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Abstract

The Arrow index of a fuzzy choice function C is a measure of the
degree to which C satisfies the Fuzzy Arrow Axiom, a fuzzy version of the
classical Arrow Axiom. The main result of this paper shows that A(C)
characterizes the degree to which C is full rational. We also obtain a
method for computing A(C). The Arrow index allows to rank the fuzzy
choice functions with respect to their rationality. Thus, if for solving a
decision problem several fuzzy choice functions are proposed, by the Arrow
index the most rational one will be chosen.

Keywords: fuzzy choice function, revealed preference indicator, congruence
indicator, similarity

1 Introduction

One of the themes of classical economic theory is the rationality of the consumer
behaviour. Revealed preference is a concept introduced by Samuelson in 1938
[26], aiming to postulate the rationality of a consumer’s behaviour in terms of a
preference relation associated with a demand function. Uzawa [35] and Arrow [1]
have developed a revealed preference theory in an abstract framework. The work
of Uzawa and Arrow was continued by Richter [24], Sen [27, 28, 29], Suzumura
[30, 31] and many others.

Because of the insufficient information and human subjectivity the prefer-
ences of the individuals are often fuzzy. For this reason instead of saying that
alternative x is better than alternative y, it is better to evaluate the degree of

∗Correspondence address: P. O. Box 1–432, 014700, Bucharest, Romania E-mail address:
crinaus2003@yahoo.com (I. Georgescu)
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preference of x to y, this will be always a number in [0, 1]. The idea of mathe-
matical modeling of vague preferences is obvious: given a set X of alternatives,
the preferences will be represented by a binary fuzzy relation on X [8, 9, 10, 22].

Even if the preference is ambiguous, the choice can be exact or vague. Some
authors [3, 4, 5, 20] study various crisp choice functions based on a fuzzy pref-
erence relation. There are cases (e. g. negotiations on electronic marketplaces)
when the decision maker cannot make a definitive choice [17, 21, 33, 34]. In
this process of decision making, the choice is potential [2]. Therefore, the act of
choice will be modeled by a fuzzy choice function.

Fuzzy choice functions have been studied by several authors [2, 7, 10, 20, 22,
25, 34]. In particular, Banerjee developed in [2] a theory of revealed preference
for a class of fuzzy choice functions. A Banerjee choice function has the domain
consisting of crisp sets and the range consisting of fuzzy sets.

In [7] Dasgupta and Deb study properties of rationality for a class of fuzzy
choice functions. The authors consider that:

Even when one is analyzing precise choice when preferences are
fuzzy, this approach is useful. Fuzzy choice sets provide an impor-
tant intermediate step analogous to the “substitution effect” in the
theory of consumer demand. Thus, precise choice with fuzzy prefer-
ence may be viewed as taking place in two steps: (a) fuzzy choice;
(b) fuzzy choice being “made” precise in some “natural” way.

In [11, 12, 13, 14, 15, 16] we worked with a more general definition of fuzzy
choice functions. Banerjee fuzzifies only the range of a choice function, in our
approach both the domain and the range of a choice function are made of fuzzy
subsets of a universe of alternatives.

Works [12, 13, 14, 15, 16] are an attempt to build a theory of revealed
preference for these fuzzy choice functions. In [15] we have introduced the
Fuzzy Arrow Axiom (FAA) and we have proved that a fuzzy choice function
satisfies (FAA) iff it is full rational. This result extends a classical result of
[1] which establishes the equivalence between the Arrow Axiom and the full
rationality of crisp choice functions (see also [31]). In this paper there is also
defined the Arrow index A(C) of a fuzzy choice function C. A(C) is a number
which represents the degree to which C satisfies the Fuzzy Arrow Axiom.

The main result of this paper is a characterization theorem for the Arrow
index A(C). Intuitively, this theorem shows that A(C) characterizes the degree
to which the fuzzy choice function C is full rational. At the same time, this
theorem refines the mentioned result from [15] which is obtained as a particular
case.

The main theorem of [14] established the equivalence between (FAA) and
the full rationality of fuzzy choice functions. By measuring by the Arrow index
the degree of full rationality of a fuzzy choice function, the results of this paper
allow to compare them from the point of view of their rationality. Then by
using the Arrow index one can obtain a hierarchy of fuzzy choice functions with
respect to their full rationality.
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2 Preliminaries

In this section we present some basic matter on the residuated structure of the
interval [0, 1] as well as some basic notions and facts on fuzzy relations. The
background is given in [6, 10, 18, 19].

For any {ai}i∈I ⊆ [0, 1] we shall denote
∨

i∈I ai = sup{ai | i ∈ I} and∧
i∈I ai = inf{ai | i ∈ I}. In particular, for any a, b ∈ [0, 1], a ∨ b = sup{a, b}

and a ∧ b = inf{a, b}. Then the interval [0, 1] becomes a complete distributive
lattice.

A binary operation ∗ on [a, b] is a t-norm if it is commutative, associative,
non-decreasing in each argument and a ∗ 1 = a for all a ∈ [0, 1]. With any
continuous t-norm ∗ we associate its residuum:

a→ b =
∨
{a ∈ [0, 1] | a ∗ c ≤ b}.

We list here the most well known continuous t-norms and their corresponding
residua:
 Lukasiewicz t-norm:

a ∗L b = max(0, a+ b− 1); a→L b = min(1, 1− a+ b)

Gödel t-norm:

a ∗G b = a ∧ b; a→G b =

{
1 if a ≤ b
b if a > b

Product t-norm:

a ∗P b = ab; a→P b =

{
1 if a ≤ b
b
a if a > b

A residuated lattice is a structure (A,∨,∧, ∗,→, 0, 1) where (A,∨,∧, 0, 1) is
a bounded lattice, (A, ∗,∧) is an abelian monoid and → is a binary operation
on A such that a ∗ b ≤ c iff a ≤ b→ c, for all a, b, c ∈ A.

The notion of BL-algebra was introduced by Hájek [18] as an abstraction
of the structure ([0, 1],∨,∧, ∗,→, 0, 1) where ∗ is a continuous t-norm and → is
its residuum. A BL-algebra is a residuated lattice (A,∨,∧, ∗,→, 0, 1) satisfying
the following two conditions:

x ∗ (x→ y) = x ∧ y (divisibility axiom)
(x→ y) ∨ (y → x) = 1 (prelinearity axiom)

A Gödel algebra is a BL-algebra satisfying the identity x ∗ x = x. The Gödel
t-norm ∗G = ∧ provides the Gödel algebra ([0, 1],∨,∧, ∗,→, 0, 1).

The following two lemmas contain some useful properties of BL-algebras.

Lemma 2.1 ([6, 10, 18, 19]) Let (A,∨,∧, ∗,→, 0, 1) be a BL-algebra. For
any a, b, c ∈ A the following properties hold:
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(i) a ∗ (a→ b) = a ∧ b;

(ii) a ≤ b⇔ a→ b = 1;

(iii) a = 1→ a;

(iv) 1 = a→ a;

(v) a→ (b→ c) = (a ∗ b)→ c = b→ (a→ c).

Lemma 2.2 ([6, 10, 18, 19]) Let (A,∨,∧, ∗,→, 0, 1) be a BL-algebra. For
any {ai}i∈I ⊆ A and a ∈ A the following properties hold:

(a) (
∨

i∈I ai) ∗ a =
∨

i∈I(ai ∗ a);

(b) a→ (
∧

i∈I ai) =
∧

i∈I(a→ ai);

(c) (
∨

i∈I ai)→ a =
∧

i∈I(a→ ai).

Another operation on a BL-algebra A is the biresiduum defined by

a↔ b = (a→ b) ∧ (b→ a).

Let X be a non-empty set. A fuzzy subset of X is a function A : X → [0, 1].
We denote by P(X) the family of crisp subsets of X and by F(X) the family of
fuzzy subsets of X. If A is a crisp subset of X then its characteristic function
χA : X → {0, 1} is defined by

χA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

As a crisp subset of X is defined by its characteristic function, then we have
P(X) ⊆ F(X). A fuzzy subset A of X is non-zero if it is distinct from the
characteristic function χ∅ of the empty-set ∅. For any A,B ∈ F(X), by A ⊆ B
we mean that A(x) ≤ B(x) for each x ∈ X. A fuzzy subset A is normal if
A(x) = 1 for some x ∈ X.

For A,B ∈ F(X) let us denote

I(A,B) =
∧

x∈X

(A(x)→ B(x))

and

E(A,B) =
∧

x∈X

(A(x)↔ B(x)).

It is clear that A ⊆ B iff I(A,B) = 1 and A = B iff E(A,B) = 1. For any
x ∈ X we have

I(A,B) ≤ A(x)→ B(x) and E(A,B) ≤ A(x)↔ B(x).
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The I(A,B) is called subsethood degree of A and B and E(A,B) the degree of
equality (degree of similarity) of A and B. Intuitively I(A,B) expresses the
truth value of the statement “A is included in B” and E(A,B) the truth value
of the statement “A and B contain the same elements” (see [6, p. 82]).

A fuzzy preference relation Q on X is a function Q : X2 → [0, 1], i. e. a fuzzy
subset of X2. The elements of X are interpreted as alternatives. If x, y ∈ X
then the real number Q(x, y) represents the degree to which the alternative x
is at least as good as y.

Let ∗ be a continuous t-norm. A fuzzy preference relation Q is said to be:

(a) reflexive if Q(x, x) = 1 for all x ∈ X;

(b) symmetric if Q(x, y) = Q(y, x) for all x, y ∈ X;

(c) ∗-transitive if Q(x, y) ∗Q(y, z) ≤ Q(x, z) for all x, y, z ∈ X;

(d) strongly total if Q(x, y) = 1 or Q(y, x) = 1 for all distinct x, y ∈ X.

If it is not a danger of confusion, we will say transitive relation instead of ∗-
transitive.

If a fuzzy preference relation Q is reflexive, symmetric and ∗-transitive then
it is a similarity relation on X. Following [6, p. 190] for any fuzzy preference
relation Q let us denote

Ref(Q) =
∧

x∈X

Q(x, x);

Trans(Q) =
∧

x,y,z∈X

[(Q(x, y) ∗Q(y, z))→ Q(x, z)];

ST(Q) =
∧
x 6=y

(Q(x, y) ∨Q(y, x)).

Ref(Q) is called the degree of reflexivity of Q, Trans(Q) is called the degree of
transitivity of Q and ST(Q) the degree of strong totality of Q.

Lemma 2.3 ([6]) For any fuzzy preference relation Q the following equiva-
lences hold:

(i) Q is reflexive iff Ref(Q) = 1;

(ii) Q is transitive if Trans(Q) = 1;

(iii) Q is strongly total iff ST(Q) = 1.

These indicators allow to compare two fuzzy preference relations with respect
to a property; for example, if Trans(Q1) ≥ Trans(Q2), then the fuzzy preference
relation Q1 is “more transitive” than Q2.

Lemma 2.4 ([6]) Let Q be a fuzzy preference relation on X and x, y, z ∈ X.
Then Trans(Q) ∗Q(x, y) ∗Q(y, z) ≤ Q(x, z).
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3 Fuzzy Choice Functions

A vast literature has been dedicated to fuzzy choice functions and fuzzy prefer-
ence relations (see [10, 20]). Most authors build their results on the thesis that
social choice is governed by fuzzy preferences (hence modeled through fuzzy bi-
nary relations) but the act of choice is exact (hence choice functions are crisp)
(see [3, 4, 5, 20]). They study crisp choice functions defined by fuzzy preference
relations.

On the other hand, several situations in the world require to consider fuzzy
choice functions [2, 10, 20, 22, 24, 34]. The first fuzzy choice function was
emphasized by Orlovsky [22].

In [2] Banerjee admits the vagueness of the act of choice and develops a
theory of revealed preference for choice functions with a fuzzy behaviour. He
studies choice functions whose domain is the family of non-empty finite subsets
of a universe of alternativesX and whose range consists of non-zero fuzzy subsets
of X. Banerjee’s thesis [2] is that “If preferences are permitted to be fuzzy, it
seems natural to permit the choice functions to be fuzzy as well. This also tallies
with experience”. He studies in [2] a revealed preference for these fuzzy choice
functions.

In [12, 13, 14, 15] we have considered fuzzy choice functions C for which the
domain and the range are made of fuzzy subsets of X. Banerjee fuzzifies only
the range of a choice function; we use a fuzzification of both the domain and
the range of a choice function. In our case, the available sets of alternatives are
fuzzy subsets of X. This leads to the introduction of the notion of availability
degree of an alternative x with respect to an available set S. The availability
degree might be useful when the decision maker possess partial information
on the alternative x or when a criterion limits the possibility of choosing x.
Therefore the available sets can be considered criteria in decision making.

We shall recall some notions and results in [12, 13, 14, 15, 16]. A fuzzy choice
space is a pair (X,B) where X is a non-empty set of alternatives and B is a
non-empty family of non-zero fuzzy subsets of X. A fuzzy choice function on
(X,B) is a function C : B → F(X) such that for any S ∈ B, C(S) is a non-zero
fuzzy subset of X and C(S) ⊆ S.

A lot of results in [12, 13, 14, 15, 16] require the following hypotheses:

(H1) Every S ∈ B and C(S) are normal fuzzy subsets of X;

(H2) B includes the fuzzy sets χ{x1,...,xn} for any n ≥ 1 and x1, . . . , xn ∈ X.

For the crisp case (B ⊆ P(X)), (H1) is automatically fulfilled in accordance
with the definition of a (crisp) choice function, for the same case, (H2) asserts
that B includes all non-empty finite subsets of X. We fix a continuous t-norm
∗ and its residuum →. Throughout this paper we shall assume that (H1), (H2)
are true.

If C is a fuzzy choice function on (X,B) then we define two fuzzy preference
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relations R and R̄ on X by:

R(x, y) =
∨

S∈B
(C(S)(x) ∧ S(y)),

R̄(x, y) = C(χ{x,y})(x)

for all x, y ∈ X.
The fuzzy preference relations R and R̄ defined above are fuzzy versions of

crisp preference relations which have an important role in the classical revealed
preference theory (see [26, 1, 24, 27], etc. ). If x, y ∈ X, then the real num-
ber R(x, y) is the degree of truth of the statement “there exists a criterion S
such that alternative x is chosen with respect to S and alternative y verifies
S”. The R̄(x, y) represents the degree of truth of the statement “from the set
{x, y} is chosen at least the alternative x”. We notice that the definition of the
fuzzy preference relation R̄ assumes that the fuzzy choice function C verifies
hypothesis H2.

Lemma 3.1 ([12]) If C is a fuzzy choice function on (X,B) then R̄ ⊆ R and
R, R̄ are reflexive and strongly total.

Let (X,B) be a fuzzy choice space and Q be a fuzzy preference relation on
X. For any S ∈ B let us define the fuzzy subset G(S,Q) of X:

G(S,Q)(x) = S(x) ∗
∧

y∈X

[S(y)→ Q(x, y)]

for any x ∈ X. In this way one obtains a function G(·, Q) : B → F(X).

Lemma 3.2 ([14]) If C is a fuzzy choice function on (X,B) then C(S) ⊆
G(S,R) for any S ∈ B.

In general, G(·, Q) is not a fuzzy choice function: it might exist an S ∈ B
such that G(S,Q) is the zero set. According to Lemma 3.2, G(·, R) is a fuzzy
choice function called the image of C.

A fuzzy choice function C on (X,B) is said to be rational if C = G(·, Q) for
some fuzzy preference relation Q on X. If Q is reflexive, transitive and strongly
total, then C is called full rational.

Let C1, C2 be two fuzzy choice functions on (X,B). Following [15, 16] the
degree of similarity of C1 and C2 is defined by

E(C1, C2) =
∧

S∈B

∧
x∈X

[C1(S)(x)↔ C2(S)(x)].

Lemma 3.3 ([16]) For any fuzzy choice functions C1, C2 on (X,B) we have:

(i) E(C1, C2) = 1 iff C1 = C2;

(ii) E(C1, C2) = E(C2, C1);
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(iii) E(C1, C2) ∗ E(C2, C3) ≤ E(C1, C3).

By this lemma, the function (C1, C2) 7→ E(C1, C2) is a similarity relation on
the set of fuzzy choice functions defined on (X,B). Similarity of fuzzy choice
functions is a concept analogous to similarity of fuzzy preference relations ([6,
10, 18, 19]).

If we interpret X as a universe of alternatives and C1, C2 as the “choices”
of two agents, then the real number E(C1, C2) expresses how “similar” these
choices are. In paper [15] the connection between similarity of two fuzzy choice
functions and similarity of fuzzy preference relations associated with them is.

Lemma 3.4 ([16]) Let C1, C2 be a fuzzy choice function on (X,B). For any
S ∈ B and x ∈ X the following inequality holds:

E(C1, C2) ∗ C(S1)(x) ≤ C(S2)(x).

Lemma 3.5 ([16]) Let C be a fuzzy choice function on (X,B) and Q be a fuzzy
preference relation on X. Then E(C,G(·, Q)) ∗ C(S)(s) ∗ S(t) ≤ Q(s, t) for all
S ∈ B and s, t ∈ X.

Proof. By Lemma 3.4 we have

E(C,G(·, Q)) ∗ C(S)(s) ≤ G(S,Q)(x) ≤ S(t)→ Q(s, t).

Hence according to the definition of the residuated lattice we get the desired
inequality.

Arrow’s axiom (AA) is a condition introduced in [1] to characterize full ra-
tionality of crisp choice functions. We say that a crisp choice function C verifies
(AA) if for any available sets of alternatives S1, S2 the following implication
holds:

[S1 ⊆ S2]⇒ [S1 ∩ C(S2) = ∅] or [S1 ∩ C(S2) = C(S1)].

Following [14], we say that a fuzzy choice function C on (X,B) verifies the
Fuzzy Arrow Axiom (FAA) if for all S1, S2 ∈ B and x ∈ X we have

I(S1, S2) ∗ S1(x) ∗ C(S2)(x) ≤ E(S1 ∩ C(S2), C(S1)).

It is easy to see that (FAA) is a fuzzy version of the Arrow Axiom (AA).
Intuitively, (FAA) says: “The maximum degree that, for some x, S1 and S2,

x is chosen from S2, x belongs to S1 and S1 is included in S2, is less than or
equal to the degree that the set of alternatives chosen from S2, and also in S1

is equal to the set of alternatives chosen from S1” (cf. [16, p. 136]).

4 The Arrow Index

The Arrow axiom (AA) was introduced in [1] in order to characterize the full
rationality of choice functions (for some information see also [31, pp. 20–30]).
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These two properties have been later integrated by Sen [27] in a general
result regarding the characterization of the rationality of a crisp choice function
by various conditions (the axioms of revealed preference (WARP), (SARP), the
congruence axioms (WCA), (SCA), etc. ). This result is known as the Arrow–
Sen theorem.

In [14] we extended the classical result of [1] by showing that (FAA) is
equivalent with the full rationality of fuzzy choice functions. A new concept
defined in [14] is the Arrow index A(C) of a fuzzy choice function C. The A(C)
is a real number that expresses the degree to which C verifies the Fuzzy Arrow
Axiom.

The main theorem of this section shows thatA(C) characterizes the degree to
which C is full rational. This type of result changes the perspective of studying
the rationality of fuzzy choice functions. The attention is no longer focused on
rational fuzzy choice functions, but the entire class of fuzzy choice functions
has been taken into account with respect to their rationality. By the Arrow
index, one can appreciate how rational any fuzzy choice function is. This fact
has direct consequences in concrete problems. More often, the choices of an
agent do not fulfill conditions of rationality or full rationality. By using the
Arrow index, from a set of fuzzy choice functions we can select the ones with
the maximum degree of rationality.

The results of this section offer a method for the calculation of the Arrow
index in terms of the fuzzy preference relations R and R̄. Let (X,B) be a fuzzy
choice space.

Definition 4.1 Let C be a fuzzy choice function on (X,B). The Arrow index
A(C) of C is defined by
A(C) =

∧
S1,S2∈B

∧
x∈X [(I(S1, S2)∗S1(x)∗C(S2)(x))→ E(S1∩C(S2), C(S1))].

We remark that A(C) = 1 iff C verifies (FAA). Intuitively A(C) represents
the degree of the statement “The fuzzy choice function C verifies the Fuzzy
Arrow Axiom”.

For the rest of this section we assume that ∗ is the minimum t-norm ∧.
The following proposition expresses, in the language of indicators, the fact

that the transitivity of the fuzzy preference relation R̄ is ensured by the verifi-
cation of the Arrow Axiom.

Proposition 4.2 If C is a fuzzy choice function on (X,B) then A(C) ≤ Trans(R̄).

Proof. Let x, y ∈ X. We shall prove that:

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y) ≤ C(χ{x,y})(z). (1)

Denote S = χ{x,y,z}. We shall establish the inequality

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y) ≤ C(S)(x). (2)

Assume by absurdum that

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y) 6≤ C(S)(x). (3)

9



We shall prove that (3) implies the condition

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y) 6≤ C(S)(y). (4)

Assume that (4) does not hold, i. e.

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y) ≤ C(S)(y). (5)

We remark that I(χ{x,y}, S) = 1 and χ{x,y}(y) = 1, hence

A(C) ∧ C(S)(y) = A(C) ∧ I(χ{x,y}, S) ∧ χ{x,y}(y) ∧ C(S)(y) ≤
≤ I(χ{x,y}, S) ∧ χ{x,y}(y) ∧ C(S)(y)∧

[I(χ{x,y}, S) ∧ χ{x,y}(y) ∧ C(S)(y)→ E(χ{x,y} ∩ C(S), C(χ{x,y}))].

Therefore by using Lemma 2.1 (i) we get

A(C) ∧ C(S)(y) ≤ E(χ{x,y} ∩ C(S), C(χ{x,y}))
≤ I(C(χ{x,y}, χ{x,y} ∩ C(S))

≤ C(χ{x,y}(x)→ (χ{x,y} ∧ C(S)(y))
≤ C(χ{x,y}(x)→ C(S)(x))

By definition of residuated lattice it follows that

A(C) ∧ C(S)(y) ∧ C(χ{x,y})(x) ≤ C(S)(x).

In accordance with (5)

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y)
≤ A(C) ∧ C(S)(y) ∧ C(χ{x,y})(x) ≤ C(S)(x)

contradicting (3). Then we obtain (4). Similarly we get

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{x,y})(y) 6≤ C(S)(z). (6)

From (3), (4) and (6) we infer that C(S)(x) 6= 1, C(S)(y) 6= 1 and C(S)(z) 6=
1, contradicting that C(S) is a normal fuzzy subset of X (cf. H1). This con-
tradiction shows that (2) holds. We remark that

A(C) ∧ C(S)(x) = A(C) ∧ I(χ{x,z}, S) ∧ χ{x,y}(x) ∧ C(S)(x) ≤
I(χ{x,z}, S) ∧ χ{x,z}(x) ∧ C(S)(x)∧

[(I(χ{x,z}, S) ∧ χ{x,z}(x) ∧ C(S)(x))→ E(χ{x,z} ∩ C(S), C(χ{x,z}))] ≤
E(χ{x,z} ∩ C(S)) ≤ ([x, y] ∩ C(S))(x)→ C(χ{x,z})(x) ≤

C(S)(x)→ C(χ{x,z})(x)
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hence we obtain
A(C) ∧ C(S)(x) ≤ C(χ{x,z})(x).

Using (2) it follows that

A(C) ∧ C(χ{x,y})(x) ∧ C(χ{y,z})(y) ≤ A(C) ∧ C(S) ≤ C(χ{x,z})(x).

Then for all x, y, z ∈ X we have

A(C) ≤ (C(χ{x,y})(x) ∧ C(χ{y,z})(y))→ C(χ{x,z})(x) =
(R̄(x, y) ∧ R̄(y, z))→ R̄(x, z)

therefore

A(C) ≤
∧

x,y,z∈X

[(R̄(x, y) ∧ R̄(y, z))→ R̄(x, z)) ≤ Trans(R̄).

Corollary 4.3 If C satisfies (FAA) then R̄ is transitive.

Proof. By Proposition 4.2, A(C) = 1 implies Trans(R̄) = 1.

Let us denote by R the family of all fuzzy preference relations on X.

Theorem 4.4 If C is a fuzzy choice function on (X,B) then

A(C) =
∨

Q∈R
[E(C,G(·, Q)) ∧ Trans(Q) ∧ Ref(Q) ∧ ST(Q)] =

= E(C,G(·, R̄)) ∧ Trans(R̄).

Proof. Let Q ∈ R. We shall prove that

E(C,G(·, Q)) ∧ Trans(Q) ∧ Ref(Q) ∧ ST(Q) ≤ A(C). (7)

Let S1, S2 ∈ B and x ∈ X. We shall establish the inequality

E(C,G(·, Q)) ∧ Trans(Q) ∧ Ref(Q) ∧ ST(Q) ≤
≤ (I(S1, S2)) ∧ S1(x) ∧ C(S2))(x)→ E(S1 ∩ C(S2)), C(S1)). (8)

Let us denote

α = E(C,G(·, Q))∧Trans(Q)∧Ref(Q)∧ST(Q)∧ I(S1, S2))∧S1(x)∧C(S2)(x).

By the definition of residuated lattice, the inequality (8) is equivalent to the
inequality

α ≤ E(S1 ∩ C(S2), C(S1)). (9)
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Let z, v ∈ X. Then by Lemmas 3.5 and 2.4 we have

α ∧ I(S1, S2) ∧ S1(x) ∧ C(S2)(x) ∧ C(S1)(z) ∧ S2(v) ≤
α ∧ [E(C,G(·, Q)) ∧ C(S1)(z) ∧ S1(x)] ∧ [E(C,G(·, Q)) ∧ C(S1)(x) ∧ S2(v)] ≤

α ∧Q(z, x) ∧Q(z, v) ≤ Trans(Q) ∧Q(z, x) ∧Q(x, v) ≤ Q(z, v).

By Lemma 2.1 we get

α ∧ C(S1)(z) = α ∧ I(S1, S2) ∧ S1(x) ∧ C(S2)(x) ∧ C(S1)(z) ≤ S2(v)→ Q(z, v)

for all v ∈ X, hence

α ∧ C(S1)(z) ∧
∧

v∈X

[S2(v)→ Q(z, v)].

On the other hand,

α ∧ C(S1)(z) ≤ I(S1, S2) ∧ S1(x) ∧ C(S2)(x) ∧ C(S1)(z) ≤
C(S1)(z) ∧ I(S1, S2) ≤ S1(z) ∧ [S1(z)→ S2(z)] ≤ S2(z).

Therefore

α ∧ C(S1)(z) ≤ S2(z) ∧
∧

v∈X

[S2(v)→ Q(z, v)] = G(S2, Q)(z).

Since α ∧ C(S1)(z) ≤ α ≤ E(C,G(·, Q)) by Lemma 3.4 we obtain

α ∧ C(S1)(z) ∧ E(C,G(·, Q)) ∧G(S2, Q)(z) ≤ C(S2)(z),

hence by Lemma 2.1(iii) and (ii) it follows that

α ≤ C(S1)(z)→ C(S2)(z) = [C(S1)(z)→ S1(z)] ∧ [C(S1)(z)→ C(S2)(z)] =
C(S1)(z)→ (S1(z) ∧ C(S2)(z)). (10)

Let y, z ∈ X. According to Lemma 2.1(i), Lemma 3.5 and Lemma 2.4 the
following inequality holds:

α ∧ S1(z) ∧ C(S2)(z) ∧ S1(y) =
= α ∧ I(S1, S2) ∧ S1(x) ∧ C(S2)(x) ∧ S1(z) ∧ C(S2)(z) ∧ S1(y) ≤

≤ S1(y) ∧ S2(y) ∧ C(S2)(x) ∧ C(S2)(z) =
= α ∧ S1(y) ∧ S2(y) ∧ C(S2)(x) ∧ C(S2)(z) ≤

α ∧ [E(C,G(·, Q)) ∧ C(S2)(z) ∧ S2(x)] ∧ [E(C,G(·, Q))] ∧ C(S2)(x) ∧ S2(y)] ≤
≤ α ∧Q(z, x) ∧Q(x, y) ≤ Trans(Q) ∧Q(z, x) ∧Q(x, y) ≤ Q(z, y).

Thus we obtain: α ∧ S1(z) ∧ C(S2)(z) ≤ S1(y)→ Q(z, y) for all y ∈ X, hence

α ∧ S1(z) ∧ C(S2)(z) ≤ S1(z) ∧
∧

y∈X

[S1(y)→ Q(z, y)] = G(S1, Q)(z).
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Since α ≤ E(C,G(·, Q)), by Lemma 3.4 we get

α ∧ S1(z) ∧ C(S2)(z) ≤ E(C,G(·Q)) ∧G(S1, Q)(z) ≤ C(S1)(z).

Therefore we get for all z ∈ X:

α ≤ (S1(z) ∧ C(S2)(z))→ C(S1)(z). (11)

Combining (10) and (11) it follows that

α ≤
∧

z∈X

[(S1(z) ∧ C(S2)(z))↔ C(S1)(z)] = E(S1 ∩ C(S2), C(S1)).

Thus (9) was proved, hence (8) is verified. Since (8) holds for all S1, S2 ∈ B and
x ∈ X we obtain (7). From (7) we can derive the inequality:∨

Q∈R
[E(C,G(·, Q)) ∧ Trans(Q) ∧ Ref(Q) ∧ ST(Q)] ≤ A(C). (12)

Now we shall prove the inequality

A(C) ≤ E(C,G(·, R̄)). (13)

Let S ∈ B and x ∈ X. We shall establish the following two inequalities:

A(C) ≤ C(S)(x)→ G(S, R̄) (14)
A(C) ≤ G(S, R̄)(x)→ C(S)(x). (15)

Let z ∈ X. Thus we have

A(C) ∧ C(S)(x) ∧ S(z) = A(C) ∧ (I(χ{x,z}, S) ∧ χ{x,z}(x) ∧ C(S)(x)) ≤
≤ I(χ{x,z}, S) ∧ χ{x,z}(x) ∧ C(S)(x)∧

[(I[x, z], S) ∧ χ{x,z}(x) ∧ C(S)(x))→ E(χ{x,z} ∩ C(S), C(χ{x,z})] =
= I(χ{x,z}, S) ∧ χ{x,z}(x) ∧ C(S)(x) ∧ E(χ{x,z} ∩ C(S), C(χ{x,z})] ≤
≤ E(χ{x,z} ∩ C(S), C(χ{x,z}) ≤ (χ{x,z}(x) ∧ C(S)(x)↔ C(χ{x,z})(x)) =

= C(S)(x)↔ R̄(x, z) ≤ C(S)(x)→ R̄(x, z),

hence
A(C) ∧ C(S)(x) ∧ S(z) ≤ R̄(x, z).

Therefore A(C) ∧ C(S)(x) ≤ S(z)→ R̄(x, z) for each z ∈ X, hence

A(C) ∧ C(S)(x) ≤ S(x) ∧
∧

z∈X

[S(z)→ R̄(x, z)] = G(S, R̄)(x).

Thus A(C) ∧ C(S)(x) → G(S, R̄)(x), so (14) holds. In order to prove (15) we
consider an element y ∈ X such that C(S)(y) = 1 (because C(S) is a normal
fuzzy subset of X), then S(y) = 1. Thus

G(S, R̄)(x) ≤ S(y)→ R̄(x, y) = 1→ R̄(x, y) = R̄(x, y) = C(χ{x,y})(x).
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We remark that

G(S, R̄)(x) ≤ S(x) = S(x)∧S(y)∧C(S)(y) = I(χ{x,y}, S)∧χ{x,y}(y)∧C(S)(y),

therefore

A(C) ∧G(S, R̄) ≤
(I(χ{x,y}, S) ∧ χ{x,y}(y) ∧ C(S)(y)) ∧ [(I(χ{x,y}, S) ∧ χ{x,y}(y) ∧ C(S)(y))→

E(χ{x,y} ∩ C(S), C(χ{x,y}))] ≤ E(χ{x,y} ∩ C(S), C(χ{x,y})).

Since G(S, R̄)(x) ≤ C(χ{x,y})(x) we obtain

A(C) ∧G(S, R̄)(x) ≤ C(χ{x,y}, x) ∧ E(χ{x,y} ∩ C(S), C(χ{x,y})) ≤
≤ C(χ{x,y})(x) ∧ [(χ{x,y})(x) ∧ C(S)(x)→ C(χ{x,y})(x)] =

= R̄(x, y) ∧ [C(S)(x)→ R̄(x, y)] ≤
≤ R̄(x, y) ∧ [R̄(x, y)→ C(S)(x)] = R̄(x, y) ∧ C(S)(x) ≤ C(S)(x)

hence A(C) ≤ G(S, R̄)(x)→ C(S)(x) and (15) is proved.
The inequalities (14) and (15) hold for all S ∈ B and x ∈ X hence

A(C) ≤
∧

S∈B

∧
x∈X

[C(S)(x)↔ G(S, R̄)(x)] = E(C,G(·, R̄)).

The inequality (13) was proved. Since R̄ is reflexive and strongly total, we
have Ref(R̄) = ST(R̄) = 1. Thus, by Proposition 4.2 and (13) we get

A(C) ≤ E(C,G(·, R̄)) ∧ Trans(R̄) =
E(C,G(·, R̄)) ∧ Trans(R̄) ∧ Ref(R̄) ∧ ST(R̄) ≤∨

Q∈R
[E(C,G(·, Q)) ∧ Trans(Q) ∧ Ref(Q) ∧ ST(Q)].

Remark 4.5 By Theorem 4.4 the following assertions are equivalent:

(a) C satisfies (FAA);

(b) E(C,G(·, Q)) = Trans(Q) = Ref(Q) = ST(Q) = 1 for some Q ∈ R;

(c) C is full rational.

Therefore we have obtained the main result of [14]: (FAA) is equivalent with
the full rationality.

Let us denote by W the transitive closure of the fuzzy revealed preference
relation R (see [6] or [10]). In [12] there have been introduced the following
congruence axioms for fuzzy choice functions:
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(WFCA) (Weak Fuzzy Congruence Axiom)

For any S ∈ B and x, y ∈ X the following inequality holds:

R(x, y) ∧ C(S)(y) ∧ S(x) ≤ C(S)(x).

(SFCA) (Strong Fuzzy Congruence Axiom)

For any S ∈ B and x, y ∈ X the following inequality holds:

W (x, y) ∧ C(S)(y) ∧ S(x) ≤ C(S)(x).

(WFCA), (SFCA) are fuzzy versions of the classical congruence axioms (WCA),
(SCA) [24, 27, 30, 31].

In [16] the following indicators of the axioms (WFCA) and (SFCA) have
been defined.

Definition 4.6 ([16]) For a fuzzy choice function C on a fuzzy choice space
(X,B) let us define the indicators:

(i) WFCA(C) =
∧

x,y∈X

∧
S∈B[(S(x) ∧ C(S)(y) ∧R(x, y))→ C(S)(x)]

(ii) SFCA(C) =
∧

x,y∈X

∧
S∈B[(S(x) ∧ C(S)(y) ∧W (x, y))→ C(S)(x)].

Remark 4.7 The following assertions are equivalent:

(i) WFCA(C) = 1 iff C verifies the axiom (WFCA);

(ii) SFCA(C) = 1 iff C verifies the axiom (SFCA).

The indicator WFCA(C) (resp. SFCA(C)) expresses the degree to which the
fuzzy choice function C satisfies the axiom (WFCA) (resp. (SFCA)).

We recall the following theorem from [16, p. 214].

Theorem 4.8 If C is a fuzzy choice function then

WFCA(C) = SFCA(C) = E(C,G(·, R̄)) ∧ Trans(R)
= E(C,G(·, R̄)) ∧ Trans(R̄).

By combining Theorems 4.4 and 4.8 it follows that:

Theorem 4.9 If C is a fuzzy choice function then

A(C) = WFCA(C) = SFCA(C) = E(C,G(·, R)) ∧ Trans(R),
= E(C,G(·, R̄)) ∧ Trans(R̄)).

Remark 4.10 The fuzzy Arrow-Sen theorem established in [11, 16] is a par-
ticular case of Theorem 4.9. In case when C is a crisp choice function, one
obtains an important part of the classic Arrow-Sen theorem ([1, 27, 31]).

Remark 4.11 The proofs of the results from this section used essentially the
fact that ∗ is the minimum t-norm ∧ (for example, the idempotence of ∧).
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5 Concluding Remarks

The treatment of rationality in fuzzy revealed preference theory emphasizes the
connection between the fuzzy choice functions and the fuzzy preference relations
which rationalize them. This interconnection is realized by conditions on fuzzy
choice functions (axioms of revealed preference and congruence, consistency
properties, etc. ) Such condition related to the fuzzy choice functions is the
Fuzzy Arrow Axiom (FAA), a generalization in fuzzy context of the well known
axiom of Arrow [1].

The main theorem of [14] shows the equivalence between (FAA) and the full
rationality of the fuzzy choice function. The notion of full rationality combines
two types of properties:

(a) properties of fuzzy choice functions: rationality;

(b) properties of fuzzy preference relations: reflexivity, transitivity, strong com-
pleteness.

In this paper the relation between (FAA) and the full rationality has been
analyzed from another perspective:

(a) instead of the Arrow Axiom, one took the Arrow index A(C) of a fuzzy
choice function, indicator which expresses the degree to which C verifies
(FAA);

(b) one considered a numerical measure of the full rationality, expressed by the
degree of similarity of fuzzy choice functions and by the indicators of reflex-
ivity, transitivity and strong completeness of the fuzzy preference relation.

The equivalence between (FAA) and the full rationality is here transformed into
the equality between A(C) and a real number which expresses the degree of full
rationality.

The main theorem of the paper (Theorem 4.4) consists of the equality of
three numerical indicators, and the result of [14] is one if its particular cases. By
combining Theorem 4.4 with a result of [16, p. 214] on the congruence indicators
WFCA(C) and SFCA(C), one obtains their equality with the Arrow index,
and an evaluation of their value in terms of the similarity and the transitivity
indicator.

The result of this paper strengthens the one in [14] for the following two
reasons:

(i) it consists of a numerical relation valid for any fuzzy choice function;

(ii) it provides a method of ranking the fuzzy choice functions with respect to
their rationality.

It remains to investigate to which extent the theory of this paper can be devel-
oped without hypotheses (H1) and (H2). At the same time, an open problem
is to investigate the validity of these results in the more general context offered
by a left-continuous t-norm or for other particular t-norms.
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The notions from this paper can be obviously defined in the context of the
L-valued fuzzy sets, where L is a residuated lattice [6], and some results remain
true assuming that L is a Gödel algebra.
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