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Refunding ETS-proceeds to Spur the Diffusion of
Renewable Energies: An Analysis Based on the
Dynamic Oligopolistic Electricity Market Model

EMELIE

Thure Traber1 and Claudia Kemfert

Abstract

We use a quantitative electricity market model to analyze the welfare effects
of refunding a share of the emission trading proceeds to support renewable en-
ergy technologies that are subject to experience effects. We compare effects of
supporting renewable energies under both perfect and oligopolistic competition
with competitive fringe firms and emission trading regimes that achieve 70 and
80 percent emission reductions by 2050. The results indicate the importance of
market power for renewable energy support policy. Under imperfect competi-
tion welfare improvements is maximized by refunding ten percent of the emission
trading proceeds, while under perfect competition the optimal refunding share
is only five percent. However, under both behavioral assumptions we find sig-
nificant welfare improvements due to experience effects which are induced by
the support for renewable energy.

Keywords: emission trading; renewable energy support; experience effects;
imperfect competition

1Corresponding author, German Institute for Economic Research (DIW Berlin) , Mohren-
str. 58, D-10117 Berlin, Germany; Email: ttraber@diw.de, Tel.: +49-30-89789409, Fax:
+49-30-89789113.
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1 Introduction

After the liberalization of energy markets in the last decade, the electricity sector
tended to suffer from at least two market failures. On the one hand market
structures on the supply side are not likely to establish sufficient competition,
and on the other hand, externalities particularly due to carbon dioxide emissions
give rise to environmental concerns. In Europe, the environmental externalities
have subsequently been adressed by the establishment of the European Emission
Trading System (ETS) which applies a cap to allowed emissions and internalizes
the externality through emission allowance prices.

The grandfathering of the emission allowances has, however, been rightfully
critizised for its creation of large windfall profits for the industry, thus strength-
ening the position of incumbents in the electricity market. For instance, Sijm et
al. (2006) use the model COMPETES for an assessment of the magnitude of the
windfall profits and calculate a multi billion euro windfall profit for firms in Bel-
gium, France, Germany and the Netherlands alone. Starting in 2013, however,
energy firms have to fully pay for their allowances which creates a potentially
huge budget for the government. Given the additional problem of market power,
it is obvious to consider the use of parts of the proceeds of the emission mar-
ket to improve the situation of the distorted output market. Moreover, the
emission trading directive 2009/29/EC of the European Union demands that at
least fifty percent of the proceeds from auctioning emission allowances have to
be allocated to support low carbon technologies or energy efficiency programs.

In a situation where market power meets environmental externalities, the
economic literature suggests to add an output subsidy if an emission tax is
chosen or to reduce the tax to below the Pigouvian level. Ebert (1992), and
Requate (1993) analyze first and second best taxes and tax/subsidy schemes for
symmetric Cournot oligopolies. Simpson (1995) investigates the optimal emis-
sion tax in the presence of an asymmetric duopoly and finds that the optimal
tax level might fall short of or exceed the marginal damage depending on the dif-
ferent costs of the duopolists. More recently, Gersbach and Requate (2004) have
analyzed a tax/tax-refunding system which may establish the social optimum
by linking the refund to market shares under static conditions. In addition, if
investment decisions are taken into account, they show that the social optimum
can be achieved if the refund is based on both market shares and investment
shares.

A further problem for the optimal design of environmental policy is intro-
duced when technological knowledge is not fixed but depends on R&D effort,
learning by doing or experience effects in general. A good overview of the nature
of the problem is given in Jaffe et al. (2005) who find that ”in the presence of
weak or nonexistent environmental policies, investments in the development and
diffusion of new environmentally beneficial technologies are very likely to be less
than would be socially desirable. Positive knowledge and adoption spillovers and
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information problems can further weaken innovation incentives.” In the same
vein, Parry et al. (2003) investigate, with analytical and numerical treatments,
the welfare gains of keeping the optimal abatement level if innovations in abate-
ment technologies are possible. They find that the results depend crucially
on the discount rate, the optimal abatement level without innovation, and the
speed at which innovations take place. More recently, Gerlagh et al. (2009)
analyze the timing of policies in an optimal control framework with R&D in-
duced technological change. They find that if the regulator has the possibility
to encourage R&D, he should do so. On the contrary, if the regulator has no
instrument to support R&D but only an emissions tax available, the authors
suggest fixing the tax above the Pigouvian level to induce more innovations.

Unlike previous research, we focus on the impact of market power on the level
of an environmentally motivated subsidy when experience effects are significant
and the environmental externality is internalized by an emission market. We
analyze effects of partial refunding ETS proceeds to investment in renewable
energy technologies with the model EMELIE EUR-25 documented in Traber
and Kemfert (2009), and simulate the welfare maximizing refunding share un-
der conditions of both imperfect and perfect competition for two likely ETS
reduction targets.

In the next section we proceed with the presentation of the algebraic formu-
lation of the model which is followed by section 3 on model data and calibration.
In section 4 we first present and discuss the effects of the refunding on welfare
under both competition scenarios, and highlight impacts of the optimal refund-
ing on consumers and producers under imperfect competition. Furthermore,
section 4 studies the effects of refunding on electricity prices, prices of emission
allowances, cost degression of wind as the dominant renewable energy technol-
ogy, and on investment shares in the sector. Section 5 gives a conclusion.

2 The Model

We consider an electricity market consisting of companies denoted i that are
linked to a specific country r, members of the set of companies in a country
Ir, and maximize revenues net of costs2. Firms face a periodic country specific
inverse demand written as P r,t(Xr,t), where Xr,t denotes the according demand.

Production takes place in existing units and in newly installed capacities of
technology n. In case of existing capacities, the production of a firm, qi,t, causes
direct costs of production in each period denoted Ci,t(qi,t), and costs that are
related to emissions, Ei,t(qi,t), and emission prices, σt, which are induced by the
emission market. Production in new investments of technology n ∈ N , qi,t,n,
causes investment costs which are included in the levelized costs of production

2For a summary of indices consider the notation at the end of this section.
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in new capacities Cni,t,n(qi,t,n). Their corresponding emissions are denoted
Eni,t,n(qi,t,n). Production of firms in old capacities is restricted by production
limits, qi,t, giving rise to shadow prices κi,t. Similarly, investments are restricted
by available plant sites or renewable energy potentials which induce shadow
prices of the resource restrictions, φi,t,n, if the respective resource potentials are
exhausted.

The supply Xi,t of a firm is the sum of its regional supplies xi,r,t over all
regions and has to be completely covered by its production in each period.
The according production balance is expressed by the following equality: qi,t +∑
n∈N

qi,t,n = Xi,t. Furthermore, regional supplies directed to countries other

than the home country of the producing firm, denoted xi,r
∗,t, are restricted by

the export limit xr,r
∗
, where τ r,r

∗,t denotes the shadow price of transmission
capacity in period t.

The emission market is represented by the balance between the emission
cap, E

t
, and the sum of emissions of the electricity market, Et(σt), and of the

emissions of the non-electricity emission trading sectors, Etnel(σ
t), in each period

which writes E
t

= Etel(σ
t) + Etnel(σ

t).

Finally, a share dg of the emission allowance proceeds from the electricity
market, σtEtel, is equally distributed according to new investments in green
technologies denoted g ∈ G, where G ⊂ N . Now we can write the restricted
optimization problem of the firm for each period t as the following Lagrangian
of the Kuhn-Tucker type:

max
qi,t,qi,t,n

Li,t =
∑
r∈R

P r,t(Xr,t)xi,r,t − Ci,t(qi,t)−
∑
n∈N

Cni,t,n(qi,t,n)

−σt(Ei,t(qi,t) +
∑
n∈N

Eni,t,n(qi,t,n)) + dgσ
tEtel

∑
g∈G

qi,t,g∑
i∈I

∑
g∈G

qi,t,g

−κi,t(qi,t − qi,t)−
∑
n∈N

φi,t,n(qi,t,n − qi,t,n)

−
∑
r∗ 6=r

τ r,r
∗,t(xr,r

∗
−

∑
i∈Ir

xi,r
∗,t). (1)

Taking the derivative of (1) with respect to production of the firms in existing
units yields the according first order optimality conditions. These depend on the
assumed competitive behavior. If a firm does not recognize its impact on prices
and, hence, acts as a price taker, the first order condition can be expressed as:

P r,t(Xr,t) ≤ Ci,tq (qi,t) + σtEi,tq (qi,t) + κi,t + τ r,r
∗,t,

∀i ∈ I, ∀r ∈ R,∀t ∈ T. (2)
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Dominant firms consider their supply effect on prices implied by the price
elasticity of residual demand, εr,t, and behave á la Cournot, giving rise to a
situation of imperfect competition. If we denote the market share of firm i in
region r with ϑi,r,t, the first order optimality condition in a Nash-equilibrium
of oligopolistic suppliers can be expressed as:

P r,t(Xr,t)(1− ϑi,r,t

εr,t
) ≤ Ci,tq (qi,t) + σtEi,tq (qi,t) + κi,t + τ r,r

∗,t,

∀i ∈ I, ∀r ∈ R,∀t ∈ T. (3)

Comparing (3) and (2) shows that the only difference is the mark-up, ϑ
i,r,t

εr,t ,
on the left hand side of the equations, which under oligopolistic competition
induces prices above the costs which are summarized on the right hand side of
the equations.

Since we model a period length of 20 years, - which is roughly the financial
recovery period of investments in power plants - , firms do not consider the
revenues from newly built capacities in the next model period. Hence, our
framework simulates myopic investment behavior. Consequently, the firms do
not distinguish between investments and production, since they do not have
any incentive to produce less than the investment facilitates. The first order
conditions with regard to investment in new capacities for a price taking firm
takes the refunding into account and writes:

P r,t(Xr,t) + dg
σtEtel∑

i∈I

∑
g∈G

qi,t,g
≤ Cni,t,nq (qi,t,n) + σtEni,t,nq (qi,t,n) + φi,t,n

+τ r,r
∗,t,

∀i ∈ I, ∀r ∈ R,∀t ∈ T, ∀n ∈ N, (4)

where dg is zero for conventional technologies. Since firms do not achieve signifi-
cant market shares in new investments3, the first order condition with regard to
investment of oligopolists in the Nash-equilibrium differs compared to decision
(4) only by the mark-up and writes:

P r,t(Xr,t)(1− ϑi,r,t

εr,t
) + dg

σtEtel∑
i∈I

∑
g∈G

qi,t,g
≤ Cni,t,nq (qi,t,n) + σtEni,t,nq (qi,t,n)

+φi,t,n + τ r,r
∗,t,

∀i ∈ I, ∀r ∈ R,∀t ∈ T, ∀n ∈ N.(5)

3Note that significant market shares are apparent only on the national electricity market
level, whereas on the European scale a comparable share in terms of new investment is very
unlikely. The analysis had to be augmented by market power effects on refunding if e.g. the
proceeds of emission allowance sales were collected and redistributed on the national level.
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Notation

T Set of periods
I Set of companies
Ir Set of companies in region r
R Set of regions
N Set of investment technologies
G Set of renewable energy investment technologies, subset of N
P r,t Electricity price in region r and period t
δ social discount factor
σt Price of carbon emissions in period t
Xr,t Total electricity supply in region r and period t
Etel Total emissions of the electricity sector in period t
Etnel Total emissions of the non-electricity ETS sector in period t

xr,r
∗,t Export from region r to r∗

qi,r,t Electricity production of firm i in region r and period t
in installed power plants

qi,r,t,n Electricity production of firm i in region r and period t
in newly installed power plants of type n

C(qi,t) Variable costs of electricity production of firm i
in period t in installed power plants

Cn(qi,t,n) Total costs of electricity production of firm i
in period t for newly installed power plants of type n

E(qi,t) Emissions of electricity production of firm i
in period t in installed power plants

E(qi,t,n) Emissions of electricity production of firm i
in period t in newly installed power plants of type n

qi,t Capacity restriction of installed power plants
of firm i in period t

qi,t,n Capacity expansion restriction of firm i
in period t and technology n

xr,r
∗

Transmission restriction from region r to r∗

κi,r,t Shadow price of capacity restriction of installed
power plants of firm i in region r and period t

φi,t,n Shadow price of capacity expansion restriction of firm i
in period t and technology n

τ r,r
∗,t Shadow price of transmission capacity from region r to r∗ in period t

εr,t price elasticity of demand in region r in period t
d share of refunded emission trading proceeds
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In our partial framework, welfare is defined as:

W (d) =
∑
r∈R

∑
t∈T

Xr,t∫
0

δt−1[P r,t(Xr,t)dx−
∑
i∈I

Ci,t(qi,t)−
∑
i∈I

∑
n∈N

Cni,t,n(qi,t,n)],

(6)
where δ denotes the social discount factor. (2) will be used for the calculation
of the welfare effects of different levels of refunding shares.

In the next section we introduce the data for the numerical simulation of the
model, i.e the demand projection, the costs and restrictions of the simulated
technologies, and two possible emission allowance reduction pathways envisaged
by the European Union’s ETS.

3 Model Data and Calibration

The inverse demand function is assumed to have a linear form and writes

P r,t = ar,t − br,tXr,t. (7)

The model is calibrated via the elasticity of demand εt of the first period 2010
at the reference points P r,t0 , Xr,t

0 of the regions. Their respective values are
historical values of the year 2008, mainly based on EUROSTAT4 information
and own calculations. The calibration yields an elasticity of 0.5. The expected
demand growth until 2030 and 2050, the second and the third model period, are
represented by an increase of reference demand of ten percent per period. These
values are similar to projections found in comparable assessments (Bulteel and
Capros (2007)). Furthermore, the social discount rate for the intertemporal
aggregation of welfare is two percent.

The dynamic supply side of the model uses existing capacities for the first
model period and fuel prices as documented in Traber and Kemfert (2009) and
applies a decomissioning according to life expectancy or, in case of German
nuclear power plants, in line with the scheduled nuclear phase out by 2022.
Furthermore, new investment is added to the capital stock of the next period
if its expected lifetime significantly exceeds twenty years, i.e. in case of fossil
fuelled power plants and small scale hydro power. Large existing hydro power
units are assumed to be maintained throughout the model’s time horizon.

In each time step, existing capacities give rise to linearly increasing marginal
cost and marginal emission functions calculated with a small auxiliary program

4Statistical information service of the European Union.
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that minimizes supply costs including emission costs subject to plant capacities
and plant availabilities. For this purpose, emission allowance prices from a
preliminary run of the core model are used, and marginal cost and marginal
emission functions are fed back to the core model until convergence of emission
allowance prices is achieved.

As mentioned earlier, the costs of production in new capacities include the
investment costs levelized to kilowatt hours and are, in case of fossil fueled units
based on MIT (2007), Rubin et al. (2007) and our own calculations. Table 1
shows an overview of our projection for the year 2030 and a rather optimistic
technology development, which constitutes the lower cost level in the model.
More pessimistic forecasts yield about twenty percent higher levelized costs that
are taken as the upper cost boundary.

Table 1: Fossil fuel-fired technologies by 2030: optimistic technology scenario.

Gas Lignite Gas Lignite

CC IGCC PC PC CC CCS IGCC CCS PC CCS PC CCS

Efficiency % 59 50 45 43 51 43 37 35

Investment Euro/kW 480 1250 1100 1200 880 1650 1650 1750

Capital Cost* cent/kWh 0.76 1.97 1.74 1.89 1.39 2.60 2.60 2.76

Fuel  Cost** cent/kWh 5.4 1.8 2.0 1.0 6.2 2.1 2.4 1.3

O&M Cost cent/kWh 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.5

Full Cost cent/kWh 6.3 4.0 3.9 3.2 7.8 5.0 5.4 4.5
CO2 g/kWh 336 684 760 929 78 159 185 228

*capacity factor 0.85; depreciation 20 years; interest rate 10%; overnight construction.

**fuel prices for the year 2030: natural gas 3.2 cent/kWh, 

hard coal 1 cent/kWh, lignite 0.5 cent/kWh, own assumptions.

Sources: MIT (2007);  Rubin et al. (2007); own calculations.

Fuel Hard Coal Hard Coal

Technology

With regard to renewable energy technologies, the model utilizes data from
the Green-x project5 which reports cost estimates and national resource poten-
tials for the twenty seven countries of the EU (Ragwitz et al. (2007)), and from
the ADAM6 project (ISI (2007)). The respective model inputs are summarized
in Figure 1, which shows the wide ranges of cost estimates for the different
renewable energy technologies against their aggregated European resource po-
tentials. In addition, we apply a twenty percent market entry penalty on top

5http://www.green-x.at/
6Adaptation and Mitigation Strategies: Supporting European Climate Policy
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of the estimated production cost, since market barriers are likely to prevent the
entry of these locally dispersed technologies to a significant extent.

Figure 1: Long run marginal cost of renewable energies and aggregated EU potentials.
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The range of marginal costs is integrated through the resource limits of the
technologies: the more a resource is used the closer the costs approach the upper
cost estimate. Here we differentiate between fossil fueled units and renewable
resources. In case of fossil fueled units, the currently existing capacities of each
fuel carrier determine the investment opportunities for each firm. In the first
period firms may increase their capacities by fifty percent, and in the following
periods by one hundred percent. This assumption is justified by the scarcity of
sites suitable for large scale power plant projects and the expected decommis-
sioning in the coming decades which makes way for replacement. By contrast,
the potential of electricity production from renewable energy is based on re-
gional resource potentials, and is assumed to be solely available for investment
of price taking firms. The logic behind this assumption is that when companies
compete for scarce renewable energy resources, oligopolistic companies have a
smaller propensity to invest since they expect a mark-up on returns.

Moreover, costs of new technologies are assumed to decrease according to an
experience curve as follows:

cnn,t = cnn,t0 (
∑
t∈T

qn,t + qn0 )j(n), (8)

where cnn,t0 denotes the base period costs of the first unit, and j(n) the expe-
rience index which is calculated from the progress ratios PR according to the
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following function
j(n) = log2(PR). (9)

We apply a PR of 0.9 which is a modest assumption when compared with
estimates found in the literature (McDonald and Schrattenholzer (2002), Uyter-
linde et al. (2007)).

Furthermore, we set up the market for emission allowances. On the one
hand, demand for emission allowances has been broken down into two parts, i.e.
the endogenuously calculated demand of the electricity sector, and the demand
of the non-electricity emission trading sectors which is documented in Traber
and Kemfert 2009) and assumed to be constant over the whole time horizon.
On the other hand, the supply side for emissions which is determined by the
European ETS policy. Currently, the cap on emissions imposed by the European
ETS is at a level of 2085 MT CO2 and will decrease linearly by 1,74 percent
annually, - even if no satisfactory worldwide emission reduction policy is agreed
upon according to the EU-directives 2003/87/EC and 2009/29/EC. This policy
will lead to a reduction of the ETS cap of 70 percent by 2050 compared to the
current level.

However, the European Union envisages a further tightening of the ETS
target so as to establish a reduction of overall emissions of about 30 percent,
translating into an ETS reduction of about 33 percent by 2020 for the case
of an international agreement. Such policy yields an ETS cap reduction of
80 percent when it is linearly extrapolated into 2050. Thus, we adopt two
emission reduction scenarios reaching 70 and 80 percent reductions compared
to current ETS levels. However, another important derterminant of the future
ETS will be the allowed use of emission reduction units (ERUs) and certified
emission reductions (CERs). The new ETS directive aims to ensure that the
overall use of CERs and ERUs does not exceed 50 percent of the reductions.
Given comparatively low cost compared to ETS allowance prices, we assume
that these 50 percent will be fully utilized. It follows that the reduction of
the ETS allowances for the modelled sectors is in effect only 35 and 40 percent
respectively in the 70 and 80 percent reduction scenarios.

In addition to the two emission reduction scenarios, we apply two behavioral
assumptions in regard to the suppliers of electricity. Behavioral assumption pc
assumes perfect competition, while assumption ic represents imperfectly com-
petitive behavior of dominant firms and price taking behavior of small firms.
Altogether, we calculate for each behavioral assumption two reduction scenar-
ios: pc 70 and pc 80 for perfect competition, and ic 70 and ic 80 for imperfect
competition.
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4 Results and Discussion

Figure 2 reports the welfare effects induced by shares of refunding from zero
to fifteen percent in our four scenarios. It turns out that refunding of up to
ten percent of ETS proceeds improves welfare irrespective of the scenario. In
particular, in scenario ic 80 a refunding share of ten percent maximizes the
welfare effect, increasing welfare by 0.63 percent compared to no refunding. In
comparison, under scenario ic 70, we find smaller achievable welfare gains. While
the optimal refunding share is not changed by the change of emission target and
remains at ten percent, the welfare gain is only 0.50 percent compared to no
refunding.

Figure 2: Welfare effect of refunding shares with tight (80) and baseline (70) percent

reduction targets by 2050 under perfect (pc) and imperfect competition (ic).
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If perfectly competitive markets are assumed, we find lower welfare gains
and lower optimal refunding. Under the tight emission target, scenario pc 80,
the optimal refund of about five percents yields a maximum welfare gain of
0.42 percent, while a relaxed target induces even smaller maximal welfare gains
of only 0.24 percent. Comparing the results of both behavioral assumptions
shows the impact of market power on optimal refunding and on potential welfare
gains. We find that market power increases both the optimal refunding and
the maximal welfare gains of the instrument. Furthermore, a more restrictive
emission trading policy does not change the optimal refunding but improves the
associated welfare gain.

We can explain the result in regard to market power in the following way.
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If no market power is present, the only motivation to spur technological change
is the presence of experience effects that are not taken into account by the in-
vestors. If instead market power is exercised, the competition enhancing effect
of renewable energies leads to extra rewards of technology development in the
future. Hence, this finding rests on a pro competitiveness of renewable energies.
This might be an innocent assumption if market power is predominantly exe-
cuted through capacity withholding which might be not an option for dispersed
renewable energy production. However, the development of large scale central-
ized renewable energy projects could make the pro competitiveness assumption
questionable.

The impact of the stringency of the ETS regime on the welfare gains of
refunding can be attributed to the increasing value of technological advances in
low carbon technologies in an ever more restricted carbon market. This would
also suggest an increase of the optimal refunding share which, however, appears
to be relatively robust against the change in emission targets. The economic
intuition behind this result is that higher emission prices due to tighter emission
targets trigger higher diffusion of renewables and larger experience effects even
in the absence of refunding. Thus, additional gains from experience are harder
to reap.

Moreover, the refunding scheme has pronounced redistribution effects in in-
tertemporal and intersectoral dimension which are featured in Figure 3. To
facilitate a more detailed discussion we focus in the following on scenario ic 70,
while scenario ic 80 is subsequently used for a brief sensitivity analysis.

Observing the welfare effects shown in table a) of Figure 3, one finds that
welfare is reduced by half a percent in the first period, and increased by 1.2 and
0.4 percent in the second and third model period respectively by the optimal
ten percent refund of ETS proceeds. Thus, a central characteristic of the in-
strument is its intertemporal redistribution from the present to future periods.
Since the main driver of welfare improvements triggered by the instrument are
experience spillovers, which only contribute to future wealth, this result is in
line with economic intuition. Discounting to present value with a social dis-
count rate of two percent, leads to the welfare impact of optimal refunding of
0.5 percent mentioned earlier, and can be seen from the last row of table a).
Furthermore, the welfare effects are composed of largely differing impacts on
consumers, producers and the government.

Tables b), c) and d) of Figure 3 allows us to compare these sectoral redistri-
bution effects. First, we see that welfare gains are predominantly due to large
increases in consumer surplus, i.e. 10.4, 5.2 and 3 percent in the periods 2010,
2030, 2050 respectively. Second, the gains on the consumer side are at least par-
tially offset by losses in producer surplus and government proceeds from sales
of ETS allowances. While producers lose 12.4, and 2.6 percent in the first and
second period respectively, they gain by 0.5 percent from the refunding in 2050.
This gain has to be explained by a pronounced emission price reduction effect of
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Figure 3: Intertemporal effects of optimal refunding for scenario ic 70 and ic 80.

Bio. € Baseline 10% refund rel. Change Baseline 10% refund rel. Change
2010 174 173 -0.5% 174 173 -0.5%
2030 158 161 1.2% 156 159 1.2%
2050 168 170 0.4% 163 165 0.7%

Present value 356.7 358.5 0.50% 353.1 355.3 0.63%

Bio. € Baseline 10% refund rel. Change Baseline 10% refund rel. Change
2010 98 108 10.4% 98 108 10.4%
2030 83 90 5.2% 82 89 5.1%
2050 85 91 3.0% 82 88 3.0%

Present value 192.4 209.4 8.8% 190.5 207.3 8.8%

Bio. € Baseline 10% refund rel. Change Baseline 10% refund rel. Change
2010 43 38 -12.6% 43 38 -12.6%
2030 51 49 -2.6% 51 49 -2.5%
2050 63 64 0.5% 62 61 -0.7%

Present value 106.6 100.1 -6.1% 106.4 99.1 -6.8%

Bio. € Baseline 10% refund rel. Change Baseline 10% refund rel. Change
2010 33 27 -16.7% 33 27 -16.7%
2030 23 22 -4.6% 22 21 -4.2%

ic 70 ic 80
table a) Welfare

table b) Consumer surplus

table c) Producer surplus

table d) ETS proceeds electricity sector

2030 23 22 -4.6% 22 21 -4.2%
2050 20 15 -10.8% 18 16 -5.1%

Present value 57.7 49.0 -15.1% 56.2 48.9 -13.1%

€/t CO2 Baseline 10% refund rel. Change Baseline 10% refund rel. Change

2010 25 21 -16.2% 25 21 -16.2%
2030 32 30 -6.5% 33 31 -5.9%
2050 52 40 -21.9% 62 56 -9.9%

cent/kWh Baseline 10% refund rel. Change Baseline 10% refund rel. Change
2010 5.23 4.83 -7.7% 5.23 4.83 -7.7%
2030 6.24 5.96 -4.5% 6.27 6.00 -4.4%
2050 6.48 6.25 -3.5% 6.60 6.37 -3.5%

cent/kWh Baseline 10% refund rel. Change Baseline 10% refund rel. Change
2010 5.40 5.40 0.0% 5.40 5.40 0.0%
2030 4.99 4.37 12.5% 4.99 4.37 12.5%
2050 4.00 3.67 8.3% 3.99 3.66 8.2%

table e) ETS allowance prices

table f) Electricity prices

table g) Costs first unit wind
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almost 22 percent in that period as documented in Table e) of Figure 3. Thirdly,
the government budget from emissions trading in the electricity sector is reduced
in all three periods since electricity sector emissions and, consequently, emission
prices decline in all periods as can also be seen from Table d). Thus, a further
property of the refunding scheme is that it redistributes rents from polluting
producers and government budgets to consumers of electricity.

This sectoral redistribution induced by the refunding scheme should be espe-
cially important when political concerns of too high energy prices due to climate
protection are brought to the fore. In fact, the first phase of the ETS saw a
large allocation of free emission allowances to the polluting industry, and, simul-
taneously, emission price driven electricity price increases which lead to huge
windfall profits that heated up the debate. By contrast, refunding of proceeds
from auctioning off ETS allowances may mitigate some of the financial burden
of emission reduction for the consumers at the expense of electricity suppliers.
Therefore, refunding could improve the political acceptability of even deeper
emission cuts beyond current targets. If we compare the consumer surplus in
the baseline scenario without refunding under the less ambitious climate policy,
ic 70, with the ambitious scenario ic 80 and a ten percent refunding, we find
that consumers are about 7.7 percent better off in the latter case.

The reported results are mainly driven by dampening effects of the refund
on the average European electricity prices, which are summarized in Table f) of
Figure 3. In scenario ic 70 we find electricity prices are reduced by refunding
by 7.7, 4.5, and 3.5 percent in the first, second, and third period respectively.
The price effects of the refund can in turn be attributed to three sources. First,
the support triggers an increase in renewable electricity which directly reduces
electricity prices. Second, renewable energy partially crowds out emission inten-
sive electricity and reduces emission prices as can be seen from table d) where
we observe emission price reductions of 16.2, 6.5, and 21.9 percent in the first,
second, and third period respectively. Thirdly, the increased deployment of
renewable energy reduces the costs of renewables via experience effects which
leads to increased renewable energy even without continuing support.

To see this, consider that the reduction of emission allowance proceeds and
the increase of investments in renewable energy lead to a substantial decrease of
the refund per output over the time horizon while the absolute price reduction
of the instrument is relatively stable. More precisely, in scenario ic 70 the
refunding of ten percent of ETS proceeds amounts to an equivalent production
subsidy of 1.15, 0.32, 0.14 cent per kilo watt hour in the first second and third
period respectively, while the corresponding price reductions amount to 0.40,
0.28, and 0.23 cent per kilo watt hour. This suggests that at least in the third
period an important part of price reduction has to be attributed to experience
effects and subsequent emission price reductions.

The experience effects are exemplified in Table g) of Figure 3 by the cost
of the first unit of production of wind power, i.e. the least cost opportunity

14



Figure 4: Investment shares of technologies with and without refunding in scenarios

ic 70 and ic 80 with (pie charts on the right of figure) and without (pie charts on the

left of Figure) a ten percent refunding of ETS proceeds.
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to produce renewable energy. We find that wind production costs decrease
significantly from 5.4 cent per kilo watt hour to five cent per kilo watt hour
by 2030 and four cent per kilo watt hour by 2050, even without support of
refunding and irrespective of the emission reduction scenario. Refunding brings
down the costs of wind power by an additional 12.5 percent by the second,
and more than 8 percent by the last model period. Due to less pronounced
investment increases, refunding leads to relatively small experience effects in
other renewable energy technologies.

Figure 4 above shows the investment shares in installed production potential
of new capacities over the time horizon of the model in the scenarios ic 70 and
ic 80 with and without a ten percent refunding of ETS proceeds. On the one
hand, we find that the investment shares are not dramatically impacted by
the choice of the emission reduction scenario when we compare the upper pie
charts with the lower pie charts. Only a significant shift of coal investments
from conventional to CCS units occurs when we tighten the emission budget.
To the contrary, the shares of wind power, the dominant investment option in
all scenarios, and natural gas units are not affected by the change of the ETS
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emission target. On the other hand, introducing a ten percent refund of ETS
proceeds to renewable energy yields more significant changes: in both reduction
scenarios wind power increases its share in investments from 55 to 66 percent,
biomass units gain one percent, and coal fired CCS and natural gas power plants
lose eight and four percent respectively.

Hence, it turns out that the analyzed technological indifferent renewable
support scheme predominantly favors investments in wind power units. In the
scenario ic 80 with ten percent refund, which is most favorable for wind power,
the generation share of wind power is almost forty percent by 2050. We therefore
have to point out that our results are based on assuming absence of intermit-
tency problems of wind power, i.e. a possibly reduced reliability of electricity
services. Weather or not a forty percent wind power share would lead to relia-
bility problems of current grid systems is questionable. If, however, the policy is
supplemented by a strengthening of and move towards smarter electricity grids
which are able to balance load between supply and demand more efficiently, this
caveat might be obsolete.

Finally, we compare our simulations for the scenarios ic 70 and ic 80 is doc-
umented in Figure 3 and Figure 4 in regard to the sensitivity of the model. It
turns out that the results are qualitatively almost unchanged and quantitatively
comparable, in particular if we consider the relative changes induced by refund-
ing. In fact, the relative induced changes of the refund are almost the same for
the consumer surplus, electricity prices, and the cost degression of wind power.
This shows t relative robustness of the applied model. Only the effect of refund-
ing on producer surplus in the third model period is, opposed to scenario ic 70,
negative in scenario ic 80, which can be explained by a less pronounced relative
reduction of emission allowance prices, i.e. ten percent emission price reduction
by 2050 against twenty two percent in scenario ic 70.

5 Conclusion

Developing the electricity market model EMELIE EUR 25 to a dynamic model
with investment, we analyzed welfare effects of refunding ETS proceeds to sup-
port the diffusion and development of renewable energies. We find that under
fairly modest assumptions in regard to experience effects, refunding might im-
prove welfare. Particularly, under conditions of imperfect competition, potential
welfare gains are significant. Under both a 70 and 80 percent reduction of the
ETS cap the optimal refund is about ten percent of proceeds from ETS al-
lowance sales, leading to welfare gains of 0.50 and 0.62 percent respectively.
Under perfect competition the optimal refunding and its welfare effects are less
pronounced. However, when tight targets on the emission market are imposed,
refunding can improve welfare by 0.42 percent. Hence, our study shows that in-
vestments in the development of renewables may have a particularly high reward
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if market power is a problem.

Furthermore, we find that the welfare improvements induced by the optimal
refunding favor consumers at the expense of producers. While consumers benefit
over the whole time horizon, the loss in producer rent and government proceeds
from selling allowances is more than compensated by the consumer gain in the
first period. At a social discount rate of two percent, however, these welfare
losses in the first period are more than offset by future gains.

Our results rest on the assumption that no other policies are in place and
that there are no available policies which spur technological learning more cost
effectively. An obvious candidate would be, for instance, the promotion of R&D.
However, support to R&D is hard to channel to specific areas that are essential
for cost reductions in the renewable energy industry. Furthermore, the countries
of the European Union already apply policies to support renewable energies. It
is therefore a task for future research to analyze wheather existing instruments
should be either substituted or improved by a refunding scheme, since it has the
important feature of providing support in dependence of the emission targets.
Therefore, it reshapes the problematic interaction of instruments.
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