159 billion or 5–11% of the portfolio
value of financial institutions with banks being the least affected. Monnin (2018)
computes a loss in asset value of 18.7–64.5% and an increase in PDs of 0.29–3.34%

6 In particular, studies that are based on the Network for Greening the Financial System (NGFS) climate
change scenarios (Base case, orderly and disorderly transition, hot house world) do not account for the
measurement of credit risk in the short run.
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for two issuer cases. Reinders et al. (2020) provide asset valuation shocks of 31–89%
for the most affected sectors by Statistical Classification of Economic Activities
in the European Community (NACE) and a loss for the Dutch banking sector of
0.3–3.2%. While they compute top-down estimates on the sector level over a 10-year
horizon without firm-specific insights, we compute 404 final firm-level estimates and
aggregate them by sector over a short-term stress time horizon of 1–3 years.

Our results are partly in line, partly higher than the first stress test results of
regulatory and supervisory authorities such as the ECB or the Bank of France.
However, since the central banks apply a “top-down” stress test approach, i.e., they
measure the climate risk on the country or sector level by following the NGFS
scenarios long into the future until 2050, the comparability of those results to our
results remains limited.

The paper is structured as follows. The next chapter introduces ESG risks and
climate risks in the financial context. Chapt. 3 consists of a literature overview on
climate risk stress testing. Chapt. 4 presents the conceptual 6-step approach on how
to run climate stress tests for transitory climate risk. In addition, it encompasses the
empirical analysis of the financial impact of a carbon tax and illustrates the effect
of such a policy on the Basel III credit risk metrics and capital ratios of a European
bank. The chapter concludes with Sect. 4.8 “Reconciliation and discussion” in which
we reflect on the various assumptions and data inputs driving our results. Lastly,
Chapt. 5 summarizes our study.

2 Environmental risk in the financial sector

Awareness of sustainability, nowadays often referred to as ESG in research (Bassen
and Kovács 2008; Jain et al. 2016; Rezaee 2016) and financial practice (CFA Institute
2015; Eccles and Stroehle 2018; MSCI ESG Research 2019), is undoubtedly on the
rise in the financial sector. The amount of assets managed under the Principles for
Responsible Investment (PRI 2019) has grown significantly in recent years. Rating
agencies like Moody’s and Fitch have developed their own ESG scores and new
providers such as ISS or Sustainalytics emerged on the market. MSCI and other
asset managers have launched dedicated ESG funds that select their assets based on
ESG criteria (MSCI 2021; Tillier 2021).

Out of the 3 ESG criteria, the progress towards institutionalized regulation is
the most pronounced in the environmental (E) aspect. The Task Force on Climate-
Related Financial Disclosures (TCFD), a global expert network of 32 members
selected by the Financial Stability Board of the BIS (Bank for International Settle-
ments) founded in 2015, and the NGFS, an association of international central banks
founded in 2017 (NGFS 2018), provide definitions of climate risk, discuss transmis-
sion channels of climate risk into financial risk or provide initial case studies on how
to measure the impact of environmental risk on financial stability.7 These initiatives

7 In 2020, the NGFS has published three case studies on the impact of climate risk. One of them guides
regulators on how to integrate climate risk assessment into regulation; The TCFD has published, for exam-
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aim to increase transparency and efficiency in financial markets8 and ultimately to
mobilize private capital towards an emission-free economy.

The initiatives above by the TCFD and NGFS appear to guide the advancing
regulation of ESG and environmental (E) risk in particular. In 2019, the EBA an-
nounced an update of its supervisory review and evaluation process (SREP) of the
Basel III Pillar 2 requirements to include ESG risks. In early 2021, the EBA pub-
lished a letter about the disclosure requirements of ESG risks in Pillar 3, requiring
banks to disclose climate risks, mitigating actions, and their Green Asset ratio based
on the EU taxonomy. The EBA’s main objective is to achieve more transparency
on climate-related risks (e.g., exposure of assets to carbon-intensive activities) and
their evolution in the transition to a carbon-neutral economy.

The first step by the ECB towards a more structured management of environmen-
tal risks in European banking was a guide on environmental risk in 2020. The ECB
demanded that financial institutions treat environmental risks as drivers of existing
risk categories (Credit risk, market risk, etc.) in business strategy and risk manage-
ment frameworks, measure and manage climate risk as the other risk metrics and
develop climate risk-related stress testing by the end of 2022. Recent publications by
regulatory and supervisory agents provided financial institutions in Europe (Banque
de France 2021; EBA 2021; ECB 2021) with guidance about expectations and out-
comes on the one hand and with concrete tools and methodologies on the other
hand. In January 2022, the ECB released a methodology for the first climate-stress
test and its results in July 2022.9 All these steps illustrate the enormous relevance
of climate stress testing for the entire financial sector.10

We specify the different approaches and methodologies towards climate stress
tests to test the resiliency of financial institutions against climate risk in the next
chapter.

3 Literature review

3.1 Top-down studies

“Top-down” or macro-approach studies analyze the impact of climate risk on sectors,
countries, or regions without company-specific insights.

One of the first studies that shed light on the impact of climate risk on the fi-
nancial sector was Weyzig et al. (2014). They estimated the exposure of European
financial institutions to fossil fuel-intensive sectors to be roughly 1 trillion EUR,
and the potential losses due to a quick breakthrough towards a low-carbon economy

ple, the 2019 report reflecting on the “Climate value at risk” including 12 case studies about climate risk
estimations.
8 “Increasing transparency makes markets more efficient and economies more stable and resilient”
(Michael Bloomberg, Chair of TCFD, TCFD 2017)
9 The results are discussed in Sect. 3 literature review.
10 Parallel efforts run on the national level, for example, by German BaFin, the Bank of France, or the
Bank of England as National Competent Authorities (NCA) on the (future) handling of environmental and
sustainability risk.
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based on a high-level shock equal to 3% of total assets for pension funds, 2% for
insurance companies and 0.4% for large banks. The Cambridge Institute for Sustain-
ability Leadership (2015) analyzed the impact of the transition towards a carbon-
free economy from the macroeconomics perspective based on the Intergovernmental
Panel on Climate Change (IPCC) scenarios. They computed lower economic growth
for the transition phase but comparably higher growth in the long run compared to
the “No mitigation” scenario. They also estimated a fictional portfolio with 40%
equity weight would lose 15–20% of its value in 2015–2020. Dietz et al. (2016)
estimated the “Climate value at risk” of global financial assets to be equal to 1.8%
or 2.5 trillion USD based on a representative global financial asset portfolio. Sim-
ilar to Cambridge Institute for Sustainability Leadership (2015) and other studies,
they claimed that limiting global warming early on avoids long-run cost of climate
change.11

The two most relevant studies for our approach come from authors at the Dutch
central bank, De Nederlandsche Bank (DNB). Vermeulen et al. (2019) assess the
impact of a disruptive transition to a low-carbon economy for more than 80 Dutch
financial institutions (banks, pensions funds, and insurers) with a total value of EUR
2.3 trillion from 56 NACE industry sectors. Their approach follows four steps. First,
they develop four transition stress scenarios (“narratives”) over the two dimensions
of climate policy intervention and energy technology development. Second, they
generate key macroeconomic key variables such as interest rate, GDP, trade, us-
ing a multi-country macro-econometric model from the National Institute Global
Econometric Model (NiGEM) and translate the above “narratives” into concrete
model inputs (e.g., CO2 prices into commodity prices). Third, they calculate “tran-
sition vulnerability factors” to map some of the macroeconomic results on NACE
industry level to yield the vulnerability of sectors towards transitory climate risk.
Lastly, they run classical stress tests and compute financial losses in credit and
market risk for stocks, loans, and bonds. They find that banks suffer only a 1–3%
potential asset value loss compared to 9–11% for insurers and 5–10% for pension
funds, largely driven by an increase in risk-free interest rates in their macroeconomic
analysis. CET1 ratios of Dutch banks could decline by up to 4 percentage points
compared to their level in 2018/2019 (16%).

Reinders et al. (2020) analyze the impact of introducing a EUR 100–200 car-
bon tax along four different transition stress scenarios (timing-related and passing-
through to consumers) for the stability of the Dutch banking sector. Based on the
four scenarios and the CO2 emissions of the sector, they calculate an NPV of fu-
ture carbon tax payments and use Merton’s contingent claims model to compute
new valuations and PDs in a Distance-to-Default (DtD) approach. Then, they use
detailed exposure data for the three largest Dutch banks to calculate losses and ex-
trapolate the results to the Dutch banking sector. The most affected NACE-classified
industries are utilities and manufacturers of commodities, with valuation shocks of
up to 31–89%. Depending on scenarios, losses in market value are equal to 4–63%

11 They find that limiting global warming to 2ı reduces the expected losses by 0.6–1.2% and preserves
about 800 bn. USD of assets of that global financial asset portfolio.
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of CET1 capital and 3.2% of total assets in the Dutch banking sector, mainly caused
by losses in corporate loans and debt.

Regulatory and supervisory agents across Europe, most notably the Bank of Eng-
land, Bank of France, EBA, and ECB, have recently provided financial institutions
with further guidance on climate stress testing (Bank of England 2021; Banque
de France 2021; ECB 2021). Spyros Alogoskoufis et al. (2021) from the ECB ran
a first climate stress test consisting of three main modules. First, the reliance on the
NGFS scenarios regarding the future macroeconomic development until 2050. Sec-
ond, a mapping of financial institutions’ granular loan and security exposure with
firms’ climate and financial information. Third, the impact of transitory and physical
risk on credit risk figures such as PDs or expected loss. The analysis focuses on the
financial sector’s actual credit and loan exposure, particularly to carbon-intensive
sectors. The PDs of the most affected sectors may rise up to 11–37.5% relative to
the orderly transition scenario by the NGFS.

The Bank of France ran a first climate stress test in 2020, covering 75% of the
technical insurance provisions and 85% of the total assets of French banks based
on the three NGFS scenarios until 2050. The approach starts with a static balance
sheet until 2025, in line with traditional supervisory stress testing. Then they add the
climate and macroeconomic developments from the NGFS scenarios until 2050 in a
“dynamic balance sheet approach” into the stress test. For physical risk, the analysis
yields an increase in loss ratios for claims related to natural disasters up to two to
five times and a rise in premiums by 130–200% to compensate for these losses. For
transition risk, the annual cost of credit risk12 would rise by 22.4–32.4%, while the
impact remains comparably limited with PDs on aggregate sector, reaching 3% only
for coke and refined petroleum products (Banque de France 2021).

The first climate stress test that the ECB conducted as “learning exercise” for
financial institutions consists of three core modules. First, a qualitative questionnaire
to asses the climate risk frameworks. Second, the exposure of the bank’s income
streams to GHG-emitting sectors. Third, a “bottom-up stress test projection” for
short-run and long-run climate transition risks, and physical risks (floods, drought,
or heatwaves). The results published in July 2022 reveal that the share of interest
income from the most GHG-emitting sectors amounts to about 60%, while credit
and market risk losses due to transition risk and physical risk amount to about C70
billion in a short-term three-year time frame (ECB 2022).

Further studies from the private sector, such as Mercer LLC (2019), Howard and
Patrascu (2017), Eceiza et al. (2020) also estimate the effect in different metrics
(e.g., EBITDA at risk or portfolio losses of MSCI indices) and generally confirm
the conclusion that climate risk indeed drives financial risk.13

12 This credit risk proxy is calculated by dividing the total annualized provisioning flows for each time
interval by the average exposure over the same time interval.
13 Howard and Patrascu (2017) show detailed carbon exposures and integrate a carbon tax into the P&L of
companies that is partly offset by price increases and pass-through rates for consumers. The remainder is
modeled into the cash-flows and EBITDA of key benchmark indices, yielding EBITDA at risk of roughly
12% for the S&P 500 and MSCI up to 16.5% for MSCI Emerging Markets. A study by Eceiza et al. (2020)
from McKinsey & Company analyzed, among others, the impact of flooding in Florida on a mortgage
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3.2 Bottom-up studies

Only a few studies compute the impact of climate risk on the firm level, most likely
due to higher complexity and data availability on the corporate level.

Battiston et al. (2017) apply a network-based stress test methodology and divide
the potential climate risk into first and second-round effects. Based on classical Value
at Risk (VaR) analysis of exposures of large European banks, they conclude: “An
early and stable policy framework would allow for smooth asset value adjustments
and lead to potential net winners and losers. In contrast, a late and abrupt policy
framework could have adverse systemic consequences”. Based on a “green” and
“brown” scenario, they compute a VaR of less than 1% in a brown scenario for the
largest 50 Euro-Area banks.

Monnin (2018) describes an approach used by Carbon Delta14 to measure how
a transition risk shock could change the set of assets eligible for purchase by the
ECB’s corporate sector purchase program (CSSP) by looking at 875 securities from
166 issuers, equivalent to 73% of ECB’s CSPP portfolio. The global temperature
rise goal is broken down on the country, sector, and finally, firm level. They then add
national required CO2 prices to the required CO2 reductions and integrate this into
a DtD approach. The results show an increase in PDs from two issuers of +0.29%
(Utilities) and +3.34% (Materials), yielding a post-shock PD for the Materials com-
pany of 4.77%. This PD would be below the required investment-grade PD of 3%
and make the asset no longer eligible for the CSSP program (Monnin 2018).

Grippa and Mann (2020) analyze the impact of climate risk on the Norwegian
economy and financial sector in three transmission channels. They find about 4% of
all corporate bank exposures dropping below an ICR of 1 or 2 based on different
domestic CO2 prices, loan losses up 0.9% for a global CO2 price of 150 USD, and
asset devaluation for households, banks, and pensions to 5–11% in the case of oil
output reductions to limit CO2 scope 3 emissions.

Faiella et al. (2021) use administrative and survey data to compute the impact
of four one-off carbon taxes (C50, C100, C200, and C800 per CO2 ton) through
higher energy prices for Italian households and firms. Based on demand elasticities
and projected changes in their energy mix, they derive the impact of higher energy
prices on households’ disposable income and on firms’ EBITDA. Then, they calcu-
late the share of vulnerable households and firms at risk of their debt. The results
with a taxation of C50–200 per ton do not have a big effect on financially vulnerable
households and firms. The results are also still below those in the sovereign debt
crisis, also even in the most severe case of C800 per ton.

Table 1 summarizes the most relevant prior climate stress testing literature from
above and illustrates the diversity in different approaches taken along the three
following dimensions:

portfolio loss rate and compounded a loss rate of 0.5–7.25% subject to the specific scenario. These numbers
become even more drastic when these losses are compared with those in the financial crisis of 2.95%.
14 Carbon Delta, founded in 2016, is a financial technology firm based in Zürich which assesses the climate
resilience of firms and their assets.
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Table 1 Overview of most relevant climate stress test literature

Author & Year Scope Financial impact metrics Sectors Country

Banque de
France (2021)

Top-down Credit exposures, PDs, cost of
risk

Various France

Bank of England
(2021)

Top-down GDP, interest rates Banking &
Insurance

UK

ECB (2021) Top-down PDs, expected losses, credit
and loan exposure

Various EU

Reinders et al.
(2020)

Top-down NPV of future carbon tax pay-
ments, asset valuations, PDs,
CET1 ratio

Banking Netherlands

Vermeulen et al.
(2019)

Top-down Loss in asset value by credit
and market risk, GDP, interest
rates, CET1 ratio

Various Netherlands

Dietz et al.
(2016)

Top-down Value-at-Risk, GDP growth,
cash flow, loss in asset value

Various Global

CISL (2015) Top-down Performance of asset classes Industry
sectors

Global (US,
UK, DE, JP,
BR, CN)

Weyzig et al.
(2014)

Top-down Carbon bubble risks, potential
losses

Finance EU

Faiella et al.
(2021)

Bottom-
up

Household income, EBITDA Energy Italy

Grippa and
Mann (2020)

Bottom-
up

Profit, ICR, loss in asset value General
economy &
finance

Norway

Monnin (2018) Bottom-
up

Loss in asset value, PDs Various EU

Battiston et al.
(2017)

Bottom-
up

Value-at-Risk Various EU & US

Notes: Most relevant literature ordered by top-down/bottom-up classification and year. Bottom-upDfirm
level, top-downDnational/sector level. Financial impact metrics reflect the specific metrics in each study
for which the impact of (transitory) climate risk is computed.

� The actual unit level on which the analysis is conducted, i.e., top-down (national/
sector level) or bottom-up (firm level)

� The financial impact metrics for which the stress test is conducted, e.g., balance
sheet, P&L, or other figures

� The sectors and countries in scope

While the diversity in these three dimensions can be summarized comparably
conveniently in a table, the potential fourth dimension, “conceptual and method-
ological approach”, is not depicted because the description of this dimension would
become too complex in a table. Some calculate demand curves for oil-and-gas con-
sumption (Grippa and Mann 2020), others compute transition vulnerability factors
on NACE sector level (Vermeulen et al. 2019), others project demand elasticities to
derive new energy mix, Reinders et al. (2020) use the NPV of future tax payments
before calculating assets losses and PDs.
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Overall, the number of academic studies analyzing the impact of (transitory)
climate risk on individual firm level is limited because the topic has only recently
gained enormous relevance for the financial sector. This momentum comes, on the
one hand, from the rising financial risk due to climate change15 for the economy and
the financial sector as capital lender, on the other hand from the push by regulators
and supervisors (Bank of England 2021; Banque de France 2021; ECB 2021, 2022).

We appreciate all the prior studies that have initiated the debate about suitable
approaches towards climate stress testing to accurately measure transitory climate
risk and allow financial institutions to manage their exposure to it. In particular, we
acknowledge the work of Reinders et al. (2020) because we rely on their idea to
calculate a scenario-based NPV of carbon tax payments, deduct this NPV from the
value of the assets to compute asset devaluation shocks, and derive final PDs with
the Merton Model on sector level.

Nevertheless, the existing approaches, including Reinders et al. (2020) have three
limitations that we address in our analysis. First, most of these approaches do not
allow for a granular, idiosyncratic analysis on the firm level (bottom-up) of P&L
or balance sheet items that identifies vulnerable firms within a sector.16 Monitoring
the aggregated exposure of financial institutions to climate risk on the sector level
may be appropriate from a supervisory and regulatory perspective. However, risk
management practitioners in both asset and credit risk management need to monitor
their risk more granularly on the asset or issuer level. Second, the majority of top-
down studies, for example, Reinders et al. (2020) and those by the central banks
follow the NGFS scenarios (Base case, orderly and disorderly transition, and hot
house world) with a very long prediction time frame of 10–30 years until 2050.
This brings substantial uncertainty because many assumptions are made long into
the future and may need to be revised due to reversed events in the short run, e.g.,
ad-hoc political carbon legislation. These long-term forecasts may lose their initial
added value for financial practitioners who also need to monitor their financial risk in
the short run. Third, prior work often calculates the impact of transitory climate risk
on P&L or balance sheet items but not on credit risk (See the literature overview in
Table 1). This is not consistent with the rationale of a practical stress test to measure
the resiliency of financial institutions against transitory climate risk.

Our study addresses these three shortcomings and contributes to the climate
stress test literature in two dimensions. First, we provide a conceptual, overarching
approach to assess the impact of transitory climate risk on firm valuations and the
resiliency of financial institutions in terms of credit risk in a generic 6-step approach.
This 6-step approach summarizes the different approaches in one 6-step framework
that regulators, researchers, and practitioners can use as a starting point to develop
both top-down and bottom-up (on firm-level) climate stress tests. Our framework
could easily be expanded to market risk of portfolios as well. Second, we provide

15 The European Environment Agency, for example, estimates that economic losses due to extreme
weather events amounted to EUR 446 billion in the European Economic Area between 1980 and 2019.
16 For example, there might be a huge difference between producing or distributing companies within
the energy sector that may have different climate-risk exposure due to different carbon emission levels.
Another example is travel & leisure. Here, airlines have a different exposure than hotels.
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idiosyncratic estimates for the impact of transitory climate risk on STOXX Europe
600 companies and for the credit risk of a European bank example to illustrate the
applicability of the 6-step approach. We want to highlight that, in contrast to many
other studies, we stick to traditional stress test time horizons of 1–3 years, allowing
risk management on the firm level in the short run. This is particularly relevant
because of rapidly changing national carbon legislation and is also in line with parts
of the short-term climate stress testing approach used by the ECB.

4 Estimation of the impact of transitory climate risk

4.1 The generic 6-step approach

We propose to compute the impact of transitory climate risk on credit risk and
financial stability with a 6-step approach. These six steps can be considered as an
overarching umbrella around many different climate stress test approaches, be it
top-down, bottom-up or any hybrid format. They can serve as an initial step for
researchers and practitioners to develop their own climate transitory risk stress tests
to measure the resiliency of financial institutions against climate risk.

The section is structured as follows: We begin with the conceptual description
in Fig. 1 and then apply the concept in our empirical analysis. We present the four
constructed scenarios (step 1 in the approach), the dataset and emission exposure
of our companies in the sample (step 3), and the Merton model to quantify the
impact of transitory climate risk on asset devaluations and PDs of firms (step 4 and
5) including two robustness tests. Ultimately, we derive the impact on the capital
requirement ratios in line with the Basel III regulation (step 6).

Step 1 Define transitory risk scenarios The first step lies in the top-down
definition of overarching scenarios as “future (climate) states of the
world”, for example the five Shared Socioeconomic Pathways (SSPs).
They project the future state(s) of the world concerning climate, popula-
tion, economics, or technological progress. Embedded in those scenarios
should then be concrete assumptions about transitory climate risk, for
example, a change in climate policy (e.g., CO2 tax) or a shift to more ex-
pensive low-carbon technology triggered by specific technological break-
throughs or changing consumer preferences (e.g., towards sustainable
business models). The scenarios have a clear top-down character as the
projections will be made mostly on the world- or national-level.

Step 2 Break-down of scenarios on the macroeconomic/sectoral level The
overarching scenarios as “future state of the world” need to be broken
down into the concrete macroeconomic development of nations, regions,
or sectors. On the national/regional level, macroeconomic figures such
as exchange rates, trade, interest rates, GDP, consumption, investment,
or R&D development must be projected. On the sector level, the sector’s
size, competitiveness, or technological progress needs to be assessed. The
result is a projection of the economic development of countries or sec-
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tors, given the transitory risk scenarios from step 1. Again, this approach
is primarily top-down unless a sector’s competitiveness or technological
progress would also be broken down on the firm level.

Step 3 Develop climate the footprint & cost In the next step, the climate foot-
print and its potentially associated costs must be compiled. These costs
can often include the amount of CO2 and the potential tax or price of
CO2 emission. Alternatively to the carbon exposure, Monnin (2018) de-
scribes a way to break down the globally aligned CO2 saving targets on
county and sector (Step 2) levels. If the impact of transitory climate risk
is computed on the firm level, then carbon exposure needs to be available
on the firm level. In this case, step 3 is already a hybrid of the top-down
and bottom-up approach.

Step 4 Calculate the impact on financial performance Once the carbon foot-
print and its cost are estimated, the financial impact can be computed.
For instance, the impact can be integrated into the valuations of assets
through simple NPV cash-flowmodels, as cost or write-offs (for example,
on stranded assets) into P&L, into profitability figures such as EBITDA
(Bouchet and Le Guenedal 2020; Howard and Patrascu 2017) or into
balance sheet items. Depending on the assumptions and macroeconomic
projections, other inputs, such as the WACC or the risk-free interest rate,
can also be integrated into the calculations. Step 4 can be applied both
top-down or bottom-up.

Step 5 Compute the impact on credit risk metrics The impact on financial
performance from step 4 can then be translated into standard supervisory
risk figures. One example is the integration of asset devaluations into
credit risk by computing PDs in a DtD-approach. Alternatively, and not
in line with official supervisory stress testing as established by the EBA
and ECB, other credit risk metrics such as the Altman z-core (through
assets and earnings) or credit spread (through differences in bond yields)
could also be used (Badayi et al. 2020; Liu and Ge 2012). Again, this
step can be top-down and/or bottom-up.
Until this point, we have disregarded any portfolio of financial institu-
tions. Instead, we have compiled the impact of transitory climate risk on
the firm or sector level. In other words, we have not conducted a climate
stress test as prescribed by the regulatory authorities. This follows in step
6.

Step 6 Calculate the impact on banks/financial sector – credit risk After hav-
ing computed the impact of transitory climate risk on sectors or firms
and their most relevant credit risk metrics, one can integrate the latter
into the Capital Requirements Regulation (CRR) framework to compile
the risk-weighted assets (RWA). The impact of climate risk on total as-
sets, CET1 or Tier 1 capital ratios then reflects the increased financial
risk that financial institutions are exposed to. This last calculation step
can be executed based on sector or firm-level exposure for aggregated
national financial sectors (Reinders et al. 2020; Vermeulen et al. 2019)
or for individual institutions.

K



78 Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (2024) 76:63–111

4.2 Scenarios

Similarly to Vermeulen et al. (2019); Grippa and Mann (2020); Faiella et al. (2021),
we develop different scenarios to model the impact of a transitory climate risk
policy around the following three dimensions due to the high degree of uncertainty
about the future ecological, political, and economic development around the cost of
carbon, or a potential response by firms:

� The tax rate per ton of CO2
� The adaptation capabilities of companies to reduce their carbon footprint in light

of the upcoming increase in carbon price due to the introduction of the carbon tax
� The pass-through rate of this tax rate for consumers

4.2.1 Tax-rate per ton of CO2

We assume an effective carbon tax of either C50 or C100 per tCO2. According to
the World Bank (2017), the carbon price should be set within C50 and C100 per
tCO2 to reach the Paris Climate Agreement goals. Furthermore, Rogelj et al. (2013)
argue that a global carbon price of C100 would yield a � 95% probability of keeping
global warming below 3ıC, an � 85% probability of keeping it below 2.5ıC, and
a � 70% probability of keeping it below 2ıC. However, when the social costs of
carbon are considered17, the price can easily increase to hundreds of C per tCO2,
depending on how present energy consumption is weighted against future benefits
stemming from reduced emissions (Poelhekke 2019). In other words, our two tax
scenarios are also rather conservative compared to, for instance, Reinders et al.
(2020), with up to C200 per tCO2 or Bach (2019) with up to C180 for Germany
until 2030 to meet the climate targets as of 2019. In light of the heterogeneous
CO2 price/tax rates levels in Europe across countries18, we assume the tax rates
to be uniformly applied across all sectors on the national level. Depending on the
current level and scope of national emission regulations, this is equivalent to either
an introduction of- or a rise in the tax rate. Moreover, we assume that a rise in the
cost of carbon for firms due to the market-price mechanism and gradually fewer
available certificates of 2.2% per year since 2021 in the ETS is already priced in
by the markets. Our actual asset valuation and PD shocks then only result from
a sudden, exogenous shock of an increase in carbon tax to 50 and 100 EUR tCO2

on the national level across all sectors in the EU.

17 Social cost of carbon and of other GHG are defined as “The monetary value of net harm to society
associated with adding a small amount of that GHG to the atmosphere in a given year” by the Group IWG
on Social of Greenhouse Gases (2021) for example.
18 For example, Germany has a price of 25 EUR per ton for fuel and heating, whereas in Scandinavia,
prices for several sectors are substantially higher.

K



Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (2024) 76:63–111 79

4.2.2 Adaptation capabilities of companies

An increase in CO2 prices through the carbon tax policy may affect companies’
ideal choice of energy mix. In the more favorable scenarios, we assume that these
companies reduce their CO2 emissions by 25% compared to the last reported values
of their ESG disclosures. This number is derived from specific case examples in
our sample across industries such as Health Care, Grocery Stores, Utilities, or Basic
Resources. Another interpretation is the emergence of a sudden green technology
shock that makes renewable energy sources relatively more efficient for companies
(Vermeulen et al. 2019), allowing companies to substitute fossil fuel energy with re-
newable sources and reduce their carbon footprint more easily, even in the short run.
On the contrary, in the adverse scenarios, we assume zero CO2 emission reduction
capabilities in the short term. This can be explained in two ways. First, companies
could be surprised by the abrupt introduction of the carbon tax and have no time
to reduce their carbon footprint within our stress test time horizon of 1–3 years, for
example, because they lack the required skills, resources, or technology. Second,
companies, now faced with additional costs for emissions due to the exogenous
shock of a rise in carbon tax to 50 and 100 EUR tCO2, ceteris paribus, may deem,
at least in the short run, the marginal cost of emission reduction to be higher than
the NPV of future carbon tax payments, for example in the case of high emission
intensity or high emission reduction efforts in the recent past. In this case, companies
may opt not to reduce their emissions voluntarily.

4.2.3 Pass-through rates for consumers

In line with Reinders et al. (2020), we integrate a pass-through rate component
into our model because increasing costs for CO2 emissions due to a new or higher
emission tax rate can be passed by firms onto consumers through higher prices
to offset the financial burden (Cludius et al. 2020). The specific pass-through rate
usually depends on the competitiveness or price sensitivities of the entire economy
or specific sector (Smale et al. 2006). Since the carbon tax can be interpreted as
a consumption tax on the allowance to emit CO2, we follow the VAT literature and
use empirical VAT tax pass-through rates for the Eurozone from Benedek et al.
(2020) of 50–80%. In order to create an adverse scenario, we assume the lowest
pass-through rate of 50% in the most severe scenario.

Table 2 Definition of the four
constructed scenarios

Scenario Tax rate (C
per tCO2)

CO2 Emission
reduction (%)

Pass-through
rate (%)

1 C50 �25% 80%

2 C50 0% 80%

3 C100 �25% 50%

4 C100 0% 50%

Notes: CO2 emission reduction compared to last reported emissions
from Refinitiv Datastream as of June 2021.
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We then combine the three dimensions and construct four scenarios based on
the assumptions above to illustrate the magnitude of transitory climate risk impact.
We start with relaxed assumptions in scenario one and gradually tighten up the
assumptions along the three input dimensions: tax rate, adaptation capabilities, and
pass-through. Finally, we generate one adverse scenario 4 in line with common stress
test practice. Our constructed scenarios then reflect the bandwidth of the potential
impact of transitory climate risk and account for the high degree of uncertainty
regarding future ecological, economic, and political development.

With regards to the timing of the tax, we assume an abrupt implementation of the
policy across all scenarios because an abrupt implementation better fits the purpose
of a stress test with a typical time horizon of up to three years and provides better
insight into the credit resiliency of both companies and financial institutions.19 In
contrast to other approaches, for example, Reinders et al. (2020) or parts of the
ECB stress test methodology, we aim to provide insights into the direct short- and
medium-run financial impact of transitory climate risk due to the large uncertainty
of long-run forecasts over 10–30 years.

4.3 Data and emission exposure

The sample for our analysis consists of the companies included in the STOXX
Europe 600 price index. We exclude 127 companies due to incomplete 1 GHG
emission data or, in some cases, due to incomplete financial data, and 69 financial
corporations (banks, insurance companies, and other financial corporations) due to
their unique capital structure. Typically, financial corporations have much higher
leverage compared to non-financial corporations. Therefore, applying a structural
credit risk model to such corporations may lead to highly distorted results (Duan
and Wang 2012). We do not observe a selection bias in the way that carbon-intensive
sectors avoid publication of CO2 scope 1 data. Instead, most incomplete data stems
from rather low carbon-intensive sectors such as Tech, Health Care, or Financial
Services. Only 3% stems from the six most carbon-intensive sectors. We end up
with a sample of n D 404 European publicly listed companies. The market prices
of the stocks for calculations in the model are taken from 1 January 2015 until
1 June 2021. Accounting data is taken from the companies’ most recently available
financial statements as of the time of writing, in most cases, the fiscal year 2020
statement.

Before diving into the impact of transitory climate risk on the valuations of firms
and credit risk, we present the CO2 emissions on the individual firm and aggregated
sector level in order to get a first glimpse at the potential vulnerability of companies
and sectors to new or rising cost for CO2 emissions. In Fig. 2 and for all other plots,
the dots represent values for each of the 404 companies. In contrast, the markers of

19 A phase-in implementation would not fit our analysis for the following rationale. We chose the time
horizon of 1–3 years to stick to common stress test procedures and to avoid forecasting highly uncertain
effects of climate change and economic development long into the future. Then, the terminal value of the
discounted cash flows is the major driver in determining the asset shocks, particularly over a short time
horizon of 3 years. In this case, a phase-in implementation would not much change the results.
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Fig. 2 Scope 1 CO2 emissions by ICB (Industry Classification Benchmark) supersector. Notes: The
dots represent values for each of the 404 single companies, the markers of white and black triangles the
weighted average (WAVG) by total liabilities of the single companies within a sector. Emissions and later
on asset shocks and PDs are weighted by total liabilities per company within a sector to approximate the
credit exposure of banks on the asset side of their balance sheet. Industry classification by ICB (Industry
Classification Benchmark)

white and black triangles represent the weighted average (WAVG) by total liabilities
of the single companies within on the sector level. We weight emissions, later on
also asset shocks and PDs, by total liabilities per firm within a sector in order to
approximate banks’ credit exposure on the asset side of their balance sheet.

Fig. 2 reveals two core insights: First, there are carbon-intensive industries with
Energy, Utilities, Basic Resources, Construction & Materials, Chemicals, and Travel
& Leisure with high emissions on average over the entire sector, while sectors such as
Consumer Products, Health Care or Media have comparably low emissions. Second,
there is a big difference in standard deviations over the sectors: One group of sectors
has companies with emissions on the lower and upper end, e.g., Basic Resources,
Utilities or Energy. Another group of sectors has a very low standard deviation in
the emissions per firm, e.g., Media, Drug & Grocery or Retail. In other words, the
heterogeneity in emissions across firms within sectors is linked to some extent to
the average carbon-intensity of the sector.

The carbon emission exposure can vary, however, by the definition of the actual
scope of carbon emissions. Therefore, Table 3 presents again the scope 1 CO2

emissions on the sector level from Fig. 2 plus the relationship between the direct
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Table 3 Scope 1 and Scope 3 CO2 emissions

Scope 1 (Mln. ton) Scope 3-to-1 Ratio Scope 3 (Mln. ton)

Industry Value Rank Value Rank Value Rank

Automotive 2.17 7th 81.61 4th 177.09 4th

Basic Resources 31.56 2nd 6.15 12th 194.09 3rd

Chemicals 11.08 6th 2.94 13th 32.58 6th

Constr. & Materials 12.34 5th 0.91 16th 11.23 9th

Consumer Products 0.07 13th 140.10 1st 9.81 10th

Energy 36.57 1st 9.78 9th 357.65 1st

Food, Bev. & Tobacco 1.80 9th 8.05 10th 14.49 8th

Health Care 0.63 11th 7.56 11th 4.76 13th

Industrial Goods 1.90 8th 119.72 3rd 227.47 2nd

Media 0.01 17th 19.24 8th 0.19 16th

Drug & Grocery Stores 0.76 10th 20.80 7th 15.81 7th

Real Estate 0.02 16th 22.58 6th 0.45 15th

Retail 0.05 15th 138.12 2nd 6.91 12th

Technology 0.07 14th 2.42 14th 0.17 17th

Telecommunications 0.20 12th 43.23 5th 8.65 11th

Travel & Leisure 14.26 4th 0.30 17th 4.28 14th

Utilities 30.52 3rd 2.22 15th 67.75 5th

Notes: Direct scope 1 and indirect 3 CO2 emissions on the sector level from Fig. 2 plus the relationship
between direct scope 1 CO2 emissions and indirect scope 3 CO2 emissions. Multiplying scope 1 emissions
and the ratio scope 3-to-1 yields indirect scope 3 emissions. Industry classification by ICB sectors.

scope 1 CO2 emissions and indirect scope 3 CO2 emissions generated by customers
to unveil the difference between scope 1 and scope 3 emissions across industries.20

Table 3 reveals three industry groups. The first group comprises the most carbon-
intensive industries: Energy, Basic Resources, and Utilities. The average company
in these industries produces CO2 scope 1 emissions of 30.52–36.57 million tons
per year. The companies in these industries have a comparably low scope 3-to-1
ratio, meaning that the bulk of the pollution is generated by their own production
rather than by electricity generation (scope 2) or customers (scope 3). The second
group comprises mildly brown industries such as Materials, Chemicals, Construc-
tion, and Travel & Leisure, with average scope 1 CO2 emissions ranging from 11.08
to 14.26 yearly million tons. The third group includes “green” industries with very
low scope 1 emissions but higher scope 3-to-1 ratio or high overall scope 3 CO2

emissions. These sectors include Automotive, Consumer Products, Industrial Goods
or Drug & Grocery stores, Retail or TelCo. Automotive and Industrial Goods are
among the four sectors with the highest scope 3 emissions across all 17 sectors.

Fig. 2 and Table 3 reveal substantial differences among sectors in their reliance
on carbon emissions to run their business. They also indicate that the vulnerability
to new/rising CO2 costs highly varies among sectors and firms since the carbon tax
will be paid based on the reported emission level minus potential emission reduction
capabilities. In addition, Table 3 reveals that the potential vulnerability of firms and

20 Scope 2 includes also indirect GHG emissions from purchasing electricity or heating.
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sectors heavily depends on the actual scope of emissions effectively falling under
carbon taxation. Since our analysis is based on scope 1 emissions, the reported
emissions do not fully reflect all social costs of carbon21 to account for the impact
of climate change that would arise upstream or downstream in the value chains,
particularly not for sectors with high scope 3-to-1 ratio or high scope 3 emissions.

4.4 The model

We estimate PDs for publicly listed companies through Merton’s structural option
pricing model (Merton 1974). The underlying assumption of this model is that the
value of a firm’s assets follows a geometric Brownian motion.22 It is a stochastic
process that models a stock’s price change in an infinitesimal time interval (Giordano
and Siciliano 2015). Following Stojkoski et al. (2020)’s notation, yields:

dx.t/ D x.t/Œ�dt C �dW.t/� (1)

with x.t/ as stock price, � as stock drift, � as stock volatility, and W.t/ a standard
Brownian motion (Stojkoski et al. 2020).23 This implies that the equity returns
x.tC�t/�x.t/

x.t/
are log-normally distributed with mean equal to ��t and standard

deviation equal to ��t (Giordano and Siciliano 2015). The Merton model assumes
a simple capital structure, where the firm’s debt consists of one large outstanding
bond with face value L and maturity T . The bond maturity is computed as the
weighted average of the firm’s short-term liabilities (with a maturity of one year)
and long-term liabilities (with a maturity of 13 years24).

In Merton’s standard structural model, the equations for market values of equity
and debt, following the notation of Reinders et al. (2020) are:

MVD D Le�rf .T �t/ � Le�rf .T �t/N.�d2/ � Vt N.d1/ (2)

MVE D Vt N.d1/ � Le�rf .T �t/N.d2/ (3)

Where:

d1t D
ln

�
Vt

L

�
C

�
rf C �2

V

2

�
.T � t/

�V

p
T � t

(4)

21 Again we refer to Group IWG on Social of Greenhouse Gases (2021) for the definition of social cost of
carbon.
22 We skip the firm indices i in this Sect. 4.4 to keep the notations simple.
23 We keep the notation x.t/ from Stojkoski et al. (2020) here at this point for consistency reasons because
later on in Merton’s Model, V is defined as the value of the assets. Using V for two different notations
(stock price and value of assets) may confuse the reader.
24 According to the OECD report “Corporate BondMarket Trends, Emerging Risks, and Monetary Policy”
the average maturity of investment grade corporate bonds in 2019 was 13 years.
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In the above equations, L is the face value of the firm’s liabilities, rf is the risk-
free interest rate25, T is the current maturity of the firm’s liabilities, t is the time at
which we will compute PDs (in our case, t is equal to 1), N.x/ is the distribution
function of the standard normal distribution evaluated at x, � is the firm’s drift rate,
Vt is the value of assets, and �V is their volatility. We can then define probabilities
of default PD and distance to default DD by replacing r with the stock-specific drift
rate �:
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Therefore, in equation (7), the firm is assumed to default when the value of the
firm’s assets falls below the book value of its total liabilities. This is important to
note since this default point assumption is more strict and severe than, for example,
the approach taken by external rating agencies. The firm-specific drift � can be
calculated using the capital asset pricing model (Krishna and Vaughan 2016):

� D rf C ˇm.Em � rf / (8)

rf is again the risk-free rate equal to the value of the yield of a German 15-year bond,
ˇm the measure of the stock’s daily fluctuation in relation to the market movement.
ˇm is computed in an OLS regression of daily logarithmic stock returns and daily
logarithmic market returns. In our case, the market is the STOXX Europe 600 price
index. Em is the annualized mean of the daily logarithmic returns of the market.26

The time frame for this analysis again equals 1 January, 2015 until 1 June, 2021.
We replace the commonly used risk-free rate rf (or r in the classical Merton model
notation) in equations 6 and 7 (See for example in McNeil et al. 2015, Chapt. 8,
Credit Risk Management, p. 332–334) with the firm-specific drift � computed by
the above CAPM approach to void the underlying risk neutrality assumption of
the Black-Scholes-Merton framework. While the risk-neutral probabilities of the

25 We deviate in this case from the classical Merton Model notation by using rf instead of r to remain
consistent over all equations in our model in which we use the risk-free interest rate. We take the value of
15-year German bonds because 10-year German bonds had negative yields at the time of writing. Negative
yields would not correspond to an accurate risk-free interest rate because investors pay indeed for a risk-
free, secure asset.
26 To annualize daily logarithmic market returns, we multiply their average across the time horizon by
250, assuming that there are 250 trading days in one year.
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Black-Scholes equations are suitable for pricing financial derivatives, the physical
“real-world” probabilities (of exercising the option in the Black-Scholes notation)
including risk premiums may be more adequate from a risk management perspective
(Jorion 2003).27

Since the initial total market value of assets Vt and the total asset volatility �V

are not readily observable, they are determined by solving the following system of
equations (Bouchet and Le Guenedal 2020):

MVE D Vt N.d1/ � Le�r.T �t/N.d2/ (9)

�E D �V N.d1/
Vt

MVE

(10)

The system of equations above can be solved numerically for Vt and �V by
assuming a value of 1 for N.d1/ and the following initial conditions:

Vt D MVE C L (11)

�V D �E

MVE

Vt

(12)

In turn, it follows that distance to default is high only when N.d1/ approaches
1 (Goswin 2021). Now we can solve the system of equations numerically until the
following expression is minimized:

min

"�
Model MVE

Observed MVE

� 1

�2

C
�

Model�E

Observed�E

� 1

�2
#

(13)

That is, we continue to iterate the system of equations (9) & (10) with the
assumptions from (11) & (12) for Vt and �V until the values of MVE and �E

obtained from the modelled replication (Model MVE , Model�E ) are as close as
possible to their actual values as observed (Observed MVE , Observed�E ) in our
data collection from Refinitiv.28

Asset valuation shocks are then determined by discounting the negative cash
flows from carbon tax fees in our scenarios to their present value. The amount of
each year’s cash outflow is determined by multiplying the company’s yearly CO2

emissions in tons �t;i minus the potential emission reduction factor � , multiplied by
the tax fee � for each year t . The tax fee and emission reduction factor are unit and
time-invariant per scenario construction. The discount rate equals each company’s
specific weighted average cost of capital (WACC). Furthermore, companies are
expected to respond to such policies by passing a portion of these negative cash

27 See also Giordano and Siciliano (2015) on the difference between risk-neutral probabilities and real-
world probabilities in pricing and forecasting assets from a conceptual perspective and Liu et al. (2007);
Bliss and Panigirtzoglou (2004) from an empirical perspective.
28 In other words, we plug in the results from a system of equations (11) & (12) into the system of equations
(9) & (10) and minimize (13) to ensure that initial, modelled solutions (Model) for (9) & (10) reach the
true, observed values (Observed ) from our gathered Refinitiv data input.
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flows to the demand side by increasing their prices. The competitive response is
called pass-through rate 	. Therefore, the net present value of future carbon taxes
for a given company can be expressed as follows:

NP Vtax D
TX

tD1

�.1 � �/�t .1 � 	/�

.1 C WACC /t
(14)

We extract the WACC for all firms in our sample from Refinitiv Workstream to
ensure one uniform approach for compiling the weighted cost of capital across all
firms in our sample.29 The calculation in Refinitiv Workstream for each firm is given
by:

WACC D CE � WE C CD � WD (15)

With CE equal to cost of equity, WE the weight of equity, CD the cost of debt
including the tax shield, and WD the weight of debt.30 Lastly, we compute the asset
shocks by dividing the net present value of the carbon tax by the company’s total
asset value:

! D NP Vtax

V
(16)

The asset shock ! represents the company’s asset value loss resulting from dis-
counting the emission policy tax to the present value in relation to the original asset
value V . The value of the assets for a given company after the shock is then:

V � D .1 � !/V (17)

Therefore, the equations for the market value of a firm’s equity and debt become:

M V �
D D Le�r.T �t/ � Le�r.T �t/N.�d �

2 / � .1 � !/Vt N.d �
1 / (18)

M V �
E D .1 � !/VtN.d �

1 / � Le�r.T �t/N.d �
2 / (19)

29 This implies that the inputs feeding into the WACC calculations by Refinitiv, for example, the rf , and
the resulting COE parameter might be slightly different from the input we use and the result we get for the
firm-specific drift rate, for example, due to slightly different time-horizons or a different benchmark index
for the market risk premium.
30 Short-term cost of debt is based on the 1-year yield of the firm’s appropriate debt curve, and the long-
term-term cost of debt is based on the 10-year yield of the firm’s appropriate debt curve. Cost of equity
CE is based on an inflation-adjusted risk-free rate based on the 10-year GDP growth forecast, beta is
estimated as stock movement compared to the respective country-specific main index, and the market risk
premium equal to full-year earnings yield multiplied by the implied dividend payout ratio plus the 10-year
GDP forecast growth.
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Where:
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And the equations for distance to default and PDs under shock become31:
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4.5 Results

4.5.1 Asset valuation shocks

We begin with the impact of the carbon tax policy on the value of firms’ assets before
addressing the impact of these asset devaluations on PDs. Asset shocks are calculated
with equation (16), the ratio between the NPV of the carbon tax payments and the
company’s total asset value before the carbon tax payments. The two following
plots in Fig. 3 show the asset shocks ! for the least and most severe scenarios 1
and 4, respectively, scenarios 2 and 3 can be found in the Appendix. Again, the
dots represent individual companies’ asset shocks, the markers with white and black
triangles represent sector-level averages weighted by total liabilities per firm within
a sector, as shown in the following equation:

!J D
IX

iD1

LiPI
iD1Li

!i 8J 2 ICBS (24)

!j is the total liabilities’ weighted average asset shock of ICB supersector J , Li

is company i’s total liabilities, and !i is the company i’s specific asset shock. We
again weight the sector averages by liabilities per firm to approximate the asset side
of financial institutions, that is the credit exposure toward companies.

In order to facilitate the interpretation of the two plots, we also provide the actual
numbers of the sector-wide asset shocks in Table 4, in this case also for scenarios 2
and 3:

31 We note again that we skipped the firm indices i in this Sect. 4.4 to keep the notations simple.
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Fig. 3 Asset Shocks, ! – Scenarios 1 and 4. Notes: Asset devaluation shocks for scenarios 1 and 4. The
dots represent values for each of the 404 single companies, the markers of white and black triangles the
weighted average (WAVG) by total liabilities of the single companies within a sector. Asset shocks are
weighted by total liabilities per company within a sector to approximate the credit exposure of banks on
the asset side of their balance sheet. Industry classification by ICB. Maximum asset shock in scenario 1
set at 30% for readability reasons. To illustrate the bandwidth of asset shocks in scenario 4, asset shocks in
scenario 4 are shown up to 100%

The asset devaluation shocks are the consequence of the NPV of future carbon
tax payments relative to the pre-shock value of the assets. Therefore, the drivers of
the asset devaluation shocks are the initial CO2 emissions, the tax rate, the emission
reduction capabilities of companies, the pass-through rate from equation (14), and
the cost of capital, given the initial asset valuation. Since the initial CO2 emissions
and the cost of capital are external data extracted from Refinitiv and time-invariant
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Table 4 Asset Shocks by ICB supersector, scenarios 1, 2, 3 and 4

Scenario 1 ! Scenario 2 ! Scenario 3 ! Scenario 4 !

Automotive 0.14% 0.17% 0.71% 0.84%

Basic Resources 3.40% 3.95% 16.38% 18.53%

Chemicals 2.61% 3.08% 13.03% 15.39%

Constr. & Materials 5.25% 6.21% 19.45% 21.31%

Consumer Products 0.02% 0.02% 0.10% 0.12%

Energy 3.20% 3.79% 16.02% 18.94%

Food, Bev. & Tobacco 0.23% 0.27% 1.13% 1.33%

Health Care. 0.10% 0.12% 0.52% 0.61%

Industrial Goods 0.51% 0.60% 2.56% 3.01%

Media 0.00% 0.01% 0.02% 0.02%

Drug & Grocery Stores 0.46% 0.55% 2.32% 2.76%

Real Estate 0.03% 0.04% 0.17% 0.20%

Retail 0.05% 0.06% 0.27% 0.31%

Technology 0.02% 0.03% 0.11% 0.13%

Telecommunications 0.05% 0.06% 0.27% 0.32%

Travel & Leisure 6.25% 7.40% 31.26% 35.82%

Utilities 6.13% 7.28% 30.24% 34.43%

Notes: Asset devaluation shocks per scenario from Fig. 3 written in numerical notation. Asset shocks are
weighted by total liabilities per company within a sector to approximate the credit exposure of banks on
the asset side of their balance sheet. All numbers rounded to 2 digits. Industry classification by ICB.

per firm, the impact hinges solely on the assumptions for the three remaining drivers
in each scenario: tax rate, emission reduction capabilities, and pass-through rate.

The impact in magnitude rises from scenario 1 to 4 due to the nature of the
designed scenarios, with scenario 1 creating the lowest and scenario 4 creating the
most severe shock, yet not linearly. While the impact from scenario 1 to 2 rises only
by a fifth in percentage points (e.g., from 0.14% to 0.17% for Automotive), it jumps
fivefold from scenario 1 to 3 (0.71% for Automotive) and sixfold from scenario 1
to 4 (0.84% for Automotive). This non-linear spike in magnitude over scenarios 2
and 3, in particular, is due to the variation in the input parameter and is consistent
across all sectors and single firms as long as the asset devaluation shocks are below
100%.

The asset devaluation shocks reveal three types of industries by the magnitude
of impact. The first group of industries suffering the highest asset devaluations
are Travel & Leisure and Utilities, with asset shocks ranging from 6.13% in sce-
nario 1 to 35.82% in scenario 4. For the former, the main drivers of industry-wide
asset devaluation are the airline groups Lufthansa AG and International Consoli-
dated Airlines Group SA, with asset devaluations ranging from 17.59–100% and
3.06–17.95%, respectively32 and the passenger sea transportation company Carnival
PLC with asset devaluations ranging from 1.53–8.89%. These three companies ac-

32 Other airlines do not disclose exact values for scope 1 CO2 emissions and therefore could not be in-
cluded in the sample. In other words, we somewhat underestimate the impact of the carbon policy on the
Travel & Leisure sector as a whole.
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count for 67.28% of the sector’s total liabilities in the sample. The second group
with substantial asset devaluations from 2.61% in scenario 1 to 21.31% in scenario
4 are Construction & Materials, Basic Resources, Chemicals, and Energy. In En-
ergy, firms directly generating or producing energy drive the results, while more
service- and distribution-oriented companies experience lower asset devaluations. In
Basic Resources, the results are mainly driven by firms that extract and cast metals,
while firms manufacturing paper or household products show a lower impact. Lastly,
the remaining industries in the sample suffer small and arguably manageable asset
devaluations. These are Consumer Products, Food & Beverage, Health Care, Indus-
trial Goods, Media, Drug and Grocery Stores, Real Estate, Retail, Technology, and
Telecommunications. Asset shocks for this group of industries range from 0.00% in
scenario 1 to 3.01% in scenario 4.

Those industries that suffer the highest sector averages of asset devaluation shocks
are also the ones with the biggest heterogeneity within each sector. The least af-
fected industries with sector-average asset devaluation shocks below or around 1%
(e.g., Automotive, Consumer Products, or Retail) exhibit a homogeneous picture
even in scenario 4 with almost no dots beyond 5–10%. In contrast, the six most af-
fected industries with asset devaluation shocks larger than 15% in scenario 4 exhibit
some companies with numbers in the single-digit percentages, some in the range of
10–50% and even a few cases beyond 50%. Measured in standard deviation, the six
most affected sectors are around 0.2–0.3, whereas all the other sectors are below
0.05. Looking at the minimum and maximum asset devaluation shock reveals the
same picture. While in four out of the six most affected industries, the difference
between minimum and maximum shock is equal to 100% in scenario 4, it is below
10% for 8 of the low-affected sectors and two times around 40–50% (Industrial
Goods and Food, Beverage, and Tobacco). Therefore, and in contrast to all prior
top-down sector-level studies, our analysis reveals considerable differences in the
impact of transitory climate risk not only among sectors but also among firms within
a given sector. This is again one of our major contributions. Nevertheless, the het-
erogeneity among sectors and firms within a sector largely depends on the chosen
industry classification. The more granular the industry classification, the less hetero-
geneity within a sector we can expect because firms with similar carbon risk profiles
would be classified as the same industry. Then, only the heterogeneity among sectors
remains, revealing the most vulnerable industries exposed to transitory climate risk.

The asset shock ! can be interpreted in two ways depending on the specific sce-
nario. In scenarios 1 and 3, with emission reduction of 25%, the policy successfully
incentivizes companies to change their energy mix towards cleaner energy. At the
same time, the asset devaluation is due to companies writing off obsolete brown
assets (Vermeulen et al. 2019). In scenarios 2 and 4, without emission reduction
capabilities, the policy is insufficient to incentivize firms to switch to greener energy
sources. This means that firms will continue to operate in a “business as usual”
environment and, consequently, bear the total amount of company asset devaluation
as yearly cash outflows of tax payments while keeping brown assets in their balance
sheets (Vermeulen et al. 2019).
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4.5.2 Probabilities of default

Based on the above asset devaluation shocks, we now present the results of our
calculations of PDs. Each firm’s PD is calculated using equations 7 and 23 for pre-
shock and post-shock PD, respectively. Figs. 4 and 5 show each company’s PD in
the two outer scenarios 1 and 4 compared to their pre-shock value. Scenarios 2 and
3 can be found again in the Appendix.

The markers representing the ICB supersector specific PDs are calculated in the
same way as for asset shocks:

PDJ D
IX

iD1

LiPI
iD1Li

PDi 8J 2 ICBS (25)

In the above equation, PDj is the total liabilities’ weighted average PD of ICB
supersector J , Li is company i’s total liabilities, and PDi is the company i’s specific
asset shock for a given scenario.

In order to isolate the effect of carbon taxation on credit risk, we also illustrate the
difference between post-shock and pre-shock values of PDs. This number unveils
the effect of carbon taxation alone on the future creditworthiness of a company.

The following example for Automotive will facilitate the interpretation of the
table: New PDs between 0.46 and 0.49 together with PD spreads in square brackets
of 0.01 to 0.04 percentage points across scenarios 1 to 4 for the Automotive sector
yield a pre-shock PD of 0.45.

Compared to the asset valuation shocks, PDs are driven not only by the NPV
of future carbon tax payments and its corresponding ingredients from equation (14)
but also largely by the leverage in a non-linear manner. Figs. 4 and 5 together with
Table 5 clearly show the big increase in PDs from scenario 2 to 3 due to an increase
in carbon tax from C50 to C100 and the lower pass-through rate of 50% instead of
80%. The big increase, particularly for the six most affected sectors from scenarios
2 to 3 is also illustrated in Fig. 9. For the most affected sectors, there are firms
already in the scenario 3 with a PD equal to 100% due to their higher leverage
compared to other firms with similar levels of initial CO2 emissions. We note again
that the Merton model, in its pure form, implies rigorous default assumptions. In
practice, we are confident not to observe such high default rates for various reasons.
We return to the reconciliation and implication of our results in Sect. 4.8.

The PD results again reveal two groups of industries. On the one hand, there are
heavily affected “brown” sectors such as Basic Resources, Construction, and Mate-
rials, Energy, Travel & Leisure, and Utilities with sector-average PDs. Interestingly,
the sector-average PDs for Chemicals (5.05) and Energy (6.81) are substantially
lower than the PDs of the other heavily affected sectors, also compared to their
corresponding asset shocks. This indicates that these two industries, on average, op-
erate with comparably lower leverage than the other industries. On the other hand,
there are “green” sectors, such as Telecommunications, Technology, or Real Estate,
experiencing comparably negligible effects in most cases.

Energy companies experience an increase in aggregated PD ranging from 0.22%
to 5.90% to final PDs after the shock of 1.13–6.81%. In our sample, a few com-
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Fig. 4 PDs compared to pre-shock state by ICB supersector, scenario 1

Fig. 5 PDs compared to pre-shock state by ICB supersector, scenario 4. Notes: PDs for scenarios 1 and 4.
The dots reflect again the firm-specific values while the white and black markers represent sector-average
values weighted (WAVG) by total liabilities per company within a sector. The left-side dots and markers
in each ICB supersector column represent PDs before the exogenous policy shock, the right-side dots and
markers represent post-shock PDs. PDs are weighted by total liabilities per company within a sector to
approximate the credit exposure of banks on the asset side of their balance sheet. Industry classification by
ICB. To enhance the readability and visibility of the graph, the scale of visible PDs is limited to 15% and
50%, respectively. However, there are indeed companies in both plots facing higher PDs than those two
thresholds, respectively
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Table 5 New PDs and PD spreads vs. pre-shock state for scenarios 1 to 4

Scenario 1 PD Scenario 2 PD Scenario 3 PD Scenario 4 PD

Automotive 0.46[+0.01] 0.46[+0.01] 0.49[+0.03] 0.49[+0.04]

Basic Resources 5.86[+0.78] 6.02[+0.94] 15.87[+10.79] 18.57[+13.49]

Chemicals 0.51[+0.10] 0.53[+0.13] 3.76[+3.36] 5.05[+4.65]

Constr. & Materials 1.27[+0.87] 1.78[+1.38] 12.09[+11.69] 14.05[+13.65]

Consumer Products 0.51[+0.00] 0.51[+0.00] 0.51[+0.00] 0.51[+0.00]

Energy 1.13[+0.22] 1.18[+0.28] 4.64[+3.74] 6.81[+5.90]

Food, Bev. & Tobacco 0.56[+0.01] 0.56[+0.01] 0.59[+0.04] 0.59[+0.04]

Health Care 0.34[+0.00] 0.34[+0.00] 0.36[+0.02] 0.36[+0.02]

Industrial Goods 0.92[+0.04] 0.93[+0.05] 1.96[+1.07] 2.66[+1.77]

Media 0.47[+0.00] 0.47[+0.00] 0.47[+0.00] 0.47[+0.00]

Drug & Grocery Stores 0.41[+0.04] 0.42[+0.05] 0.52[+0.22] 0.55[+0.27]

Real Estate 1.06[+0.02] 1.06[+0.02] 1.07[+0.03] 1.08[+0.06]

Retail 1.39[+0.01] 1.39[+0.01] 1.41[+0.03] 1.41[+0.03]

Technology 0.85[+0.00] 0.85[+0.00] 0.85[+0.01] 0.85[+0.01]

Telecommunications 0.39[+0.00] 0.39[+0.00] 0.39[+0.01] 0.39[+0.01]

Travel & Leisure 4.42[+0.70] 4.85[+1.13] 33.39[+29.67] 34.21[+30.49]

Utilities 0.86[+0.61] 1.20[+0.95] 21.72[+21.47] 26.58[+26.33]

Notes: Asset devaluation shocks per scenario from Fig. 3 written in numerical notation. Asset shocks are
weighted by total liabilities per company within a sector to approximate the credit exposure of banks on
the asset side of their balance sheet. All numbers rounded to 2 digits. Industry classification by ICB.

panies are involved in services ancillary to energy production, such as distribution,
wholesale, and equipment manufacture. The shocks affect these firms slightly less
than companies directly manufacturing refined petroleum products. The results are
generally comparably homogeneous across the sample.

Travel & Leisure companies show an aggregated PD spread ranging from 0.70%
in scenario 1 to 30.49% in scenario 4 to final PDs after the shock of 4.42–34.21%.
Again, the two airline companies are the primary drivers of this increase. In contrast,
other companies in the sector, e.g., gambling and betting activities, tour operators,
hotels, and other accommodation services companies, are barely affected due to
their low CO2 emissions. These sub-sectors account for only 52.38% of the sector’s
total liabilities in our sample.

Utilities is one of the most affected industries, showing the second largest PD
spreads from 0.61% in scenario 1 to 26.33% in scenario 4 to final PDs after the shock
of 0.86–26.58%. Although the results are highly homogeneous among the firms in
the sector, utility companies involved in the collection, treatment, and supply of
water, which constitute a tiny portion of the whole sector, show a relatively low
impact on PDs. The main driver in the sector-wide PD increase are companies
producing and distributing electricity.

Basic Resources companies show a PD spread ranging from 0.78% to 13.49% to
final new PDs of 5.86–18.57%, driven by companies involved in mining and casting
metals. Companies manufacturing paper, household, and sanitary products are less
affected.
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Lastly, the results for Construction & Materials companies are homogeneous
except for a cement manufacturing company, which shows a scenario 4 PD of
100%, and a building materials company, which shows a scenario 4 PD of 30.82%.
Together, these two companies account for 19.48% of the sector’s total liabilities
in our sample. Overall, the industry exhibits PD spreads ranging from 0.87% in
scenario 1 to 13.65%, leading to new PDs after the shock of 1.27–14.05%.

In sum, we can draw three main conclusions from the results. First, there are
heavily affected sectors experiencing severe asset shocks and dangerous increases in
PDs due to transitory climate risk, while other sectors with low scope 1 emissions
remain almost unaffected. The six most affected sectors are also the ones with the
highest scope 1 carbon emissions, see Table 2. Second, the heterogeneity among
companies within the most affected sectors is higher than within the barely affected
sectors. Third, the results show the severe risk for financial institutions in asset
management and credit lending due to the asset shocks and increased PDs. This risk
can pose a considerable threat for the financial sector’s resiliency and stability.

In the next section, we run two robustness checks on the precision of the estimated
asset volatility �V in our analysis, which is a crucial determinant of our derived PDs,
see equation (23).

4.6 Robustness

In this section, we examine how changes in the key parameters of the Merton
model may affect our conclusions. The entire data input is based on the most recent
available data from financial statements as of June 2021. While most of the data
input is extracted as given in the Refinitiv databases, only a very few parameters in
the calculations must be estimated. This holds mainly for the variance of the asset
value �Vt

estimated in equation (12). We assume the variance of the asset value to
be constant in our stress test analysis.

We acknowledge, however, that once a very severe scenario similar to our sce-
narios 3 and 4 materializes, the variance of the asset value may no longer remain
constant but may increase temporarily, as observed in past financial crisis times. If
our severe scenarios 3 or 4 became a reality with a substantial impact on the operat-
ing business and financial liquidity, specifically of carbon-intensive companies, one
could expect a substantial impact on the value of firms and their volatility.

Moreover, we do not know the exact, true parameters of the asset value Vt and
its variance over time �Vt

because we can only observe the values as they occurred
between January 2015 and June 2021 without fully knowing the true underlying
distribution. The fact that we go back 6.5 years in stock market data with up to 1600
daily stock market returns in the sample to compute the equity volatility �Et

as input
for the calculation of the asset volatility �Vt

in equation (12) gives us confidence in
the precision of our derived PDs. Yet, we acknowledge that our extracted data sample
may not be entirely representative of the true distribution of the equity volatility �Et

and through (12) as input for asset volatility �Vt
.

Therefore, we run two robustness tests to validate our estimation of the non-
observable asset volatility �Vt

. First, we take increases in equity volatility from
severe financial crisis times as a reference and integrate them into estimating asset
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volatility in equation (12) to account for higher asset volatility in a potential stress
test scenario. Second, we bootstrap the observed daily stock market returns from
which we derive the equity volatility �Et

and finally, the asset volatility �Vt
through

equation (12). We walk through the approach and results in the following.

4.6.1 Increase in volatility

Our analysis of the impact of transitory climate risk in the form of a carbon tax
between C50–100 per tCO2 constitutes a severe stress test for the resiliency of
financial institutions, despite the assumption of a pass-through rate and adaptation
capabilities of companies. Such a stressful time period may lead to a financial crisis
in which the volatility of asset prices rose considerably in the past. Examples include
the crash in October 1987, the Dotcom crisis in 2000/2001, the financial crisis in
2008/2009, or the COVID-19 pandemic in the spring 2020. Once we include not
only the times of heavy slumps in asset prices but also the more consistent post-
crisis recovery phases with still slightly higher volatility, we still note an increase
in equity volatility of about 50–60% over the time frame of 1963–2020.33 Although
we do not expect such drastic scenarios as the four referenced financial crises to
materialize due to transitory climate risk in the form of carbon taxes of C50–100
per tCO2, we acknowledge that the assumption of constant asset volatility �Vt

may
be oversimplifying and underestimating the risk of economic shocks.

Therefore and to simulate a financial crisis induced through an abrupt transitory
climate risk policy in the form of a carbon tax of C50–100, we allow the equity
volatility �Et

to increase by 50% (in relative terms, not in percentage points) as
a robustness test for our analysis. A higher equity volatility �Et

feeds into our
model by estimating the asset volatility in equation (12).

We rerun the entire analysis by sticking to all key assumptions and parameters
besides the increase in volatility, ceteris paribus. The exact results can be found
in Table 7 in the Appendix. The numbers reveal a severe increase in all levels of
PDs because the initial level of PD before the effect of our carbon tax, “PD 0”,
increases considerably across all sectors due to the higher equity volatility. Even
carbon-efficient sectors such as Media, Real Estate or Technology face PD levels
before the transitory climate risk shock between 3.06 (Utilities) and 20.24 (Basic
Resources). In contrast, the rise in PD spreads from scenarios 1 to 4, reflecting the
actual increase in PDs due to our designed transitory climate risk shock, remains
robust. While the PD spreads remain comparably low in scenarios 1 and 2, they jump
in scenarios 3 and 4 to 27.10 (Utilities) and 44.38 (Travel & Leisure) in scenario 3
and 31.83 (Basic Resources) to 45.28 (Travel & Leisure) in scenario 4, respectively.

In addition, even carbon-efficient sectors now face a substantial increase in PDs
across all four scenarios due to the substantially higher initial pre-shock “PD 0”,
pushing up all the other PDs 1–4 as well. At the same time, the PD spreads remain
comparably consistent with the main analysis results in Table 5. In other words,
if our designed transitory climate risk scenarios induced a financial crisis scenario
with increasing volatility up to +50%, the volatility would put the entire economy at

33 50–60% is based on the assessment of a US equity sample from CRSP/Compustat.
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severe risk, and the difference between carbon-efficient and carbon-intensive sectors
vanishes compared to our core analysis.

We want to highlight, however, that such high PDs already in the pre-shock
state of 3–9% would be the result of a severe economic crisis. This is a rather
unlikely scenario for us. Instead, we would expect policymakers and central banks
to initiate strong and substantial countermeasures to calm the markets and stabilize
the economy in the short run. We further argue why we believe not to observe such
high numbers in reality in Sect. 4.8.

4.6.2 Bootstrapping

Even in our substantially large sample of 6.5 years with up to 1,600 daily equity
returns, the equity returns distribution may not represent the true distribution of the
equity returns and thus the underlying equity volatility �E . Therefore, we bootstrap
the daily equity returns. We run this bootstrap approach with the Stata option “boot-
strap” for estimation commands. We use first the standard approach with randomly
and independently distributed drawings with replacement based on the initial idea of
Efron (1979). Then, we follow the non-overlapping block-bootstrap approach with
block length equal to one month of trading days (Carlstein 1986; Politis and Ro-
mano 1994) to take into account the serial correlation of stock market returns (Fama
1970; Campbell and Mankiw 1987; Ball and Kothari 1989; Campbell et al. 1997).
For each firm, we draw 500 daily stock returns from our entire data sample per
replication and replicate this process 1,000 times. We limit our number of draws per
replication to 500 to generate a sufficiently large sub-sample of our overall sample
that is nevertheless sufficiently smaller than our overall sample. We take these boot-
strapped, re-sampled daily equity returns for each firm to compute 1,000 different
equity volatilities �E and integrate them into the computation of 1,000 different
asset volatility �V values for each company. We then compute 1,000 different com-
pany PDs and different sector average PDs weighted by total liabilities per company
within a sector for our four defined scenarios. This approach allows us to reduce the
uncertainty about the true equity volatility parameter �E that substantially drives
our asset volatility �V and, through the Merton model, subsequently also the firm-
specific PDs. This approach also allows us to generate confidence intervals for the
weighted sector average PDs to further enhance the precision of our derived PDs.
The mean and 95% confidence interval of the estimated sector-weighted average
PDs in Table 8 for the outer two scenarios 1 and 4 illustrate the bandwidth of PD
estimations across the scale.

The bootstrapped results confirm the validity and precision of our derived PDs
from the main section in Table 5. While the intervals on 95% are considerably small
even for the heavily affected sectors with PDs greater than 10% in scenario 4, for
which we could have expected bigger intervals, their range is also very close to the
initial main estimates. The maximum deviation between our initial PD estimate and
the closest confidence interval bound range in Table 9 is about one percentage point
(18.57 vs. 19.59% as the upper interval bound for Basic Resources in the block-
bootstrap), and otherwise often between 0.2 and 0.7 percentage points. Moreover,
the difference between the approach with randomly distributed and block-wise, non-
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overlapping draws with 0.2 to 0.4 percentage points for PDs and confidence interval
bounds is comparably small.

Therefore, the bootstrapped results underline the previous conclusion: Transitory
climate risk induced through a carbon tax of C50–100 per tCO2 is a substantial
driver of financial risk for the most carbon-intensive sectors, while carbon-efficient
sectors remain almost unaffected.

4.7 Impact of transitory climate risk on Basel III capital ratios

We assess the effect of transitory climate risk on a large European bank’s Basel III
capital ratios in a standard stress test. The PDs for the scenarios presented in the
previous section are used to recalculate the risk-weighted assets (RWA) of corporate
loan exposures amounting to 36% of the bank’s total RWA.34 We find an overview
of corporate loans by industry in the banks’ Pillar III disclosure of the bank. The
corresponding post-shock RWAs stem from the Basel III framework risk weight
functions35, with the newly calculated PDs and the corresponding average LGDs
disclosed by the bank as input.36 We compute the pre-shock RWAs and measure
the differences between post-shock and pre-shock RWAs for each scenario. The
differentials are then added to the reported total RWAs to recalculate capital ratios.

Again, we assume a stable macroeconomic environment throughout the scenarios
to isolate the financial impact of transitory climate risk. We recognize, however,
that if such drastic scenarios materialize, the effects on capital ratios would likely
be much more severe. We conduct our calculations now on the industry level since

Fig. 6 Basel III capital ratios by scenario. Notes: Post-shock Basel III capital ratios by scenario after our
stress test exercise for the one European bank example. Input for the stress test results are the firm-specific
PDs from previous tables per individual scenario

34 The percentage takes into account other credit risk exposures (such as loans to institutions, governments,
associations, etc.), market risk RWA and operational risk RWA.
35 The bank calculates corporate loans’ RWA using the Standardised Approach, the Foundation IRB ap-
proach, and the Advanced IRB approach. For procedural coherence, we calculate each portion of the RWA
using the same methodology chosen by the bank.
36 For corporate loan exposures, the bank provides average measured LGDs (Loss given default) by the
range of PDs. We choose the LGD for each industry according to which range the post-shock PD falls.
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Table 6 Basel III capital ratios by scenario

CET1 Ratio Tier1 Capital Ratio Total Capital Ratio

Pre-Shock 13.22% 14.90% 17.69%

Scenario 1 13.08% [�0.14] 14.74% [�0.15] 17.50% [�0.18]

Scenario 2 13.04% [�0.18] 14.69% [�0.20] 17.45% [�0.24]

Scenario 3 12.18% [�1.04] 13.73% [�1.17] 16.30% [�1.39]

Scenario 4 12.05% [�1.16] 13.59% [�1.31] 16.13% [�1.56]

Notes: Capital ratios after the climate policy shock under the constructed scenarios 1 to 4 and change
versus pre-shock state in percentage points in brackets.

we lack loan exposure data on the issuer/firm level. To do so, we assume that the
sectors in the pillar III disclosure are now entirely and exclusively composed of
the final 404 companies in our final sample. In other words, we assume that the
final 404 companies in our sample aggregated on the NACE level represent the
exact corporate credit exposure of this bank. We show the results of our analysis for
three main capital ratios that banks are required to comply with under the Basel III
regulation:

The numerical values to Fig. 6 are depicted in Table 6.
Our analysis leads to a decrease in CET1 ratio ranging from 0.14% to 1.16%

percentage points, a decrease in Tier 1 capital ratio ranging from 0.15% to 1.31%
percentage points, and a decrease in Total Capital ratio ranging from 0.18% to 1.56%
percentage points. Again, we want to highlight that we are addressing only about
one-third (36%) of the bank’s total RWA. Therefore, the results represent only a part
of the risk this bank would face in the assumed scenarios. Nevertheless, the drop in
capital ratios would be substantial for the European bank.

4.8 Reconciliation and discussion

In this section, we discuss the magnitude and scale of the results of our analysis by
reflecting on our constructed scenarios, the characteristics of the Merton Model, and
further input parameters used in our model.

First, our scenario assumptions across the input factors tax rate, pass-through
rate, and emission reduction capabilities: Our tax rate assumption of 50–100 EUR
per tCO2 is on the lower end of the bandwidth of carbon tax rates or prices in
literature (World Bank 2017; Poelhekke 2019; Bach 2019; Reinders et al. 2020;
Rogelj et al. 2013). From that perspective, our analysis somewhat underestimates
the effects of new/rising prices for carbon. On the contrary, these new/higher costs
for carbon are, presumably, partially priced in already by market participants in
their analysis of particularly carbon-intensive sectors over a stress test horizon of
the next three years (Delis et al. 2018). However, the exact extent is hard to derive
from the overall market for two reasons: First, national legislation on carbon taxes/
prices varies considerably (see, for example, Scandinavian countries vs. Germany)
over a cross-country European data sample such as the STOXX Europe 600. Second,
expectations of the future development of the cost of carbon and the scope of sectors
and emissions as captured by the EU ETS might also vary across market participants.
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Regarding the pass-through rates, there is a wide bandwidth of assumptions in
the empirical literature for the pass-through rate of rising costs on the input side.
This rate depends on the competitiveness and price sensitivities over sectors and
countries, ranging from 0.8–0.2 for the analyzed sample (Benedek et al. 2020). This
range is also in line with many other studies in this field, for example Carbonnier
(2007); Kosonen (2015); Cludius et al. (2020). Therefore, with our assumption of
0.8 and 0.5 in the most adverse scenario, we are in the mid-range of the scale and
do not stretch the scale of this input parameter to the most adverse case. A pass-
through rate lower than 50% to the detriment of firms would yield even more severe
results in our analysis.

The timing of the tax is assumed to be abrupt in all four scenarios as opposed
to phase-in because this better fulfills the purpose of standard stress tests with
a time horizon of up to three years. From this perspective, our analysis is more on
the adverse side. However, since the terminal value in NPV calculations accounts
for the large majority in NPV calculations, a phase-in approach would reduce the
magnitude of results only to a limited extent.

Lastly, we integrate emission reduction capabilities by firms to respond to the
rising cost of carbon of 0–25% over a time frame of three years, a number we derived
from selected analyzed case examples over various industries over the previous
3–5 years. This number might be hard to achieve for some carbon-intensive firms
over one year. However, since we also have many low-carbon firms in the sample,
an emission reduction by 25% over the next three years seems plausible from our
analyzed case examples in light of the rising cost of carbon, making carbon-free
energy sources relatively more attractive, in particular for carbon-intensive sectors.

Regarding the Merton model, our analysis somewhat overestimates the impact
because the original Merton model implies a strict default assumption whenever
the book value of assets falls below the book value of debt. This issue could be
resolved with commercial proprietary models such as the one from Moody’s, which
is unavailable to us. This model uses an adjusted Merton model by running an
empirical function of PDs on the theoretically calculated ones from the original
Merton model, yielding substantially lower PDs (Nazeran and Dwyer 2015).

For simplicity and to sustain the focus of the analysis on the climate stress test
procedure, we assume the cost of capital to be constant.37 Yet, we acknowledge
the reasoning of other scholars suggesting that this may constitute a simplifying
assumption. Pastor et al. (2019), for example, analyze the financial and real effects
of sustainable, ESG-related investing in an equilibrium model. They show that once
financial agents derive relative utility from holding green assets instead of brown
assets and once agents care about the “social” impact and the produced externalities
of firms, agents are willing to pay more for greener firms, reducing the cost of
capital for green firms and increasing them for brown firms. Also, in an equilibrium
model, Heinkel et al. (2001) show that exclusionary ethical investment with fewer
investors holding assets of polluting firms may lead to a drop in share price and

37 Relaxing the assumption of constant cost of capital and manually computing the accurate forward-
looking cost of capital for 404 individual firms would add another driver of uncertainty and complexity to
our analysis.
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higher cost of capital of these polluting firms. This increase in the cost of capital
may incentivize polluting firms to switch to green technology once the higher cost of
capital outweighs the cost of switching. These equilibrium concepts are consistent
with empirical findings, for example, Chava (2014) or El Ghoul et al. (2011), who
find a lower cost of capital for greener firms and higher cost for brown firms mainly
due to different ex-ante return expectations. One practical angle for the adjustment
of the cost of capital could, for example, be the brown “carbon beta” factor to
account for the systematic risk of brown assets as provided by CARIMA (“Carbon
Risk Management”). This former project has become a company (Wilkens et al.
2019). In sum, we may underestimate the effect for brown firms and sectors with
constant cost of capital.

In the application of the results to the pillar III disclosure of a European Bank,
the scope of the analysis is limited to the credit risk of large corporations, excluding
about two-thirds of total RWAs of credit exposure to other debtors as large corpora-
tions, e.g., public states or small and medium enterprises (SME). Excluding SMEs
leads to a lower overall addressable share of RWA in the pillar III disclosure and
a lower impact on the capital ratios per se. However, since (non-listed) SMEs might
suffer more from the higher/new cost of carbon than large corporations because of
fewer available financing sources (for example, large corporations may use a sec-
ondary offering of stocks while SMEs cannot do so), the impact of only looking
into large corporations might be even further underestimated.

In addition, our constructed scenarios may trigger second-round effects, via an
unfavourable macroeconomic environment, on other bank credit exposures through
various direct and indirect transmission channels (NGFS 2020b). For example, the
higher cost of carbon in the short run can lead to an overall lower financial perfor-
mance by carbon-intensive sectors, resulting in lower macroeconomic growth over
the entire economy, lower creditworthiness of state and corporate bonds, and higher
credit risk for bank exposures. Although a pass-through rate and carbon emission
capabilities by firms could be considered as a second-order reaction to the rising
cost of carbon, both factors reduce the negative impact on firms in our model. At
the same time, the second-round effects in the macroeconomic cycle would produce
even more severe results.

Given the above discussion, our asset devaluations with a maximum of 35.8%
for the most affected sector appear more plausible and realistic compared to 89%
asset devaluation (Reinders et al. 2020) to us. The drop in capital ratios of up to
�1.6% percentage points, that is �11.8% (�1.6 divided by 13.22) of the 13.22%
pre-shock CET1, with addressable RWA of 36% also appears more plausible than
a jeopardizing 30–63% reduction of CET1 capital from Reinders et al. (2020) for
carbon taxes of 100–200 EUR. When comparing our results with Monnin (2018),
we see somewhat similar asset devaluation shocks in our analysis but substantially
lower PDs for the two presented companies. Compared to the analysis by the central
banks and the EBA, our results are partly more severe. This can be explained by
the entirely different approach the central banks use. While their results depict the
results for 2025–2050, our results illustrate the impact in the next three years. This
perspective helps practitioners measure and manage their climate risk exposure in
the short run.
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Finally, we acknowledge that our analysis of STOXX Europe 600 companies
and their credit risk relies on publicly available data from financial statements and
ESG reports unavailable for most SMEs. Even for 127 out of the largest 600 Eu-
ropean companies listed in the STOXX Europe 600, we lack complete GHG scope
1 emissions in the ESG reports. Although the new EU legislation aims to include
up to 49,000 companies in the non-financial reporting directive38, it will take some
time until smaller companies also can and will publish reliable non-financial data
in a standardized framework. For now, our analysis aims to facilitate research in
this field and support practitioners and regulators in developing suitable climate risk
assessment tools.

Our results confirm the proposition presented in the introduction: Climate risk
poses a considerable threat to the real economy and the financial sector as investors
and lenders. In particular, the results illustrate the substantial risk for carbon-inten-
sive sectors and firms to climate risk. In contrast, low-carbon sectors and firms are
hardly affected by the rising cost of carbon under the constructed scenarios. Never-
theless, our results, particularly for the more severe scenarios, should be interpreted
carefully and set in the context of the above explanations. These are stress test results
and not expectations about asset devaluation shocks and dangerously high rises in
PDs over entire sectors.

5 Conclusion

If not readily dealt with, climate change will severely increase extreme precipita-
tion, drought, and lethal heat waves. This may disrupt global supply chains, damage
infrastructure, and endanger the population in the areas that are at risk. Estima-
tions of the cost of climate change illustrate the risk for both firms and financial
institutions. Therefore, regulators have requested financial institutions to develop
suitable stress test methods by 2022 (ECB 2021; Banque de France 2021; Bank of
England 2021). We develop a generic 6-step concept summarizing both bottom-up
and top-down stress test approaches. We then apply this concept and estimate the
impact of transitory climate risk on firm’s solvency and their creditor’s resiliency.
We introduce a carbon tax of 50–100C per CO2 equivalent and calculate the impact
on asset valuations of the STOXX Europe 600 companies in our four constructed
scenarios. We find asset devaluations greater than 15% for 43 or about 10% out of
the 404 final firms in our sample and asset shocks greater than 30% for 25 firms
in the adverse scenario. Aggregated on the sector level by weighted liabilities per
firm within a sector, we find asset devaluations between 15.4% and 35.8% for the
six most affected ICB supersectors. In contrast, the other 11 sectors are only barely
affected.

We then take these asset devaluation results and estimate the impact on PDs.
On the firm level, we find for 66 out of 404 firms (about 16%) in the final sample
new PD levels larger than the investment-grade threshold of 3% in the most adverse

38 See the Proposal for a Directive of the European Parliament and of the Council on the scope of the
amended Corporate Sustainability Reporting Directive (CSRD).
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scenario. For the six most affected sectors, we find new sector-average PDs between
5.1% and 34.2%. We take these PDs and calculate the effect on capital ratios of
a large European bank, resulting in a decrease in the capital ratios from �1.2 to
�1.6% if the final 404 firms in our sample from the STOXX Europe 600 companies
were representative of the exact corporate credit exposure of this bank.

We acknowledge that our asset devaluation shocks and particularly PDs are higher
than the empirically observed default rates because we deploy the classical Merton
model in which companies default when their asset’s value falls below their value
liabilities’ value. Although our PDs are somewhat higher than actual observed default
rates, our asset devaluation shock results are lower than those of Reinders et al.
(2020); Vermeulen et al. (2019). Our results are partly in line, partly larger than those
of regulators and supervisors. They confirm the magnitude of the risk companies
and financial institutions face in light of climate change and the fight against it.

In light of further increasing CO2 prices in the future, companies and financial
institutions need to be able to estimate the effect of the rising cost of CO2 emissions
on their P&L and balance sheets and identify tailor-made strategies to reduce their
CO2 footprint (World Bank 2017). Since the financial sector is under additional
pressure from regulators to develop its climate-related stress tests, we urge research-
ers to contribute further methods and models for climate stress testing that ideally
combine a firm-level approach with top-down macroeconomic forecasts in the short
run.

6 Appendix

6.1 Bootstrapping

In this subsection of the Appendix, we provide more details on our bootstrapping
approach to better understand the impact of the estimated equity volatility parameter
on our derived PDs in the main section. In the following, we add the firm indices i

with i D 1; :::; n to highlight the firm-specific values.
The equity volatility parameter �Ei

drives our asset volatility �Vi
through equa-

tion (12).39 The asset volatility �Vi
drives, in turn, through the Merton model and,

subsequently, the firm-specific PDs. Since the distribution of the equity returns, even
in our sample with a substantially long time horizon over 6.5 years with up to 1,600
daily stock market returns, may not represent the true distribution of equity returns
and thus the underlying true equity volatility parameter �Ei

, we bootstrap the daily
equity returns in our sample to gain additional insight into the underlying distri-
bution of the equity returns and the equity volatility parameter �Ei

. Bootstrapping
the daily equity returns for a number of draws per replication allows us to generate
a “new”, different equity volatility �Ei

per replication, a new asset volatility �Vi

39 Again, we estimate the market value of assets Vi as the sum of the market value of the equityMVEi
and

the face value of the firm’s total liabilities Li based on the inputs extracted from Refinitiv. We leave out
the subscript t at this stage in the notation of the market value of the assets for simplicity and consistency
in this subsection.
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Fig. 7 Asset Shocks, ! – Scenarios 2 and 3. Notes: Asset devaluation shocks for scenarios 2 and 3. The
dots represent values for each of the 404 single companies, the markers of white and black triangles the
weighted average (WAVG) by total liabilities of the single companies within a sector. Asset shocks are
weighted by total liabilities per company within a sector to approximate the credit exposure of banks on
the asset side of their balance sheet. Industry classification by ICB. Maximum asset shock in scenario 2
set at 30% for readability reasons. To illustrate the bandwidth of asset shocks in scenario 3, asset shocks in
scenario 3 are shown up to 100%

and through the Merton Model, finally a new PD for each firm and each sector on
aggregate level. Over all these bootstrap replications of the daily equity returns and
the calculations in the Merton Model outlined in Sect. 4.4, we can then generate
confidence intervals of the derived PDi providing us with additional insight into the
precision and validity of our initially derived results in the main section.

As with most computations, we run the Bootstrapping command in Stata using
the “bootstrap” command. This command runs a common bootstrap procedure, ran-
domly and independently with replacement, from our sample going back to the idea
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Fig. 8 PDs compared to pre-shock state by ICB supersector, Scenarios 2 and 3. Notes: PDs for scenarios
2 and 3. The dots reflect again the firm-specific values while the white and black markers represent sector-
average values weighted by total liabilities per company within a sector. The left-side dots and markers
in each ICB supersector column represent PDs before the exogenous policy shock, the right-side dots and
markers represent post-shock PDs. PDs are weighted by total liabilities per company within a sector to
approximate the credit exposure of banks on the asset side of their balance sheet. Industry classification by
ICB. To enhance the readability and visibility of the graph, the scale of visible PDs is limited to 15% and
50%, respectively
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Fig. 9 New PDs in % over scenarios 1–4; 6 most affected sectors. Notes: New PDs over scenarios 1–4
for the 6 most affected sectors from column 3 in Table 5 to illustrate the big increase in PDs from scenario
2 to 3

Table 7 PDs and PD spreads vs. pre-shock state for scenarios 1 to 4 – Increase in volatility

PD 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

Automotive 4.49 4.52[C0.03] 4.53[C0.04] 4.65[C0.17] 4.69[C0.2]

Basic Resources 20.24 21.40[C1.16] 21.61[C1.37] 29.84[C9.6] 31.83[C11.6]

Chemicals 5.20 5.67[C0.47] 5.77[C0.57] 9.85[C4.65] 11.37[C6.17]

Constr. & Materi-
als

4.58 6.56[C1.98] 7.21[C2.62] 17.55[C12.97] 19.28[C14.69]

Consumer Prod-
ucts

4.60 4.60[C0.00] 4.60[C0.00] 4.61[C0.01] 4.61[C0.01]

Energy 7.15 8.03[C0.89] 8.22[C1.07] 14.29[C7.15] 16.63[C9.49]

Food, Bev. &
Tobacco

5.14 5.17[C0.03] 5.18[C0.04] 5.32[C0.18] 5.35[C0.22]

Health Care 4.06 4.08[C0.02] 4.09[C0.03] 4.17[C0.11] 4.19[C0.13]

Industrial Goods 6.32 6.46[C0.14] 6.49[C0.16] 7.77[C1.45] 8.30[C1.98]

Media 4.41 4.41[C0.00] 4.41[C0.00] 4.42[C0.00] 4.42[C0.00]

Drug & Grocery 4.12 4.24[C0.12] 4.26[C0.14] 4.77[C0.66] 4.92[C0.80]

Real Estate 7.96 7.97[C0.01] 7.97[C0.01] 8.00[C0.04] 8.01[C0.05]

Retail 8.98 8.99[C0.02] 9.00[C0.02] 9.06[C0.08] 9.07[C0.09]

Technology 7.70 7.70[C0.00] 7.71[C0.01] 7.72[C0.02] 7.73[C0.03]

Telecommunications 3.45 3.46[C0.01] 3.46[C0.01] 3.5[C0.05] 3.51[C0.06]

Travel & Leisure 13.85 16.32[C2.48] 17.29[C3.45] 44.38[C30.54] 45.28[C31.43]

Utilities 3.06 5.01[C1.95] 5.62[C2.56] 27.1[C24.04] 32.41[C29.35]

Notes: New post-shock PDs and PD spreads compared to pre-shock “PD 0” state in square brackets in
percentage point difference. PD spreads in brackets calculated as difference between the new PD (the
number in front of the bracket) and its corresponding pre-shock state (not stated in the table for simplicity).
Results after increasing equity volatility for all companies in the sample by +50% or multiplying it by 1,5.
All sector-wide averages again weighted by liabilities per company within a sector. All numbers rounded
to 2 digits
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Table 8 PDs and confidence intervals for scenarios 1 and 4 – Bootstrapped estimations with 1,000 repli-
cations

Scenario 1 Scenario 4

PD Mean 95% Conf. Interval PD Mean 95% Conf. Interval

Automotive 0.501 [0.491–0.512] 0.535 [0.524–0.546]

Basic Resources 6.596 [6.550–6.642] 19.348 [19.298–19.397]

Chemicals 0.513 [0.507–0.519] 4.957 [4.945–4.969]

Constr. & Materials 1.273 [1.260–1.286] 14.062 [14.045–14.080]

Consumer Products 0.250 [0.247–0.254] 0.252 [0.249–0.256]

Energy 1.553 [1.533–1.574] 7.322 [7.281–7.364]

Food, Bev., & Tobacco 0.703 [0.690–0.716] 0.746 [0.732–0.760]

Health Care 0.392 [0.387–0.396] 0.413 [0.409–0.418]

Industrial Goods 1.051 [1.041–1.061] 2.787 [2.777–2.797]

Media 0.656 [0.647–0.666] 0.657 [0.648–0.667]

Drug & Grocery Stores 0.573 [0.565–0.581] 0.733 [0.723–0.742]

Real Estate 1.242 [1.231–1.254] 1.256 [1.244–1.267]

Retail 1.881 [1.856–1.906] 1.914 [1.889–1.939]

Technology 0.926 [0.914–0.938] 0.931 [0.919–0.943]

Telecommunications 0.508 [0.501–0.514] 0.518 [0.511–0.524]

Travel & Leisure 5.022 [4.949–5.095] 34.882 [34.800–34.963]

Utilities 0.872 [0.865–0.880] 26.604 [26.577–26.631]

Notes: Mean and 95% confidence intervals of weighted sector average post-shock PDs in %. All sector-
wide averages again weighted by liabilities per company within a sector. All numbers rounded to 3 digits.
Results based on bootstrapped equity volatility with 1,000 replications and 500 randomly distributed draws
of daily equity returns with replacement per replication per company.

of Efron (1979). We limit the number of draws per replication to 500 in order to
generate a sufficiently large sub-sample of our maximum sample of about 1,600
daily equity returns that is nevertheless sufficiently smaller than our overall sample.
The identification of a suitable number of replications has evolved into an entire lit-
erature strand in the field of bootstrapping, for example Efron and Tibshirani (1986);
Berkowitz and Kilian (2000); Davidson and MacKinnon (2000); Andrews (2002);
Dudek et al. (2016), and depends on among others, the purpose, the data genera-
tion process, the sample size or the bootstrapping method. In theory, the number
of replications should be infinitely large. This may be problematical for computa-
tion reasons and not always necessary if the estimated results for the bootstrapped
parameter, in our case the equity volatility �Ei

and subsequently the confidence in-
tervals of PDi , converge quickly. Scholars suggest that 1,000 replications are a good
start and might even be sufficient if the results converge quickly with increasing
replications (Efron and Tibshirani 1986, 1994; Hansen 2010). Since this is the case
for the results of the mean PDs and corresponding confidence intervals, we follow
this recommendation.40 We run the bootstrap command in Stata to draw 500 equity
returns with replacement over 1,000 replications, insert the 1,000 resulting equity

40 In fact, we start with 250 replications and gradually increase up to 500 and 1,000 replications. We
observe that the results with 250 and 1,000 replications are already quite similar and converge substantially.
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Table 9 PDs and confidence intervals for scenarios 1 and 4 - Bootstrapped estimations per monthly
blocks with 1,000 replications

Scenario 1 Scenario 4

PD Mean 95% Conf. Interval PD Mean 95% Conf. Interval

Automotive 0.512 [0.501–0.522] 0.546 [0.535–0.557]

Basic Resources 6.803 [6.750–6.856] 19.542 [19.486–19.599]

Chemicals 0.643 [0.636–0.651] 5.116 [5.102–5.131]

Constr. & Materials 1.356 [1.339–1.373] 14.139 [14.12–14.158]

Consumer Products 0.653 [0.645–0.660] 0.655 [0.647–0.663]

Energy 1.686 [1.660–1.712] 7.508 [7.457–7.559]

Food. Bev.. & Tobacco 0.757 [0.741–0.773] 0.802 [0.786–0.819]

Health Care 0.415 [0.411–0.419] 0.437 [0.433–0.442]

Industrial Goods 1.133 [1.119–1.146] 2.873 [2.860–2.887]

Media 0.681 [0.672–0.690] 0.682 [0.673–0.691]

Drug & Grocery Stores 0.607 [0.602–0.613] 0.779 [0.772–0.786]

Real Estate 1.434 [1.419–1.450] 1.448 [1.433–1.464]

Retail 1.967 [1.940–1.993] 2.001 [1.974–2.028]

Technology 0.967 [0.955–0.978] 0.973 [0.961–0.984]

Telecommunications 0.533 [0.528–0.539] 0.544 [0.539–0.549]

Travel & Leisure 5.212 [5.129–5.295] 35.095 [35.003–35.187]

Utilities 0.975 [0.968–0.982] 26.726 [26.700–26.752]

Notes: Mean and 95% confidence intervals of weighted sector average post-shock PDs in %. All sector-
wide averages again weighted by liabilities per company within a sector. All numbers rounded to 3 digits.
Results based on bootstrapped equity volatility with 1,000 replications and cluster-wise draws of stock
returns per month-year combination per replication per company.

volatilities �Ei
into the asset volatilities �Vi

computation and ultimately plug these,
in turn, into the PD equations to generate 1,000 different PDs per firm. We take these
1,000 PDs per firm and generate mean PDi and confidence intervals aggregated on
sector level. The results for scenarios 1 and 4 are depicted in in Table 8.

Until this point, we assumed for simplicity that the daily equity returns are iid
(independently and identically distributed) and run the bootstrapping with replace-
ment independently from the previous draw. Yet, prior literature has detected a serial
correlation between stock returns over a short-and long-term time horizon, for exam-
ple, Fama (1970); Campbell and Mankiw (1987); Ball and Kothari (1989); Campbell
et al. (1997). Scholars developed various bootstrapping techniques to address this is-
sue in a bootstrapping approach (Politis and Romano 1994; Dudek et al. 2016). One
of them is the block bootstrap approach initially developed by Hall (1985), Carl-
stein (1986), and Kunsch (1989). Instead of drawing independently and randomly
each observation from the sample and assuming iid of stock returns, this approach
involves drawing monthly clusters of daily stock market returns. It thus sustains the
serial correlation pattern within the re-sampled clusters (Flynn and Peters 2004; Ng
et al. 2013).41 Again, we run the bootstrap command in Stata, this time clustered by

41 The issue about finding the appropriate block length has formed a separate literature strand, for example
Hall (1985); Politis and Romano (1994); Politis and White (2004). For simplicity and because of the
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months of daily equity returns, over 1,000 replications. We insert the 1,000 result-
ing equity volatilities �Ei

into the asset volatilities �Vi
computation and ultimately

plug these, in turn, into the PD equations to generate per firm 1,000 different PDs.
We take these 1,000 PDs per firm and generate mean PDi and confidence intervals
aggregated on sector level. Scenario 1 and 4 results are again depicted in Table 9.
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