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1. Introduction 

Modelling inflation is still a controversial issue, and a consensus is yet to be reached on 

whether it is a stationary I(0) or a nonstationary I(1) variable. More recently, it has been 

suggested that it might be an I(d) process, with d lying between 0 and 1. Such processes 

exhibit long memory, with a pole or singularity in the spectrum at the long-run or zero 

frequency. This idea was introduced in the mid-1960s by Granger (1966) and Adelman 

(1965), who pointed out that for most aggregate economic time series the spectral density 

has a typical shape with a spike as the frequency approaches zero, and differencing the 

data frequently leads to overdifferencing at the zero frequency. However, it might be that 

the series is characterised by more than one pole or singularity in the spectrum, but, given 

the strong influence of the component at the zero frequency, these poles may not be 

apparent in the periodogram or in any other estimate of the spectral density function. This 

is particularly relevant if seasonal components are present in the data, as, for instance, in 

the case of quarterly or monthly data. There exist procedures for estimating the fractional 

differencing parameter in this context using seasonal long-memory models; however, 

many of them have the limitation of imposing the same degree of integration at all 

frequencies in the spectrum. For instance, this is the case for the Dickey-Hasza-Fuller 

(DHF, 1984) tests for seasonal unit roots in a non-fractional context.1 

 By contrast, in the present study we specify a multi-factor long-memory process 

that enables us to estimate the fractional differencing parameters at each frequency 

separately, and adopt this framework to model quarterly prices in three European countries 

(France, Italy and the UK). The outline of the paper is as follows: in Section 2 we briefly 

review the literature on modelling inflation, focusing particularly on long-memory models. 

                                                 
1 Hylleberg, Engle, Granger and Yoo (1990) present a procedure that allows one to consider unit roots at 
zero and each of the seasonal frequencies separately, although it focus exclusively on the I(0)/I(1) cases. 
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In Section 3 we describe the statistical framework employed here. Section 4 presents the 

empirical results. Section 5 analyses the forecasting performance of the model, whilst 

Section 6 summarises the main findings and offers some concluding remarks. 

 

2. Literature review  

The empirical literature on inflation is vast. In the last couple of decades attention has 

often focused on European countries, as inflation convergence is one of the requirements 

for EMU membership specified in the Maastricht treaty. Several studies have carried out 

standard unit root tests (see, e.g., Barsky, 1987, and Rose, 1988), with mixed results 

depending on the span of data. Long-memory models have then become increasingly 

popular (see, e.g., Chung and Baillie, 1993, and Franses and Ooms, 1997). Much of the 

evidence supports the view that inflation is fractionally integrated with a differencing 

parameter that is significantly different from zero or unity. For instance, using US monthly 

data, Backus and Zin (1993) found a fractional degree of integration. They argued that 

aggregation across agents with heterogeneous beliefs results in long memory in the 

inflation process. Hassler (1993) and Delgado and Robinson (1994) provided strong 

evidence of long memory in the Swiss and Spanish inflation rates respectively. Baillie, 

Chung and Tieslau (1996) examined monthly post-World War II CPI inflation in ten 

countries, and found evidence of long memory with mean-reverting behaviour in all 

countries except Japan. Similar results were reported by Hassler and Wolters (1995) and 

Baum, Barkoulas and Caglayan (1999).2 

Other studies have also attempted to take into account possible persistence and 

heteroscedasticity in inflation rates (see, e.g., Chambers, 1998, Bollerslev and Wright, 

                                                 
2 Other papers dealing with long memory in inflation rates in the context of structural breaks are Bos, 
Franses and Ooms (1999, 2001), Gadea, Sabate and Serrano (2004), Franses, Hyung and Penn (2006) and 
Gil-Alana (2008), and forecasting issues are examined in Franses and Ooms (1997) and Barkoulas and 
Baum (2006). 
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2000, Ferrara and Guegan, 2001a).  In particular, a general model, which extends the 

FIGARCH, FIEGARCH and FARMA-GARCH specifications of Baillie et al. (1996), 

Bollerslev and Mikkelsen (1996) and Ling and Li (1997), has been proposed by Guegan 

(2000). His framework combines long-memory behaviour with quasi-periodic behaviour 

in the conditional variance of the series. 

 

3. The statistical framework 

In this paper we consider various time series long-memory models. The first is the 

standard I(d) model given by 

,0,0

,...,2,1,)1(




tx

tuxL

t

tt
d

   (2) 

where xt is an observable time series, or alternatively the errors in a regression model of 

the form: 

,...,2,1,'  txzy ttt     (3) 

where zt are deterministic regressors such as an intercept (zt = 1) or an intercept with a 

linear time trend (zt = (1, t)T); L is the lag-operator (Lyt = yt-1), ut is assumed to be I(0),3 

and, given the quarterly frequency of the data analysed here, to follow a seasonal 

autoregressive (AR) model of the form: 

               (4)  ,...,2,1,)(  tuL tt
s 

where s indicates the number of time periods per year, and єt is a white noise process. This 

specification implies that the long-run dynamic behaviour of the series is captured by the 

fractional differencing parameter d only, while the seasonal structure is a purely short-run 

phenomenon described by the AR coefficients. 

 A second model considered in this study is the seasonal I(d) process described by  

                                                 
3 An I(0) process is defined as a covariance stationary process eith spectral density function that is positive 
and finite at any frequency. It thus includes the stationary ARMA models. 
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,...,2,1,)1(  tuxL tt
ds    (5) 

where d once more can take a fractional value. Porter-Hudak (1990) applied a seasonally 

fractionally integrated model of this type to quarterly US monetary aggregates, and 

concluded that a fractional ARMA model was more appropriate than the usual ARIMA 

specification for these series. Other recent empirical papers on seasonal fractional 

integration using a model such as (5) for macroeconomic series are those of Gil-Alana and 

Robinson (2001) and Gil-Alana (2002). A limitation of this approach is that it imposes the 

same degree of integration at the zero and seasonal frequencies. For example, in the 

quarterly case, i.e., s = 4, the polynomial (1–L4)d can de decomposed into (1–

L)d(1+L)d(1+L2)d imposing the same degree of integration d at all frequencies: the zero, 

semi-annual (π), and annual (π/2 and 3π/2) frequencies respectively. 

 The model in (5) can be generalised using multi-factor Gegenbauer processes. 

Specifically, we can consider processes of the form: 

 


k

s
tt

ds
r tuxLLw s

1

2)( ,...,2,1,)cos21(   (6) 

where k is a finite integer indicating the maximum number of cyclical (seasonal) 

structures. First we focus on the case of a single structure, i.e., k = 1, 

,...,2,1,)cos21( 2  tuxLLw tt
d

r   (7)  

where wr and d are real values, and ut is I(0). For practical purposes we define wr = 2πr/T, 

with r = T/j, and thus j will indicate the number of time periods per cycle, while r refers to 

the frequency with a pole or singularity in the spectrum of xt. Note that if r = 0 (or j = 1), 

the fractional polynomial in (7) becomes (1 – L)2d, which is the polynomial associated to 

the common case of fractional integration at the long-run or zero frequency. This type of 

process was introduced by Andel (1986) and subsequently analysed by Gray, Zhang and 

Woodward (1989, 1994), Chung (1996a,b) and Dalla and Hidalgo (2005) among others. 
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Gray et al. (1989) showed that, defining rwcos , the polynomial in (7) can be 

expressed for all 0d  as 

,)()21(
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and  is the Gamma function. Alternatively, we can use the recursive formula,  x

,1)(,0 dC  ,2)(,1 dC d    and 
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(see, for instance, Magnus et al., 1966, or Rainville, 1960, for further details on 

Gegenbauer polynomials). These authors also showed that  in (7) is stationary if 

 for 

tx

5.0d 1cos  rw  and if 25.0d  for 1 .  

 If there is more than one cyclical structure, then the appropriate specification is the 

multi-factor Gegenbauer process described in (6), with )(s
rw ;/2 )( Tr s  r(s) = T/j(s), 

where j(s) indicates the number of time periods per cycle corresponding to the sth cyclical 

structure. Empirical studies based on multiple cyclical structures (also named -factor 

Gegenbauer processes) include Ferrara and Guegan (2001b), Sadek and Khotanzad (2004) 

and Gil-Alana (2007). In the case of quarterly time series data, we can generalise (5) by 

considering a model like (6) with k = 3, and 

k

,)cos21()cos21()cos21( 321 2)3(2)2(2)1(
tt

d
r

d
r

d
r uxLLwLLwLLw  (8) 

with )1(
rw = 0 or 2π (r(1) = 0, T), )2(

rw = π (r(2) = T/2), )3(
rw = π/2 (r(3) = T/4), implying that 

(8) can be written as  
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,)1()1()1( 321 222
tt

ddd uxLLL     (9) 

which is a seasonal long-memory model with different orders of integration at each of the 

frequencies. 

 

4. Empirical evidence of long memory in European prices 

The series analysed in this section is the logarithm of monthly CPI in Italy, France and the 

UK. The sample period goes from 1957Q3 to 2007Q3 in all three countries, and the data 

source is the IMF’s International Financial Statistics published on the IMF webpage. 

Figure 1 displays plots of the three time series, as well as the first 50 sample 

autocorrelation values, and the periodograms computed at the discrete Fourier frequencies 

λj = 2πj/T, j = 1, 2, …, T/2. 

 

[Insert Figures 1 and 2 about here] 

 

 The sample autocorrelation values are all significantly positive and decay very 

slowly. Also, the periodograms exhibit the highest values at the smallest frequency. Both 

features might be an indication of nonstationarity and possibly of fractional integration 

behaviour. Figure 2 is similar to Figure 1 but based on the first-differenced data, that is, 

the inflation rates in the three countries. The correlograms still suggest here that the series 

are nonstationary, and the periodograms still present a large peak at the zero frequency (as 

well as other smaller peaks at the seasonal frequencies), which may suggest that the 

inflation rate series are fractionally integrated. 

 The first model we consider is the standard I(d) one with seasonal autoregressions. 

We allow for different seasonal AR(k), (with k = 1, 2 and 3) processes, and using standard 
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likelihood criteria we conclude that the AR(1) model is sufficient to describe the seasonal 

short-run dynamics. In other words, we estimate the model, 

,...,2,1,;)1(; 4   tuuuxLxy ttttt
d

tt   (M1) 

for the two cases of no regressors (i.e., μ = 0 in (M1)) and an intercept (μ unknown) 

respectively. Here, we employ a Whittle estimate in the frequency domain (Dahlhaus, 

1989), along with a version of the tests of Robinson (1994) that is suitable for this type of 

model. The results are reported in Table 1. 

 

[Insert Table 1 about here] 

 

 It can be seen that the results vary substantially depending on the inclusion or not 

of an intercept in the model. If μ = 0, the estimated values of d are slightly below 1 in the 

three cases and the unit root null hypothesis cannot be rejected in any of the three 

countries. However, if an intercept is included, d is found to be significantly above 1 in all 

cases, being equal to 1.549 for France, 1.552 for Italy, and 1.307 for the UK. Moreover, 

the intercept is statistically significant in all three countries, suggesting that it should be 

included in the model. Thus, according to this specification, inflation may be well 

described in terms of a long-memory I(d) process with d ranging between 0 and 1, and 

being nonstationary (d > 0.5) in the case of France and Italy. 

 In the second specification we assume that the seasonal structure can also be 

described in terms of a long-memory process and consider a model of the form: 

,...,2,1),0(;)1(;  tIuuxLxy ttt
ds

tt    (M2) 

again for the two cases of no intercept (μ  = 0) and an intercept respectively, and we 

assume now that the I(0) disturbances ut are white noise and AR(1). The results, based on 

another version of Robinson’s (1994) tests are displayed in Table 2. 
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[Insert Table 2 about here] 

 

 As in the previous table, the results are very sensitive to the inclusion or not of an 

intercept. Specifically, in the uncorrelated case, the estimated values of d are smaller than 

1 without intercepts, while they are substantially above if an intercept is included in the 

regression model. If we allow for autocorrelation in the error term in the form of an AR(1) 

process, the orders of integration are much smaller than in the uncorrelated case, being 

even negative if an intercept is included. These results are highly influenced by the AR 

coefficient that is in the three cases very close to 1. This clearly indicates that the 

component at the zero-frequency plays a very important role when modelling these series. 

When performing Likelihood Ratio (LR) tests to determine if there is weak dependence, 

the results support the white noise specification in the three countries. 

 

[Insert Table 3 about here] 

 

 Finally, we consider a 3-factor Gegenbauer process for the three inflation rate 

series.4 In Table 3 again we display the results for the two cases of white noise and AR(1) 

ut, based on Robinson’s (1994) parametric tests. Starting with the uncorrelated case (in 

Table 3(i)), it can be seen that the results are now very similar in the two cases of μ = 0 

and μ unknown. For France, the three orders of integration are about 0.32, 0.08 and 0.17 

respectively for the 0, π and π/2 frequencies. In the case of Italy these values are 0.27, 0.03 

and 0, and for the UK they are about 0.18, 0.04 and 0. In the case of AR(1) disturbances, 

there are some differences: the order of integration at the zero frequency is smaller for all 

                                                 
4 Since we are now modelling the inflation rate series we initially take first differences of the log CPI series 
at the long-run or zero frequency. 
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three series than in the previous case of white noise ut, probably owing to the competition 

with the AR coefficient in describing the nonstationarity at the zero frequency, and, in the 

case of France, the orders of integration at the seasonal frequencies are now higher. For 

Italy and the UK, we still find a value of 0 at the semi-annual frequency (π/2), suggesting 

that there is no long-memory component at this frequency in these two countries. Thus, in 

Table 4 we assume a 2-factor Gegenbauer process for these two countries.5 

 

[Insert Table 4 about here] 

 

 Assuming that the disturbances are white noise the results are the same with or 

without intercepts. For Italy, the orders of integration are 0.275 and 0.032 respectively for 

the zero and the seasonal (π) frequencies, and for UK the corresponding values are 0.179 

and 0.029. In all cases, the estimates are significantly different from zero. When imposing 

AR disturbances (in Table 4(ii)), the estimates are all negative, once more probably owing 

to the competition with the AR parameters in describing time dependence.6 

 In summary, having considered the three models described above, the preferred 

specification for each country is the following. For France: 

)58.354(

331.0;)1(2384.2 ,4
549.1

; ttttttt uuuxLxy     (M1-F) 

      (M2-F) 
)82.214(

,)1(2890.2 652.14
; tttt xLxy 

and 

                                                 
5  Note that d2 (the order of integration at the semi-annual frequency), though small in magnitude, is 
statistically significant in all cases. 
6 Though not reported, the AR coefficients were once more very close to 1 in all cases. 
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,)cos21()cos21()cos21(

)402.2(

,0142.0;)1(
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xyL




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


(M3-F) 

t-values in parenthesis and, given that )1(
rw = 0, )2(

rw = π, )3(
rw = π/2, the second equation in 

(M3-F) can be written as: 

.)1()1()1( 168.02162.0628.0
ttxLLL        (10)  

For Italy, 

)38.224(

024.0;)1(5802.1 ,4
552.1

; ttttttt uuuxLxy     (M1-I) 

      (M2-I) 
)22.144(

,)1(5960.1 806.14
; tttt xLxy 
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,)cos21()cos21(

)947.1(

,0098.0;)1(

032.02
2

275.02
1 tt

tttt

xLLwLLw

xyL






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    (M3-I) 

or, alternatively, 

,)1()1( 064.0550.0
ttxLL       (11) 

and finally, for the UK, 

)72.175(

482.0;)1(9468.1 ,4
307.1

; ttttttt uuuxLxy            (M1-UK) 

                             (M2-UK) 
)45.162(

,)1(9549.1 723.14
; tttt xLxy 

and 
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029.02
2
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1 tt

tttt

xLLwLLw

xyL






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   (M3-UK) 

or, alternatively, 

.)1()1( 058.0358.0
ttxLL         (12) 

 

5. Forecasting comparisons  

In this section, we use forecasting performance criteria to select the best model 

specification in each case. Specifically, we use the last 20 observations for an in-sample 

forecasting experiment. Standard measures of forecast accuracy are the following: Theil’s 

U, the mean absolute percentage error (MAPE), the mean-squared error (MSE), the root-

mean-squared error (RMSE), the root-mean-percentage-squared error (RMPSE) and the 

mean absolute deviation (MAD) (Witt and Witt, 1992). However, all these measures are 

purely descriptive. There exist several statistical tests for comparing different forecasting 

models. One of these tests, widely employed in the time series literature, is the asymptotic 

test for a zero expected loss differential of Diebold and Mariano (1995).7 However, 

Harvey, Leybourne and Newbold (1997) note that the Diebold-Mariano test statistic could 

be seriously over-sized as the prediction horizon increases, and therefore provide a 

modified Diebold-Mariano test statistic given by: 

,
n

n/)1h(hh21n
DMDMM


  

where DM is the original Diebold-Mariano statistic, h is the prediction horizon and n is the 

time span for the predictions. Harvey et al. (1997) and Clark and McCracken (2001) show 

                                                 
7 An alternative approach is the bootstrap-based test of Ashley (1998), though this method is 
computationally more intensive. 
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that this modified test statistic performs better than the DM test statistic, and also that the 

power of the test is improved when p-values are computed with a Student distribution. 

Using the M-DM test statistic (and based on the RMSEs), we further evaluate the 

relative forecast performance of the different models by making pairwise comparisons. 

We consider 5- and 10-period ahead forecasts on a 20-period horizon. The results are 

displayed in Table 5.8 

 

[Insert Table 5 about here] 

 

 We indicate in bold in this table, for each prediction-horizon and each country, the 

rejections of the null hypothesis that the forecast performance of model (Mi) and model 

(Mj) is equal in favour of the one-sided alternative that model (Mi)’s performance is 

superior at the 5% significance level. We note that the results are similar for the two time 

horizons, though they vary across countries. In all three countries (M2) and (M3) 

outperform (M1), implying that a model with a long-memory component exclusively 

affecting the long-run or zero frequency is inappropriate in all cases. However, when 

comparing (M2) with (M3), the results are radically different from one country to another: 

in the case of France (M2) outperforms (M3); for Italy, it cannot be established whether 

(M2) is superior to (M3) or vice versa, while for the UK (M3) produces significant better 

statistical results than (M2). 

 On the basis of these results, model (M2-F) is the preferred specification for 

France, implying the existence of a seasonal long-memory component, with equal order of 

integration at zero and the seasonal frequencies (this order of integration being equal to 

1.652). In other words, inflation in France is a nonstationary seasonal long-memory 

                                                 
8 For the 15 (and higher period)-period forecasts there is not found superiority of one model over the others. 
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process, with an order of integration of about 0.652. For Italy, models (M2-I) and (M3-I) 

have a comparable forecasting performance, but given the higher flexibility allowed by 

(M3-I) we choose this specification for this country. In this case, inflation is also 

nonstationary with a large component of long memory at the zero frequency and a smaller 

one at the semi-annual frequency (see equation (11)). Finally, for the UK, the best 

specification seems to be (M3-UK), namely a two-factor Gegenbauer process, one factor 

corresponding to the zero frequency (d1 = 0.258) and the other one to the semi-annual 

frequency (d2 = 0.058) (equation (12)). According to this specification, UK inflation is a 

stationary long-memory process. 

 

6. Conclusions 

This paper has analysed the stochastic behaviour of inflation in three European countries 

(France, Italy and the UK) using a general framework, namely a multi-factor long-memory 

process that allows for different fractional differencing parameters at each frequency. The 

flexibility of the model, based on Gegenbauer processes, is a very desirable feature 

compared with more restrictive approaches previously used in the literature on inflation 

which impose the same degree of integration at all frequencies in the spectrum. (see, e.g.,  

Backus and Zin, 1993, and Hassler and Wolters, 1995). Our results can be summarised as 

follows. Inflation in France and Italy is nonstationary, but in the former country this 

applies to both the long-run and the seasonal frequencies, whilst for the latter the 

nonstationarity concerns exclusively the long-run or zero frequency, and the contribution 

of the long-range dependence in the seasonal structure is relatively small. For the UK, 

inflation seems to be stationary, though with a large component of long-memory 

behaviour, especially at the zero frequency.  
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 Our results indicate that inflation is a very persistent phenomenon, at least for the 

three countries examined here. The fact that the I(1) hypothesis is decisively rejected in all 

three cases implies that the series are mean-reverting, with shocks disappearing in the long 

run but very slowly, especially in France, and to a lesser extent in Italy and the UK. 

Moreover, we have shown that seasonality matters, with a positive though small degree of 

long-range dependence. 

Our analysis could be extended by taking into account the possibility of structural 

breaks, stochastic volatility or non-linearities. These are clearly important issues, whose 

linkages with fractional processes have hardly been investigated until now, although they 

have already attracted the attention of some researchers. Future work will focus on them. 
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Figure 1: Time series plots with correlograms and periodograms 
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The large sample standard error under the null hypothesis of no autocorrelation is 1/T or roughly 0.070 for the 
series used in this application. The periodograms are computed based on the discrete frequencies λj = 2πj/T. 
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Figure 2: First differences of the series with correlograms and periodograms 
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 Table 1: Estimates of the parameters in model (M1): I(d) with seasonal AR(1) 
 No regressors An intercept 

 d Seas. AR d Intercept Seas. AR 

FRANCE 0.966 
(0.707,  1.131) 

0.166 1.549 
(1.438,  1.707) 

2.2384 
(354.58) 

0.331 

ITALY 0.957 
(0.768,  1.100) 

0.115 1.552 
(1.487,  1.632) 

1.5802 
(224.38) 

0.024 

U.K. 0.968 
(0.723,  1.103) 

0.016 1.307 
(1.225,  1.410) 

1.9468 
(175.72) 

0.482 

In bold, the significant models according to likelihood criteria. In parenthesis (in the 2nd and 4th columns) the 
95% confidence bands for the values of d. In the 5th column, they are t-values. 

 

Table 2: Estimates of the parameters in model (M2): Seasonal I(d) 
 i) White noise disturbances 

 No regressors An intercept 

 d AR coeff. d Intercept Seas. AR 

FRANCE 0.914 
(0.798,  1.040) 

xxxxx 1.652 
(1.580,  1.739) 

2.28902 
(214.82) 

xxxxx 

ITALY 0.849 
(0.724,  0.992) 

xxxxx 1.806 
(1.737,  1.887) 

1.59599 
(144.22) 

xxxxx 

U.K. 0.852 
(0.704,  0.996) 

xxxxx 1.723 
(1.641,  1.825) 

1.95494 
(162.45) 

xxxxx 

 ii) AR(1) disturbances 

 No regressors An intercept 

 d AR coeff. d Intercept Seas. AR 

FRANCE 0.197 
(0.190,  0.206) 

0.986 -0.150 
(-0.388,  0.061)

3.74244 
(423.98) 

0.999 

ITALY 0.295 
(0.285,  0.308) 

0.991 -0.182 
(-0.367,  0.068)

3.26953 
(297.55) 

0.999 

U.K. 0.243 
(0.234,  0.255) 

0.988 -0.200 
(-0.358,  0.064)

3.46846 
(368.19) 

0.999 

In bold, the significant models according to likelihood criteria. In parenthesis (in the 2nd and 4th columns) the 
95% confidence bands for the values of d. In the 5th column, they are t-values. 
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Table 3: Estimates of the parameters in model (M3): 3-factor Gegenbauer I(d) 
 i) White noise disturbances 

 No regressors An intercept 

 d1 d2 d3 d1 d2 d3 Interc. 

FRANCE 0.331 
(0.291, 0.406) 

0.077 
(0.055, 0.108) 

0.170 
(0.125, 0.227) 

0.314 
(0.287, 0.348) 

0.081 
(0.058, 0.112) 

0.168 
(0.123, 0.226) 

-.0142 
(-2.402) 

ITALY 0.272 
(0.252, 0.296) 

0.030 
(0.008, 0.059) 

0.000 
(-.058, 0.039) 

0.271 
(0.253, 0.294) 

0.029 
(0.009, 0.054) 

0.000 
(-.080, 0.053) 

0.0091 
(1.182) 

U.K. 0.179 
(0.156, 0.211) 

0.038 
(0.012, 0.066) 

0.000 
(-0.89, 0.073) 

0.178 
(0.155, 0.191) 

0.037 
(0.011, 0.059) 

0.000 
(-0.61, 0.046) 

0.0122 
(2.848) 

 ii) AR(1) disturbances 

 No regressors An intercept 

 d1 d2 d3 d1 d2 d3 Interc. 

FRANCE 0.135 
(0.068, 0.267) 

0.156 
(0.104, 0.491) 

0.197 
(0.139, 0.283) 

0.020 
(-.063, 0.131) 

0.305 
(0.127, 0.589) 

0.204 
(0.135, 0.311) 

0.0119 
(32.501) 

ITALY 0.140 
(0.069, 0.255) 

0.083 
(0.048, 0.131) 

0.000 
(-.091, 0.071) 

0.137 
(0.068, 0.248) 

0.081 
(0.050, 0.129) 

0.000 
(-.097, 0.058) 

0.0139 
(6.894) 

U.K. 0.054 
(0.006, 0.132) 

0.078 
(0.055, 0.104) 

0.000 
(-.047, 0.037) 

0.018 
(-.086, 0.149) 

0.030 
(0.007, 0.102) 

0.000 
(-.049, 0.057) 

0.0141 
(14.720) 

In bold, the significant models according to likelihood criteria. 
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 Table 4: Estimates of the parameters in model (M3): 2-factor Gegenbauer I(d) 
 i) White noise disturbances 

 No regressors An intercept 

 d1 d2 d1 d2 Intercept 

ITALY 0.275 
(0.250, 0.306) 

0.033 
(0.006, 0.069) 

0.275 
(0.208, 0.307) 

0.032 
(0.005, 0.067) 

0.00898 
(1.9473) 

U.K. 0.179 
(0.157, 0.208) 

0.030 
(0.010, 0.055) 

0.179 
(0.156, 0.208) 

0.029 
(0.009, 0.054) 

0.01221 
(2.7631) 

 i) AR(1) disturbances 

 No regressors An intercept 

 d1 d2 d1 d2 Intercept 

ITALY -0.552 
(-.703, -.441) 

-0.281 
(-.381, -.183) 

-1.000 
(-1.537, -.960) 

-0.480 
(-.543, -.207) 

0.01683 
(438.73) 

U.K. -0.663 
(-.841, -.477) 

-0.153 
(-.317, -.031) 

-0.952 
(-1.217, -.883) 

-0.237 
(-.251, -.217) 

0.01551 
(253.91) 

 In bold, the significant models according to likelihood criteria. 
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Table 5: M-DM statistics with h = 5 and h = 10 

h  =  5 h  =  10 

FRANCE M1-F M2-F FRANCE M1-F M2-F 

M2-F 4.272 
(M2-F) 

XXXXX M2-F 2.892 
(M2-F) 

XXXXX 

M3-F 4.172 
(M3-F) 

-7.805 
(M2-F) 

M3-F 2.812 
(M3-F) 

-5.284 
(M2-F) 

ITALY M1-I M2-I ITALY M1-I M2-I 

M2-I 4.370 
(M2-I) 

XXXXX M2-I 2.958 
(M2-I) 

XXXXX 

M3-I 4.291 
(M3-I) 

1.349 
(----) 

M3-I 2.905 
(M3-I) 

0.913 
(----) 

UK M1-UK M2-UK UK M1-UK M2-UK 

M2-UK 4.117 
(M2-UK) 

XXXXX M2-UK 2.787 
(M2-UK) 

XXXXX 

M3-UK 4.191 
(M3-UK) 

4.161 
(M3-UK) 

M3-UK 2.837 
(M3-UK) 

2.817 
(M3-UK) 

In bold, the cases where one of the models outperforms the other at the 5% level. The critical value at the 5% 
level with 19 degrees of freedom is 1.729. 
 

 

 

 


