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Sammendrag 

Siden 2010 har USA mer enn doblet sin andel av global oljeproduksjon. Årsaken er den kraftige 

veksten i amerikansk skiferoljeproduksjon, som har hatt stor innflytelse på hvordan det globale 

oljemarkedet fungerer. Denne artikkelen handler om tilbudet av amerikansk skiferolje og det 

tilhørende riggmarkedet.  

 

Først presenteres en teorimodell som analyserer riggaktivitet og oljeproduksjon innenfor den 

klassiske Hotelling-modellen for utvinning av ikke-fornybare ressurser. En viktig konklusjon fra 

teoridelen er at, i kontrast med konvensjonell oljeproduksjon, kan skiferoljeproduksjon 

respondere på endringer i oljeprisen også på kort sikt. Forskjellen skyldes i hovedsak ulik 

produksjonsteknologi.  

 

Deretter følger en økonometrisk dynamisk multivariat modell (VECM) hvor amerikansk 

skiferoljeproduksjon og riggaktivitet er sentrale endogene variabler. En oljeprisøkning på én 

prosent anslås å øke amerikansk skiferoljeproduksjon og riggaktivitet med henholdsvis 0,3 og 0,8 

prosent. Videre medfører en økning på én prosent i riggaktiviteten at oljeproduksjonen øker med 

1,7 prosent, mens produksjonskostnadene øker med 0,1 prosent 



1 Introduction

The boom in United States (U.S.) light tight oil (LTO) production during
the last decade or so has been touted by many as a game changer with
potentially wide reaching consequences for the global oil market.1 Since
2010, the U.S. has more than doubled its share of global oil production,
from 9.1 percent in 2010 to 18.6 percent in 2020. According to the U.S.
Energy Information Administration (EIA), about 7.76 million barrels per
day of crude oil were produced directly from U.S. tight oil resources in 2019.
This averages up to 2.83 billion barrels, or 63 percent of total U.S. crude oil
production, in 2019.2 In comparison, LTO accounted for 15 percent of US
crude oil production in 2010. U.S. crude supply and its share of world oil
production are graphed in Figure 1.

LTO is very light (API 45-50) and sweet (< 0.1 percent sulfur) crude
oil produced from low permeability formations such as shale or tight sand-
stone.3 LTO extraction requires hydraulic fracturing (fracking) and typically
involves the same horizontal well technology as used in, e.g., production of
shale gas. In contrast to most conventional oil production, tight oil pro-
duction declines fast with the dominating part of cumulative production
occurring within the first few years after investment. This production pro-
file suggests that LTO supply may be more responsive to the oil price than
oil from conventional wells.

This paper investigates U.S. supply of LTO using a combination of eco-
nomic theory and econometrics. I first present the theoretical model for
LTO production. The theory model combines endogenous rig activity and
stylized reservoir pressure mechanics with the classic Hotelling model for ex-
haustible resource extraction. A key model prediction is that oil supply does
not respond to changes in the oil price in the short run if reservoir and cost
structures are similar to those typical for conventional petroleum extraction.
This is consistent with the empirical literature on short-run conventional oil
supply price elasticities (see, e.g., Pesaran, 1990; Dahl and Yücel, 1991;
Ramcharran, 2002; Smith, 2009; Anderson et al. 2018; Kilian, 2020). For
cost structures similar to LTO production, however, higher oil prices may
very well increase both current and future oil production. This is consistent
with the empirical results in the present paper, and the small but growing
empirical literature on LTO production (see below). The theory model also
suggests that economy wide capacity constraints may dampen the response
in oil production and rig activity spurred by higher oil prices.4

The empirical section presents a vector error correction model (VECM)

1See, e.g., Fattouh and Sen (2013), and Wethe (2019)
2In the pandemic year 2021, U.S. LTO production was 7.28 million barrels per day,

which accounted for 65 percent of total U.S crude oil production.
3LTO should not be confused with ’oil shale’, which is shale rich in kerogen. Also, the

term ’LTO’ is broader than the term ’shale oil’, because LTO can be extracted from not
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Figure 1: Left: U.S. oil production and the West Texas Intermediate oil price.
Right: Percentages of world oil production from the five largest oil producing coun-
tries in 2020 (sources: EIA, BP Statistics and own calculations).

for U.S. LTO production using monthly data over the period Jan. 2010 to
Apr. 2022. The (endogenous) variables included are U.S. LTO production,
rig activity associated with U.S. LTO, the West Texas Intermediate (WTI)
oil price, and a proxy for tight oil production costs. I find that a one percent
positive transitory shock to the oil price causes a significant gradual increase
in LTO supply, which stabilizes around 0.3 percent after around two years.5

The VECM captures how the oil price affects rig activity, and how this
in turn affects oil production. This may be even more important in the
case of tight oil than for conventional oil, due to the large number of wells
that must be drilled for this type of production. Indeed, around 1/3 of
the world drilling rigs are working with tight oil in the U.S.6 The results
indicate, perhaps not surprisingly, that the rig market responds stronger to
changes in oil prices than LTO production itself. The increase in rig activity
following a transitory shock to the oil price tops out at 1.2 percent after one
year, before it drops and stabilizes around 0.8 percent in the longer run.
Further, a one percent positive shock to the number of active rigs leads to a
1.7 percent increase in oil production, and a 0.1 percent increase in costs. I
find no significant effect from the U.S. LTO on the West Texas Intermediate
(WTI) oil price, however.

just shale formations but also from sandstone and carbonates.
4The modern-day gold rush of oil companies and contractors converging on western

Canada’s oil-sands markets bogged down as high materials costs and outstripped labor
resources forced project delays and budget overruns around the year 2007, see ENR.
Osmundsen et al. (2010) find that oil well drilling speed tends to be negatively correlated
with capacity utilization, due to capacity bottlenecks and lower drilling quality. Further,
Osmundsen et al. (2015) and Skjerpen et al. (2018) find that increased capacity utilization
in the rig market increases the rig rates and, hence, the cost of capacity construction in
the Gulf of Mexico and on the Norwegian continental shelf, respectively.

5The effects are derived from the impulse response functions, see Figures 5 and 7 for
details. Note that the transitory shock to the oil price causes a more than one percent
increase in the oil price in the subsequent periods in the VECM, cf., Figure 6.

6This figure is based on Baker Hughes Rig Count for Nov. 2019 and does not include
former Soviet Union and onshore China.
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The theoretical analysis is based on Anderson et al. (2018), but expands
their model with fixed and variable extraction costs, economy wide capacity
constraints and technological progress, all of which are arguably particularly
relevant for unconventional petroleum production. Notably, the model in
Anderson et al. (2018) does not predict oil supply to respond to the oil
price in the short run. The model in the present paper replicates that
result for cost structures reasonable for conventional oil fields, but finds
that unconventional and LTO production may respond to the oil price also
in the short run.

Anderson et al. (2018) also examine drilling and (conventional) oil pro-
duction in Texas for 1990-2007 empirically, using monthly and quarterly
time series data for Texas over the period 1990-2007. They find that whereas
production from existing wells does not respond to prices, the oil price elas-
ticity of drilling is approximately 0.7. Newell and Prest (2019) examine
the supply-side elasticity of drilling and oil production for conventional and
unconventional production and drilling in Texas, North Dakota, California,
Oklahoma and Colorado over the period 2000 to 2015. Their simulations,
based on estimates derived from micro data, show that the U.S. supply re-
sponsiveness has increased substantially due to the shale revolution. They
also find that, given a price of 80 USD per barrel, U.S. production could rise
by 0.5 million barrels per day in 6 months, 1.2 million in 1 year, 2 million in
2 years, and 3 million in 5 years (prices adjusted for inflation to 2014 dol-
lars). Bjørnland et al. (2020) consider a well-level monthly production data
set covering more than 16,000 crude oil wells in North Dakota. They find
the short run supply elasticity of shale wells to be in the range of 0.3–0.9,
depending on well and firm characteristics. They find no such responses for
conventional wells. Gundersen (2020) examines the role of the U.S. shale oil
boom in driving global oil prices, using a structural vector autoregressive
model that identifies separate oil supply shocks for the U.S. and OPEC. He
finds that U.S. supply shocks can account for up to 13 percent of the oil price
variation over the 2003-2015 period. Aastveit et al. (2022) find that shale oil
producers respond positively and significantly to favourable oil price signals,
and that the response is heterogenous across various shale wells. Vatter et
al. (2022) model impacts on oil production of price, capital costs, technolog-
ical progress, well-to-well interference of closely situated wells, and location.
They find oil from Bakken to be more responsive to changes in the oil price
than that of non-OPEC oil supply in general, and argue that the price re-
sponse of shale oil tends to dampen the long-term price cycle and moderate
the price shocks in the oil market. Kilian (2016) investigates the impact of
the shale oil revolution on U.S. crude oil and gasoline prices. Kilian (2017)
examines how the shale boom affected U.S. oil imports, Arab oil exports,
and the global oil price. The results indicate that U.S. shale has a negative
impact on oil prices, U.S. oil imports and Arab oil exports in general. Balke
et al. (2020) estimate a dynamic, structural model of the world oil market
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in order to quantify the impact of the shale revolution. They find that oil
prices in 2018 would have been roughly 36 percent higher had the shale
revolution not occurred, and that the shale revolution implies a reduction
in current and long-run oil price volatility of around 25 percent and over
50 percent, respectively. Bornstein et al. (2018) use micro data to com-
pile some key facts about the oil market and estimate a structural industry
equilibrium model that is consistent with these facts. Perhaps most relevant
to the present paper, their model predicts that the advent of fracking will
reduce oil price volatility. Kleinberg et al. (2018) discuss LTO development
economics and breakeven points, and why they are often misunderstood.
Last, Foroni and Stracca (2022) formulate a structural VAR model of the
oil market and find that the shale oil boom has not fundamentally changed
global oil supply, which remains close to vertical with a significant estimated
short-run price elasticity around 0.05.

The present paper is, to the author’s best knowledge, the first to con-
struct a VECM model for U.S. LTO production and rig activity. This puts
it apart, e.g. from the panel data analyses of U.S. LTO cited above, by pro-
viding long run oil price responses of U.S. LTO production. Perhaps most
importantly, the VECM framework allows for simultaneous modeling of U.S.
LTO supply and rig activity. Whereas the theoretical analysis is based on
Anderson et al. (2018), the extensions including fixed and variable extrac-
tion costs, economy wide capacity constraints and technological growth, are
all arguably particularly relevant for unconventional petroleum production.

2 Theoretical analysis

Let there be i ∈ I = {1, 2, ..., ī} oil producing price-taking firms. The re-
maining undeveloped resource stock available to firm i at time t ∈ T is given
by Sit = S̄i +

∫ t
t0
(dit − xit)dt, where S̄i (an exogenous constant) is the ini-

tial resource stock at time t = t0, dit is an exogenous increase in resources
available for development, xit is firm i ’s field development at time t, and
the model begins at time t0. The stock Sit denotes oil and gas trapped in
reservoir rocks unavailable for extraction before field development has taken
place. New undeveloped resources, dit ≥ 0, reflects, e.g., new areas opened
for petroleum activity or technological change that allows for exploitation
of resources not previously technically or economically recoverable.7 Differ-
entiating with respect to time, we get the state movement equation for the
remaining undeveloped resource stock:

Ṡit = −xit + dit, (1)

where Ṡit ≡ ∂Sit/∂t denotes the rate of change of the remaining undeveloped
resource stock Sit with respect to time. I assume that new resources, dit, if

7The model does not feature endogenous exploration of new resources.
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positive, are sufficiently small to retain resource scarcity.
The developed reserve Rit refers to the resource that is available for

extraction for firm i at time t. It is given by Rit = R̄i +
∫ t
t0
(xit − qit)dt,

where R̄i (an exogenous constant) is the initial developed resource stock at
time t = t0 and qit is firm i ’s oil extraction.8 Differentiating with respect to
time we get the state movement equation for the developed resource stock:

Ṙit = xit − qit. (2)

I assume that field development is costly and that the resource that is
cheapest to develop is developed first. Hence, field development costs de-
crease in the remaining resource stock Sit. The cost of field development
is given by the function cxi (xit, Sit, kt) with cxi (0, Sit, kt) = 0 and derivatives
satisfying ∂cxi (·)/∂xit ≡ cxxit

(·) > 0, cxSit
(·) < 0, cxkit(·) > 0, cxxitxit

(·) > 0,
cxSitSit

(·) > 0, cxktkt(·) ≥ 0, cxxitSit
(·) < 0, cxktxit

(·) > 0 and cxktSit
(·) ≥ 0. The

variable kt is a catch-all variable capturing other things that affect produc-
tion costs, e.g., available technology and the cost of labor and equipment. I
define kt such that costs increase in kt.

The maximum flow of oil from developed fields depends on the pressure
in the well which, everything else equal, decreases as the resource is de-
pleted. Following Anderson et al. (2018), I will assume that the maximum
flow is proportional with a factor ω to the amount of oil that remains un-
derground. The oil producer can adjust the oil production using the flow
control yit ∈ [0, 1]. For example, the flow of oil may be increased by injecting
gas or water into the reservoir to replace produced fluids, and thus main-
tain or increase the reservoir pressure. Similarly, production of LTO must
be stimulated using hydraulic fracturing to create sufficient permeability to
allow the mature oil and/or natural gas liquids to flow at economic rates.9

Production of oil is given by:10

qit = ωRityit. (3)

The operating cost of oil extraction is given by cyi (yit, kt), where cyi (·) is
convex, increasing in the flow rate yit, and increasing in the catch-all cost

8Petroleum field development involves issues like reservoir and production engineer-
ing, construction of infrastructure and surface facilities, well design and construction,
completion design, environmental impact and risk assessment, and so forth.

9About 25 percent of the shale wells in the sample examined by Aastveit et al. (2022)
have been refractured at least once.

10I abstract from the fact that most LTO wells produce a mix of oil and gas. Equa-
tion (3) is a reasonable approximation only for reservoirs where pressure is an important
determinant of production, e.g. conventional oil and gas worldwide, LTO in the U.S., in
situ extraction of bitumen in the oil sands of Alberta (Canada) and extra heavy oil in the
Orinoco belt (Venezuela). The mining of shallow reserves of bitumen in Alberta is not
adequately modeled by Equation (3).
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variable kt.
11 Specifically, we have cyyit(·) > 0, cykit(·) > 0, cyyityit(·) > 0,

cykitkit(·) ≥ 0 and cyyitkit(·) ≥ 0. Last, extraction cost is zero when there is no

extraction, cyi (0, kt) = 0.
Petroleum extraction involves fixed costs that do not depend on the day-

to-day production and drilling rates. Examples of such costs may be long-
term contracts for hire of skilled labor or rental equipment, maintenance
costs, and costs of regulatory compliance. These costs, denoted cfi (yit, xit),
are incurred if and only if extraction is positive. I assume the fixed operating
costs are twice differentiable and increasing in both arguments. Further, it
satisfies cfi (0, 0) = 0, ci(yit > 0, 0) = fy

i , ci(0, xit > 0) = fx
i , ci(yit > 0, xit >

0) = fxy
i , with fxy

i > fy
i , f

xy
i > fx

i , f
x
i > 0 and fy

i > 0.12

We have the following market equilibrium relations, which by assumption
are not internalized by the competitive individual firms:

pt = p(
∑
i∈I

qit, νt), (4)

kt = k(
∑
i∈I

xit,
∑
i∈I

yit, κt), (5)

Equation (4) is the inverse (residual) demand function for the homogeneous
oil the i ∈ I firms produce. It gives the equilibrium price as a function
of the aggregate quantity produced, and a catch-all variable that affects
residual demand, denoted νt (e.g., gross national product, or production
by other producers that are not members of the set I). I assume that
there exists a choke price p̄, such that demand is zero if pt ≥ p̄.13 The
equilibrium price is convex and decreasing in aggregate production with
derivatives ∂p(·)/∂

∑
i∈I qit ≡ pqt ≤ 0, pqtqt ≥ 0, pν > 0 (by definition of

ν) and pνν ≥ 0. The model allows for pqt = 0, which is approximately
true if the set of firms I constitutes a sufficiently small part of global
world oil supply. Equation (5) states that the catch-all cost variable kt
may increase in aggregate production or resource development, e.g. due to
economy-wide capacity constraints like infrastructure limitations, refinery
capacity, or shortage of skilled labour or equipment.14 This is captured by

11I abstract from the fact that field development and oil extraction may depend on
different exogenous cost variables kt (the assumption does not affect the results in any
relevant way).

12I assume that cfi (xit, yit) is differentiable so that the cost function ci(·) is differentiable
also in the presence of fixed costs. One example of such a fixed cost function, based
on the cumulative Cauchy distribution, is cfi (xit, yit) = (fx

i /π)arctan((xit − xl)/fl) +
(fy

i /π)arctan((yit − yl)/fl) + 1, where xl, yl and fl are very small numbers, e.g., xl and
yl are one barrel of oil equivalent and f l = 0.0001, and fy

i and fx
i are the fixed costs of

production and resource development, respectively.
13While p̄ prevents the price from going towards infinity, so that the integral of the

object function Vi in (6) is not infinite, p̄ can be so high that it has no practical significance.
14Osmundsen et al. (2010) find that oil well drilling speed tends to be negatively cor-
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∂k(·)/∂
∑

i∈I xit ≡ kxt ≥ 0 and ∂k(·)/∂
∑

i∈I yit ≡ kyt ≥ 0. The exoge-
nous variable κt is a catch-all variable that affects the cost variable kt, e.g.,
technology or environmental regulation stringency. I assume kκt < 0. For
example, technological progress, or increased refinery capacity geared to-
wards the type of oil produced by the i ∈ I firms (e.g., LTO), is modeled
as a negative shift in κ. I assume all the second-order derivatives of k(·) to
be non-negative. Two empirical research questions in Section 3 are whether
U.S. LTO production affects global oil prices (pt) and cost levels in U.S.
petroleum activities (kt).

The theory section disregards uncertainty and I assume that the firms
have perfect information about future oil prices and production costs. Firm
i ∈ I maximizes the present value of the stream of profits from resource
extraction:

Vi = max
xit,yit,ti1

∫ ti1

t0

πite
−δtdt, (6)

where πit = ptqit − c(xit, yit, Sit, kt) is instantaneous profits and 0 < δ < 1
is the discount rate. I assume that the discounting is time-consistent and
common to all companies. The profit maximization problem in (6) is subject
to Equations (1), (2) and (3), with terminal conditions Rit1 ≥ 0 and Sit1 ≥ 0.
Note that the time horizon is endogenous in (6). The relations (4) and (5)
are not internalized by the competitive firms, but they must be upheld in
the competitive partial equilibrium.

Lemma 1. The competitive partial equilibrium solving (6) must satisfy
Equations (1)-(5) and the following necessary conditions:

πyit(·)− ωRitλit − ηit ≤ 0, (7)

πxit(·) + λit − µit ≤ 0, (8)

λ̇it − δλit = −πRit(·), (9)

µ̇it − δµit = −πSit(·), (10)

λiti1 ≥ 0, µiti1 ≥ 0, (11)

πiti1 + λiti1(xiti1 − qiti1)− µiti1xiti1 = 0, (12)

where λit, ηit and µit are shadow prices described below. Further, we have
(i) yit ≤ 1, with ηit = 0 if yit < 1 in Equation (7), (ii) strict equalities in
Equations (7) and (8) if and only if yit > 0 and xit > 0, respectively, and
(iii) λit1 = 0 or µit1 = 0 in Equation (11) if and only if Rit1 > 0 or Sit1 > 0,
respectively.

related with capacity utilization, due to capacity bottlenecks and lower drilling quality.
Further, Osmundsen et al. (2015) and Skjerpen et al. (2018) find that increased capacity
utilization in the rig market increases the rig rates and, hence, the cost of capacity con-
struction in the Gulf of Mexico and on the Norwegian continental shelf, respectively. Last,
the modern-day gold rush of oil companies and contractors converging on western Canada’s
oil-sands markets bogged down as high materials costs and outstripped labor resources
forced project delays and budget overruns around the year 2007 (see ENR-Oilsands).
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Proof: See Appendix A.

Equation (7) states that the shadow price λit on the developed resource is
equal to the marginal profits of resource extraction (for an interior solution).
Note that λit is multiplied by the term ωRit to control for how the choice
variable yit controls production, cf., Equation (3). The Lagrange multiplier
ηit, associated with the constraint yit ≤ 0, is zero unless the flow rate is
at its limit yit = 1, in which case production is physically constrained and
cannot be increased unless new wells are drilled. Equation (8) states that
the shadow price µit on the undeveloped resource stock Sit is equal to the
marginal change in profits following a marginal increase in developed fields
Sit. We have strict equalities in Equations (7) or (8) if and only if yit > 0
or xit > 0, respectively. The reason is that the firms do not produce oil or
drill wells if it decreases total discounted profits Vi in Equation (6). The
control variables are then at their lower bounds yit = 0 and xit = 0 (with
strict inequalities in (7) and (8), respectively).

Equation (9) is the Hotelling rule for resource extraction. It is an in-
tertemporal efficiency rule stating that the profits from resource extraction
should rise at a rate equal to the discount rate, δ, along the profit maxi-
mizing path. Note that the firm could increase the present value of profits
Vi by moving extraction across time if the Hotelling condition (9) did not
hold. Equation (10) is the Hotelling rule for resource development, stat-
ing that the marginal profits from field development also must increase at
the rate of discount if present value profits (6) is to be maximized. The
inequalities in (11) are the transversality conditions for the non-negative
state variables Rit1 and Sit1 , respectively. Equation (12) is the Maximum
principle condition for problems with variable time. It can be shown that
we have xit1 = yit1 = 0 and pt1 = p̄; i.e., we have zero production, zero field
development and a price equal to the choke price at the terminal point in
time t1.

15 If the lifting cost cyi (·) is sufficiently low for all i ∈ I, such that
the constraint yit ≤ 1 is binding, we have ηit > 0 and equal to the increased
value of the objective criterion (Vi in 6) following a marginal slackening of
the constraint y ≤ 1.

The case with low extraction costs may be a reasonable approximation
for several conventional oil fields.16 There are at least two reasons why a
corner solution with y = 1 is likely to occur whenever the extraction cost
cyi (yit = 1, kt) is low relative to the oil price pt: First, the firms can reduce the

present value of the fixed operating cost expenditures
∫ ti1
t0

cti(·)dt by reducing
the time horizon (lower ti1). Second, firms discount future development

15The price may equal the choke price p̄ over the whole time horizon t ∈ T if the oil
price is exogenous, i.e., if ∂p(·)/∂

∑
i∈I qit = 0 (∀t) in Equation (4).

16Anderson et al. (2018, see especially p. 997 and their online Appendix C) do not
include costs in their analysis, arguing that costs do not play a qualitatively important
role for oil production in Texas for the period 1990-2007.
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costs and, therefore, do not develop resources before they are needed. This
also pulls in the direction of yit being close or equal to one. This implies
that current production from active wells with positive production do not
respond much to changes in current prices, because the flow already is close
to or at its maximum, and new wells must be drilled to increase production.
As pointed out by Anderson et al. (2018), the prediction of price inelastic
oil supply in the short run is consistent with the data for oil production in
Texas for the period 1990 to 2007. It is also consistent with the low short-
run oil supply elasticities found in the empirical literature referred to in the
Introduction. As we will see in the econometric Section 3, however, this
prediction appears to be less consistent with US LTO production. This is
not really surprising, as (i) LTO production is cost intensive, and (ii) LTO
producers can adjust the flow rate, albeit at a cost, by increased use of e.g.
multi-stage hydraulic fracturing. Given the present paper’s focus on LTO,
I will henceforth assume that the lifting costs are sufficiently substantial to
induce an interior solution for the flow rate yit ∈ [0, 1].17 More specifically,
I will assume that limy→1c

y
i (·) > p̄/ωRit, which ensures that we have ηit =

0.18

Appendix B presents a numerical illustration to ease understanding of
the model in Lemma 1. The model is solved as a nonlinear programming
(NLP) problem in GAMS (numerical software) using the CONOPT solver.
I will present some figures from this illustration in the text, but refer to
Appendix B for further details on the numerical model.

2.1 Selected implications of the necessary conditions for petroleum
extraction

In this section I discuss some predictions from the model in Lemma 1. The
topics are selected based on their relevance for U.S. LTO production.

2.1.1 The oil price

Suppose we have an increase in the exogenous demand parameter νt in the
model in Lemma 1, such that the oil price at time t′ ∈ T increases from ps
to ps +∆ for s ∈ T and s ≥ t′. Here ∆ > 0 is the constant and permanent
change in the price trajectory occurring at time t′. The theory framework
suggests that production from existing wells has two key responses to the
increased oil price: (i) a short-run response caused by an increase in the

17Newell and Prest (2019) estimate the price elasticity of drilling of unconventional
wells to be in the range of 1.2-1.9, and the price elasticity production from finished un-
conventional wells to be 0.12 (both statistically significant). Note that a positive price
elasticity on production implies that the flow rate can be adjusted.

18It can also be verified that the constraint yit ∈ [0, 1) holds after the solution to (6) is
derived.
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flow control yit, and (ii), a long-run response via increased field develop-
ment xit, which increases developed reserves Rit and thereby oil production.
Mechanism (i) is present because, everything else equal, the optimal flow
control yit increases in current prices (cf., Equation, 7). Mechanism (ii)
occurs because the shadow value of developed reserves λit increases in fu-
ture oil prices (cf., Equation 9). This increases resource development (cf.,
Equation 8), which again increases future production (cf., Equation 3). The
price increase typically implies that resource extraction is moved forward in
time, implying more early extraction, and less late extraction.

The dynamics in the case of an announced future increase in oil prices is
somewhat less straightforward, because of two opposing effects. The profits
of future production increases, implying a larger shadow value λit (cf., Equa-
tion 9). This pulls in the direction of (i) less extraction today (cf., Equa-
tion 7) and (ii) more resource development (cf., Equation 8) and, hence,
increased production (cf., Equation 3). Note that whereas mechanism (i)
occurs very fast, there is a delay before increased field development cause oil
production to increase, depending, e.g., on the extraction technology.19 It
follows that the current effects of a known future price increase is in general
ambiguous.20 Figure 2 illustrates the effects on optimal production following
a known increase in the oil price in period t′ = 50.21 We see that production
before the price increase in the future period t′ = 50 decreases slightly in
this numerical simulation.

2.1.2 New undeveloped resources

Suppose there is one single anticipated addition to the undeveloped resource
Sit at some future time t = t′ > t0, e.g., because new areas with known
resources will be made available to the petroleum industry.22 The effect
before the new resources are available (i.e., t ∈ [t0, t

′)) is to reduce the
current shadow price on the resource stock µit (cf., Equation 10). The
isolated effect of this is to increase resource development (cf., Equation 8)

19The dynamic response of U.S. LTO production following increased drilling activity
is examined in the Section 3; see Figure 5 C in particular.

20This result is relevant to the literature on intertemporal effects induced by future
environmental policies in the presence of resource scarcity. In particular, Sinclair (1992)
and Sinn (2008) caution against environmental policies that become more stringent with
the passage of time, because such policies will accelerate resource extraction and, thereby,
accelerate global warming.

21The references to the numerical illustrations are in a discrete time framework. When
comparing Figures 1 and 2, it is important to remember that the time horizon in the theory
model is the whole lifespan of positive production, whereas Figure 1 only graphs around
twelve years. It appears reasonable to assume that U.S. LTO is still in its early phases,
corresponding to the time with increasing production in Figure 2, i.e., before resource
scarcity forces a production decline.

22We have dit = 0 over the whole time horizon except for the single resource discovery
at time t = t′.
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Figure 2: Numerical illustration of selected model variables in reference scenario
(REF) and two scenarios identical to REF, except that the oil price (D GDP ) and
remaining resource stock (D Stock) increases in period t′ = 50, respectively. Time
periods along the horizontal axis

and thereby production (cf., Equation 3). On the other hand, if the resource
is anticipated and the new resource is relatively cheap to extract, resource
development may be postponed to take advantage of the cheaper extraction
in the future. The relative sizes of these counteracting effects depends,
e.g., on the waiting time before the new resource is available, the cost of
extracting the new resource (as compared to the existing resource stock),
and the size of current reserves (relative to production).23 After the resource
is made available (i.e., t > t′), the increase in the resource stock Sit will also
reduce the cost of resource extraction. The effect may occur immediately
after the discovery, or later on along the time trajectory (again depending on
the relative cost of developing the newly discovered resources as compared
with the old resource stock). The effects of a single resource discovery in
period t = 50 in the numerical illustration is given in Figure 2 (D stock)
(dit > 0 for t = 50 and dit = 0 for t ̸= 50), where the model parameters
are such that some of the new resource is profitable to develop at once. In
the period before the resource is made available, resource development first

23This allows for a theoretical ‘green paradox type’ argument where environmental
policy decisions that close down areas for future petroleum activity may increase current
resource development and, hence, current production (because the industry develops cur-
rently available reserves instead of waiting for the new and more promising area to be
made available). Whereas this may be relevant, e.g., for the literature on supply side
climate policies, the magnitude of this unintended effect, if present, may be very modest.
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Figure 3: Numerical illustration of selected model variables in reference scenario
(REF) and two scenarios identical to REF, except that either the field development
and production costs decreases (Tech C), or that the undeveloped resource stock
Sit grows a small amount each period(D Stock)

increases and then decreases relative to the reference scenario (REF ). This
reflects the two counteracting mechanisms described above. In the longer
run, the new resource increases extraction and reduces the petroleum price.

2.1.3 Technological change

In this section I discuss the role of technological development. This is highly
relevant to unconventional petroleum production in general, and U.S. LTO
in particular. I examine two types of technological change: (i) a gradual
decrease in production and field development costs, ci(·), and (ii) an exoge-
nous growth in the resource stock, Sit, e.g., because of advances in horizontal
drilling techniques that allow more resources to be exploited. Whereas this
dichotomy highlights two key aspects related to technological change in the
petroleum industry, the technological advances that have spurred e.g. the
U.S. shale revolution feature a mixture of both.

A gradual exogenous decline in production costs ci(·), caused by a de-
crease in ki, has two key effects on production. First, field development
and production will be cheaper, implying increased developed reserves (cf.,
Equation 8) and current production (cf., Equation 3 and 7). The isolated
effect of this is to increase current production. On the other hand, with
continuous technological progress it will be even cheaper to produce in the
future, and the value of future reserves increases (cf., Equation 9). This
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pulls in the direction of delaying production (cf., Equation 7). The effect of
continuously reduced extraction and field development costs are illustrated
in Figure 3 (Tech C), where the first effect dominates, implying that ex-
traction is pushed forward in time.

A gradual exogenous growth in undeveloped reserves, dit > 0 for ∀t ∈ T ,
implies lower resource scarcity, and hence a lower shadow price on the un-
developed resource stock Sit (cf., Equation 10). This increases field devel-
opment (cf., Equation 8 ) and thereby production (cf., Equation 3). This is
illustrated in Figure 3 (Tech S), where the increase in stock each period is
sufficiently small to retain resource scarcity (µ > 0).

3 A vector error correction model for U.S. light
tight oil production and rig activity

This section continues the examination of LTO supply, but from an em-
pirical angle. An important difference between the theory model and the
econometric model is that the theory features a long time horizon in which
resources are depleted over time. In comparison, the econometric model
is based on the covariation between non-stationary variables and a steadily
rising U.S. LTO production (cf., Section 3.3 below). The key research objec-
tive of Section 3 is to quantify how U.S. LTO production and the associated
rig activity respond to changes in the oil price, both in the short and longer
run.

3.1 Variable selection and other model considerations

Key variables of interest in this paper are the oil price (pt), oil production
(qit) and rig activity (xit) (which corresponds to field development in the
theory section). Further, the theory model indicates that it is really the
difference between the oil price and production costs that is decisive for
production and rig activity (cf., Equation (6)). This means that modeling
of production costs is also important. There are several possible ways to
operationalize costs in the empirical model, e.g., real interest rates (capital
costs), wages (labor costs), rig rates and so forth. In this paper I use a cost
index for equipment and capital in the oil and gas industry as a proxy for
costs, see Section 3.2.

Whereas production and rig activity are clearly endogenous variables,
the theory is ambiguous about whether the oil price is endogenous or not,
depending, e.g., on the size of the petroleum industry that is to be examined
(cf., Equation (4)). The theoretical model also indicates that both increased
rig activity and increased oil production can increase marginal production
costs, both due to convex cost functions and due to potential economy-wide
capacity constraints (cf., Equation (5)). Further, exogenous shifts in the
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Table 1: P-values from Granger-causality tests in a VAR model, specified on first-
differences of log-transformed variables (see Table 2) with one lag.

Not Granger-causing variable No instantaneous causality
diff(oilprice) 2.2e-16*** 0.0217**
diff(cost) 0.5459 0.0217**
diff(rigs) 0.0370** 0.6793
diff(oil) 0.0466** 0.0869*

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

cost functions, e.g., due to new technology that makes previously unavailable
reserves economically attractive, affect the level of production (cf., Sections
2.1.2 and 2.1.3). Consequently, it is not entirely obvious which, if any, of
the above-mentioned variables may be exogenous in the model. Granger
causality tests have been carried out to shed some further light on the topic
of variable endogeneity, see Table 1. The null-hypotheses in Table 1 are:
(i) X do not Granger-cause Y, and (ii) no instantaneous causality between
X and Y, where X is the relevant variable and Y is the set of remaining
variables (see Appendix C for details). The Granger causality test does not
really indicate endogeneity or causality, but rather whether one time series
is useful for forecasting another.

Current production depends on both current and future oil prices, and
rig activity and field development primarily depend on the companies’ expec-
tations about future oil prices, which are not observable. This is a challenge
when modeling oil production, and extraction of other exhaustible resources
in general. The present paper assumes the adaptive expectations hypothesis
in the empirical modeling of U.S. LTO production. Under this hypothesis,
expectations about future oil prices can be modeled as functions of past and
present oil prices (and perhaps other variables too). Oil production and rig
activity are functions of lagged oil prices in the econometric model. Hence,
I (implicitly) assume that companies’ price expectations are adaptive and
continually updated in the modeling of production and rig activity decisions.
Adaptive expectations about the future oil price may be an important reason
why the lagged oil price is a significant explanatory variable for rig activity
(see Table 3). The adaptive expectations hypothesis is fairly standard in
the empirical literature, see e.g. Farzin (2001) Nguyen and Nabney (2010),
Aune et al. (2010), Osmundsen et al. (2015) and Skjerpen et al. (2018).24

The theory suggests that the price response of oil production and rig
activity will change over time. For example, the short-run response in LTO
production to higher oil prices is likely to be smaller than the long-run re-
sponse. The reason is that it takes time before changed rig activity, induced
by the oil price change, leads to changes in oil production. This simple ob-

24See also Reitz et al. (2009) on the role of regressive expectations and oil price
forecasting.
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servation indicates that a dynamic model may be appropriate for adequately
capturing how oil production responds to changes in oil prices.

The theory and the investigations of Granger-causality between the vari-
ables in Table 1 suggest that a dynamic model with several endogenous
variables may be suitable. The point of departure for this paper is a vector
autoregressive (VAR) framework. This allows modeling of several endoge-
nous variables and a reasonably flexible lag structure. The following four
endogenous (log-transformed) variables are included in the model: U.S. LTO
production, rig activity, the oil price, and a proxy for U.S. LTO supply costs.
Other variables that have been included in the VAR model selection process,
but which do not enter the final model, are U.S. gas prices, the U.S. long
term interest rate, industrial production indexes for OECD and the U.S.,
U.S. GDP, the U.S. wage rate, and a (noisy) measure for existing production
capacity.25 The choice of variables has been made with a focus on modeling
oil production and rig activity, not the development in the oil price (which
is beyond the scope of the present paper). The state variables for devel-
oped and undeveloped reserves play important roles in the theory model,
but do not enter the econometric model directly. These variables influence
production via the cost function and are therefore indirectly present via the
cost variable. Remember that the time horizon in the theory model is sig-
nificantly longer than the data basis for the empirical analysis, and that
resource scarcity does not necessarily play a central role in the data sam-
ple period. Further, reserves and reservoir pressure also play a direct role
in production (cf., Equation (3)), which is present with several lags in the
VAR model. The lags of oil production may thus not only capture existing
infrastructure and capacity, but also reservoir characteristics like pay zone
thickness, rock permeability and pressure.

The author has not identified any changes in regulation of U.S LTO pro-
duction over the relevant time span (Jan. 2010 to Apr. 2022, see Section 3.2
below) that needs to be controlled for in the econometric model. Two pos-
sible issues were (i) the U.S. environmental protection agency (EPA) issued
new rules in 2012 to limit emissions of some air pollutants from fracking,
and, (ii), in 2015, New York became the first state with significant natural
gas reserves (the Marcellus Shale play) to prohibit fracking. Note that the
Energy Policy Act of 2005 excluded fracking from the Safe Drinking Water
Act’s underground injection control’s regulation, except when diesel fuel is
used. President Joe Biden pledged a moratorium on new oil and gas leasing
on federal lands and waters, but at the time of writing it appears unlikely
that he will able to fulfill this until his first term ends.26
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Figure 4: The endogenous variables included in the analysis and the cointegrating
relationships. LTO production in million barrels per day (MBPD). Real WTI per
barrel of oil in US 2021 dollars. The cointegrating relationships are generated from
the log transformed variables (see Figure 9 in Appendix C).

3.2 The data

I use monthly data for the period Jan. 2010 to Apr. 2022 (148 months). The
data series are graphed in Figure 4, which also includes the cointegrating
relationships, see Section 3.3 below. An overview of the endogenous variables
are given in Table 2.

The data for U.S. LTO production are fetched from the U.S. Energy In-
formation Administration (EIA) and cover the whole U.S. The data for the
number of active rigs cover the regions included in EIA’s Drilling produc-
tivity report for key tight oil and shale gas regions: Andarko, Appalachia,
Bakken, Eagle Ford, Haynesville, Niobrara and Permian. The data set does
not distinguish between oil-directed and gas-directed rigs, because once a
well is completed it may produce both oil and gas (more than half of the
wells do that). Hence, the rig figures used in the analysis are rigs involved
in both oil and gas extraction operations. I use the number of active rigs as
a proxy for rig activity and field development.27

25See ‘legacy oil production change’ at EIA-drilling
26Washington Post
27Exploration wells play a less important role in the U.S. LTO extraction. Since ex-

tensive resources have already been discovered, extraction costs and technology have tra-
ditionally been the bottleneck.
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Table 2: Overview of monthly time series used in the econometric model (Jan. 2010
to Apr. 2022).

Variable Description Underlying variable Source Denominator
oilprice Log of real oil price WTI spot price EIA USD(Oct. 2021)/barrel

cost Log of proxy variable for cost
Cost index for oil and gas

field machinery and equipment
FRED Producer price index

rigs Log of number of active rigs Rig count EIA Number of active rigs
oil Log of LTO production Oil production EIA Barrels of oil/day

For the oil price I use the Cushing (Oklahoma) monthly West Texas
Intermediate (WTI) FOB spot price. This price is deflated using the U.S.
consumer price index.28

It is very difficult to find good data on costs related to oil production.
Companies such as Rystad Energy and IHS Markit provide variables that
may be used as proxies at a cost. In this paper I use the ‘Producer Price
(monthly) Index by Industry: Oil and Gas Field Machinery and Equipment
Manufacturing’, published by the U.S. Bureau of Labor Statistics, as a proxy
for cost. It is available as monthly data and can be freely downloaded from
the Federal Reserve Economic Data base (FRED).29 This price index was
also used as a measure for production costs by Golombek et al. (2018). The
cost index is not significant in the final model, but if omitted the residual
diagnostics are worsened, in particular regarding heteroscedasticity. The
cost index was significant with expected signs in several preliminary and
discarded model formulations. The cost index is deflated using the U.S.
consumer price index (same as oil price above).

There are some outliers in the data, perhaps most notably associated
with the Covid-19 pandemic and Russia’s invasion of Ukraine. Note that oil
production, the oil price and rig activity all drop sharply in April 2020 (see
Figure 4).30 To deal with this, I formulated a general model with monthly
dummies from and including March 2020, and then removed the least im-
portant dummy variables. This involved a trade-off between limiting the
total number of dummies, retaining the significant dummies, and maintain-
ing acceptable model properties, specifically in terms of autocorrelation and
heteroskedasticity. The model also includes seasonal dummies. The dum-
mies and their significance are given in Table 4 in Appendix C.

28See EIA-spot-prices and FRED-CPI. The abbreviation FOB indicates that the price
is for oil loaded onto a vessel and ready for shipping. So it includes the cost of purchasing
and loading the oil, but not the cost to deliver it to its final destination.

29See FRED-costindex
30President Trump declared a nationwide US emergency on March 13, 2020, because

of Covid-19, and U.S. states began to shut down to prevent the spread of Covid-19 on
March 15. In May, 2020, the U.S. unemployment rate was 14.7 percent, the highest rate
since the Great Depression.
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3.3 The vector error correction model

Consider the VAR model with m endogenous variables, n exogenous vari-
ables (incl. dummies) and l lags:31

yt = c+ δ1yt−1 + · · ·+ δkyt−l + ϕxt + ϵt, t = 1, 2, . . . , T, (13)

where yt is a m × 1 vector of endogenous variables observed at time t, xt

is a n× 1 vector of exogenous variables, ϵt is a m× 1 vector of error terms,
and δk and ϕ are m×m and m× n coefficient matrices.

As mentioned above, the final econometric model for LTO production has
yt = (oilpricet, costt, rigst, oilt)

⊺, xt consists of the dummy variables, and
we have T = 148 months of observations. The number of lags, l, remains
to be determined. For our data and the specification given by Equation
(13), the The Akaike Information Criterion, the Hannan-Quinn Criterion,
the Schwarz Information Criterion and the Final Prediction Error Crite-
rion all suggest using two lags in the VAR model (see Appendix C). Model
experimentation shows that two lags yield a model with no significant au-
tocorrelation in the residuals (see reported diagnostics later in this section).
Hence, I specify the model in (13) with two lags, l = 2.32

Visual inspection of Figure 4 suggests that the variables in yt may be
non-stationary and possess unit roots. This is also suggested by the auto-
correlation (ACF) and partial autocorrelation (PACF) plots associated with
the four endogenous variables, which all decay slowly and remain well above
the 95 percent significance range for the 24 months plotted (see Figure 11
in Appendix C).33 To check more formally for the presence of unit-roots, I
perform augmented Dickey-Fuller tests and Phillips-Perron unit-root tests.
The test results indicate that the variables in levels have a unit root, and
that the first-differences of the variables are stationary (see Appendix C).
This indicates that estimation of a VAR in levels is problematic due the pos-
sibility of spurious or nonsense regressions. This issue can be ameliorated
by estimating a VAR on the stationary first-differenced data. It is not ideal,
however, to fit a VAR in differences if the system features cointegrating re-
lationships, because the variables in levels then contain information that is
useful for explaining the movement of the variables beyond that contained in
a finite number of lagged differences alone (see, e.g., Johansen and Juselius,
1990, and Hamilton, 1994).34

31This paper follows somewhat conflicting conventions and use notation π and δ to
denote profits and the discount rate in Section 2, and coefficient matrices in Section 3.

32Remember that the number of lags in the VAR determines the functional form of the
lag structure, not the memory length of the process. For example, the simple AR1 model
yt − ρxt−1 = ϕt is equivalent with yt =

∑∞
n=1 ρ

nϕt−n (the Koyck transformation).
33As a rough rule of thumb, the ACF declines linearly for an I(1) series and exponen-

tially for an I(0) series.
34The matrix polynomial associated with the moving average operator of the cointe-
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Defining ∆ = 1 − L, where L is the lag operator, the VAR (13) can be
rewritten in VECM form (with l = 2, see Appendix A):

∆yt = γ0 + γ∆yt−1 + πyt−1 + ϕxt + ϵt, t = 3, 4, . . . , 148. (14)

We observe that the model (14) is a standard VAR in (stationary) first-
differences, except for the equilibrium correction term πyt−1. The matrices
π and γ capture the long- and short-run impacts of shocks to the dynamic
system (14), respectively.

The choice between a VAR in differences and the VECM (14) depends
on whether the coefficient matrix π contains information about long-run
relationships in the data vector yt or not. This issue can be examined by
analyzing the rank of π. As pointed out by, e.g., Johansen and Juselius
(1990), there are three possible cases: Firstly, (i), rank(π) = m = 4, i.e.,
the matrix π has full rank, which indicates that the vector process yt is
stationary. This outcome is not consistent with the augmented Dickey-
Fuller tests and Phillips-Perron unit-root tests mentioned above. Secondly,
(ii), 0 < rank(π) = r < m = 4, i.e., we have r cointegrating relationships
and a VECM is appropriate. Thirdly, (iii), rank(π) = 0, indicating that π is
the null matrix and the model in Equation (14) reduces to a standard VAR
in first-differences.

A likelihood ratio test for no linear deterministic trend in the cointegrat-
ing relationship was conducted (assuming two cointegrating relationships,
see below). This test rejected the null-hypothesis of not including a trend
at one percent level of significance (see Appendix C).

I use the trace type of the Johansen test (Johansen and Juselius, 1990,
Johansen, 1991; 1995), specified with two lags and a linear time trend, to
examine rank(π) = r. The test procedure rejected the two null-hypotheses
r = 0 and r ≤ 1 at one percent level of significance. Further, the null-
hypothesis r ≤ 2 is not rejected at a level of significance equal to 5 percent
or less. Hence, the test indicates that rank(π) = 2 (at a 5 percent level
of significance or below). I proceed by specifying a VECM under the as-
sumption that we have two cointegrating relationships in the data. The
matrix product πyt−1 then consists of the first lag of two stationary linear
combinations of the variables in levels (that are themselves non-stationary)
and their coefficients. The estimated VECM (see Equation 14) is given in
Table 3. Detailed output from the econometric software R, including the
unrestricted VECM, is given in Appendix C. See Appendix C for details,
including the Johansen test output, plots of the cointegrating relationships,
and the estimated unrestricted VECM.

The main text graphs the endogenous variables in levels, but the log
transformed endogenous variables in levels and first-differences, as included

grated system has a root at unity, implying that the moving average operator is nonin-
vertible and thus no finite-order VAR can describe the process (Hamilton, 1994, p. 573).
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in the econometric model, are graphed in Figure 9 in Appendix C, which
also includes complete regression results including the 11 seasonal and 10
monthly dummy variables. Whereas Table 3 gives some indication of how
the variables interact in the model, along with their statistical significance
and how well the model explains the variation in the endogenous variables,
some care should taken when interpreting the estimated coefficients. The
reason is that this is a dynamic model with four endogenous variables that
interacts with each other. Section 3.4 below discusses results and illuminates
the dynamics of the system in the context of impulse response functions.

Table 3: The VECM model. Estimated equation by equation using OLS.

Dependent variable:

diff(oilprice) diff(cost) diff(rigs) diff(oil)

(1) (2) (3) (4)

Cointegrating relationship 1 0.053∗∗ −0.003∗∗∗ 0.007 −0.016∗∗∗

(0.026) (0.001) (0.007) (0.004)

Cointegrating relationship 2 4.406∗∗ −0.340∗∗∗ −0.867 −0.073
(2.085) (0.070) (0.557) (0.297)

constant −23.977∗∗ 1.850∗∗∗ 4.721 0.407
(11.345) (0.378) (3.031) (1.615)

diff(oilprice).lagged 0.274∗∗ −0.013∗∗∗ 0.137∗∗∗ 0.045∗∗∗

(0.107) (0.004) (0.029) (0.015)

diff(cost).lagged −0.911 0.158∗ 1.068 0.098
(2.545) (0.085) (0.680) (0.362)

diff(rigs).lagged −0.163 0.004 0.861∗∗∗ 0.060∗∗∗

(0.153) (0.005) (0.041) (0.022)

diff(oil).lagged 0.671 0.031 0.331∗∗ 0.077
(0.575) (0.019) (0.154) (0.082)

Observations 146 146 146 146
R2 0.487 0.516 0.915 0.911
Adjusted R2 0.366 0.401 0.895 0.890
Residual Std. Error (df = 118) 0.090 0.003 0.024 0.013
F Statistic (df = 28; 118) 4.008∗∗∗ 4.486∗∗∗ 45.374∗∗∗ 43.089∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The Johansen procedure decomposes the matrix π in equation (14) into
two matrices α and β, defined such that αβ⊺ = π. The cointegrating re-
lations are then given by β⊺yt, whereas α is the loading (or adjustment)
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matrix. The cointegrating relations are graphed in Figure 4. They capture
common trends that links the variables in the long-run. As pointed out by
Johansen (1995, p. 41), the long run relations β⊺yt are not relations that
are satisfied in the limit as t → ∞ (unless ϵt = 0 for all sufficiently high
values of t). Rather, they are relations in the economy, as described by the
statistical model, which pulls the variables towards the attractor set defined
by the cointegrating relations. The speed of which the variables are pulled
towards the attractor set is determined by the loading matrix α. The es-
timated loading matrix α and the estimated eigenvectors β are specified in
Appendix C.35

Below is a summary from a suite of tests on the model in Table 3 (see
Appendix C for details).

Stationary model residuals: Philips-Perron unit root tests conducted on
the residuals from the VECM reject the hypothesis of unit root for all four
residual time series (all p-values are equal to 0.01). This corroborates the
result from the Johansen-test on the presence of cointegrating relationships
and indicates that the choice of a VECM was appropriate.

Autocorrelation: The Portmanteau test, the Breusch-Godfrey LM (BG)
test, and the Edgerton-Shukur F test, which generalize the BG test to sys-
tems of equations, all reject the presence of serially correlated error terms in
the VECM model at 5 percent level of significance. This indicates that the
specification with two lags (in the VAR form) is sufficient for this model.

Heteroscedasticity : A multivariate ARCH-LM test rejected the presence
of autoregressive conditional heteroscedasticity in the VECM at 5 percent
level of significance.

Normally distributed residuals: Multivariate Jarque-Bera tests and mul-
tivariate skewness and kurtosis tests for the residuals in the VECM indicate
that the model residuals are not normally distributed.

The Gauss Markov Theorem states that the OLS estimator is the best
(i.e., smallest variance) linear unbiased estimator. This result is contin-
gent on the absence of autocorrelation and heteroscedasticity, but does not
require normally distributed error terms.36 Without normally distributed
disturbances, the exact distributions of the F , t and chi-squared statistics
depend on the data and the parameters, and are not exactly F , t and chi-
squared, however. The Central Limit Theorem (CLT) implies that, as a

35The parameters in the matrixes α and β are not uniquely identified. The reason is
that the matrixes are derived from π and, for any choice of α and β and a non-singular
m×m matrix φ, αφ and β(φ)⊤ will give the same matrix π. In this paper normalize the
cointegrating relations to the first column, as suggested by Johansen (1995) and default
in the the R urca package (see Appendix C). The normalization is not important for the
results presented in this paper (any choice of normalization gives the same VECM).

36See Carter Hill et al. (2001, p. 77) for more on the conditions of the Gauss Markov
Theorem. In the particular context of cointegration, Johansen points that ’The methods
derived are based upon the Gaussian likelihood but the asymptotic properties of the
methods only depend on the i.i.d.assumption of the errors’ (Johansen, 1995, p. 29).
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large sample approximation, the standard normal distribution can be used
to approximate the true distribution of the t-test statistic. The CLT also
implies that the Wald statistic is asymptotically normal, even in the absence
of normally distributed disturbances. The implication of this is that use of
the conventional t and F test statistics is a reasonable approach in large
samples (see, e.g, Greene, 2003, p. 106 and 108). The final model uses
146 observations and has 118 degrees of freedom (we have 148 observations
and lagged first-differences for each equation in Table 3, and several dummy
variables - see Table 4 in Appendix C). Whereas this sample is arguably suf-
ficiently large to rely on the CLT, the main empirical results in this paper is
based on bootstrapped impulse response functions and, hence, do not rely
on the normal distribution. Furthermore, an alternative to the standard er-
rors reported in Table 3 is standard errors estimated by bootstrapping. Such
standard errors are reported in Appendix C (they are of similar magnitude).

Coefficient stability : A test based on cumulative ordinary least squares
residuals for structural change was done to assess the stability of coefficients.
Under the null hypothesis of coefficient constancy, values of the sequence
outside an expected range suggest structural change in the model over time.
The test results do not indicate model instability, see Figure 14 in Appendix
C.

3.4 Model results

Figure 5 presents selected impulse response functions (IR) and 95 percent
bootstrapped confidence intervals (CI) from the model in Table 3.37 The
IRs graphs the estimated effects on the relevant variable following a one
unit transitory shock. Because all variables enter the model in natural log-
arithms, we can read Figure 5 as percentage changes in the ’dependent’
variable following a one percent shock to the ’impulse’ variable. According
to the estimated VECM, a one percent (positive) transitory shock to the oil
price gives a long-run increase of 0.3 percent in U.S. LTO production.38 We
also find a positive effect on rig activity, which tops out at 1.2 percent after
12 months and then declines and stabilizes around 0.8 percent. The VECM
indicates that a one percent shock to rig activity increases oil production
with 1.7 percent in the longer run. We further observe that increased rig ac-
tivity significantly increases the cost of oil production, which indicates the
presence of capacity constraints as conjectured in the theory section (cf.,
Equation 5). There is also a somewhat smaller but significant effect from
LTO production on costs, see Figure 10A in Appendix C. Last, I find no
significant effects on the oil price following a one percent transitory shock
to U.S. LTO production, see Figure 10 B in Appendix C. The lack of signif-

37The effects in Figure 5 are also significant at the 1% level of significance.
38In terms of the theory model, this could be modeled as a shock to the exogenous ν

in Equation (4), calibrated such that the oil price increases with one percent.
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Figure 5: Selected impulse response functions. 95% bootstrap CI, 5000 runs. Gen-
erated from the model in Table 3.
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Figure 6: Left: Simulation of effect following a one percent transitory shock to the
oil price in period 1. Right: Simulation of model with a fixed one percent increase
in oil price. Changes are given in the original variables (not logarithms).

icance may not be that surprising, given the high volatility of oil prices (see
Figure 4), the many factors that affects the it, and the global nature of the
oil price.39

We also observe that the effects of the transitory shocks do not disappear
over time, but rather that the model converges towards a new equilibrium.
This is because we have a system with cointegrated non-stationary variables.

As pointed out by Anderson et al. (2018), most of the Hotelling style
resource economics literature neglects the role of pressure dynamics and
drilling activity. Panels B and C in Figure 5 highlights the importance of
accounting for drilling activity and rig markets when examining petroleum
extraction, both in theoretical and empirical models.

It is not straightforward to compare the results in Figure 5 with the
previous literature on crude oil production. One reason is that the literature
often focuses on the supply elasticity of oil; i.e., the percentage increase in oil
supply induced by a one percent permanent increase in the oil price. Such
an elasticity cannot be directly derived in the VECM model. Specifically,
the oil price is not an exogenous variable in the VECM, and a change in the
oil price in some period t will induce changes in the oil price in period t+1,
t+ 2 and so forth.

The left graph in Figure 6 illustrates the effects in the VECM of a one
percent transitory shock to the oil price in period t = 1 (disregarding un-

39Besides OPEC and OPEC plus policy decisions, and the Covid-19 pandemic, political
and financial issues like the uprisings in Egypt and Libya in 2011 and the Syrian conflict
have undoubtedly affected the oil price development during the last decade or so. The
U.S. LTO share of global oil production has increased much during the sample period,
see Figure 1. It is conceivable that one would have found a significant effect from the
U.S. LTO on oil prices if the U.S. LTO’s share of global oil production had been at, for
example, the 2020 level throughout the data period.
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certainty). The figure is based on two simulations over the time horizon
t = {−1, 0, ..., 60}. In the baseline scenario, I set all variables to their mean
values in periods t = −1 and t = 0, and then forecast the values for the
remaining periods t = {1, 2, ..., 60} (i.e., five years). Then I run a scenario
which is identical, except that the oil price is hit by a transitory shock that
increases the oil price in period t = 1 with one percent. The effects of the
shock is measured as the difference between the two scenarios. The results,
which are graphed in the left part of Figure 6, correspond to the standard
impulse response functions. Note that the increase in oil prices following
the transitory shock is greater than one percent after the first period.40

The right hand side of Figure 6 is obtained by the same procedure, except
that the oil price is fixed at its mean value in the preceding periods t = −1, 0,
and at its mean value times 1.01 in periods t = 1, 2, . . . , 60. Whereas the
results from this exercise may be somewhat easier to compare with the
results on price elasticities in the previous literature, the right hand side in
Figure 6 does not represent the true VECM model in Table 3. The reason is
that the fixed oil price compromise the model dynamics. The approximation
may nevertheless have some value, because the oil price appears to be only
modestly dependent on the other variables in the VECM, see, e.g., Figures
8 and 10, and the test for a weakly exogenous oil price below.

The results in Figure 6 suggest that a one percent increase in the oil
price causes a 0.3 percent increase in U.S. LTO production, or 0.2 percent
if we restrain the model to feature an exogenous oil price. In comparison,
Bjørnland et al. (2020) find the short run supply elasticity of shale wells to
be positive and in the range of 0.3–0.9, depending on wells and firms charac-
teristics. Anderson et al. (2018) estimate a price elasticity of approximately
0.7 for drilling in Texas during 1990-2008, whereas Newell and Prest (2019)
find a cumulative drilling response of 1.6 percent for unconventional wells.
We observe from Figure 6 that the VECM indicates that the response in rig
activity varies markedly over time.

The error terms in the different equations of the VECM in the Table 3
can be correlated with each other. The covariance matrix of the error terms
represents the contemporaneous (i.e., within the same month) effects. These
contemporaneous effects are not captured in Figures 5 and 6, so a shock to
one variable in period t cannot cause an effect in any other variable before
the next period t + 1. This is somewhat problematic, as the shocks to the
variables are indeed correlated, in this case especially oil and rigs, and rigs
and oil price; see the correlation matrix for the residuals given in Appendix
C.

To ameliorate this, Figure 7 presents orthogonal impulse response func-

40Remember the presence of a unit root in the variables; cf., Section 3.3. That is,
whereas the exogenous shock itself is transitory, its effects on the endogenous variables
are not.

28



Figure 7: Orthogonal impulse response functions. 95% bootstrap CI, 5000 runs.

tions (OIR) from the VECM. These are obtained using the Cholesky decom-
position. That is, the variance-covariance matrix Σ is decomposed such that
Σ = PP ⊺, where P is a lower triangular matrix with positive diagonal ele-
ments. A caveat with this approach is that the results are dependent on the
ordering of the variables in the VECM. The causality chain assumed in the
Cholesky decomposition is oilprice → cost → rigs → oil. So, for example,
the oil price will never be sensitive to a contemporaneous shock in any other
variable, whereas oil will be sensitive to shocks of all other variables. The
estimated Cholesky matrix is given in Appendix C. Fortunately, model ex-
perimentation suggests that the OIRs are not very sensitive to the ordering
of the variables. Specifically, model formulations where the control variables
enters first, i.e., rigs, oil, oilprice/cost, only result in small differences from
those presented in Figure 7. One reason for this may be the use of monthly
data. Note that the magnitude of the exogenous transitory shocks are not
equal in Figures 5 and 7, because of the Cholesky decomposition.

Figure 8 graphs the forecast error variance decomposition (FEVD) of
the model. The FEVD, which is also based on the orthogonalized impulse
response coefficient matrices in this case, indicates how much of each the
endogenous variables contribute to the forecast error variance of the other
variables in the VECM. We see that the oil price is a key determinant.
Remember that this paper does not try to explain the development of the
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Figure 8: Forecast error variance decomposition (FEVD) of the model.

oil price. The oil price reflects a plethora of factors that indirectly affect the
residual demand for U.S. LTO production, e.g., GDP fluctuations, OPEC
supply decisions and various other international events.

The theory suggests that changes in costs and the oil price should have
a similar effects in the long-run. One way to examine this is to test whether
the absolute values on the coefficients for cost and oil price are equal in
the cointegrating relations matrix β. This test is performed in R using the
blrtest. The test rejects the null hypothesis of equal absolute values on the
coefficients with a p-value below 0.01 (see Appendix C for details). This
result may not be that surprising, given the estimated VECM in Table 3
and Figure 8. Nevertheless, the fact that costs are so unimportant compared
to the oil price is perhaps a little surprising in light of the theory model.
This may, e.g., be because our proxy for costs does not capture the whole
cost picture, because of the role expectations play in the oil market (e.g.
the expected persistence of current changes in the oil price versus current
changes in costs), or because the theory model exaggerates the role costs
have relative to oil prices.

I also test for weak exogeneity, i.e., whether a particular variable is in-
dependent of the cointegrating relations in the long run, by testing whether
its coefficient in the loading matrix α is zero. This is performed in R using
the alrtest. The tests reject the null-hypothesis of weak exogeneity for the
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variables cost, rigs and oil at the 5% level of significance (p-values below
0.01), but the null-hypothesis that the oil price is weakly exogenous is not
rejected (the p-value is 0.12).41 It is reasonable to assume that the weak
exogenity of the oil price reflects all the other variables that affect global oil
prices not captured in this model. That is, because this paper focuses on
the supply of LTO and how it responds to the oil price, key determinants
for the oil price itself is not included in the model (e.g., variables capturing
demand, or OPEC policy).

4 Concluding remarks

This paper examined the supply of U.S. LTO both from a theoretical and
empirical point of view. The implications from the theory model are es-
sentially consistent with the results from the empirical analysis. We note,
however, that resource scarcity does not seem to be a driving factor for
U.S. LTO in the period covered by the data base. This is not so surpris-
ing considering the large U.S. LTO resource base, and that large-scale LTO
production is a fairly young industry.

The theoretical model emphasized that the effect of changed oil prices
on oil production levels largely depends on changes in rig activity. This
is supported by the results from the econometric model. Specifically, the
rig market reacts both faster and stronger to changes in the oil price than
oil production itself. Furthermore, oil production depends positively on rig
activity. The results in the present paper hence highlights the importance
of seeing oil production and rig activity in context. We also observe that
the response to changes in the oil price varies markedly over time.

A key research question in the literature is whether the rise of LTO and
unconventional oil can contribute to stabilizing oil prices (Bornstein et al.,
2018; Balke et al., 2020; Vatter et al., 2022)). The estimated VECM model
indicates that LTO production is responsive to price changes, which implies
that LTO can dampen price volatility given that conventional oil is less
responsive. On the other hand, I did not find a significant effect from U.S.
LTO production on the WTI oil price. This is perhaps not very surprising,
given the volatility in oil prices over the data period. In this context, it
is worth noting that the share of LTO in global oil production has grown

41See Appendix C for details. The final model includes oil price as an endogenous
variable, but models with an exogenous oil price have been tested. Oil price endogene-
ity is often tackled using instrument variables in the literature (Davis and Kilian, 2011;
Coglianese et al., 2017; Newell and Prest, 2019). Note that the Granger tests in Table 1
indicate that none of the (endogenous) variables, including the oil price, are strongly ex-
ogenous (strong exogeneity requires weak exogeneity and no Granger-causality, see Engle
et al., 1983). An auxiliary test using a bivariate VAR consisting of the first-differences of
oilprice and oil rejects the null-hypothesis that oil does not Granger-cause oilprice at a
5% level of significance (p-value 0.02, see Appendix C).
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significantly over the (pre-Covid-19) data sample period.
Besides various combinations of dummy variables and exogenous ex-

planatory variables, I have tested for models where (i) the oil price is ex-
ogenous, (ii) cost is exogenous, and (iii) cost and oil price are exogenous.
Neither of these models performed as well as the final model, nor did models
with a larger number of lags.

Last, as a final caveat, there may have been a change in the behavior of
U.S. LTO production after the Covid-19 pandemic. As pointed out by e.g.
the International Energy Agency (IEA, 2021) and Wood Mackenzie (2020),
LTO operators today are under extreme duress from banks and shareholders
simply to generate free cash flow, and it is not obvious that LTO will return
to growth paths like we have seen the last decade.42 Hence, it is conceivable
that the future price elasticity of U.S. LTO will turn out to be lower than
during the sample period used in this paper.
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Appendices

A Appendix: Proofs and derivations

Proof of Lemma 1: We first observe that the integral in (6) converges under
our assumptions of a finite choke price p̄. The shadow prices λ and µ cannot
exceed the finite choke price p̄ (in fact, they are below p̄ whenever costs are
positive). Further, the stocks Rit and Sit are finite. The discount factor
r > 0 is essential for a unique time profile.

The Lagrangian associated with the mixed constraints problem (6) is:

Hit(xit1 , yit1 , Rit1 , Sit1 , kt) = Hi(xit1 , yit1 , Rit1 , Sit1 , kt) + ηit(1− yit), (A.1)

where Hi(xit1 , yit1 , Rit1 , Sit1 , kt) = πit + λit(xit − qit) − µitxit is the current
value Hamiltonian associated with the maximization problem (6). Here λit

and µit are the shadow prices (or adjoint/co-state variables) on the state
variables Rit and Sit, respectively. The cost function is convex; i.e., the
Hessian matrix associated with ci(·) is negative definite, and all variables
are non-negative. It follows that the Lagrangian is a sum of linear and
concave functions, and therefore itself concave.43 The necessary conditions
for optimum are given by (see Sydsæter et al., 2008, pp. 360–366):

Hyit = πyit(·)− ωRitλit − ηit ≤ 0, (A.2)

yit ≤ 1, and ηit = 0 if yit < 1, (A.3)

Hxit = πxit(·) + λit − µit ≤ 0, (A.4)

λ̇it − δλit = −HRit(·) = −πRit(·), (A.5)

µ̇it − δµit = −HSit(·) = −πSit(·), (A.6)

λit1 ≥ 0, µit1 ≥ 0, (A.7)

Hit1(·) = 0. (A.8)

43Neither the Mangasarian nor the Arrow theorem applies to variable final time prob-
lems like (6). Nevertheless, any optimal path must satisfy the necessary conditions given
by the system of equations (7)-(12).
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This system of equations is equivalent with Equations (1)-(5) in Lemma
1.44

Derivation of Equation (14): Let i, j ∈ I = (oilprice, cost, rigs, oil).
Then the j ’th equation in the VAR (13) can be written:

yj,t = cj +
∑
i∈I

(δjiyi,t−1 + µjiyi,t−2) + ϵj,t ,∀j ∈ I, (A.9)

where δji and µji denote the coefficients for the first and second order lags,
respectively. The term with exogenous variables, ϕxt, enters Equations (13)
and (14) identically and is omitted for simplicity. Note that the long run
equilibrium, as characterized by yj = yj,t = yj,t−1 = yj,t−2, satisfies:

yj =
1

(1− δjj − µjj)

cj +
∑

i∈I/{j}

(δjiyi,t−1 + µjiyi,t−2)

 (A.10)

for given values on the other i ∈ I/{j} variables. Equation (A.9) can be
rewritten to find the j ’th equation in the VECM model:

∆yj,t =
∑
i∈I

γji∆yi,t−1 − λj

yj,t−1 − πj0 −
∑

i∈I/{j}

πjiyi,t−1

+ ϵt, (A.11)

where γji = −µji, λj = (1 − δjj − µjj), πj0 =
cj
λ and πji =

δji+µji

λ . The
matrices in Equation (14) follows directly from Equation (A.11).

Note that the term in parenthesis is the deviation from the long run value
given in Equation (A.10). The estimation of the VECM model which results
are reported in Table 3 does the following: (i) Estimate the four equations
in (A.10) by OLS (we do not loose information doing this equation by equa-
tion, because the same variables enters in all equations), then (ii) estimate
the four equations in (A.11) using OLS, where the square parenthesis is re-
placed by the residuals from step (i). Note that we found two cointegrating
relationships in this model (cf., Section 3.3). Note that a VAR in levels with
two lags corresponds to a VECM with one lag (and a Johansen test for re-
duced rank with two lags), because the VECM features the first-differences
of the lagged variables.

44The case of a free flow control variable in Anderson et al. (2018), which is arguably a
good approximation to much conventional oil production, can be approximated by a cost
function cyi (·) that is close to zero for y < 1, and then jumps steeply as y approaches 1, e.g.
the cumulative Cauchy distribution function variation ci(yit, kt) = ((2.01p̄/π)arctan((y−
1)/0.001) + 1/2).
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B Appendix: The numerical illustration

The numerical illustration uses the theory framework from Section 2 with
quadratic cost functions and one representative resource extracting firm.
The model is formulated as a non-linear programming problem and solved
using the Conopt solver in GAMS (GAMS). The GAMS code is supplied in
the separate attachment ’Appendix B - GAMS code’.

C Appendix: The econometric model

This appendix presents output from the econometric software R (R) and se-
lected figures. The output is supplied in the separate attachment ’Appendix
C: Selected output from R’.
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Table 4: The VECM model. Estimated equation by equation using OLS.

Dependent variable:

diff(oilprice) diff(cost) diff(rigs) diff(oil)

(1) (2) (3) (4)

Cointegrating relationship 1 0.053∗∗ −0.003∗∗∗ 0.007 −0.016∗∗∗

(0.026) (0.001) (0.007) (0.004)

Cointegrating relationship 2 4.406∗∗ −0.340∗∗∗ −0.867 −0.073
(2.085) (0.070) (0.557) (0.297)

constant −23.977∗∗ 1.850∗∗∗ 4.721 0.407
(11.345) (0.378) (3.031) (1.615)

diff(oilprice).lagged 0.274∗∗ −0.013∗∗∗ 0.137∗∗∗ 0.045∗∗∗

(0.107) (0.004) (0.029) (0.015)

diff(cost).lagged −0.911 0.158∗ 1.068 0.098
(2.545) (0.085) (0.680) (0.362)

diff(rigs).lagged −0.163 0.004 0.861∗∗∗ 0.060∗∗∗

(0.153) (0.005) (0.041) (0.022)

diff(oil).lagged 0.671 0.031 0.331∗∗ 0.077
(0.575) (0.019) (0.154) (0.082)

sd1 0.028 0.003∗∗ −0.018∗ −0.009∗

(0.039) (0.001) (0.010) (0.005)

sd2 0.027 0.002 −0.023∗∗ 0.009
(0.042) (0.001) (0.011) (0.006)

sd3 −0.009 0.0003 −0.008 0.015∗∗∗

(0.039) (0.001) (0.011) (0.006)

sd4 0.015 0.002∗ −0.003 0.002
(0.041) (0.001) (0.011) (0.006)

sd5 −0.013 0.002 −0.021∗ 0.010∗

(0.040) (0.001) (0.011) (0.006)

sd6 −0.030 0.002∗ 0.007 0.005
(0.041) (0.001) (0.011) (0.006)

sd7 0.009 0.001 −0.001 0.012∗∗

(0.040) (0.001) (0.011) (0.006)

sd8 −0.039 0.0004 −0.004 0.015∗∗∗

(0.039) (0.001) (0.011) (0.006)
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Table 4 cont.

Dependent variable:

diff(oilprice) diff(cost) diff(rigs) diff(oil)

(1) (2) (3) (4)

sd9 0.019 −0.0001 −0.020∗ 0.014∗∗

(0.039) (0.001) (0.010) (0.006)

sd10 0.012 −0.0001 −0.008 0.016∗∗∗

(0.038) (0.001) (0.010) (0.005)

sd11 −0.017 −0.00004 −0.013 0.010∗

(0.038) (0.001) (0.010) (0.005)

D2011 02 0.002 −0.001 −0.020 −0.049∗∗∗

(0.097) (0.003) (0.026) (0.014)

D2020 04 −0.360∗∗∗ −0.001 −0.229∗∗∗ −0.071∗∗∗

(0.115) (0.004) (0.031) (0.016)

D2020 05 0.761∗∗∗ −0.005 −0.113∗∗∗ −0.187∗∗∗

(0.131) (0.004) (0.035) (0.019)

D2020 06 0.185 0.015∗∗ 0.144∗∗∗ 0.102∗∗∗

(0.181) (0.006) (0.048) (0.026)

D2020 07 −0.153 0.002 0.043 0.053∗∗∗

(0.122) (0.004) (0.033) (0.017)

D2020 12 0.131 0.00000 −0.052∗ −0.008
(0.098) (0.003) (0.026) (0.014)

D2021 02 0.059 −0.001 −0.005 −0.162∗∗∗

(0.099) (0.003) (0.026) (0.014)

D2021 03 0.082 0.008∗ 0.005 0.174∗∗∗

(0.132) (0.004) (0.035) (0.019)

D2021 04 −0.157 −0.010∗∗ −0.064∗ −0.002
(0.137) (0.005) (0.037) (0.019)

D2021 06 0.141 0.003 −0.047∗ 0.001
(0.098) (0.003) (0.026) (0.014)

Observations 146 146 146 146
R2 0.487 0.516 0.915 0.911
Adjusted R2 0.366 0.401 0.895 0.890
Residual Std. Error (df = 118) 0.090 0.003 0.024 0.013
F Statistic (df = 28; 118) 4.008∗∗∗ 4.486∗∗∗ 45.374∗∗∗ 43.089∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 9: The cointegrating relationships and the log-transformed endogenous vari-
ables in levels and first-differences.
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Figure 10: Selected impulse responses. Bootstrapped confidence intervals (5000
runs).
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Figure 11: Autocorrelation and partial autocorrelation plots.
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Figure 12: Regression residuals.

Figure 13: Histograms and kernel densities of residuals plotted against normal
distributions with same mean and variance.
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Figure 14: OLS-based CUSUM test for structural stability.

Figure 15: Model fitted and actual data.
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1   * APPENDIX B: GAMS CODE
2   
3   * NUMERICAL EXAMPLE OF NON-RENEWABLE RESOURCE MODEL WITH EXTRACTION 
4   AND RESOURCE DEVELOPMENT
5   
6   ********************************************************************************
7   * Code by HBS march 2022
8   * Model is for illustrative purposes only
9   ********************************************************************************
10   
11   *        SETS AND PARAMETERS
12   
13   Sets
14   t                Projection years                                        /0*200/
15   t0(t)            Time dummy positive at t=1
16   tS1(t)           Time dummy for resource discovery for first discovery
17   tS2(t)           Time dummy for resource discovery for second discovery
18   tGDP(t)          Time dummy for shift in demand
19   ;
20   t0(t)=yes$(ord(t) eq 1);
21   tS1(t)=yes$(ord(t) = 25);
22   tS2(t)=yes$(ord(t) = 50);
23   tGDP(t) = yes$(ord(t) > 50);
24   
25   display t0, tS1, tS2, tGDP;
26   
27   Scalars
28   pK               Choke price given GDP=1 #100                            /100/
29   pp               How fast price declines in quantum #1                   /1/
30   rr               Discount factor #0.95                                   /0.95/
31   Cy1              Extraction cost parameter 1 (intercept) #15             /15/
32   Cy2              Extraction cost parameter 2 (sqr) #2                    /2/
33   Cy3              Extraction cost parameter 3 (resource R to Q) #0.1      /0.1/
34   Cx1              Resource development cost parameter 1 #10               /10/
35   Cx2              Resource development cost parameter 2 (exp) 1 #2        /2/
36   Cx3              Development cost parameter 3 (resource S to R) #1       /1/
37   S0               Initial undeveloped res. stock #25                      /25/
38   R0               Initial developed resource stock #0                     /0/
39   DGDP             Shift in demand parameter #0 (#0.25)                    /0.0/
40   SS               Resource discovery addition to S at time tS  #0 (#10)   /10/
41   TSS              Techn adds TSS units to S each time period #0 (#0.25)   /0.0/
42   TCC              Techn reduces cost by 1 div 1+TCC each year #0 (0.05)   /0.0/
43   omega            Max flow from a unit mass if newly drilled wells #0.05  /0.05/
44   Cxadj            Adjustment cost change drilling  #10                    /10/
45   Cyadj            Adjustment cost change production rate #10              /10/
46   CF               Fixed cost element to drilling and prod #0 (#0.5)       /0.5/
47   ;
48   * # refer to REF values, (#) refer to sensitivity values
49   
50   Positive Variables
51   Q(t)             Production of firm i in period t
52   S(t)             Undeveloped resourtce stock (not available for production)
53   R(t)             Developed resourtce stock (available for production)
54   P(t)             Equilibrium price in period t
55   x(t)             Resource development of firm i in period t
56   y(t)             Extraction flow rate
57   ;
58   
59   Variables
60   vv(t)            Instantaneous profits
61   V                Objective criterion profits over time horizon
62   C(t)             Cost of production
63   FCy(t)           Fixed cost flow rate u
64   FCx(t)           Fixed cost drilling x
65   ;
66   
67   Parameter
68   SS0(t)           Stock S in period 1
69   SR0(t)           Stock R in period 1 45



70   GDP(t)           Demand parameter
71   DS(t)            Shift in stock S (one time)
72   TTSS(t)          Shift in stock from tech (each period)
73   ;
74   SS0(t) = t0(t)*S0;
75   SR0(t) = t0(t)*R0;
76   GDP(t) = 1 + tGDP(t)*DGDP;
77   DS(t) = SS*(tS2(t))
78   ;
79   Display SS0, SR0, GDP, DS;
80   ;
81   y.lo(t) = 0.00001; y.up(t) = 0.999;
82   x.lo(t) = 0.00001;
83   * limit extraction flow between 0 and 1 and resource development non-negative
84   
85   ********************************************************************************
86   
87   *        EQUATIONS AND MODEL FORMULATION
88   
89   Equations
90   EqS(t)           State movement equation for undeveloped stock S
91   EqR(t)           State movement equation for developed stock R
92   EqP(t)           Equilbrium price inverse demand function
93   EqQ(t)           Equation for production
94   Cost(t)          Cost function
95   Cost_Fy(t)       Fixed cost production
96   Cost_Fx(t)       Fixed cost drilling
97   Profit(t)        Instantaneos profits
98   Sumvv            Objective criterion profits over time horizon
99   ;
100   EqS(t)..         S(t) =e= SS0(t) + S(t-1) - x(t-1) + DS(t) + TSS;
101   EqR(t)..         R(t) =e= SR0(t) + R(t-1) - Q(t-1) + x(t-1);
102   EqP(t)..         P(t) =e= ( pk*exp(-pp*Q(t)) ) * GDP(t);
103   EqQ(t)..         Q(t) =e= omega * y(t) *R(t);
104   Cost(t)..        C(t) =e= ( Cy1*y(t) + Cy2 * (y(t)**2) + Cy3 * ( y(t)/(0.01+R(t)) )  
105   + Cx1*x(t) + Cx2 * (x(t)**2) +  Cx3 * ( x(t)/(0.01+S(t)) ) + 

Cyadj*power(y(t)-y(t-1),2) 
106   + Cxadj*power(x(t)-x(t-1),2) ) / (1+ord(t)*TCC) +FCy(t) + FCx(t);
107   Cost_Fy(t)..     FCy(t) =e= CF * ( (1/3.14159265359) * arctan( ((y(t)-0.001)/0.0001) 

) + 0.5);
108   Cost_Fx(t)..     FCx(t) =e= CF * ( (1/3.14159265359) * arctan( ((x(t)-0.001)/0.0001) 

) + 0.5);
109   Profit(t)..      vv(t) =e= (P(t)*Q(t)-C(t)) * 1;
110   Sumvv..          V =e= sum(t, (rr**(ord(t)))*vv(t));
111   ;
112   
113   *create GDX point file with the marginals and levels for the variables and equations.
114   option Savepoint=1;
115   *load GDX file with marginals and levels from previous model run
116   execute_loadpoint 'LTO_p';
117   
118   Model LTO /EqS, EqR, EqP, EqQ, Cost, Cost_Fy, Cost_Fx, Profit, Sumvv/;
119   solve LTO using nlp max V;
120   
121   *Error checking
122   Display LTO.modelstat, LTO.solvestat;
123   ABORT$(LTO.modelstat <> 2) "Model not normally completed", LTO.modelstat;
124   ABORT$(LTO.solvestat <> 1) "No optimum found", LTO.solvestat;
125   
126   Display P.l, Q.l, x.l, y.l, C.l, R.l, S.l, vv.l, FCy.l, FCx.l;
127   
128   ********************************************************************************
129   
130   Parameter
131   AQ               Accumulated production
132   AR               Accumulated development
133   Mcy(t)           Marginal cost of oil flow rate y
134   Mcx(t)           Marginal cost of drilling x
135   lambda(t)        Shadow price R 46



136   mu(t)            Shadow price S
137   lambda_q(t)      Shadow price R normalized from y to q
138   mu_q(t)          Shadow price S normalized from y to q
139   test(t)          Fixed cost production
140   ;
141   AQ = sum(t, Q.l(t));
142   AR = sum(t, x.l(t));
143   Mcy(t) = ( Cy1 + Cy2 * 2 * y.l(t) + Cy3 * ( 1/(0.01+R.l(t)) ) + 

Cyadj*2*(y.l(t)-y.l(t-1)) ) 
144   / (1+ord(t)*TCC);
145   Mcx(t) = ( Cx1 + Cx2 * 2 * x.l(t) + Cx3 * ( 1/(0.01+S.l(t)) ) + 

Cxadj*2*(x.l(t)-x.l(t-1)) ) 
146   / (1+ord(t)*TCC);
147   lambda(t) = ( p.l(t) - Mcy(t) )/(R.l(t)*omega+0.001) ;
148   mu(t) = -Mcx(t) + lambda(t);
149   lambda_q(t) = lambda(t)*(R.l(t)*omega+0.001);
150   mu_q(t) = -Mcx(t) + lambda_q(t);
151   ;
152   Display
153   AQ, AR, Mcy, Mcx, lambda, mu, lambda_q,  mu_q;
154   ;
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1   #############################################################################
2   
3   # APPENDIX C: SELECTED OUTPUT FROM R 
4   
5   #############################################################################
6   
7   
8   ########################### 
9   # SUMMARY STATISTICS
10   ########################### 
11   
12         WTI           Cost_index      Rig_count           LTO      
13    Min.   : 17.51   Min.   :267.9   Min.   : 222.0   Min.   : 681  
14    1st Qu.: 55.63   1st Qu.:288.5   1st Qu.: 585.8   1st Qu.:2665  
15    Median : 71.09   Median :303.2   Median : 880.0   Median :4648  
16    Mean   : 79.06   Mean   :296.5   Mean   : 924.7   Mean   :4634  
17    3rd Qu.:106.66   3rd Qu.:306.4   3rd Qu.:1361.0   3rd Qu.:7076  
18    Max.   :132.44   Max.   :310.3   Max.   :1549.0   Max.   :8390  
19   
20   
21   ########################### 
22   # CORRELATION MATRIX
23   ########################### 
24   
25                     WTI Cost_index  Rig_count        LTO
26   WTI         1.0000000  0.5121388  0.8271627 -0.6835030
27   Cost_index  0.5121388  1.0000000  0.6827883 -0.8387674
28   Rig_count   0.8271627  0.6827883  1.0000000 -0.6233021
29   LTO        -0.6835030 -0.8387674 -0.6233021  1.0000000
30   
31   
32   ########################### 
33   # TEST FOR UNIT ROOT
34   ########################### 
35   
36   # OILPRICE
37   
38   Phillips-Perron Unit Root Test
39   data:  oilprice
40   Dickey-Fuller Z(alpha) = -9.8863, Truncation lag parameter = 4, p-value = 0.5468
41   alternative hypothesis: stationary
42   
43   Phillips-Perron Unit Root Test
44   data:  diff(oilprice)
45   Dickey-Fuller Z(alpha) = -88.232, Truncation lag parameter = 4, p-value = 0.01
46   alternative hypothesis: stationary
47   
48   # COST
49   
50   Phillips-Perron Unit Root Test
51   data:  cost
52   Dickey-Fuller Z(alpha) = -2.0614, Truncation lag parameter = 4, p-value = 0.966
53   alternative hypothesis: stationary
54   
55   Phillips-Perron Unit Root Test
56   data:  diff(cost)
57   Dickey-Fuller Z(alpha) = -114.31, Truncation lag parameter = 4, p-value = 0.01
58   alternative hypothesis: stationary
59   
60   # RIGS
61   
62   Phillips-Perron Unit Root Test
63   data:  rigs
64   Dickey-Fuller Z(alpha) = -10.137, Truncation lag parameter = 4, p-value = 0.5324
65   alternative hypothesis: stationary
66   
67   Phillips-Perron Unit Root Test
68   data:  diff(rigs)
69   Dickey-Fuller Z(alpha) = -34.919, Truncation lag parameter = 4, p-value = 0.01 48



70   alternative hypothesis: stationary
71   
72   # OIL
73   
74   Phillips-Perron Unit Root Test
75   data:  oil
76   Dickey-Fuller Z(alpha) = -2.73, Truncation lag parameter = 4, p-value = 0.9454
77   alternative hypothesis: stationary
78   
79   Phillips-Perron Unit Root Test
80   data:  diff(oil)
81   Dickey-Fuller Z(alpha) = -158.1, Truncation lag parameter = 4, p-value = 0.01
82   alternative hypothesis: stationary
83   
84   # Comment: Augmented Dickey-Fuller test results are available from the author on 

request
85   
86   ############################################### 
87   # lag selection criteria # 
88   ############################################### 
89   
90   $selection
91   AIC(n)  HQ(n)  SC(n) FPE(n) 
92        2      2      2      2 
93   
94   $criteria
95                      1             2             3      4
96   AIC(n) -3.072481e+01 -3.187764e+01 -3.185368e+01 -3.174357e+01
97   HQ(n)  -3.017313e+01 -3.118804e+01 -3.102616e+01 -3.077812e+01
98   SC(n)  -2.936724e+01 -3.018068e+01 -2.981733e+01 -2.936782e+01
99   FPE(n)  4.552030e-14  1.443066e-14  1.487053e-14  1.674418e-14
100      5             6             7
101   AIC(n)  -3.162733e+01 -3.162219e+01 -3.150056e+01
102   HQ(n)   -3.052396e+01 -3.038091e+01 -3.012136e+01
103   SC(n)   -2.891219e+01 -2.856766e+01 -2.810665e+01
104   FPE(n)   1.902618e-14  1.941332e-14  2.234576e-14
105                      8             9            10
106   AIC(n) -3.157133e+01 -3.146017e+01 -3.150853e+01
107   HQ(n)  -3.005421e+01 -2.980512e+01 -2.971556e+01
108   SC(n)  -2.783802e+01 -2.738747e+01 -2.709643e+01
109   FPE(n)  2.131831e-14  2.452633e-14  2.420268e-14
110   
111   
112   ############################################### 
113   # LR-test for no linear trend #
114   ############################################### 
115   
116   H0: H*2(r<=2)
117   H1: H2(r<=2)
118   Test statistic is distributed as chi-square
119   with 2 degress of freedom
120           test statistic p-value
121   LR test          12.87       0
122           test statistic p-value
123   LR test          12.87       0
124   
125   
126   ########################### 
127   # GRANGER CAUSALITY TESTS
128   ###########################
129   
130   # Comment: Below the term 'dX.l1' refers to the first-differrence of  
131   # the lag of X
132   
133   # THE VAR IN FIRST-DIFFERENCES USED FOR GRANGER CAUSALITY TEST 
134   #(AIC used as lag criterion):
135   
136   =====================================================================
137                                           Dependent variable:          49



138                                  --------------------------------------
139                                                    y                   
140                                    (1)       (2)       (3)       (4)   
141   ---------------------------------------------------------------------
142   doilprice.l1                    0.236*** -0.013***  0.285***  0.140***
143                                  (0.083)   (0.003)   (0.024)   (0.025) 
144   
145   dcost.l1                        2.298     0.026     -0.344    0.558  
146                                  (2.485)   (0.081)   (0.728)   (0.735) 
147   
148   drigs.l1                       -0.287**  -0.001    0.815***  0.082** 
149                                  (0.128)   (0.004)   (0.037)   (0.038) 
150   
151   doil.l1                        -0.367    0.012    0.167**    0.081  
152                                  (0.270)   (0.009)   (0.079)   (0.080) 
153   
154   const                           0.008   -0.001***   -0.004   0.016***
155                                  (0.010)  (0.0003)   (0.003)   (0.003) 
156   
157   ---------------------------------------------------------------------
158   Observations                     146       146       146       146   
159   R2                              0.135     0.170     0.828     0.211  
160   Adjusted R2                     0.111     0.147     0.823     0.189  
161   Residual Std. Error (df = 141)  0.108     0.003     0.031     0.032  
162   F Statistic (df = 4; 141)      5.519*** 7.245***  169.186*** 9.438***
163   =====================================================================
164   Note:                                     *p<0.1; **p<0.05; ***p<0.01
165   
166   # THE GRANGER CAUSALITY TESTS:
167   
168   Granger causality H0: doilprice do not Granger-cause dcost drigs doil
169   data:  VAR object GVAR
170   F-Test = 60.675, df1 = 3, df2 = 564, p-value < 2.2e-16
171   H0: No instantaneous causality between: doilprice and dcost drigs doil
172   data:  VAR object GVAR
173   Chi-squared = 9.6602, df = 3, p-value = 0.02169
174   
175   Granger causality H0: drigs do not Granger-cause doilprice dcost doil
176   data:  VAR object GVAR
177   F-Test = 2.8481, df1 = 3, df2 = 564, p-value = 0.03694
178   H0: No instantaneous causality between: drigs and doilprice dcost doil
179   data:  VAR object GVAR
180   Chi-squared = 1.5127, df = 3, p-value = 0.6793
181   
182   Granger causality H0: doil do not Granger-cause doilprice dcost drigs
183   data:  VAR object GVAR
184   F-Test = 2.6733, df1 = 3, df2 = 564, p-value = 0.04662
185   H0: No instantaneous causality between: doil and doilprice dcost drigs
186   data:  VAR object GVAR
187   Chi-squared = 6.5704, df = 3, p-value = 0.08693
188   
189   Granger causality H0: dcost do not Granger-cause doilprice drigs doil
190   data:  VAR object GVAR
191   F-Test = 0.71064, df1 = 3, df2 = 564, p-value = 0.5459
192   H0: No instantaneous causality between: doilprice and dcost drigs doil
193   data:  VAR object GVAR
194   Chi-squared = 9.6602, df = 3, p-value = 0.02169
195   
196   # A VAR WITH JUST OIL AND OILPRICE (in first-differences)
197   # check if oil Granger-cause oilprice which is not rejected as weakly exogenous 
198   # below
199   
200   ===========================================================
201                                      Dependent variable:     
202                                  ----------------------------
203                                               y              
204                                       (1)            (2)     
205   -----------------------------------------------------------
206   doilprice.l1                      0.227***      0.131***   50



207                                     (0.080)        (0.024)   
208   
209   doil.l1                           -0.601**       0.130*    
210                                     (0.258)        (0.076)   
211   
212   const                              0.010        0.014***   
213                                     (0.010)        (0.003)   
214   
215   -----------------------------------------------------------
216   Observations                        146            146     
217   R2                                 0.096          0.184    
218   Adjusted R2                        0.083          0.172    
219   Residual Std. Error (df = 143)     0.109          0.032    
220   F Statistic (df = 2; 143)         7.586***      16.075***  
221   ===========================================================
222   Note:                           *p<0.1; **p<0.05; ***p<0.01
223   
224   Granger causality H0: doil do not Granger-cause doilprice
225   data:  VAR object GVAR2
226   F-Test = 5.4453, df1 = 1, df2 = 286, p-value = 0.02031
227   H0: No instantaneous causality between: doil and doilprice
228   data:  VAR object GVAR2
229   Chi-squared = 6.5905, df = 1, p-value = 0.01025
230   
231   
232   ###########################
233   # JOHANSEN PROCEDURE 
234   ########################### 
235   
236   # Comment: Below the term 'X.l1' refers to the lag of X, and 'X.d' denotes
237   # the first-difference of X
238   
239   Test type: trace statistic , with linear trend in cointegration 
240   
241   Eigenvalues (lambda):
242   [1]  4.528142e-01  2.094245e-01  1.284459e-01  2.719755e-02 -2.071168e-17
243   
244   Values of teststatistic and critical values of test:
245   
246              test 10pct  5pct  1pct
247   r <= 3 |   4.03 10.49 12.25 16.26
248   r <= 2 |  24.10 22.76 25.32 30.45
249   r <= 1 |  58.41 39.06 42.44 48.45
250   r = 0  | 146.44 59.14 62.99 70.05
251   
252   Eigenvectors, normalised to first column:
253   (These are the cointegration relations)
254   
255                oilprice.l1    cost.l1     rigs.l1      oil.l1      trend.l1
256   oilprice.l1   1.00000000  1.0000000  1.00000000  1.00000000    1.00000000
257   cost.l1     -14.64780676 89.0461572 14.11820884 17.04316786 -107.48403615
258   rigs.l1      -2.78430360  0.6902855 -0.40802995 -0.14837463    3.06952576
259   oil.l1        2.59010914 -5.3681636 -1.12565526 -0.49509446   -2.62417359
260   trend.l1     -0.05233468  0.1725679  0.02940773  0.02676193    0.01934258
261   
262   Weights W:
263   (This is the loading matrix)
264   
265                oilprice.l1      cost.l1      rigs.l1        oil.l1      trend.l1
266   oilprice.d  0.0032975072  0.050022848  0.058323763 -0.0759358168  1.455157e-14
267   cost.d      0.0002894651 -0.003774961 -0.001573414 -0.0011808289 -2.374105e-15
268   rigs.d      0.0141476131 -0.007409814  0.036569301  0.0040043215 -3.436670e-14
269   oil.d      -0.0130960220 -0.002977733  0.012380709  0.0006477656  1.277881e-14
270   
271   
272   ########################### 
273   # THE VECM MODEL
274   ########################### 
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276   # Comment: below 'ect1' and 'ect2' denotes the cointegrating relationships
277   # The term 'X.dl1' refers to the first-difference of the lag of X. 
278   # The variables starting with D are dummies, and variables beginning with 
279   # 'sd' are seasonal dummies 
280   
281   Response oilprice.d :
282   
283   Call:
284   lm(formula = oilprice.d ~ ect1 + ect2 + constant + D2011_02 + 
285       D2020_04 + D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + 
286       D2021_03 + D2021_04 + D2021_06 + sd1 + sd2 + sd3 + sd4 + 
287       sd5 + sd6 + sd7 + sd8 + sd9 + sd10 + sd11 + oilprice.dl1 + 
288       cost.dl1 + rigs.dl1 + oil.dl1 - 1, data = data.mat)
289   
290   Residuals:
291        Min       1Q   Median       3Q      Max 
292   -0.43605 -0.03985  0.00088  0.05177  0.21114 
293   
294   Coefficients:
295                  Estimate Std. Error t value Pr(>|t|)    
296   ect1           0.053320   0.025896   2.059  0.04169 *  
297   ect2           4.406041   2.085358   2.113  0.03672 *  
298   constant     -23.976944  11.345050  -2.113  0.03667 *  
299   D2011_02       0.002116   0.096744   0.022  0.98259    
300   D2020_04      -0.359714   0.115072  -3.126  0.00223 ** 
301   D2020_05       0.760768   0.130569   5.827 5.01e-08 ***
302   D2020_06       0.185352   0.181250   1.023  0.30858    
303   D2020_07      -0.153199   0.121875  -1.257  0.21123    
304   D2020_12       0.130501   0.098388   1.326  0.18727    
305   D2021_02       0.059241   0.098958   0.599  0.55055    
306   D2021_03       0.081952   0.131957   0.621  0.53576    
307   D2021_04      -0.156689   0.136717  -1.146  0.25408    
308   D2021_06       0.140898   0.098488   1.431  0.15519    
309   sd1            0.027934   0.038506   0.725  0.46961    
310   sd2            0.026669   0.042383   0.629  0.53042    
311   sd3           -0.008709   0.039331  -0.221  0.82515    
312   sd4            0.015484   0.040878   0.379  0.70553    
313   sd5           -0.013156   0.039998  -0.329  0.74280    
314   sd6           -0.029915   0.040842  -0.732  0.46533    
315   sd7            0.008806   0.040007   0.220  0.82617    
316   sd8           -0.039387   0.039490  -0.997  0.32061    
317   sd9            0.019328   0.038713   0.499  0.61853    
318   sd10           0.011662   0.038301   0.304  0.76130    
319   sd11          -0.017042   0.038222  -0.446  0.65651    
320   oilprice.dl1   0.274193   0.107419   2.553  0.01197 *  
321   cost.dl1      -0.911256   2.545492  -0.358  0.72099    
322   rigs.dl1      -0.163043   0.152578  -1.069  0.28744    
323   oil.dl1        0.670907   0.575489   1.166  0.24605    
324   ---
325   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
326   
327   Residual standard error: 0.09048 on 118 degrees of freedom
328   Multiple R-squared:  0.4875, Adjusted R-squared:  0.3658 
329   F-statistic: 4.008 on 28 and 118 DF,  p-value: 5.986e-08
330   
331   
332   Response cost.d :
333   
334   Call:
335   lm(formula = cost.d ~ ect1 + ect2 + constant + D2011_02 + D2020_04 + 
336       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
337       D2021_04 + D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + 
338       sd7 + sd8 + sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + 
339       rigs.dl1 + oil.dl1 - 1, data = data.mat)
340   
341   Residuals:
342          Min         1Q     Median         3Q        Max 
343   -0.0078250 -0.0014402 -0.0000076  0.0012390  0.0122329 
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345   Coefficients:
346                  Estimate Std. Error t value Pr(>|t|)    
347   ect1         -3.485e-03  8.631e-04  -4.038 9.61e-05 ***
348   ect2         -3.404e-01  6.951e-02  -4.897 3.12e-06 ***
349   constant      1.850e+00  3.781e-01   4.892 3.18e-06 ***
350   D2011_02     -5.973e-04  3.224e-03  -0.185 0.853367    
351   D2020_04     -1.371e-03  3.835e-03  -0.358 0.721320    
352   D2020_05     -5.230e-03  4.352e-03  -1.202 0.231831    
353   D2020_06      1.513e-02  6.041e-03   2.504 0.013634 *  
354   D2020_07      1.656e-03  4.062e-03   0.408 0.684327    
355   D2020_12      3.188e-06  3.279e-03   0.001 0.999226    
356   D2021_02     -1.073e-03  3.298e-03  -0.325 0.745599    
357   D2021_03      7.634e-03  4.398e-03   1.736 0.085238 .  
358   D2021_04     -1.026e-02  4.557e-03  -2.253 0.026133 *  
359   D2021_06      3.046e-03  3.283e-03   0.928 0.355375    
360   sd1           3.014e-03  1.283e-03   2.349 0.020501 *  
361   sd2           1.572e-03  1.413e-03   1.113 0.268122    
362   sd3           2.835e-04  1.311e-03   0.216 0.829178    
363   sd4           2.294e-03  1.362e-03   1.683 0.094924 .  
364   sd5           1.920e-03  1.333e-03   1.440 0.152432    
365   sd6           2.446e-03  1.361e-03   1.797 0.074947 .  
366   sd7           6.894e-04  1.333e-03   0.517 0.606139    
367   sd8           4.067e-04  1.316e-03   0.309 0.757861    
368   sd9          -1.117e-04  1.290e-03  -0.087 0.931133    
369   sd10         -1.378e-04  1.277e-03  -0.108 0.914204    
370   sd11         -3.790e-05  1.274e-03  -0.030 0.976316    
371   oilprice.dl1 -1.301e-02  3.580e-03  -3.635 0.000414 ***
372   cost.dl1      1.582e-01  8.484e-02   1.865 0.064673 .  
373   rigs.dl1      4.437e-03  5.085e-03   0.872 0.384757    
374   oil.dl1       3.096e-02  1.918e-02   1.614 0.109190    
375   ---
376   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
377   
378   Residual standard error: 0.003016 on 118 degrees of freedom
379   Multiple R-squared:  0.5156, Adjusted R-squared:  0.4007 
380   F-statistic: 4.486 on 28 and 118 DF,  p-value: 4.309e-09
381   
382   
383   Response rigs.d :
384   
385   Call:
386   lm(formula = rigs.d ~ ect1 + ect2 + constant + D2011_02 + D2020_04 + 
387       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
388       D2021_04 + D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + 
389       sd7 + sd8 + sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + 
390       rigs.dl1 + oil.dl1 - 1, data = data.mat)
391   
392   Residuals:
393         Min        1Q    Median        3Q       Max 
394   -0.086281 -0.011834 -0.000172  0.011046  0.057840 
395   
396   Coefficients:
397                  Estimate Std. Error t value Pr(>|t|)    
398   ect1          0.0067378  0.0069177   0.974  0.33205    
399   ect2         -0.8670470  0.5570736  -1.556  0.12228    
400   constant      4.7213072  3.0306675   1.558  0.12195    
401   D2011_02     -0.0195846  0.0258436  -0.758  0.45008    
402   D2020_04     -0.2286275  0.0307399  -7.437 1.80e-11 ***
403   D2020_05     -0.1128728  0.0348797  -3.236  0.00157 ** 
404   D2020_06      0.1435665  0.0484184   2.965  0.00366 ** 
405   D2020_07      0.0425918  0.0325572   1.308  0.19334    
406   D2020_12     -0.0518423  0.0262829  -1.972  0.05090 .  
407   D2021_02     -0.0050052  0.0264353  -0.189  0.85015    
408   D2021_03      0.0053978  0.0352505   0.153  0.87856    
409   D2021_04     -0.0636530  0.0365221  -1.743  0.08396 .  
410   D2021_06     -0.0469090  0.0263097  -1.783  0.07716 .  
411   sd1          -0.0177226  0.0102863  -1.723  0.08752 .  
412   sd2          -0.0227320  0.0113221  -2.008  0.04695 *  
413   sd3          -0.0075718  0.0105066  -0.721  0.47254    53



414   sd4          -0.0025595  0.0109201  -0.234  0.81509    
415   sd5          -0.0205342  0.0106849  -1.922  0.05704 .  
416   sd6           0.0070061  0.0109103   0.642  0.52202    
417   sd7          -0.0007843  0.0106873  -0.073  0.94162    
418   sd8          -0.0044582  0.0105492  -0.423  0.67335    
419   sd9          -0.0195112  0.0103417  -1.887  0.06167 .  
420   sd10         -0.0081336  0.0102316  -0.795  0.42824    
421   sd11         -0.0125133  0.0102105  -1.226  0.22281    
422   oilprice.dl1  0.1372046  0.0286956   4.781 5.07e-06 ***
423   cost.dl1      1.0681550  0.6799916   1.571  0.11890    
424   rigs.dl1      0.8613029  0.0407591  21.132  < 2e-16 ***
425   oil.dl1       0.3309851  0.1537337   2.153  0.03336 *  
426   ---
427   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
428   
429   Residual standard error: 0.02417 on 118 degrees of freedom
430   Multiple R-squared:  0.915, Adjusted R-squared:  0.8948 
431   F-statistic: 45.37 on 28 and 118 DF,  p-value: < 2.2e-16
432   
433   
434   Response oil.d :
435   
436   Call:
437   lm(formula = oil.d ~ ect1 + ect2 + constant + D2011_02 + D2020_04 + 
438       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
439       D2021_04 + D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + 
440       sd7 + sd8 + sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + 
441       rigs.dl1 + oil.dl1 - 1, data = data.mat)
442   
443   Residuals:
444         Min        1Q    Median        3Q       Max 
445   -0.028129 -0.008090  0.000000  0.006654  0.047152 
446   
447   Coefficients:
448                  Estimate Std. Error t value Pr(>|t|)    
449   ect1         -0.0160738  0.0036869  -4.360 2.80e-05 ***
450   ect2         -0.0733277  0.2969028  -0.247 0.805356    
451   constant      0.4070573  1.6152511   0.252 0.801473    
452   D2011_02     -0.0486711  0.0137739  -3.534 0.000586 ***
453   D2020_04     -0.0708750  0.0163834  -4.326 3.19e-05 ***
454   D2020_05     -0.1874052  0.0185898 -10.081  < 2e-16 ***
455   D2020_06      0.1019895  0.0258055   3.952 0.000132 ***
456   D2020_07      0.0534755  0.0173520   3.082 0.002561 ** 
457   D2020_12     -0.0076051  0.0140080  -0.543 0.588214    
458   D2021_02     -0.1624927  0.0140892 -11.533  < 2e-16 ***
459   D2021_03      0.1744309  0.0187874   9.284 9.89e-16 ***
460   D2021_04     -0.0017776  0.0194651  -0.091 0.927390    
461   D2021_06      0.0008844  0.0140222   0.063 0.949815    
462   sd1          -0.0093236  0.0054823  -1.701 0.091639 .  
463   sd2           0.0093180  0.0060343   1.544 0.125227    
464   sd3           0.0148446  0.0055997   2.651 0.009128 ** 
465   sd4           0.0024768  0.0058200   0.426 0.671202    
466   sd5           0.0100303  0.0056947   1.761 0.080773 .  
467   sd6           0.0048972  0.0058148   0.842 0.401384    
468   sd7           0.0117005  0.0056960   2.054 0.042169 *  
469   sd8           0.0152681  0.0056224   2.716 0.007610 ** 
470   sd9           0.0140792  0.0055118   2.554 0.011911 *  
471   sd10          0.0157590  0.0054531   2.890 0.004587 ** 
472   sd11          0.0102593  0.0054419   1.885 0.061855 .  
473   oilprice.dl1  0.0454821  0.0152938   2.974 0.003566 ** 
474   cost.dl1      0.0978957  0.3624143   0.270 0.787539    
475   rigs.dl1      0.0599975  0.0217233   2.762 0.006667 ** 
476   oil.dl1       0.0770421  0.0819352   0.940 0.348995    
477   ---
478   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
479   
480   Residual standard error: 0.01288 on 118 degrees of freedom
481   Multiple R-squared:  0.9109, Adjusted R-squared:  0.8898 
482   F-statistic: 43.09 on 28 and 118 DF,  p-value: < 2.2e-16 54



483   
484   
485   Response oilprice.d :
486   
487   Call:
488   lm(formula = oilprice.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
489       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
490       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
491       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
492       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
493       1, data = data.mat)
494   
495   Residuals:
496        Min       1Q   Median       3Q      Max 
497   -0.43566 -0.03739  0.00080  0.05033  0.18226 
498   
499   Coefficients:
500                  Estimate Std. Error t value Pr(>|t|)    
501   constant     -20.878269  12.790049  -1.632  0.10533    
502   D2011_02      -0.028858   0.097421  -0.296  0.76760    
503   D2020_04      -0.384450   0.119769  -3.210  0.00172 ** 
504   D2020_05       0.680450   0.142289   4.782 5.18e-06 ***
505   D2020_06       0.097283   0.188082   0.517  0.60598    
506   D2020_07      -0.179140   0.122366  -1.464  0.14593    
507   D2020_12       0.127726   0.098261   1.300  0.19625    
508   D2021_02       0.057001   0.098482   0.579  0.56386    
509   D2021_03       0.059273   0.133612   0.444  0.65815    
510   D2021_04      -0.138245   0.136406  -1.013  0.31296    
511   D2021_06       0.131467   0.099413   1.322  0.18865    
512   sd1            0.027117   0.038336   0.707  0.48078    
513   sd2            0.027522   0.042166   0.653  0.51525    
514   sd3           -0.012859   0.039334  -0.327  0.74432    
515   sd4            0.014538   0.040985   0.355  0.72344    
516   sd5           -0.014098   0.040207  -0.351  0.72650    
517   sd6           -0.030698   0.041469  -0.740  0.46065    
518   sd7            0.008023   0.040420   0.198  0.84301    
519   sd8           -0.039262   0.039755  -0.988  0.32542    
520   sd9            0.018958   0.038714   0.490  0.62529    
521   sd10           0.011155   0.038142   0.292  0.77046    
522   sd11          -0.015956   0.038042  -0.419  0.67569    
523   oilprice.dl1   0.245702   0.123444   1.990  0.04892 *  
524   cost.dl1      -0.789770   2.618857  -0.302  0.76352    
525   rigs.dl1      -0.272236   0.189059  -1.440  0.15260    
526   oil.dl1        0.529419   0.580289   0.912  0.36350    
527   oilprice.l1    0.035708   0.069807   0.512  0.60996    
528   cost.l1        3.935281   2.334743   1.686  0.09460 .  
529   rigs.l1        0.012818   0.040468   0.317  0.75201    
530   oil.l1        -0.288047   0.138721  -2.076  0.04008 *  
531   trend.l1       0.008143   0.004435   1.836  0.06893 .  
532   ---
533   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
534   
535   Residual standard error: 0.08999 on 115 degrees of freedom
536   Multiple R-squared:  0.5059, Adjusted R-squared:  0.3727 
537   F-statistic: 3.798 on 31 and 115 DF,  p-value: 9.853e-08
538   
539   
540   Response cost.d :
541   
542   Call:
543   lm(formula = cost.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
544       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
545       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
546       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
547       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
548       1, data = data.mat)
549   
550   Residuals:
551         Min        1Q    Median        3Q       Max 55



552   -0.008106 -0.001563  0.000000  0.001150  0.012663 
553   
554   Coefficients:
555                  Estimate Std. Error t value Pr(>|t|)    
556   constant      2.084e+00  4.309e-01   4.835 4.16e-06 ***
557   D2011_02     -3.654e-04  3.282e-03  -0.111  0.91156    
558   D2020_04     -2.399e-03  4.035e-03  -0.595  0.55334    
559   D2020_05     -5.706e-03  4.794e-03  -1.190  0.23638    
560   D2020_06      1.545e-02  6.337e-03   2.438  0.01628 *  
561   D2020_07      1.756e-03  4.123e-03   0.426  0.67101    
562   D2020_12     -2.903e-04  3.311e-03  -0.088  0.93027    
563   D2021_02     -9.304e-04  3.318e-03  -0.280  0.77968    
564   D2021_03      8.668e-03  4.502e-03   1.925  0.05665 .  
565   D2021_04     -1.049e-02  4.596e-03  -2.281  0.02436 *  
566   D2021_06      2.846e-03  3.349e-03   0.850  0.39724    
567   sd1           2.944e-03  1.292e-03   2.280  0.02448 *  
568   sd2           1.588e-03  1.421e-03   1.118  0.26606    
569   sd3           4.569e-04  1.325e-03   0.345  0.73090    
570   sd4           2.508e-03  1.381e-03   1.816  0.07192 .  
571   sd5           2.144e-03  1.355e-03   1.582  0.11632    
572   sd6           2.786e-03  1.397e-03   1.994  0.04848 *  
573   sd7           9.886e-04  1.362e-03   0.726  0.46934    
574   sd8           6.512e-04  1.339e-03   0.486  0.62776    
575   sd9           4.324e-05  1.304e-03   0.033  0.97361    
576   sd10         -7.115e-05  1.285e-03  -0.055  0.95594    
577   sd11         -3.885e-05  1.282e-03  -0.030  0.97587    
578   oilprice.dl1 -1.037e-02  4.159e-03  -2.494  0.01404 *  
579   cost.dl1      1.849e-01  8.823e-02   2.096  0.03830 *  
580   rigs.dl1      7.992e-03  6.370e-03   1.255  0.21216    
581   oil.dl1       3.421e-02  1.955e-02   1.750  0.08279 .  
582   oilprice.l1  -6.240e-03  2.352e-03  -2.653  0.00911 ** 
583   cost.l1      -3.827e-01  7.866e-02  -4.865 3.66e-06 ***
584   rigs.l1      -2.595e-03  1.363e-03  -1.903  0.05955 .  
585   oil.l1        2.337e-02  4.674e-03   5.000 2.07e-06 ***
586   trend.l1     -7.445e-04  1.494e-04  -4.982 2.24e-06 ***
587   ---
588   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
589   
590   Residual standard error: 0.003032 on 115 degrees of freedom
591   Multiple R-squared:  0.5228, Adjusted R-squared:  0.3942 
592   F-statistic: 4.065 on 31 and 115 DF,  p-value: 2.097e-08
593   
594   
595   Response rigs.d :
596   
597   Call:
598   lm(formula = rigs.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
599       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
600       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
601       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
602       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
603       1, data = data.mat)
604   
605   Residuals:
606        Min       1Q   Median       3Q      Max 
607   -0.08898 -0.01203  0.00000  0.01044  0.04983 
608   
609   Coefficients:
610                  Estimate Std. Error t value Pr(>|t|)    
611   constant      1.5934522  3.3188881   0.480  0.63206    
612   D2011_02     -0.0293562  0.0252797  -1.161  0.24794    
613   D2020_04     -0.2170456  0.0310789  -6.984 1.98e-10 ***
614   D2020_05     -0.1209920  0.0369225  -3.277  0.00139 ** 
615   D2020_06      0.1211548  0.0488053   2.482  0.01449 *  
616   D2020_07      0.0359121  0.0317527   1.131  0.26041    
617   D2020_12     -0.0476943  0.0254977  -1.871  0.06395 .  
618   D2021_02     -0.0077181  0.0255552  -0.302  0.76319    
619   D2021_03     -0.0155689  0.0346709  -0.449  0.65424    
620   D2021_04     -0.0565148  0.0353960  -1.597  0.11309    56



621   D2021_06     -0.0455640  0.0257967  -1.766  0.08000 .  
622   sd1          -0.0167619  0.0099478  -1.685  0.09470 .  
623   sd2          -0.0228205  0.0109418  -2.086  0.03922 *  
624   sd3          -0.0111567  0.0102067  -1.093  0.27665    
625   sd4          -0.0061713  0.0106351  -0.580  0.56286    
626   sd5          -0.0242899  0.0104334  -2.328  0.02165 *  
627   sd6           0.0014068  0.0107609   0.131  0.89621    
628   sd7          -0.0057208  0.0104885  -0.545  0.58651    
629   sd8          -0.0083416  0.0103160  -0.809  0.42041    
630   sd9          -0.0220609  0.0100458  -2.196  0.03010 *  
631   sd10         -0.0092986  0.0098975  -0.939  0.34945    
632   sd11         -0.0122855  0.0098716  -1.245  0.21583    
633   oilprice.dl1  0.0894456  0.0320326   2.792  0.00613 ** 
634   cost.dl1      0.6653005  0.6795669   0.979  0.32963    
635   rigs.dl1      0.7830993  0.0490588  15.962  < 2e-16 ***
636   oil.dl1       0.2512629  0.1505791   1.669  0.09791 .  
637   oilprice.l1   0.0473114  0.0181143   2.612  0.01021 *  
638   cost.l1      -0.2825076  0.6058422  -0.466  0.64188    
639   rigs.l1      -0.0600216  0.0105010  -5.716 8.74e-08 ***
640   oil.l1        0.0332740  0.0359966   0.924  0.35723    
641   trend.l1     -0.0008365  0.0011508  -0.727  0.46876    
642   ---
643   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
644   
645   Residual standard error: 0.02335 on 115 degrees of freedom
646   Multiple R-squared:  0.9227, Adjusted R-squared:  0.9019 
647   F-statistic: 44.28 on 31 and 115 DF,  p-value: < 2.2e-16
648   
649   
650   Response oil.d :
651   
652   Call:
653   lm(formula = oil.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
654       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
655       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
656       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
657       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
658       1, data = data.mat)
659   
660   Residuals:
661         Min        1Q    Median        3Q       Max 
662   -0.024421 -0.007929  0.000000  0.005418  0.042466 
663   
664   Coefficients:
665                  Estimate Std. Error t value Pr(>|t|)    
666   constant     -0.5823479  1.8207628  -0.320 0.749672    
667   D2011_02     -0.0521117  0.0138686  -3.758 0.000271 ***
668   D2020_04     -0.0673255  0.0170501  -3.949 0.000136 ***
669   D2020_05     -0.1907334  0.0202559  -9.416 5.94e-16 ***
670   D2020_06      0.0939519  0.0267749   3.509 0.000643 ***
671   D2020_07      0.0510826  0.0174197   2.932 0.004059 ** 
672   D2020_12     -0.0062816  0.0139882  -0.449 0.654233    
673   D2021_02     -0.1633933  0.0140197 -11.655  < 2e-16 ***
674   D2021_03      0.1674250  0.0190207   8.802 1.59e-14 ***
675   D2021_04      0.0006998  0.0194185   0.036 0.971317    
676   D2021_06      0.0012402  0.0141522   0.088 0.930319    
677   sd1          -0.0090185  0.0054574  -1.653 0.101156    
678   sd2           0.0092966  0.0060027   1.549 0.124194    
679   sd3           0.0136444  0.0055995   2.437 0.016354 *  
680   sd4           0.0012954  0.0058345   0.222 0.824688    
681   sd5           0.0088022  0.0057238   1.538 0.126840    
682   sd6           0.0030716  0.0059035   0.520 0.603851    
683   sd7           0.0100902  0.0057541   1.754 0.082166 .  
684   sd8           0.0140077  0.0056594   2.475 0.014777 *  
685   sd9           0.0132478  0.0055112   2.404 0.017823 *  
686   sd10          0.0153762  0.0054298   2.832 0.005466 ** 
687   sd11          0.0103427  0.0054156   1.910 0.058651 .  
688   oilprice.dl1  0.0297231  0.0175733   1.691 0.093473 .  
689   cost.dl1     -0.0319228  0.3728146  -0.086 0.931912    57



690   rigs.dl1      0.0336548  0.0269140   1.250 0.213670    
691   oil.dl1       0.0499284  0.0826086   0.604 0.546770    
692   oilprice.l1  -0.0030453  0.0099376  -0.306 0.759824    
693   cost.l1       0.1125057  0.3323688   0.338 0.735606    
694   rigs.l1       0.0292600  0.0057609   5.079 1.48e-06 ***
695   oil.l1       -0.0321923  0.0197479  -1.630 0.105804    
696   trend.l1      0.0005529  0.0006313   0.876 0.382954    
697   ---
698   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
699   
700   Residual standard error: 0.01281 on 115 degrees of freedom
701   Multiple R-squared:  0.9141, Adjusted R-squared:  0.891 
702   F-statistic:  39.5 on 31 and 115 DF,  p-value: < 2.2e-16
703   
704   
705   
706   ########################### 
707   # BOOTSTRAPPED STANDARD ERRORS
708   ########################### 
709   
710   # Comment: below 'ect1' and 'ect2' denotes the cointegrating relationships
711   
712   OOTSTRAP OF LINEAR MODEL  (method = residuals)
713   
714   Original Model Fit
715   ------------------
716   Call:
717   lm(formula = oilprice.d ~ ect1 + ect2 + constant + oilprice.dl1 + 
718       cost.dl1 + rigs.dl1 + oil.dl1 - 1 + sd1 + sd2 + sd3 + sd4 + 
719       sd5 + sd6 + sd7 + sd8 + sd9 + sd10 + sd11 + D2011_02 + D2020_04 + 
720       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
721       D2021_04 + D2021_06, data = OLSVecmData)
722   
723   Coefficients:
724           ect1          ect2      constant  oilprice.dl1      cost.dl1  
725       0.053320      4.406041    -23.976944      0.274193     -0.911256  
726            sd2           sd3           sd4           sd5           sd6  
727       0.026669     -0.008709      0.015484     -0.013156     -0.029915 
728           sd10          sd11      D2011_02      D2020_04      D2020_05  
729       0.011662     -0.017042      0.002116     -0.359714      0.760768 
730       D2021_02      D2021_03      D2021_04      D2021_06  
731       0.059241      0.081952     -0.156689      0.140898  
732   
733         rigs.dl1       oil.dl1           sd1
734        -0.163043      0.670907      0.027934
735              sd7           sd8           sd9
736         0.008806     -0.039387      0.019328 
737         D2020_06      D2020_07      D2020_12
738         0.185352     -0.153199      0.130501 
739   
740   Bootstrap SD's:
741           ect1          ect2      constant  oilprice.dl1      cost.dl1  
742     0.02330706    1.85344055   10.08340417    0.09671740    2.28814979  
743            sd2           sd3           sd4           sd5           sd6   
744     0.03778301    0.03487192    0.03654656    0.03501348    0.03662265 
745           sd10          sd11      D2011_02      D2020_04      D2020_05
746     0.03418084    0.03408228    0.08638777    0.10229120    0.11835289  
747       D2021_02      D2021_03      D2021_04      D2021_06  
748     0.08877278    0.12325111    0.12434183    0.08685555  
749   
750         rigs.dl1       oil.dl1           sd1
751       0.13828255    0.52724336    0.03391253
752             sd7           sd8           sd9
753       0.03578275    0.03524540    0.03479240 
754         D2020_06      D2020_07      D2020_12  
755       0.16410042    0.11076542    0.08647370
756   
757   BOOTSTRAP OF LINEAR MODEL  (method = residuals)
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759   Original Model Fit
760   ------------------
761   Call:
762   lm(formula = cost.d ~ ect1 + ect2 + constant + oilprice.dl1 + 
763       cost.dl1 + rigs.dl1 + oil.dl1 - 1 + sd1 + sd2 + sd3 + sd4 + 
764       sd5 + sd6 + sd7 + sd8 + sd9 + sd10 + sd11 + D2011_02 + D2020_04 + 
765       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
766       D2021_04 + D2021_06, data = OLSVecmData)
767   
768   Coefficients:
769           ect1          ect2      constant  oilprice.dl1      cost.dl1  
770     -3.485e-03    -3.404e-01     1.850e+00    -1.301e-02     1.582e-01  
771            sd2           sd3           sd4           sd5           sd6  
772      1.572e-03     2.835e-04     2.294e-03     1.920e-03     2.446e-03  
773           sd10          sd11      D2011_02      D2020_04      D2020_05  
774     -1.378e-04    -3.790e-05    -5.973e-04    -1.371e-03    -5.230e-03 
775       D2021_02      D2021_03      D2021_04      D2021_06  
776     -1.073e-03     7.634e-03    -1.026e-02     3.046e-03  
777   
778        rigs.dl1       oil.dl1           sd1 
779        4.437e-03     3.096e-02     3.014e-03
780              sd7           sd8           sd9
781        6.894e-04     4.067e-04    -1.117e-04
782         D2020_06      D2020_07      D2020_12
783        1.513e-02     1.656e-03     3.188e-06 
784   
785   Bootstrap SD's:
786           ect1          ect2      constant  oilprice.dl1      cost.dl1   
787   0.0007749857  0.0615213721  0.3346975065  0.0031864244  0.0754844429  
788            sd2           sd3           sd4           sd5           sd6 
789   0.0012491280  0.0011784897  0.0012388887  0.0012130685  0.0012243585  
790           sd10          sd11      D2011_02      D2020_04      D2020_05  
791   0.0011554824  0.0011356505  0.0028697292  0.0033510873  0.0038999831  
792       D2021_02      D2021_03      D2021_04      D2021_06  
793   0.0030109808  0.0038928498  0.0040661882  0.0029582294  
794   
795         rigs.dl1       oil.dl1           sd1
796     0.0045811746  0.0170399314  0.0011391127
797              sd7           sd8           sd9 
798     0.0011887416  0.0011842977  0.0011522069 
799         D2020_06      D2020_07      D2020_12
800     0.0054773515  0.0036248978  0.0028990696
801   
802   BOOTSTRAP OF LINEAR MODEL  (method = residuals)
803   
804   Original Model Fit
805   ------------------
806   Call:
807   lm(formula = rigs.d ~ ect1 + ect2 + constant + oilprice.dl1 + 
808       cost.dl1 + rigs.dl1 + oil.dl1 - 1 + sd1 + sd2 + sd3 + sd4 + 
809       sd5 + sd6 + sd7 + sd8 + sd9 + sd10 + sd11 + D2011_02 + D2020_04 + 
810       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
811       D2021_04 + D2021_06, data = OLSVecmData)
812   
813   Coefficients:
814           ect1          ect2      constant  oilprice.dl1      cost.dl1  
815      0.0067378    -0.8670470     4.7213072     0.1372046     1.0681550 
816            sd2           sd3           sd4           sd5           sd6  
817     -0.0227320    -0.0075718    -0.0025595    -0.0205342     0.0070061 
818           sd10          sd11      D2011_02      D2020_04      D2020_05 
819     -0.0081336    -0.0125133    -0.0195846    -0.2286275    -0.1128728  
820       D2021_02      D2021_03      D2021_04      D2021_06  
821     -0.0050052     0.0053978    -0.0636530    -0.0469090  
822   
823         rigs.dl1       oil.dl1           sd1
824        0.8613029     0.3309851    -0.0177226 
825              sd7           sd8           sd9
826       -0.0007843    -0.0044582    -0.0195112 
827        D2020_06      D2020_07      D2020_12  59



828        0.1435665     0.0425918    -0.0518423
829   
830   Bootstrap SD's:
831           ect1          ect2      constant  oilprice.dl1      cost.dl1  
832    0.006201117   0.497795129   2.708178287   0.025460138   0.604440964  
833            sd2           sd3           sd4           sd5           sd6  
834    0.010163415   0.009433324   0.009951486   0.009555364   0.009821618  
835           sd10          sd11      D2011_02      D2020_04      D2020_05  
836    0.009089393   0.009186831   0.022581038   0.027923055   0.030895788  
837       D2021_02      D2021_03      D2021_04      D2021_06  
838    0.023897138   0.031807934   0.033497375   0.023674525  
839   
840         rigs.dl1       oil.dl1           sd1
841      0.036102838   0.138643464   0.009331100
842              sd7           sd8           sd9
843      0.009619435   0.009497837   0.009297496
844         D2020_06      D2020_07      D2020_12
845      0.043239704   0.029188031   0.023451276
846   
847   BOOTSTRAP OF LINEAR MODEL  (method = residuals)
848   
849   Original Model Fit
850   ------------------
851   Call:
852   lm(formula = oil.d ~ ect1 + ect2 + constant + oilprice.dl1 + 
853       cost.dl1 + rigs.dl1 + oil.dl1 - 1 + sd1 + sd2 + sd3 + sd4 + 
854       sd5 + sd6 + sd7 + sd8 + sd9 + sd10 + sd11 + D2011_02 + D2020_04 + 
855       D2020_05 + D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + 
856       D2021_04 + D2021_06, data = OLSVecmData)
857   
858   Coefficients:
859           ect1          ect2      constant  oilprice.dl1      cost.dl1 
860     -0.0160738    -0.0733277     0.4070573     0.0454821     0.0978957 
861            sd2           sd3           sd4           sd5           sd6   
862      0.0093180     0.0148446     0.0024768     0.0100303     0.0048972   
863           sd10          sd11      D2011_02      D2020_04      D2020_05   
864      0.0157590     0.0102593    -0.0486711    -0.0708750    -0.1874052    
865       D2021_02      D2021_03      D2021_04      D2021_06  
866     -0.1624927     0.1744309    -0.0017776     0.0008844  
867   
868        rigs.dl1       oil.dl1           sd1 
869        0.0599975     0.0770421    -0.0093236 
870             sd7           sd8           sd9
871        0.0117005     0.0152681     0.0140792  
872         D2020_06      D2020_07      D2020_12 
873        0.1019895     0.0534755    -0.0076051  
874   
875   Bootstrap SD's:
876           ect1          ect2      constant  oilprice.dl1      cost.dl1  
877    0.003254010   0.264335503   1.438088125   0.013737407   0.326664301  
878            sd2           sd3           sd4           sd5           sd6  
879    0.005457923   0.005051122   0.005154447   0.005192784   0.005198355  
880           sd10          sd11      D2011_02      D2020_04      D2020_05  
881    0.004959553   0.004827921   0.012390825   0.014674603   0.017014460  
882       D2021_02      D2021_03      D2021_04      D2021_06  
883    0.012611701   0.016716820   0.017572841   0.012860749  
884   
885         rigs.dl1       oil.dl1           sd1  
886      0.019457615   0.073212890   0.005008806   
887              sd7           sd8           sd9   
888      0.005196691   0.005042842   0.005012952   
889         D2020_06      D2020_07      D2020_12  
890      0.023280811   0.015409781   0.012579474   
891   
892   
893   ########################### 
894   # AUTOCORRELATION, HETEROSCEDASTICITY AND NORMALITY
895   ########################### 
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897   # Autocorrelation:
898   
899   Portmanteau Test (asymptotic)
900   data:  Residuals of VAR object VAR
901   Chi-squared = 392.72, df = 356, p-value = 0.08749
902   
903   Portmanteau Test (adjusted)
904   data:  Residuals of VAR object VAR
905   Chi-squared = 431.76, df = 356, p-value = 0.003636
906   (Comment: The low p-value is likely caused by the high number of dummy variables)
907   
908   Breusch-Godfrey LM test
909   data:  Residuals of VAR object VAR
910   Chi-squared = 94.455, df = 80, p-value = 0.1287
911   
912   Edgerton-Shukur F test
913   data:  Residuals of VAR object VAR
914   F statistic = 0.91043, df1 = 80, df2 = 365, p-value = 0.6893
915   
916   # Heteroscedasticity:
917   ARCH (multivariate)
918   data:  Residuals of VAR object VAR
919   Chi-squared = 1230.1, df = 1200, p-value = 0.2667
920   
921   # Normality
922   
923   JB-Test (multivariate)
924   data:  Residuals of VAR object VAR
925   Chi-squared = 366.51, df = 8, p-value < 2.2e-16
926   
927   Skewness only (multivariate)
928   data:  Residuals of VAR object VAR
929   Chi-squared = 59.177, df = 4, p-value = 4.32e-12
930   
931   Kurtosis only (multivariate)
932   data:  Residuals of VAR object VAR
933   Chi-squared = 307.33, df = 4, p-value < 2.2e-16
934   
935   
936   ###########################
937   # UNIT ROOT TESTS ON MODEL RESIDUALS
938   ###########################
939   
940   Phillips-Perron Unit Root Test
941   data:  res_oil
942   Dickey-Fuller Z(alpha) = -154.09, Truncation lag parameter = 4, p-value = 0.01
943   alternative hypothesis: stationary
944   
945   Phillips-Perron Unit Root Test
946   data:  res_rigs
947   Dickey-Fuller Z(alpha) = -153.65, Truncation lag parameter = 4, p-value = 0.01
948   alternative hypothesis: stationary
949   
950   Phillips-Perron Unit Root Test
951   data:  res_cost
952   Dickey-Fuller Z(alpha) = -144.95, Truncation lag parameter = 4, p-value = 0.01
953   alternative hypothesis: stationary
954   
955   Phillips-Perron Unit Root Test
956   data:  res_oilprice
957   Dickey-Fuller Z(alpha) = -134.85, Truncation lag parameter = 4, p-value = 0.01
958   alternative hypothesis: stationary
959   
960   
961   ###########################
962   # CORRELATION MATRIX FOR RESIDUALS FROM VECM
963   ###########################
964   
965               oilprice.d      cost.d      rigs.d       oil.d 61



966   oilprice.d  1.00000000 -0.08727788  0.08959654  0.05712338
967   cost.d     -0.08727788  1.00000000 -0.09109386 -0.09569478
968   rigs.d      0.08959654 -0.09109386  1.00000000  0.09002453
969   oil.d       0.05712338 -0.09569478  0.09002453  1.00000000
970   
971   
972   ###########################
973   # CHOLESKY DECOMPOSITION FOR ORTHOGONAL IMPULSE RESPONSES
974   ###########################
975   
976                 oilprice.d       cost.d      rigs.d      oil.d
977   oilprice.d  0.0906860367  0.000000000 0.000000000 0.00000000
978   cost.d     -0.0002623479  0.002994422 0.000000000 0.00000000
979   rigs.d      0.0021732060 -0.002027589 0.024072676 0.00000000
980   oil.d       0.0007385619 -0.001177293 0.001006951 0.01281483
981   
982   
983   ###########################
984   # TESTS FOR WEAK EXOGENEITY 
985   ###########################
986   
987   # TESTS FOR ZERO COEFFICIENT ON COEFFICIENT IN ALPHA MATRIX
988   # (see the Johansen procedure above for the alpha matrix)
989   
990   # H0: OILPRICE IS WEAKLY EXOGENOUS
991   
992   Estimation and testing under linear restrictions on alpha/beta 
993   
994   The VECM has been estimated subject to: 
995   beta=H*phi and/or alpha=A*psi
996   
997        [,1] [,2] [,3]
998   [1,]    0    0    0
999   [2,]    1    0    0
1000   [3,]    0    1    0
1001   [4,]    0    0    1
1002   
1003   Eigenvalues of restricted VAR (lambda):
1004   [1] 0.4525 0.1863 0.1122 0.0000 0.0000
1005   
1006   The value of the likelihood ratio test statistic:
1007   4.31 distributed as chi square with 2 df.
1008   The p-value of the test statistic is: 0.12 
1009   
1010   Eigenvectors, normalised to first column
1011   of the restricted VAR:
1012   
1013                      [,1]     [,2]
1014   RK.oilprice.l1   1.0000   1.0000
1015   RK.cost.l1     -16.8492 113.3666
1016   RK.rigs.l1      -2.8552   1.0951
1017   RK.oil.l1        2.7754  -6.4979
1018   RK.trend.l1     -0.0573   0.2164
1019   
1020   Weights W of the restricted VAR:
1021   
1022           [,1]    [,2]
1023   [1,]  0.0000  0.0000
1024   [2,]  0.0003 -0.0024
1025   [3,]  0.0138 -0.0093
1026   [4,] -0.0128 -0.0037
1027   
1028   # H0: COST IS WEAKLY EXOGENOUS
1029   
1030   Estimation and testing under linear restrictions on alpha/beta 
1031   
1032   The VECM has been estimated subject to: 
1033   beta=H*phi and/or alpha=A*psi
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1035        [,1] [,2] [,3]
1036   [1,]    1    0    0
1037   [2,]    0    0    0
1038   [3,]    0    1    0
1039   [4,]    0    0    1
1040   
1041   Eigenvalues of restricted VAR (lambda):
1042   [1] 0.4512 0.1365 0.0536 0.0000 0.0000
1043   
1044   The value of the likelihood ratio test statistic:
1045   13.32 distributed as chi square with 2 df.
1046   The p-value of the test statistic is: 0 
1047   
1048   Eigenvectors, normalised to first column
1049   of the restricted VAR:
1050   
1051                     [,1]     [,2]
1052   RK.oilprice.l1  1.0000   1.0000
1053   RK.cost.l1     -5.2874 -10.9624
1054   RK.rigs.l1     -2.4136  -0.7721
1055   RK.oil.l1       1.8253   0.3625
1056   RK.trend.l1    -0.0314  -0.0192
1057   
1058   Weights W of the restricted VAR:
1059   
1060           [,1]   [,2]
1061   [1,]  0.0060 0.0128
1062   [2,]  0.0000 0.0000
1063   [3,]  0.0160 0.0287
1064   [4,] -0.0148 0.0096
1065   
1066   # H0: RIGS IS WEAKLY EXOGENOUS
1067   
1068   Estimation and testing under linear restrictions on alpha/beta 
1069   
1070   The VECM has been estimated subject to: 
1071   beta=H*phi and/or alpha=A*psi
1072   
1073        [,1] [,2] [,3]
1074   [1,]    1    0    0
1075   [2,]    0    1    0
1076   [3,]    0    0    0
1077   [4,]    0    0    1
1078   
1079   Eigenvalues of restricted VAR (lambda):
1080   [1] 0.3725 0.2033 0.0311 0.0000 0.0000
1081   
1082   The value of the likelihood ratio test statistic:
1083   21.12 distributed as chi square with 2 df.
1084   The p-value of the test statistic is: 0 
1085   
1086   Eigenvectors, normalised to first column
1087   of the restricted VAR:
1088   
1089                      [,1]    [,2]
1090   RK.oilprice.l1   1.0000  1.0000
1091   RK.cost.l1     -14.0846 69.5831
1092   RK.rigs.l1      -6.5881  0.4746
1093   RK.oil.l1        6.4303 -4.3264
1094   RK.trend.l1     -0.1013  0.1362
1095   
1096   Weights W of the restricted VAR:
1097   
1098           [,1]    [,2]
1099   [1,]  0.0001  0.0753
1100   [2,]  0.0001 -0.0053
1101   [3,]  0.0000  0.0000
1102   [4,] -0.0046  0.0008
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1104   # H0: OIL IS WEAKLY EXOGENOUS
1105   
1106   stimation and testing under linear restrictions on alpha/beta 
1107   
1108   The VECM has been estimated subject to: 
1109   beta=H*phi and/or alpha=A*psi
1110   
1111        [,1] [,2] [,3]
1112   [1,]    1    0    0
1113   [2,]    0    1    0
1114   [3,]    0    0    1
1115   [4,]    0    0    0
1116   
1117   Eigenvalues of restricted VAR (lambda):
1118   [1] 0.2371 0.1904 0.0278 0.0000 0.0000
1119   
1120   The value of the likelihood ratio test statistic:
1121   52 distributed as chi square with 2 df.
1122   The p-value of the test statistic is: 0 
1123   
1124   Eigenvectors, normalised to first column
1125   of the restricted VAR:
1126   
1127                       [,1]    [,2]
1128   RK.oilprice.l1    1.0000  1.0000
1129   RK.cost.l1     -125.7488 39.2094
1130   RK.rigs.l1       -4.1415 -0.2760
1131   RK.oil.l1         8.6363 -2.2847
1132   RK.trend.l1      -0.2614  0.0740
1133   
1134   Weights W of the restricted VAR:
1135   
1136           [,1]    [,2]
1137   [1,] -0.0056  0.1137
1138   [2,]  0.0010 -0.0062
1139   [3,]  0.0127  0.0320
1140   [4,]  0.0000  0.0000
1141   
1142   
1143   ###########################
1144   # THE UNRESTRICTED VECM
1145   ###########################
1146   
1147   # Comment: The term 'X.dl1' refers to the first-difference of the lag of X. 
1148   # The variables starting with D are dummies, variables beginning with 
1149   # 'sd' are seasonal dummies 
1150   
1151   
1152   > summary(VECM_unrestr)
1153   Response oilprice.d :
1154   
1155   Call:
1156   lm(formula = oilprice.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
1157       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
1158       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
1159       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
1160       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
1161       1, data = data.mat)
1162   
1163   Residuals:
1164        Min       1Q   Median       3Q      Max 
1165   -0.43566 -0.03739  0.00080  0.05033  0.18226 
1166   
1167   Coefficients:
1168                  Estimate Std. Error t value Pr(>|t|)    
1169   constant     -20.878269  12.790049  -1.632  0.10533    
1170   D2011_02      -0.028858   0.097421  -0.296  0.76760    
1171   D2020_04      -0.384450   0.119769  -3.210  0.00172 ** 
1172   D2020_05       0.680450   0.142289   4.782 5.18e-06 *** 64



1173   D2020_06       0.097283   0.188082   0.517  0.60598    
1174   D2020_07      -0.179140   0.122366  -1.464  0.14593    
1175   D2020_12       0.127726   0.098261   1.300  0.19625    
1176   D2021_02       0.057001   0.098482   0.579  0.56386    
1177   D2021_03       0.059273   0.133612   0.444  0.65815    
1178   D2021_04      -0.138245   0.136406  -1.013  0.31296    
1179   D2021_06       0.131467   0.099413   1.322  0.18865    
1180   sd1            0.027117   0.038336   0.707  0.48078    
1181   sd2            0.027522   0.042166   0.653  0.51525    
1182   sd3           -0.012859   0.039334  -0.327  0.74432    
1183   sd4            0.014538   0.040985   0.355  0.72344    
1184   sd5           -0.014098   0.040207  -0.351  0.72650    
1185   sd6           -0.030698   0.041469  -0.740  0.46065    
1186   sd7            0.008023   0.040420   0.198  0.84301    
1187   sd8           -0.039262   0.039755  -0.988  0.32542    
1188   sd9            0.018958   0.038714   0.490  0.62529    
1189   sd10           0.011155   0.038142   0.292  0.77046    
1190   sd11          -0.015956   0.038042  -0.419  0.67569    
1191   oilprice.dl1   0.245702   0.123444   1.990  0.04892 *  
1192   cost.dl1      -0.789770   2.618857  -0.302  0.76352    
1193   rigs.dl1      -0.272236   0.189059  -1.440  0.15260    
1194   oil.dl1        0.529419   0.580289   0.912  0.36350    
1195   oilprice.l1    0.035708   0.069807   0.512  0.60996    
1196   cost.l1        3.935281   2.334743   1.686  0.09460 .  
1197   rigs.l1        0.012818   0.040468   0.317  0.75201    
1198   oil.l1        -0.288047   0.138721  -2.076  0.04008 *  
1199   trend.l1       0.008143   0.004435   1.836  0.06893 .  
1200   ---
1201   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1202   
1203   Residual standard error: 0.08999 on 115 degrees of freedom
1204   Multiple R-squared:  0.5059, Adjusted R-squared:  0.3727 
1205   F-statistic: 3.798 on 31 and 115 DF,  p-value: 9.853e-08
1206   
1207   
1208   Response cost.d :
1209   
1210   Call:
1211   lm(formula = cost.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
1212       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
1213       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
1214       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
1215       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
1216       1, data = data.mat)
1217   
1218   Residuals:
1219         Min        1Q    Median        3Q       Max 
1220   -0.008106 -0.001563  0.000000  0.001150  0.012663 
1221   
1222   Coefficients:
1223                  Estimate Std. Error t value Pr(>|t|)    
1224   constant      2.084e+00  4.309e-01   4.835 4.16e-06 ***
1225   D2011_02     -3.654e-04  3.282e-03  -0.111  0.91156    
1226   D2020_04     -2.399e-03  4.035e-03  -0.595  0.55334    
1227   D2020_05     -5.706e-03  4.794e-03  -1.190  0.23638    
1228   D2020_06      1.545e-02  6.337e-03   2.438  0.01628 *  
1229   D2020_07      1.756e-03  4.123e-03   0.426  0.67101    
1230   D2020_12     -2.903e-04  3.311e-03  -0.088  0.93027    
1231   D2021_02     -9.304e-04  3.318e-03  -0.280  0.77968    
1232   D2021_03      8.668e-03  4.502e-03   1.925  0.05665 .  
1233   D2021_04     -1.049e-02  4.596e-03  -2.281  0.02436 *  
1234   D2021_06      2.846e-03  3.349e-03   0.850  0.39724    
1235   sd1           2.944e-03  1.292e-03   2.280  0.02448 *  
1236   sd2           1.588e-03  1.421e-03   1.118  0.26606    
1237   sd3           4.569e-04  1.325e-03   0.345  0.73090    
1238   sd4           2.508e-03  1.381e-03   1.816  0.07192 .  
1239   sd5           2.144e-03  1.355e-03   1.582  0.11632    
1240   sd6           2.786e-03  1.397e-03   1.994  0.04848 *  
1241   sd7           9.886e-04  1.362e-03   0.726  0.46934    65



1242   sd8           6.512e-04  1.339e-03   0.486  0.62776    
1243   sd9           4.324e-05  1.304e-03   0.033  0.97361    
1244   sd10         -7.115e-05  1.285e-03  -0.055  0.95594    
1245   sd11         -3.885e-05  1.282e-03  -0.030  0.97587    
1246   oilprice.dl1 -1.037e-02  4.159e-03  -2.494  0.01404 *  
1247   cost.dl1      1.849e-01  8.823e-02   2.096  0.03830 *  
1248   rigs.dl1      7.992e-03  6.370e-03   1.255  0.21216    
1249   oil.dl1       3.421e-02  1.955e-02   1.750  0.08279 .  
1250   oilprice.l1  -6.240e-03  2.352e-03  -2.653  0.00911 ** 
1251   cost.l1      -3.827e-01  7.866e-02  -4.865 3.66e-06 ***
1252   rigs.l1      -2.595e-03  1.363e-03  -1.903  0.05955 .  
1253   oil.l1        2.337e-02  4.674e-03   5.000 2.07e-06 ***
1254   trend.l1     -7.445e-04  1.494e-04  -4.982 2.24e-06 ***
1255   ---
1256   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1257   
1258   Residual standard error: 0.003032 on 115 degrees of freedom
1259   Multiple R-squared:  0.5228, Adjusted R-squared:  0.3942 
1260   F-statistic: 4.065 on 31 and 115 DF,  p-value: 2.097e-08
1261   
1262   
1263   Response rigs.d :
1264   
1265   Call:
1266   lm(formula = rigs.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
1267       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
1268       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
1269       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
1270       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
1271       1, data = data.mat)
1272   
1273   Residuals:
1274        Min       1Q   Median       3Q      Max 
1275   -0.08898 -0.01203  0.00000  0.01044  0.04983 
1276   
1277   Coefficients:
1278                  Estimate Std. Error t value Pr(>|t|)    
1279   constant      1.5934522  3.3188881   0.480  0.63206    
1280   D2011_02     -0.0293562  0.0252797  -1.161  0.24794    
1281   D2020_04     -0.2170456  0.0310789  -6.984 1.98e-10 ***
1282   D2020_05     -0.1209920  0.0369225  -3.277  0.00139 ** 
1283   D2020_06      0.1211548  0.0488053   2.482  0.01449 *  
1284   D2020_07      0.0359121  0.0317527   1.131  0.26041    
1285   D2020_12     -0.0476943  0.0254977  -1.871  0.06395 .  
1286   D2021_02     -0.0077181  0.0255552  -0.302  0.76319    
1287   D2021_03     -0.0155689  0.0346709  -0.449  0.65424    
1288   D2021_04     -0.0565148  0.0353960  -1.597  0.11309    
1289   D2021_06     -0.0455640  0.0257967  -1.766  0.08000 .  
1290   sd1          -0.0167619  0.0099478  -1.685  0.09470 .  
1291   sd2          -0.0228205  0.0109418  -2.086  0.03922 *  
1292   sd3          -0.0111567  0.0102067  -1.093  0.27665    
1293   sd4          -0.0061713  0.0106351  -0.580  0.56286    
1294   sd5          -0.0242899  0.0104334  -2.328  0.02165 *  
1295   sd6           0.0014068  0.0107609   0.131  0.89621    
1296   sd7          -0.0057208  0.0104885  -0.545  0.58651    
1297   sd8          -0.0083416  0.0103160  -0.809  0.42041    
1298   sd9          -0.0220609  0.0100458  -2.196  0.03010 *  
1299   sd10         -0.0092986  0.0098975  -0.939  0.34945    
1300   sd11         -0.0122855  0.0098716  -1.245  0.21583    
1301   oilprice.dl1  0.0894456  0.0320326   2.792  0.00613 ** 
1302   cost.dl1      0.6653005  0.6795669   0.979  0.32963    
1303   rigs.dl1      0.7830993  0.0490588  15.962  < 2e-16 ***
1304   oil.dl1       0.2512629  0.1505791   1.669  0.09791 .  
1305   oilprice.l1   0.0473114  0.0181143   2.612  0.01021 *  
1306   cost.l1      -0.2825076  0.6058422  -0.466  0.64188    
1307   rigs.l1      -0.0600216  0.0105010  -5.716 8.74e-08 ***
1308   oil.l1        0.0332740  0.0359966   0.924  0.35723    
1309   trend.l1     -0.0008365  0.0011508  -0.727  0.46876    
1310   --- 66



1311   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1312   
1313   Residual standard error: 0.02335 on 115 degrees of freedom
1314   Multiple R-squared:  0.9227, Adjusted R-squared:  0.9019 
1315   F-statistic: 44.28 on 31 and 115 DF,  p-value: < 2.2e-16
1316   
1317   
1318   Response oil.d :
1319   
1320   Call:
1321   lm(formula = oil.d ~ constant + D2011_02 + D2020_04 + D2020_05 + 
1322       D2020_06 + D2020_07 + D2020_12 + D2021_02 + D2021_03 + D2021_04 + 
1323       D2021_06 + sd1 + sd2 + sd3 + sd4 + sd5 + sd6 + sd7 + sd8 + 
1324       sd9 + sd10 + sd11 + oilprice.dl1 + cost.dl1 + rigs.dl1 + 
1325       oil.dl1 + oilprice.l1 + cost.l1 + rigs.l1 + oil.l1 + trend.l1 - 
1326       1, data = data.mat)
1327   
1328   Residuals:
1329         Min        1Q    Median        3Q       Max 
1330   -0.024421 -0.007929  0.000000  0.005418  0.042466 
1331   
1332   Coefficients:
1333                  Estimate Std. Error t value Pr(>|t|)    
1334   constant     -0.5823479  1.8207628  -0.320 0.749672    
1335   D2011_02     -0.0521117  0.0138686  -3.758 0.000271 ***
1336   D2020_04     -0.0673255  0.0170501  -3.949 0.000136 ***
1337   D2020_05     -0.1907334  0.0202559  -9.416 5.94e-16 ***
1338   D2020_06      0.0939519  0.0267749   3.509 0.000643 ***
1339   D2020_07      0.0510826  0.0174197   2.932 0.004059 ** 
1340   D2020_12     -0.0062816  0.0139882  -0.449 0.654233    
1341   D2021_02     -0.1633933  0.0140197 -11.655  < 2e-16 ***
1342   D2021_03      0.1674250  0.0190207   8.802 1.59e-14 ***
1343   D2021_04      0.0006998  0.0194185   0.036 0.971317    
1344   D2021_06      0.0012402  0.0141522   0.088 0.930319    
1345   sd1          -0.0090185  0.0054574  -1.653 0.101156    
1346   sd2           0.0092966  0.0060027   1.549 0.124194    
1347   sd3           0.0136444  0.0055995   2.437 0.016354 *  
1348   sd4           0.0012954  0.0058345   0.222 0.824688    
1349   sd5           0.0088022  0.0057238   1.538 0.126840    
1350   sd6           0.0030716  0.0059035   0.520 0.603851    
1351   sd7           0.0100902  0.0057541   1.754 0.082166 .  
1352   sd8           0.0140077  0.0056594   2.475 0.014777 *  
1353   sd9           0.0132478  0.0055112   2.404 0.017823 *  
1354   sd10          0.0153762  0.0054298   2.832 0.005466 ** 
1355   sd11          0.0103427  0.0054156   1.910 0.058651 .  
1356   oilprice.dl1  0.0297231  0.0175733   1.691 0.093473 .  
1357   cost.dl1     -0.0319228  0.3728146  -0.086 0.931912    
1358   rigs.dl1      0.0336548  0.0269140   1.250 0.213670    
1359   oil.dl1       0.0499284  0.0826086   0.604 0.546770    
1360   oilprice.l1  -0.0030453  0.0099376  -0.306 0.759824    
1361   cost.l1       0.1125057  0.3323688   0.338 0.735606    
1362   rigs.l1       0.0292600  0.0057609   5.079 1.48e-06 ***
1363   oil.l1       -0.0321923  0.0197479  -1.630 0.105804    
1364   trend.l1      0.0005529  0.0006313   0.876 0.382954    
1365   ---
1366   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1367   
1368   Residual standard error: 0.01281 on 115 degrees of freedom
1369   Multiple R-squared:  0.9141, Adjusted R-squared:  0.891 
1370   F-statistic:  39.5 on 31 and 115 DF,  p-value: < 2.2e-16
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