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Abstract

We study how millions of granular and weekly household scanner data combined with ma-

chine learning can help to improve the real-time nowcast of German inflation. Our nowcast-

ing exercise targets three hierarchy levels of inflation: individual products, product groups,

and headline inflation. At the individual product level, we construct a large set of weekly

scanner-based price indices that closely match their official counterparts, such as butter and

coffee beans. Within a mixed-frequency setup, these indices significantly improve inflation

nowcasts already after the first seven days of a month. For nowcasting product groups such

as processed and unprocessed food, we apply shrinkage estimators to exploit the large set of

scanner-based price indices, resulting in substantial predictive gains over autoregressive time

series models. Finally, by adding high-frequency information on energy and travel services,

we construct competitive nowcasting models for headline inflation that are on par with, or

even outperform, survey-based inflation expectations.

JEL Classification: E31; C55; E37; C53.

Keywords: Inflation nowcasting, machine learning methods, scanner price data, mixed-

frequency modeling.
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Non-technical summary

Forecasts of current-month inflation (“nowcasts”) are of great importance to central banks and

market participants, especially in turbulent times. Since official inflation figures are only avail-

able with a certain time lag and at a monthly frequency, we investigate how millions of highly

granular and weekly household scanner data combined with novel machine learning (ML) tech-

niques can help to improve the nowcasts of monthly German inflation in real-time.

Our dataset comes from the household panel of the market research company GfK and contains

daily purchases of fast-moving consumer goods, i.e. products that are bought regularly and

consumed quickly, for the period from 2003 to 2022. The purchases covered are mainly food and

non-durable goods such as shampoo or toothpaste, which are scanned by panel participants at

home and therefore referred to as household scanner data. On average, the GfK household panel

for Germany comprises around 30,000 households, 200,000 products (measured at the barcode

level) and 30 million observations per year. In addition, the dataset contains detailed product

descriptions and has its own product classification system. These descriptions allow the data to

be mapped to the most disaggregate level used in the German consumer price statistics, such as

“butter”, “coffee beans” and “toothpaste”.

In total, we can map the household scanner data to more than 180 product groups of the German

Harmonised Index of Consumer Prices (HICP), covering around 12% of the German consumer

basket and typical outlet types such as supermarkets and discounters. From these, we derive

price indices using common index methods often applied by statistical offices in the context of

scanner data. We show that our scanner data-based price indices track their official counterparts

very well.

Our nowcasting exercise targets three hierarchy levels of the official consumer price index. First,

we specify a time series model for mixed frequencies (unrestricted mixed data sampling, U-

MIDAS) for each of the approximately 180 COICOP-10 items. Here, the weekly price indicator

is used to predict the monthly inflation rate on days 7, 14, 21 and 28 of a month. We show that

this approach reduces the nowcast error substantially relative to an autoregressive time series

benchmark model. Current-month inflation nowcasts already improve early in the month using

only scanner data for the first seven days of the month.

In a second step, we consider the three major product groups “unprocessed food”, “processed
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food” and “non-energy industrial goods” (including, for example, consumer goods for personal

care and household) for which we have weekly scanner data information available. As these

product groups consist of many individual COICOP-10 items, we use shrinkage estimators to

efficiently integrate the large set of potential predictors into a time series model. Compared with

the benchmark model, we achieve forecast error reductions of up to 25%. Again, our ML-based

approach leads to nowcasting gains already after the first seven days of a month.

Finally, we nowcast headline inflation of a given month. To this end, we consider six subcom-

ponents of the German HICP: unprocessed food, processed food, energy, package holidays, non-

energy industrial goods, and services (excluding package holidays). By adding high-frequency

information on energy and package holidays, we estimate a mixed-frequency ML model that

directly selects the relevant predictors for each of the six components (“direct ML”) and a

bottom-up U-MIDAS model for each COICOP-10 item, whose nowcasts we aggregate first to

the components and then to headline inflation using the official HICP weighting scheme.

We show that both approaches produce highly competitive nowcasting models that are on par

with, or even outperform, Bloomberg market expectations. We also find that the direct ML

approach is hard to beat in normal times, as measured by relatively low inflation volatility, but

performs worse than market expectations in times of higher volatility. In contrast, the bottom-

up approach improves inflation nowcasting in turbulent times, particularly with the expiry of

the temporary VAT cut in January 2021 and during the sharp rise in inflation in 2022.

Taken together, weekly price indices from household scanner data can significantly improve

monthly inflation nowcasts at various hierarchy levels. This is clearly evident at the level of

major subcomponents of German inflation and is generally already the case after the first seven

days of a month. Our nowcasting approach to headline inflation produces highly competitive

models that are on par with, or even outperform, market expectations. In terms of the chosen

approach, ML models seem to be hard to beat in normal times, but do not necessarily adapt

quickly enough to large shocks. As a result, neither of the two nowcasting methods analysed

consistently outperforms the other. Instead, the use of higher-frequency scanner data and their

careful transformation into representative price indices seems to improve forecasting performance

as compared to standard approaches.
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1 Introduction

The economic shock induced by the COVID-19 pandemic posed unprecedented challenges to

policymakers and triggered an enormous demand for reliable real-time information about the

state of the economy, including inflation dynamics. A similarly strong need for a timely and

continuous flow of information about ongoing price developments arose after Russia’s invasion

of Ukraine in February 2022, when an immense inflationary wave started to unfold. Whereas

official macroeconomic statistics are only available with a certain time lag and at fixed inter-

vals, non-traditional high-frequency data such as web scraping and scanner data in combination

with machine learning (ML) techniques represent a promising toolkit for policymakers to mon-

itor ongoing and potentially disrupting developments in real time and to make better-informed

decisions in such situations (Tissot and de Beer, 2020, Doerr et al., 2021).

The usefulness of real-time information is not constrained to extraordinary periods, however, as

it allows more generally for a faster identification of the current state of the economy, thereby

enabling a timelier and more targeted response by policymakers. It can also aid in quantifying

the impact of policy measures more precisely (Buda et al., 2023) and possibly adjusting them

more swiftly. Furthermore, in the absence of timely official data, there is a risk that economic

agents, by basing their decisions on private data sources, may amplify idiosyncratic shocks.

Having high-frequency data at hand, policymakers can dampen such effects via a regular data-

driven communication strategy (see, e.g., Assenmacher et al., 2021).

The aim of this paper is to analyze how the combination of non-standard high-frequency price

data with state-of-the-art machine learning methods helps to nowcast inflation in real time. More

specifically, we demonstrate that weekly household scanner data improve inflation nowcasts, both

at a very high level of disaggregation and for major product groups and headline inflation. Our

data stem from the household panel of the market research company GfK and contain daily

purchases of fast-moving consumer goods (henceforth denoted as GFK:FMCG) at the barcode

level, primarily covering food, beverages, personal and household care products. Using the

comprehensive product descriptions available in the dataset, we transform the highly granular

daily price information into weekly price indices that closely match the official price indices at

the most disaggregate level used in the German consumption basket, the so-called COICOP-10
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item level.1 With the help of a recursive out-of-sample nowcast experiment, we then document

that the application of mixed data sampling (MIDAS) and machine learning techniques to these

data (combined with official monthly inflation series and some complementary high-frequency

data) yields highly informative nowcasts as soon as after only seven days of a month. Not

surprisingly, the nowcast accuracy increases with the number of days included. After 14 and

particularly after 21 days, the headline inflation nowcasts even outperform standard surveys of

market expectations that are notoriously difficult to beat.

Our nowcasting exercise proceeds in three steps that relate to the three hierarchy levels of the

German consumption basket our project focuses on: highly disaggregate COICOP-10 items,

product groups, and headline inflation. We start at the COICOP-10 level and construct weekly

price indices from the granular GFK:FMCG data with the help of time-product dummy re-

gressions used successfully both in the literature (de Haan et al., 2021) and at statistical offices

(Eurostat, 2022). For each COICOP-10 item, we then specify a U-MIDAS model (Ghysels et al.,

2004) that uses the weekly index to predict, on days 7, 14, 21, and 28 of a month, its official

counterpart, which is measured at a monthly frequency. We document that this approach re-

duces the nowcast error substantially relative to a univariate time series benchmark model. The

advantage is particularly pronounced for COICOP-10 items classified as unprocessed fruit and

vegetables and dairy products and fat, for which we achieve root mean squared error (RMSE)

reductions in the range of 40%-60%. Importantly, large nowcasting gains accrue even if only the

scanner data of the first seven days of a month are included.

In the second step, we focus on product groups such as unprocessed and processed food that are

regularly monitored by policymakers and market participants and for which we have weekly scan-

ner data information available. As these product groups consist of large numbers of COICOP-10

items, direct nowcasting models of group-specific inflation rates need to efficiently integrate a

multitude of weekly GFK:FMCG price indices, which is why we resort to shrinkage estimators

from the machine learning toolkit. We find that, compared to a standard time series bench-

mark model, the group-specific inflation nowcasts of both unprocessed food and processed food

benefit considerably from adding the weekly information. Specifically, we document reductions

in the relative RMSE of up to 25%. When considering more disaggregate product groups, the

relative forecasting gains are particularly large for dairy products and fat (reduction in RMSE

1The COICOP-10 item level provides a considerably more detailed disaggregation than the COICOP-5 level
used for the classification of euro area inflation.
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of roughly 45% to 55%), unprocessed fruit and vegetables (reduction of around 20% to almost

40%), processed meat and fish (reduction of more than 25% to almost 40%), and unprocessed

meat, fish and eggs (reduction of nearly 20% to 25%). Again, the superiority of our ML-based

approach becomes apparent as early as after day 7 of a month.

In the final step, we construct nowcasts of headline inflation. To this end, we split the German

consumption basket into six components – unprocessed food, processed food, energy, package

holidays, non-energy industrial goods (NEIG), and services – which we consider separately.

Specifically, we fit a mixed-frequency machine learning model directly to the monthly inflation

rate of each component, produce nowcasts, and aggregate the nowcasts to headline inflation

by applying the official HICP weighting scheme. To the set of weekly predictors, we add price

quotes for energy and package holidays, which are two of the most volatile and difficult-to-

predict inflation components of the German HICP. The resulting headline inflation nowcasts

consistently outperform not only a time series benchmark approach but also Bloomberg market

expectations if at least information up to day 14 is included.

To study the merits of aggregate versus disaggregate inflation nowcasting, we supplement the

direct machine learning models with a bottom-up nowcasting approach which works as follows.

For COICOP-10 items matched by a weekly predictor, we apply the U-MIDAS model discussed

in the first step. For the remaining COICOP-10 items, we fit a time series benchmark model.

We then aggregate the item-level inflation nowcasts to headline inflation nowcasts by the official

HICP weighting scheme. We document that this bottom-up approach is slightly outperformed

by the direct machine learning approach in normal periods but dominates it in turbulent times.

In addition, it has proved highly competitive compared to market expectations, even during

the inflation hike of 2022. From this, we conclude that in terms of inflation nowcasting, direct

machine learning models are difficult to beat in normal times but do not necessarily adapt

quickly enough to large shocks. Overall, this suggests that there is not a single nowcasting

method which uniformly outperforms all its competitors. Rather, it is the careful integration of

informative high-frequency data into nowcasting models that makes a difference.

The outline of this paper is as follows. Section 2 discusses related research and emphasizes our

contribution in some detail. Section 3 explains the high-frequency scanner data and how we

derive price indices that mirror the official indices published by the statistical office. In Section

4, we describe our nowcasting strategy and in Section 5, we report the results. Robustness
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checks are presented in Section 6, while Section 7 concludes.

2 Literature review

Our paper relates to several strands of the literature. First, the use of scanner data for economic

research can be dated back to as early as the 1970s. In an excellent survey article, Dubois et al.

(2022) report how both household and retail scanner data have been fruitfully exploited in

research on firm and consumer behavior. Within the area of consumer prices, scanner data have

been used to compute household-specific inflation (Kaplan and Schulhofer-Wohl, 2017; Jaravel,

2019), assesses inequality across countries (Beck and Jaravel, 2021), study price-setting strategies

of firms (Butters et al., 2022; Karadi et al., 2023), estimate price elasticities of consumer demand

(Beck and Lein, 2020), track the effects of the COVID-19-related lockdown on prices and product

variety (Jaravel and O’Connell, 2020), and measure the cross-border effects on prices within

the euro area (Messner et al., 2023). In addition, scanner data supplemented with survey

questionnaires (D’Acunto et al., 2021) and survey-based information treatments (Weber et al.,

2022) can help to reveal the manner in which the way inflation expectations are formed and affect

spending plans. Our paper contributes to this literature by showing that household scanner data

can also successfully be employed to nowcast headline inflation.

Second, our paper relates to a burgeoning body of literature that was spurred on the COVID-19

pandemic and seeks to construct high-frequency measures of existing low-frequency macroe-

conomic series. Examples include real-time indicators of house prices (Anenberg and Laufer,

2017), GDP (Eraslan and Götz, 2021) and – using individual bank account information – pri-

vate consumption (Buda et al., 2022). Regarding inflation, the billion prices project initiated

by Cavallo and Rigobon (2016) has shown that online prices can successfully be used to build

a high-frequency price index that closely mirrors the official headline inflation published by sta-

tistical offices. In addition, using household scanner data for the UK, Jaravel and O’Connell

(2020) provide a measure of food price inflation that closely tracks the official number at least

on an annual frequency during the COVID-19 period. Studies that draw on web-scraped data to

examine price effects in this period include Watanabe (2020), Cavallo and Kryvtsov (2023) and

Stelmasiak et al. (2023). Non-standard, high-frequency data have also turned out to be useful

in the study of price and consumption effects following natural disasters as, e.g., in Cavallo et al.
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(2014), Gagnon and López-Salido (2019) or Watanabe (2020). Furthermore, using household

scanner data for the UK, Jaravel and O’Connell (2020) provide a measure of food price inflation

that closely tracks the official number at least on an annual frequency, and Alvarez and Lein

(2020) offer an online inflation measure for Switzerland by combining web-scraped prices with

consumption weights derived from debit card transactions. We add to this literature by using

scanner data to construct weekly inflation measures for unprocessed food, processed food, and

non-durable goods, both on the aggregate level and for detailed subcomponents such as “butter”,

“coffee beans”, and “sanitary cleaner”. Since our data also contains information on quantities,

we are able to use real-time weights in the construction of price indices. The availability of

such detailed inflation series is particularly useful in times of crises, as we have illustrated with

respect to the price development of selected food items following Russia’s invasion of Ukraine

(Beck et al., 2022).

Third, we contribute to the literature on nowcasting key macroeconomic variables. Typically,

research in this field has focused on providing monthly GDP estimates; however, fuelled by the

COVID-19 pandemic and the war in Ukraine, there has been increased interest in producing

high-frequency measures of monthly data, such as inflation. Some studies in this field use

traditional data sources such as weekly gasoline or commodity prices (Modugno, 2013; Breitung

and Roling, 2015; Knotek II and Zaman, 2017; Clark et al., 2022; Aliaj et al., 2023) and report

robust forecasting and nowcasting gains compared to econometric benchmark models or market

expectations. Another branch of the literature uses web-scraped price data to predict aggregate

and disaggregate food price inflation (Macias et al., 2023; Powell et al., 2018) and headline

inflation (Harchaoui and Janssen, 2018; Aparicio and Bertolotto, 2020), again documenting

improved forecasting accuracy. We add to this literature by showing that scanner data is a very

promising candidate for the nowcasting of inflation at both the aggregate and the disaggregate

level.

Fourth, our paper relates to an earlier body of literature that addressed the question of whether

it would pay off to forecast headline inflation by explicitly using subcomponents or even the full

breakdown of the inflation rate as inputs (Hendry and Hubrich, 2011; Ibarra, 2012; Espasa and

Mayo-Burgos, 2013; Bermingham and D’Agostino, 2013) Generally, the studies show that it does

indeed help to take disaggregate information into account. Recently, this line of research has

been taken up again by Joseph et al. (2022) who use disaggregate inflation data combined with
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machine learning methods to forecast headline inflation in the UK. Related to this academic

debate, central banks have always forecasted different components of the inflation rate, both for

statistical reasons and for understanding the underlying price dynamics (Benalal et al., 2004;

Capistrán et al., 2010; Huwiler and Kaufmann, 2013; Giannone et al., 2014; Ulgazi and Vertier,

2022). By using the German inflation rate which is the one with the most detailed breakdown

worldwide, we show that combining disaggregate inflation nowcasts into an aggregate nowcast

for headline inflation is a highly competitive approach.

From a methodological perspective, our paper relates to recent advances in machine learning

that seek to improve inflation forecasts by exploiting large datasets. While this literature dates

back at least to Stock and Watson (1999), simple univariate models have been found to be

very difficult to beat (Atkeson and Ohanian, 2001; Stock and Watson, 2007). Recent results

are more promising. In particular, Garcia et al. (2017), Medeiros et al. (2021) and Babii et al.

(2022) apply a multitude of machine learning techniques to large macroeconomic datasets and

demonstrate that this can lead to notable forecasting gains (see also Paranhos, 2021; Li et al.,

2022; Goulet Coulombe et al., 2022; Hauzenberger et al., 2023). In a similar vein, Joseph et al.

(2022), Botha et al. (2022), and Barkan et al. (2022) show that inflation forecasts can also

benefit from applying machine learning to large sets of highly disaggregate price indices. Our

findings add to this body of research by revealing that machine learning tools provide an effective

solution for handling a large set of disaggregate price series in a mixed-frequency setting. In

particular, we show that it pays off to combine shrinkage methods with the weekly GFK:FMCG

dataset to produce higher quality nowcasts for major product groups, such as for unprocessed

and processed food, and headline inflation.

Finally, our approach of nowcasting inflation at a very disaggregate level with the help of machine

learning models also helps to produce robust results during severe crises. As discussed by

Bańbura et al. (2023), adjusting standard forecasting models to cope with the effects of large

shocks is no mean feat. As we will show, modeling inflation at a disaggregate level helps to take

into account very specific policy measures taken during the pandemic and the recent energy

price hike, both of which only affect a limited number of disaggregate price series.
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3 Data

We base our nowcasts on a weekly dataset of consumer prices from three different sources. Most

importantly, we use household scanner data for daily purchases of fast-moving consumer goods,

mainly consisting of food items and non-durable goods. In addition, we collect weekly energy

prices from the European Commission and daily transaction data for travel services from a

private travel booking system provider. We combine this high-frequency dataset with monthly

inflation rates compiled by the German statistical office from 2003 until 2022. This section

provides details about the data sources and the data transformations necessary to construct

high-frequency price indices that match the official HICP series as closely as possible.2

3.1 Fast-moving consumer goods (GFK:FMCG)

The most comprehensive part of our dataset consists of home scan purchases of fast-moving

consumer goods (FMCG) collected from private households by the market research company

GfK. It records, at a daily frequency, the purchases of around 30,000 households which consti-

tute a representative sample of the German household population, and mainly includes food,

beverages, and personal care items. The dataset starts in January 2003 and covers around

200,000 different products and an average of around 30 million observations per year. Table (1)

provides an illustration of the structure of the GFK:FMCG data using “butter” as an example.

In addition to the price paid on a particular day and the barcode of a single product, the dataset

contains detailed information about products and retailers.

Table 1: Illustrative example of household scanner data

GfK Household Panel Mapping to COICOP Classification
Household Product Description Barcode Quantities Sales Retailer Purchase Date 10-digit Code Product-Category

1 Green Hill Butter 250g 400123123123 1 3.39 € A 28.11.2022 0115100100 Butter
2 Lovely Butter 250g 400456456456 2 6.58 € B 01.12.2022 0115100100 Butter
3 Lovely Butter 250g 400456456456 1 3.39 € C 01.12.2022 0115100100 Butter
4 Green Hill Butter 250g 400123123123 1 3.29 € B 02.12.2022 0115100100 Butter
5 Green Hill Butter 250g 400123123123 2 6.98 € A 03.12.2022 0115100100 Butter
6 Sunny Sunflower oil 1l 100445566123 1 2.29 € B 01.12.2022 0115400100 Sunflower oil
7 Blossom Sunflower oil 1l 100112233123 1 3.99 € C 01.12.2022 0115400100 Sunflower oil
...

...
...

...
...

...
...

...
...

Note: Fictitious entries.

For the purpose of our study, this dataset offers several advantages. First, scanner prices stem

from actual transactions and should thus closely co-move with official prices sampled from a

2A list of all data sources used is provided in Table A1 of Appendix A.1.
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representative product bundle by the statistical office. Second, information on prices and pur-

chases are recorded by shopping day, i.e., it can be used to construct high-frequency series. The

data is also well-suited for nowcasting purposes as weekly updates are already made available

by GfK on the following Monday. Third, the dataset includes quantities, i.e., the number of

units bought of a particular product. This information is important as we can use it to con-

struct consumption weights that increase the correlation with the official price indices. Fourth,

information is provided at the barcode level, which allows us to take into account composition

effects.3 For example, if a particular brand of butter is purchased more frequently, it will receive

a higher weight in the construction of the scanner-based price index of butter. While this effect

might temporarily lead to deviations from the official price index, which is based on a consump-

tion basket that is fixed in the short run, official weights are adjusted regularly and thus should

converge with those derived from actual shopping behavior.

In our empirical exercise, we construct nowcasts both for headline inflation as well as for some

product groups such as “unprocessed food”, “processed food”, or “non-durable goods’, and, if

possible, for the most detailed inflation series available. According to the COICOP system,4 the

German inflation rate can be broken down into different categories, ranging from goods, services

and energy to more detailed components such as “vegetables” or “mineral water”. In the euro

area, the most detailed harmonized breakdown of the inflation rate is the so-called COICOP-5

level, whereas in Germany, inflation can be disaggregated further into the COICOP-10 level,5

which, however, poses some challenges. First, the COICOP-10 series are compiled within the

system of the national CPI and not the HICP. Hence, methodological differences between both

concepts have to be taken into account when aggregating inflation nowcasts from the bottom

up.6 Second, the CPI is typically revised every five years with the introduction of a new base

year by including new product groups and removing outdated ones. Therefore, some COICOP-

10 series are only available on a shorter time period, which we try to overcome by extending

3Mostly, the barcode is given by the “Global Trade Identification Number” (GTIN), whereas GfK assigns a
unique ID to products such as fresh food or private labels for which no GTIN is available.

4COICOP stands for “Classification of Individual Consumption by Purpose”; see Eurostat (2018) for details.
5For example, the COICOP-5 component “cheese and curd” is decomposed into the five COICOP-10 groups

“hard cheese”, “sliced cheese”, “soft cheese”, “curd” and “cream cheese”. Indices computed at this lowest-available
level are generally denoted as “elementary indices”; see IMF, ILO, OECD, Eurostat, UNECE, and The World
Bank (2020), Chapter 1.

6The HICP is a chain-linked price index where weights are updated each year whereas the CPI is a fixed-base
index where weights are updated only every five years. Moreover, the CPI includes prices for gambling and
owner-occupied housing. Despite their methodological differences, headline rates of the HICP and CPI behave
rather similarly over time.
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them backwards using corresponding price indices from the previous base years.

Keeping this in mind, we match the products of the scanner data to the corresponding COICOP-

10 items, making use both of the product categories and the detailed product descriptions

included in the GfK household panel as well as the item descriptions contained in the HICP

manual.

Based on the mapped scanner data, we proceed as follows. First, in each COICOP-10 component,

the raw price pi,d of a given product i bought on a particular day d is defined as:

prawi,d =
salesi,d
uniti,d

, (1)

where salesi,d are the total expenses in euro for a given item and uniti,d denotes the number

of items bought. By this, we obtain for each item and time period a sample of unit-value

observations. Moreover, we omit outliers which are below and above the 1st and 99th percentiles

of the price distribution at the COICOP-10 level. Due to the large number of households in

the dataset, a specific item is often bought several times per day, in which case we compute the

average price per item and day. Finally, we transform the data from daily into weekly frequency

by defining four weeks per month such that the first week consists of day 1 until day 7, the

second week from day 8 to 14, the third week from day 15 to 21 and the fourth week from

day 22 to day 28. By using only 28 days of a given month, we tackle the problem of a shorter

February and leap years.

We compile scanner-based price indices at the COICOP-10 level by running weighted time-

product dummy (TPD) regressions. This method, proposed by Diewert (2005), is widely used

in official price statistics to construct price indices from scanner or web-scraped data (de Haan

et al., 2021; Eurostat, 2022). Specifically, for each week t = 0, . . . , T and product i = 1, . . . , N ,

we fit the equation

ln pi,t = β0 +

T∑
τ=1

δτdτi,t +

N−1∑
j=1

γjDj
i + εi,t, (2)

where Dj
i,t represents a product dummy which takes the value 1 if i = j (as identified by its

barcode) and 0 otherwise, and dτi,t denotes a time dummy which takes the value 1 if t = τ and 0

otherwise. Weights are given by the total expenses, salesi,t, for a given product. This increases
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the price effect of popular products compared to those that are bought less frequently. Note

that missing prices for a given item are treated in a similar way as in official price statistics: if

an item is only temporarily missing, its last price is carried forward up to eight weeks, before it

is replaced with another product.

For each week t = 0, ..., T , we estimate a price index from the exponential of the coefficient on

the respective time dummy, such that:

I0,tTPD = 100 × exp
(
δ̂t
)
. (3)

To mimic a real-time compilation of scanner-based price indices, we estimate equation (2) on a

rolling window of 49 weeks, which covers at least one full year of scanner data (i.e., one month

consisting of four weeks only). For example, the first estimation window covers period 1 to

period 49 (providing a price index of the same length), the second estimation window period 2

to period 50, and so on. The linking of this sequence of 49-period price indices is performed in

the spirit of a mean splice. By linking subsequent index values to the existing one, this yields a

non-revisable real-time price index such that:

I0,tTPD =
t−1∏

k=t−λ

(
I0,kTPD × Ik,t[t−w+1,t]

) 1
λ
, (4)

where w denotes the window size (49 weeks) and λ is an overlapping linking period, which we set

to eight weeks.7 Hence, in our example above, the index in period 50 is obtained as a geometric

average of the pairwise changes of the period-50 index value to the index values in periods 42

to 49 obtained from the second estimation window, each multiplied by the index value of the

corresponding overlapping period from the first estimation window.

3.2 Energy and travel services

Unexpected price changes for energy and package holidays regularly contribute strongly to fore-

cast errors of German headline inflation. Therefore, we also match these components with

7In the context of a rolling time window, a mean splice includes all overlapping periods as a linking period
(Eurostat, 2022). However, in our weekly application, this yields 48 overlapping periods. We therefore opted to
link over a shorter time period to ease the computational burden. We also computed alternative price indicators
based on different index concepts and splicing methods. Overall, the TPD model with a splicing over eight weeks
gave the best results in terms of in-sample correlations.
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high-frequency information available in almost real time.

The energy component of the HICP consists of 14 price indices at the COICOP-10 level8 that

we try to match with the high-frequency price indicators discussed in the following. Most

importantly, we use weekly price data from the Weekly Oil Bulletin (WOB) by the European

Commission that has proven invaluable in previous work (Modugno, 2013; Aliaj et al., 2023).

The WOB contains weekly information starting in 2005 about average fuel prices at the pump

(Diesel, Supergrade petrol) and household-size deliveries of heating oil. The prices include duties

and taxes and are thus much more closely related to consumer price indices than futures prices

traded on financial markets, as used by Breitung and Roling (2015) and Knotek II and Zaman

(2017). Nevertheless, we include the European Gas Spot Index (EGSI) as we have no other

high-frequency information for the household gas supply.

We also use a few more daily energy price series from various sources as described in Table A1

in the appendix. All German gasoline stations have to report their intraday price changes of

super and diesel fuels to the Market Transparency Unit for Fuels. We access this database via

the data provider “Tankerkoenig” and take unweighted averages of all prices reported within a

day. We also include daily measures of heating oil and wood pellet prices. We turn all daily

series into weekly by taking an unweighted average of days 1-7 (week 1), 8-14 (week 2), 15-21

(week 3), and 22-28 (week 4).

Regarding travel services, we use high-frequency data from the travel booking system provider

AMADEUS that include transaction prices for package holidays, which is defined as a combina-

tion of flight and accommodation services. Prices for international package holidays represent

an important component of the German HICP because of their relatively large weight in the

consumer basket and their relatively high volatility.9 The AMADEUS dataset starts in 2012

and is available at a daily frequency.10 We provide more details about the construction of the

high-frequency index for package holidays in Section A.3 of the appendix. Basically, the in-

8These items are “Electricity” (COICOP no. 0451010000), “Natural gas, excl. share in the costs” (0452103000),
“Share in the costs for gas central heating” (0452105100), “Liquefied gas, charging of a tank container”
(0452200200), “Heating oil” (0453001100), “Share in the costs for oil central heating” (0453005100), “Coal bri-
quettes” (0454100200), “Firewood, wood pellets or the like” (0454900100), “District heating” (0455002200),
“Diesel fuel, cetane number below 60” (0722100100), “Diesel fuel, cetane number 60 and more” (0722100300),
“Supergrade petrol, 95 octane” (0722201100), “Supergrade petrol, 98 octane and more” (0722204300), and “Liq-
uefied petroleum gas” (0722301100).

9In 2023, package holidays make up 3.5% of the German inflation rate, compared to 0.2% in France and 0.5%
in Italy.

10The dataset has been used by Henn et al. (2019) for price measurement and by Nagengast et al. (2021) to
estimate the exchange rate pass-through.
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dex is compiled by constructing a weighted average of the prices for the most relevant travel

destinations and that focuses on last-minute bookings up to 14 days before the travel date.

3.3 Descriptive statistics

Table 2 provides an overview of the HICP components for which we are able to construct a

corresponding high-frequency price index using household scanner data for the full sample 2003

to 2022. In total, we cover about 12% of the basket underlying the German headline inflation

rate, including the vast majority of unprocessed and processed food items.11 With regard to

non-energy industrial goods (NEIG), we match a significant proportion of non-durables but are

unable to do so for most of the semi-durable and durable goods. Except for package holidays,

our dataset does not comprise high-frequency prices for services which make up about 50% of

the German consumer basket. However, service prices are either determined by administrative

measures, such as insurances or tuition fees, or are rather sticky (see Gautier et al., 2023). There-

fore, we do not expect the lack of high-frequency prices for services to impair our nowcasting

results too strongly.

In Figure 1, we compare the year-over-year inflation rates of the HICP with its scanner-based

counterparts by considering the product groups “food” and “non-durable goods”.12 Note that

the HICP aggregates are derived from the underlying COICOP-10 series using only those series

for which we also have high-frequency data available. While this distinction does not matter for

food, energy and package holidays, it is relevant for non-durable goods given that we only cover

about 40% of this aggregate.

Overall, the comovement between the weekly high-frequency and the monthly official inflation

rates is very high. For food, non-durable consumer goods and energy, the correlation coefficient

is about 0.9. Even if we use the HICP component for non-durable goods based on the full set

of the underlying COICOP-10 series, the correlation still exceeds 0.5.13

11Tobacco products are not available in the scanner data set since households are typically reluctant to reveal
reliable information about their actual purchases.

12The graphs for “energy” and “package holidays” are shown in Figure A1 in the appendix. An online appendix
to this paper (available upon request) plots the high-frequency inflation rates together with the official rates for
all of the about 180 product groups which could be mapped to scanner data.

13Correlations are computed by carrying forward the monthly inflation rates to each of the four weeks per
month. This approach mirrors our forecasting setup more closely than aggregating the weekly series into monthly
frequency in a first step.
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Table 2: Mapping between high-frequency price data and the German HICP

HICP Scanner data

Component COICOPs Weight COICOPs Weight

Unprocessed food 38 2.4 30 2.0

Fruit 8 0.7 6 0.5
Vegetables 11 0.7 9 0.6
Meat & eggs 15 0.9 15 0.9
Fish 4 0.1 0 .

Processed food 142 11.1 116 8.1

Fruit 7 0.2 5 0.1
Vegetables 12 0.4 11 0.4
Meat 13 1.1 11 0.9
Fish 7 0.2 4 0.1

Bread & cereals 25 1.5 23 1.4
Dairy products & fat 18 1.5 14 1.4
Beverages 29 2.9 23 2.7
Other food products 28 1.2 25 1.0
Tobacco 3 2.1 0 .

NEIG 302 23.0 39 1.8

Non-durables 75 5.9 36 1.8
Semi-durables 139 8.7 3 0.1
Durables 88 8.4 0 .

Total HICP 482 36.5 185 11.9

Note: The table reports the number of COICOP-10 price indices and the associated weights of different
HICP components in addition to the number of series and the share for which we have household
scanner data available over the full sample 2003 to 2022. Weights refer to CPI expenditure shares of
the base year 2020.

It is worth noting that this high correlation of the aggregate inflation series masks some con-

siderable heterogeneity at the COICOP-10 level. This is illustrated for a selected number of

product groups in Figure A2 that highlight some general patterns.14 First, as the indices for

“cucumbers”, “cherries” and “whole milk” illustrate, official inflation rates tend to exhibit larger

fluctuations compared to their high-frequency counterpart. This could be due to the fact that

the statistical office samples only a subset of products, whereas scanner-based indices use all

products being bought by households, which might smooth out extreme price changes. On the

other hand, we also observe that for other COICOP-10 components indices of high-frequency

14The graphs for all COICOP-10 components are provided in an online appendix to this paper (available upon
request).
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Figure 1: HICP inflation and high-frequency counterparts
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Note: The figure shows year-over-year inflation rates (% change) for HICP subcomponents aggregated using all
of the corresponding COICOP 10-digit level series for which we have high-frequency data available. “HICP”
refers to the aggregates using official COICOP 10-digit series, and “GFK:FMCG” refers to the scanner data for
fast-moving consumer goods. ρ reports the correlation coefficient between both series.

scanner data are more volatile than the official series. This is, e.g., the case for “multivitamin

juice” or “salt”. This could stem from sales or special offers that are more likely to be included

in the high-frequency scanner dataset rather than the monthly HICP data. Finally, towards the

end of the sample, official inflation series have increased much more than their high-frequency

counterpart. This points to substitution effects that arise if households switch from expensive

products to cheaper ones.
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4 Nowcasting strategy

Our nowcasting exercise proceeds in three steps. In the first step, we evaluate at the highly

disaggregate COICOP-10 item level how well the weekly GFK:FMCG price indices predict their

current month’s official HICP counterparts. For that purpose, we employ the well-established

MIDAS framework advocated by Ghysels et al. (2004) that takes into account the different

frequencies of the data.15 We compare this approach to an autoregressive benchmark with

seasonal dummy variables. We are thereby able to quantify the informational advantage of

adding weekly scanner data to nowcast monthly inflation at the most granular level.

In the second step, we nowcast the inflation rates of product groups of the HICP consumption

basket that are closely monitored by central banks, market observers, and business cycle experts

and for which we have disaggregate weekly GFK:FMCG price information available. The most

important of these groups are unprocessed food, processed food, and non-energy industrial

goods. As they consist of large numbers of disaggregates – for example, unprocessed food

is an aggregate of 142 COICOP-10 items – we implement machine learning techniques like

the elastic net and the sparse group LASSO to achieve dimensionality reduction via shrinkage

and produce direct inflation nowcasts at the product group level in a high-dimensional mixed-

frequency environment. Again, our benchmark is a standard autoregressive model augmented

with seasonal dummies. The setup allows us to study the extent to which the combination of

high-frequency external information and up-to-date machine learning techniques can improve

inflation nowcasts.

In the third step, we construct nowcasts of headline inflation. Here, we face the obstacle that the

GFK:FMCG data cover only a part of the HICP consumption basket. Therefore, we add high-

frequency data on price developments of energy and package holidays, which for Germany are

the two most volatile and difficult-to-predict inflation components omitted so far. Rather than

attempting to directly relate headline inflation to the multitude of dissaggregate information

compiled, we use the product-group approach also applied in the previous step. Specifically,

we target the following six components that make up to headline inflation: unprocessed food,

processed food, energy, package holidays, non-energy industrial goods (NEIG), and services. For

15Alternatively, we could have used a dynamic factor model or mixed-frequency VAR approach estimated by
means of a Kalman filter or Bayesian methods (see, e.g., Modugno, 2013; Cimadomo et al., 2022); however, in
our setting, the much simpler MIDAS framework is sufficient.
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each of these components, we fit a machine learning model that includes all relevant disaggregate

weekly information. We then compute headline nowcasts from component nowcasts by applying

the official HICP weighting scheme. We complement the machine learning strategy with a

bottom-up approach that generates inflation nowcasts exclusively at the COICOP-10 level as

described in the first step and subsequently aggregates them, again using the official HICP

weights. In this setup, we predict COICOP-10 items not matched by high-frequency covariates

with the help of the seasonal-dummy autoregressive benchmark model. We compare these two

approaches to market expectations, which have been shown by Bańbura et al. (2023) to be a

very challenging benchmark.

We conduct a recursive out-of-sample nowcast experiment that covers the period of January

2016 to December 2022. This evaluation sample is dictated by data availability as quite a few

official COICOP-10 price indices start only in January 2015. Nevertheless, it includes both the

COVID-19 crisis and the recent surge in inflation, arguably not only two of the most challenging

periods for inflation forecasting in recent history, but also especially hard for statistical models

that are fitted to the data in normal times and do not incorporate all the structural information

professional forecasters took into account. The following paragraphs describe our nowcasting

strategy in more detail.

4.1 Benchmark nowcasts

We define the month-over-month inflation rate as πM
c,t = 100 × (Pc,t/Pc,t−1 − 1), and the year-

over-year inflation rate as πA
c,t = 100 × (Pc,t/Pc,t−12 − 1), where Pc,t denotes the HICP index of

the COICOP-10 item c = 1, . . . , 644 in month t. Then, we compute model-based benchmark

nowcasts from a seasonal dummy autoregressive (SD-AR) model of the following form:

πM
c,t = α0 +

p∑
j=1

ρj π
M
c,t−j +

13∑
s=1

γc,s dc,s,t + εc,t, (5)

Since we work with data that are not adjusted for seasonal effects, we augment the AR model

with 11 monthly dummies dc,1,t, . . . , dc,11,t, defining December as the reference case. We also add

an Easter dummy, dc,12,t, and a Pentecost dummy, dc,13,t, to capture the specifics of the German
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public holiday season, which in turn affect the consumption patterns of German households.16

Throughout the paper, we use the year-over-year inflation rate as our target variable; hence,

we transform the resulting nowcasts for the month-over-month rates accordingly. The model

specification is, in each estimation step, guided by the Bayesian Information Criterion (BIC).

This includes the autoregressive lag order p ∈ {1, . . . , 12} and the decision of whether or not to

include the dummies.17

4.2 Step 1: nowcasting item-level inflation rates

For each COICOP-10 item c for which we have weekly GFK:FMCG data available, we estimate

a MIDAS model of the monthly HICP inflation rate, πM
c,t, to account for the mixed-frequency

environment. We use the baseline specification

ϕ(L)πM
c,t+h = α0,h + βc,hB(L1/m; θ)x

(m)
c,t +

13∑
i=s

γc,s dc,s,t+h + εc,t+h, (6)

where the subscript t = 1, . . . , T denotes the monthly time index and the superscript m de-

notes the high-frequency ratio within a month. The predictors include the weekly GFK:FMCG

inflation rate, x
(m)
c,t , sampled four times more frequently than the target variable, and the set

of monthly dummy variables, dc,1,t, . . . , dc,13,t, defined above. To account for temporal depen-

dence, we specify an autoregressive polynomial, ϕ(L), with lag order {1, 12} and a distributed

lag polynomial, B(L1/m; θ), that aggregates the m high-frequency lags to the common frequency

t.

For each month, we use high-frequency information only from its first four weeks, so that we

have a fixed week-to-month ratio of m = 4 as required by the MIDAS model. The first week

spans the seven initial days of a given month t, the second week includes days 8 to 14, and so

16The Easter dummy measures how many days of the two Easter weeks are in March and April, while the
Pentecost dummy measures how many of the three Pentecost days (Saturday to Monday) are in May and June.

17We also use a local mean model that consists only of an intercept estimated from the last twelve observations
to accommodate the specifics of some administered prices. In addition, for seven administered price indices of
various medical and veterinary services, driving license fees and motor vehicle registration fees we do not fit a
model to the month-over-month inflation rate as these indices are known to change only rarely and then stay
constant for years. Instead, we use a random walk forecast of the level. In fact, we have evaluated more generally
the forecast accuracy of AR models estimated in year-over-year rates as well as random walk models specified
both in price levels and inflation rates, but have found that – with the exception of the seven cases just listed
– the SD-AR model yields the best overall results for the COICOP-10 items, the subcomponents, and headline
inflation.
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on up to day 28. This strategy controls for the problem of overlapping calendar weeks across

consecutive months and the heterogeneous number of days in different months. It is also in line

with the typical convention in official price statistics according to which prices are primarily

collected during the first three to at most four weeks of a month, implying that prices observed

after the 28th day of a month hardly enter the HICP.

To integrate weekly observations into a monthly model, we use the following notation. We

denote the four weekly observations by xt, xt− 1
4
, xt− 2

4
, xt− 3

4
, where xt denotes the high-frequency

inflation rate of the 4th week in month t over the same week of month t− 1, xt− 1
4

refers to the

inflation rate measured in the 3rd week and so on up to the 1st week of t.18 Since the choice of

m = 4 with a single predictor does not lead to a proliferation of parameters in equation (6), we

implement the unrestricted MIDAS approach (hereafter U-MIDAS ) with OLS estimation (see

Foroni et al., 2015; Ghysels and Marcellino, 2018, for more details).19

How do we deal with the ragged-edge feature of our mixed-frequency dataset? In each month t,

we use the four information sets available on days 7, 14, 21 and 28 to nowcast the inflation rate

πM
c,t of some item c which is matched by GFK:FMCG data. It is important to keep in mind that

the official COICOP-10 inflation rates are only released with a two-week delay following the end

of the reference month. Hence, nowcasts made on day 7 of month t use official inflation rates up

to month t − 2 and an estimate of month t − 1 derived from the weekly data which we denote

by π̂M
c,t−1. They also include the first weekly observation xc,t− 3

4
and fill in the remaining three

weeks with this latest observation available. Nowcasts made on day 14 use the official inflation

rate of the previous month πM
c,t−1, which at that day has just been published, and add the first

two weekly observations xc,t− 3
4

and xc,t− 2
4
. Again, they use the latter to fill in the two missing

weeks. This updating scheme is repeated on days 21 and 28. We list the information sets in the

following:

18See Section B.1 of Appendix B for a more formal description of the baseline model (6) and its matrix notation.
19In our setting, the U-MIDAS approach delivers results that are roughly equivalent to nonlinear choices of the

high-frequency aggregation scheme via B(L1/m; θ), such as the exponential Almon lag specification.
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Day 7:
(
π̂M
c,t−1, xc,t− 3

4
, xc,t− 3

4
, xc,t− 3

4
, xc,t− 3

4

)
Day 14:

(
πM
c,t−1, xc,t− 3

4
, xc,t− 2

4
, xc,t− 2

4
, xc,t− 2

4

)
Day 21:

(
πM
c,t−1, xc,t− 3

4
, xc,t− 2

4
, xc,t− 1

4
, xc,t− 1

4

)

Day 28:

πM
c,t−1, xc,t− 3

4︸ ︷︷ ︸
day 7

, xc,t− 2
4︸ ︷︷ ︸

day 14

, xc,t− 1
4︸ ︷︷ ︸

day 21

, xc,t︸︷︷︸
day 28


Note that this within-month random-walk update does not require estimation of any parameter

and works well in our sample.

4.3 Step 2: nowcasting product group-specific inflation

Policymakers, professional forecasters, and market participants regularly monitor the inflation

rates of important product groups. Given the restricted coverage of the GFK:FMCG data, we

focus on the high-level product groups unprocessed food, processed food and non-energy indus-

trial goods, which receive considerable attention in the Eurosystem, and the more disaggregated

low-level product groups unprocessed fruit and vegetables; unprocessed meat, fish and eggs;

processed fruit and vegetables; processed meat, fish and eggs; bread and cereals; dairy products

and fat; beverages and other food products; and non-durables.

A natural starting point for nowcasting at the product-group level is to treat all COICOP-10

series belonging to that group as relevant predictors. As the U-MIDAS setting is not suited

to handling such a large set of predictors, we follow the related literature which successfully

applied shrinkage estimators in such data-rich environments (see, for instance, Garcia et al.,

2017; Medeiros et al., 2021; Joseph et al., 2022).

We try two modeling approaches. Our first approach avoids mixed frequencies by aggregating

the weekly GFK:FMCG indicators, x
(m)
c,t , to the monthly frequency, which yields a single x

(M)
c,t .

Then, we apply standard shrinkage methods to estimate nowcasting models of the group-specific

target inflation rates.20 Specifically, we use the least absolute shrinkage and selection operator

20Applying penalized U-MIDAS regressions to the large set of predictors defined at the weekly frequency (four
weekly series for each predictor) is also feasible; however, this approach does not recognize serial dependence across
high-frequency lags and thereby may be subject to random selection. Zhao and Yu (2006) show that LASSO selects
the true model consistently if and (almost) only if the irrelevant covariates are not highly correlated with the
predictors in the true model (“irrepresentable condition”).
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(LASSO), the ridge and the elastic net estimator.21 We proceed as follows. Suppose we want

to nowcast, on day 14 of month T , the official inflation rate, πM
g,T , of product group g. We

first regress πM
g,t on the full set of contemporaneous predictors x

(M)
c,t belonging to group g using

the sample t = 1, . . . , T − 1 of all monthly data available on that day. This yields a vector of

estimated parameters b̂g. We then construct the day 14 estimates of x
(M)
c,T , ∀c ∈ g, as described

in the previous step, substitute them on the right-hand side of the regression equation and

compute a nowcast based on the estimated parameters b̂g.

The second approach applies the sparse-group LASSO (sg-LASSO) estimator proposed by Babii

et al. (2022) and regresses the group-specific target inflation rate, πM
g,t, directly on the large

set of weekly GFK:FMCG inflation rates using orthogonal Legendre polynomials as the aggre-

gation scheme. This approach has the advantage in that it performs shrinkage in a mixed-

frequency rather than a low-frequency setting by recognizing serial dependence across different

high-frequency lags, also taking into account the time series nature of the data.22

The tuning parameters of the aforementioned machine learning tools are determined in a data-

driven manner using cross-validation to obtain optimal prediction performance.23 Finally, to

evaluate the nowcast precision of these machine learning approaches based on weekly GFK:FMCG

information, we fit SD-AR benchmark models directly to the group-specific target inflation rates,

πM
g,t, from which we construct time series forecasts.

4.4 Step 3: nowcasting headline inflation

To nowcast headline inflation, we split it into the following six components: unprocessed food,

processed food, non-energy industrial goods, energy, package holidays, and services. We nowcast

each part separately and construct a headline nowcast by using the official HICP weighting

21We use the elastic net without tuning the relative weights of the L1 and L2 norms. Instead, we impose equal
weights.

22We use a Legendre polynomial of degree L = 0 which attributes equal weights to all high-frequency lags and
delivered similar results compared to other choices of L but at a lower computational cost (see Section 6). By
contrast, the L = 1 polynomial leads to an increasing linear function and thereby favors more distant lags, L = 2
features higher weights to very recent and more distant lags, and so on. See Section B.2 of Appendix B for a
more formal description of the machine learning methods.

23We tune the hyperparameters of sg-LASSO via expanding cross-validation splitting the in-sample data into
k = 5 folds and tests on the k+ 1th fold so that it accounts for the time series nature of the data, although it only
uses the end of the sample as the test set. Cross-validation of the standard shrinkage methods (LASSO, ridge and
elastic net) also uses a training split of k = 5 folds but hereby assumes independent and identically distributed
samples, which is also valid in a time series context provided the models yield uncorrelated errors (Bergmeir et al.,
2018). For a review of these cross-validation methods, see Goulet Coulombe et al. (2022).
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scheme.

Bottom-up U-MIDAS approach. Our first nowcasting approach follows a bottom-up strat-

egy. We estimate one nowcasting model for each COICOP-10 item and aggregate the item

nowcasts to the six components of headline inflation using the official HICP weights. For those

items that are matched by weekly GFK:FMCG data, we use the U-MIDAS model presented

in Section 4.2. For all other items, except for energy and package holidays, we use the SD-AR

model described in Section 4.1. This implies that the nowcasts for almost all service items are

based on the SD-AR model as we do not have any high-frequency indicator for services.

The energy component consists of 14 COICOP-10 items relating to household energy and fuels.

Since the weekly energy prices discussed in Section 3.2 are not always good counterparts to these

items, we proceed as follows. We first select, at each recursion of the nowcasting experiment,

the weekly series most strongly correlated with the COICOP-10 item at hand from a relevant

subset. We then run a U-MIDAS model including the selected series as predictor.24

Package holidays typically receive a weight of around 3%-4% in the overall HICP consumption

basket (except in the years 2021 and 2022, when the COVID-19 pandemic reduced it to roughly

1%). Nevertheless, this component accounts for relevant fluctuations in headline inflation due to

its high volatility, which is, unsurprisingly, dominated by a strong seasonal pattern. It consists

of two COICOP-10 items, domestic and international package holidays, whereas international

travels correspond to more than 95% of the total index. We model both series separately and

account for the methodological change from January 201925, which revised them backward until

2015. Hence, we keep the real-time perspective of the exercise by producing nowcasts for the

non-revised series until December 2018 – using June 2012 as the starting point of the sample

due to a structural break in the seasonal pattern – while the revised series becomes the target as

of January 2019 with a break-free sample starting in January 2015. Package domestic holidays

are modeled with an AR structure with lags {1, 2, 6} on the month-over-month growth rates

24Specifically, we use the following subsets to select from for each of the 14 COICOP-10 items: For “Electricity”,
“Natural gas, excl. share in the costs”, “Share in the costs for gas central heating”, and “District heating”, we
do not have well-matching weekly information available, which is why we select from the series provided by the
WOB, the European Gas Spot Index (EGSI), and, for “District heating”, a lagged moving average of heating
oil prices. For “Liquefied gas, charging of a tank container” we select from LPG and heating oil prices. For
“Heating oil”, “Share in the costs for oil central heating”, and “Coal briquettes”, we select from heating oil prices
provided by the WOB and Heizoel24. For “Firewood, wood pellets or the like”, we use the series on pellet prices.
For “Diesel fuel, cetane number below 60”, “Diesel fuel, cetane number 60 and more”, “Supergrade petrol, 95
octane”, “Supergrade petrol, 98 octane and more” we select from the direct counterparts provided by the WOB
and Tankerkoenig. For “Liquefied petroleum gas”, we use the LPG prices provided by the WOB.

25For more details, see Box 5 in ECB Economic Bulletin Issue 2, 2019.
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augmented with seasonal dummies. For package international holidays, we fit the log level on

the set of seasonal dummies and weekly AMADEUS indices aggregated to the monthly frequency

– more precisely, “last-minute” bookings (see Section 3.2).26 Moreover, we correct the nowcasts

of this model because time-invariant dummies cannot account for changes in the price level over

time. Specifically, we adjust each nowcast by the nowcast error observed on average in the

previous two months. Even though this model is specified solely in monthly data, we summarize

it under the heading “U-MIDAS approach” to keep the labeling simple.

Direct machine learning approach. Our second nowcasting approach uses machine learning

and directly targets the six components of headline inflation. Given the fairly good performance

of the LASSO estimator within the horse race presented in Section 4.3, we replicate this ML

strategy for unprocessed food, processed food, non-energy industrial goods and energy. Thereby,

we proceed by first aggregating the weekly indicators of GFK:FMCG and ENERGY to the

monthly frequency and specifying a LASSO regression of each target month-over-month inflation

rate on the corresponding predictors. For package holidays, we directly model the COICOP-

3 component that combines domestic and international packages, but using different models

for both the non-revised series up to 2018 and the revised series as of 2019. In the former

case, we implement an AR with lags {1, 4} on the month-over-month growth rates augmented

with seasonal dummies and monthly rates of the AMADEUS series. For the revised series,

we replicate the log level regression, introduced above. As for service inflation, we cannot fit

a direct forecasting model as we do not have any relevant high-frequency indicator available.

Therefore, we resort to the same bottom-up nowcasts derived from the SD-AR model used in

the bottom-up nowcasting approach above.

Benchmark approach. For the six components of headline inflation, we use aggregated now-

casts of the SD-AR model applied to each item at the COICOP-10 level as the benchmark.

For headline inflation, we also use market expectations provided by Bloomberg and Consensus

Economics as the benchmark. Each month, these data providers ask economists mainly working

in private banks to report their best estimate for headline inflation in Germany, along with

many other macroeconomic variables. The Bloomberg survey generally takes place within the

third week of a given month and is available since 2015. Consensus Economics has only recently

started to ask survey participants to also provide an estimate for inflation in the current month.

26The results are very similar when we use the first principal component of the AMADEUS indices instead of
their average.
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The survey is conducted within the second week of each month and data is available since March

2021.

In Figure 2, we summarize the timeline of the different data releases of market expectations and

HICP releases between September 2022 and November 2022. At the end of each of the four

weeks in each month, we produce a new nowcast based on incoming high-frequency data. Note

that in the first week of September, the nowcasts need to use our previous estimate for inflation,

since the official numbers for the COICOP-10 series have not yet been published. The statistical

office publishes a first estimate for headline inflation at the end of the corresponding month, for

example, on September 29th, followed by the final numbers in the subsequent month, in this

case, on October 13th. Consensus Economics has surveyed its participants on September 12th,

and Bloomberg between September 22th to September 26th.

Figure 2: Timeline of market expectations and data releases

7th 14th 21th 28th 7th 14th

Nov 22

28th: 
HICP flash 
Oct 22

11th: 
HICP final 
Oct 22

28th21th14th

Sep 22

7th

20th-27th: 
Bloomberg 
survey

29th: 
HICP flash 
Sep 22

13th: 
HICP final 
Sep 22

13th: 
HICP final 
Aug 22

22th-26th: 
Bloomberg 
survey

12th: 
Consensus 
economics

10th: 
Consensus 
economics

Oct 22

7th: 
Consensus 
economics

Note: The figure shows, for the months September 2022 until October 2022, the four weeks ending at days 7, 4,
21, and 28, at the end of which we produce a nowcast based on new high-frequency data. In addition, it shows
the data releases for inflation and survey periods of market expectations.

4.5 Real-time information set on non-standard policy measures, annual up-

dates of HICP weights and imputed prices in times of crisis

Our evaluation period has been marked by extraordinary events as the outbreak of the COVID-

19 pandemic in 2020 and Russia’s invasion of Ukraine in 2022. These events brought with

them a set of non-standard policy measures which also affected consumer prices, such as a

temporary VAT cut in 2020 and one-time emergency aid measures for gas, heating and public

transport. Notably, all these policy measures were communicated by the government well before

their introduction and therefore included in professional forecasters’ information set at that

time. Hence, for a proper comparison with market-based inflation expectations, we include a
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priori information on the introduction and reversal of a given policy measure in our nowcasting

models. More precisely, we apply ex-ante assumptions when nowcasting the months 2020M7 and

2021M1 (introduction and reversal of temporary VAT cut), 2022M7 and 2022M9 (introduction

and ending of heavily reduced public transport tickets) as well as 2022M12 (one-time emergency

aid for gas and heating).27 If we exclude these a priori information on policy measures, our

results for headline inflation would be obscured by larger nowcasting errors in those components

where we do not have high-frequency price information (e.g. services and durable goods).

Finally, the COVID-19 pandemic also hampered price collection by statistical offices consider-

ably. This is notably true for the prices of travel-related services which had to be estimated

during lockdown periods, typically by using the month-over-month inflation rate of the previous

(non-pandemic) year to reflect the seasonal pattern of these prices. Since this imputation pro-

cedure for package holidays was publicly known at that time, we take it into account when now-

casting the HICP subcomponent of package holidays.28 Moreover, disaggregate HICP weights

are updated at the beginning of a year, but typically only published with the final January

HICP figures in February. Hence, in our nowcasting models, we use the previous year’s weight

information when nowcasting the headline rate for January.

27Appendix A.4 provides more details on the specific policy measures and how they are accounted for within
our econometric framework.

28In Germany, the prices for package holidays were imputed during the period 2020M4-2020M6 and 2020M9-
2021M5. See Eurostat’s “Information on imputations made related to COVID-19”.
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5 Results

We present the results of our recursive out-of-sample nowcast experiment in three steps. First, we

demonstrate the usefulness of including weekly GFK:FMCG data in nowcasting models of HICP

inflation at the COICOP-10 level, i.e., the most disaggregate available COICOP level. Then,

we show that combining these data with machine learning methods yields superior forecasts

at more aggregate product-group levels. Finally, we document that even headline inflation

nowcasts benefit considerably when this approach is used, outperforming market expectations

in most periods.

5.1 Results of the item-level inflation nowcasts

Table 3 reports the root mean squared error (RMSE) of the monthly inflation nowcasts by

the U-MIDAS model relative to the benchmark SD-AR model for selected COICOP-10 items

for which weekly GFK:FMCG data are available, while absolute RMSE values for all items are

presented in Table C4 of Appendix C. We group the results into panels of product groups such as

unprocessed fruit and vegetables, processed meat and fish, and dairy products and fat. Within

each panel, the columns refer to the within-month information sets of day 7, 14, 21, and 28. For

readability, each cell is colored in a heatmap style where darker colors indicate a lower relative

RMSE and hence a better nowcasting performance of the U-MIDAS model compared to the

SD-AR benchmark.

For many products and nowcasting days, feeding the weekly GFK:FMCG information in a U-

MIDAS model reduces the nowcast error substantially relative to the benchmark. Consider, for

example, the RMSE of nowcasting the official year-over-year inflation rate for sweet peppers,

which is the first item in the upper left panel. Day 7 nowcasts with the U-MIDAS model yield

a relative RMSE of 0.51, cutting the nowcast error almost by half. To understand this result,

recall that on day 7 of a month t, the latest official information available pertains to month t−2.

Hence, the SD-AR benchmark model effectively needs to generate a two-step ahead forecast.

By contrast, the U-MIDAS model uses the GFK:FMCG data, which are complete for month

t − 1 and even include the first week of month t. This information advantage can be expected

to produce a more accurate nowcast as long as the GFK:FMCG index is reasonably correlated

with its official counterpart.
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On day 14, the relative RMSE of the U-MIDAS model for sweet peppers increases slightly to

approximately 0.56. It remains around this level on days 21 and 28. Why is the superiority

of incorporating GFK:FMCG data mitigated compared to day 7? On days 14, 21, and 28 of a

month t, the official HICP of sweet peppers for month t − 1 has already been published. The

benchmark model thus only needs to generate a one-step ahead forecast so that the informational

advantage of using GFK:FMCG data declines in this respect. At the same time, the U-MIDAS

model can exploit additional weekly GFK:FMCG information of month t which may result in

a more stable signal concerning this month. However, for sweet peppers – and for many other

items – the effect of expanding the information set to days 22 and 28 does not lead to (notably)

better nowcasts, which is probably related to the typical practice in official price statistics of

recording many prices around the middle of a month.

Across product groups, GFK:FMCG information improves the nowcasts at the item level par-

ticularly strongly for unprocessed fruit and vegetables as well as dairy products and fat, for

which RMSE reductions in the range of 40%-60% can be achieved, also indicated by statistically

significant results of the Diebold and Mariano (1995) test of equal predictive accuracy in many

of these cases. The U-MIDAS model also exhibits very good nowcasting properties for many

items of the other product groups.

What if we directly match the monthly GFK:FMCG inflation series to their official HICP coun-

terparts using OLS? This basic forecasting method (hereafter OLS match) avoids using the

MIDAS model and constructs the nowcasts by aggregating the available weekly GFK:FMCG

information to the monthly frequency. Table C3 in Appendix C replicates the relative RMSE

figures and reveals that nowcasting accuracy can be slightly improved across items that already

perform exceptionally well using U-MIDAS. This applies to most items within the category un-

processed fruit and vegetables and dairy products. By contrast, U-MIDAS still yields smaller

RMSE values across product groups that cannot surpass nowcasting gains of 50%. Therefore,

improvements in relationship to the SD-AR benchmark are mostly stemming from precise weekly

GFK:FMCG information.

So what drives nowcasting success at the item level? The most important factor is a close

match between the GFK:FMCG and official price indices. Figure 3 displays the predictive gain

of using the GFK:FMCG price indicators as a function of the in-sample fit with their official

counterparts. Evidently, a higher correlation typically goes hand in hand with a smaller RMSE
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Table 3: RMSE for FMCG product-level inflation: U-MIDAS relative to the SD-AR benchmark

Sources: GfK household panel; own calculations.
Notes: The figure shows heatmaps of RMSE values for the U-MIDAS model relative to the SD-AR benchmark
at nowcasting days 7, 14, 21 and 28 for the best-performing COICOP-10 items within selected FMCG product
groups. Results for the Diebold and Mariano (1995) test in the event of outperformance relative to the SD-AR
model are indicated by the symbols ∗ (5% level) and ∗∗ (1% level).

compared to the benchmark model. This negative relation also holds across different nowcasting

days. On average, including the GFK:FMCG information starts to reduce the nowcast RMSE

once the correlation between the month-over-month rates exceeds 0.4.
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Figure 3: Predictive gain of the FMCG data as a function of the in-sample fit with official
counterparts

Sources: GfK household panel; own calculations.
Note: For each FMCG item at the COICOP-10 level, the figure shows the percentage change in RMSE of the
U-MIDAS nowcasts (on days 7, 14, 21 and 28) compared to SD-AR as a function of the fit between GFK:FMCG
indicators and their official counterpart based on correlations using month-over-month rates. Outliers at the 1st
and 99th percentiles of the RMSE changes are removed.

Figure 3 also shows some differences between high-level product groups. Processed food items

(denoted by red dots) exhibit correlations between the GFK:FMCG and official price indices

on the full range between zero and almost 1. They appear to be most representative of the

relationship between correlation and nowcast gain just discussed. Most items of unprocessed

food (denoted by green dots) show a strong or very strong correlation, but the nowcast benefit

is more heterogeneous. By contrast, non-energy industrial goods (blue dots) mostly exhibit

moderate to low correlations between the GFK:FMCG and official price indices; thus, including

the scanner data in many cases does not pay off. These products are typically characterized by
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a greater product variety than food items, which makes it more difficult to fit the official price

indices.

5.2 Results of the product group-specific inflation nowcasts

The inflation rates of the three high-level product groups unprocessed food, processed food and

non-energy industrial goods (NEIG) receive considerable attention in the Eurosystem. As de-

scribed in Section 4.3, we use machine learning shrinkage methods to estimate direct nowcasting

models for these product groups (and some subgroups) that successfully include the large set

of regressors we have available, namely the underlying weekly GFK:FMCG price indicators at

the COICOP-10 level. We compare these models to SD-AR benchmark models fitted to the

group-specific inflation rates.

Table 4 displays the RMSEs of the group-specific shrinkage models relative to their benchmark.

The top panel refers to the three high-level product groups. With regard to unprocessed and

processed food, the shrinkage models clearly outperform the benchmark with reductions in the

RMSE between 15% and 25% on all nowcasting days. By contrast, for non-energy industrial

goods (NEIG) the benchmark dominates. This outcome likely reflects the different coverage rates

of the GFK:FMCG data across product groups. As shown in Table 2, 30 out of 38 COICOP-10

items of unprocessed food and 116 out of 142 COICOP-10 items of processed food are matched,

but only 39 out of the 302 NEIG with semi-durables and durables almost lacking completely.

In addition, even the relatively few matched NEIG items, mostly non-durables, do not correlate

very strongly with their HICP counterparts, as reported in Figure 3.

The bottom panel in Table 4 shows the results for the eight more disaggregated low-level product

groups. In the large majority of cases, it pays off considerably to use shrinkage models that

include weekly GFK:FMCG data. The advantage is particularly large for dairy products and

fat (reduction in RMSE of roughly 45% to 55%), unprocessed fruit and vegetables (reduction

of around 20% to almost 40%), processed meat and fish (reduction of more than 25% to almost

40%), and unprocessed meat, fish and eggs (reduction of nearly 20% to 25%). For processed

fruit and vegetables, bread and cereals, and beverages and others, the nowcasting gains are

more muted, but it is still generally beneficial to use shrinkage models. Only in the case of

non-durables is there no clear difference to the benchmark, which likely again reflects the low

correlation of the GFK:FMCG items at the COICOP-10 level with their HICP counterparts.
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The weekly flow of information affects the nowcasting performance in a way very similar to

the underlying COICOP-10 items discussed in the previous section. Most importantly, the

information available at day 7 of a given month already turns out to be highly valuable. This

likely reflects the fact that at day 7 of a month t, the benchmark model includes only official

inflation rates of month t − 2, while the shrinkage approaches use the full GFK:FMCG data

of month t − 1 and the first week of month t. The additional information exploited at day 14

typically further improves the nowcasts in absolute terms (see Figure C3 of Appendix C for

the absolute forecast errors over time by nowcasting day), whereas this is not always the case

relative to the benchmark, which on that day includes the official inflation rates of month t− 1.

Finally, the additional information gained in weeks 3 and 4 of a month is of minor quantitative

importance.

Concerning the different shrinkage approaches, the nowcasting results do not favor a single

method. The general conclusion is that it is important to include the weekly GFK:FMCG

dataset and make it usable in an appropriate way. To this end, standard shrinkage methods

(LASSO, ridge and elastic net) work generally as well as the sg-LASSO approach, which performs

variable selection in a mixed-frequency setting and fully accounts for the time series nature of

the dataset. Nevertheless, for processed food, which is the product group with by far the largest

number of underlying COICOP-10 items that we match with GFK:FMCG data, the sg-LASSO

is clearly superior. This may indicate that this approach is especially promising when it comes

to very high-dimensional estimation and nowcasting settings.
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Table 4: RMSE for FMCG product-group inflation: Various shrinkage methods relative to the
SD-AR benchmark

(a) High-level product groups

(b) Product groups

Sources: GfK household panel; own calculations.
Notes: The figure shows heatmaps of RMSEs for nowcasts based on (i) shrinkage methods (LASSO, ridge
and elastic net) and (ii) sg-LASSO relative to the SD-AR benchmark for FMCG higher-level components and
subcomponents. Results for the Diebold and Mariano (1995) test in the event of outperformance relative to the
benchmark are indicated by the symbols ∗ (5% level) and ∗∗ (1% level).
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5.3 Results of the headline inflation nowcasts

Table 5 shows the RMSE of the bottom-up U-MIDAS approach and the direct machine learning

approach relative to the benchmark for headline inflation and its six components. Let us first

focus on the bottom-up U-MIDAS approach. Recall that it uses U-MIDAS models to nowcast

each COICOP-10 item that is matched by weekly GFK:FMCG, energy price, or international

package holiday data, and the SD-AR model for the remaining items before it aggregates all

these nowcasts with the help of the official HICP weights. By contrast, the benchmark model

fits the SD-AR model to all COICOP-10 items, while it uses the same aggregation strategy.

Hence, the relative RMSE tells us in a clear way how beneficial the inclusion of weekly external

data for aggregate inflation forecasting is.

From the left panel of Table 5 we infer that the weekly external data make a considerable

difference. On day 7, the informational advantage relates to unprocessed food, processed food,

and energy, reducing the RMSE by roughly 30%, 25% and 47% respectively, whereas the SD-AR

model is sufficient to nowcast package holidays, non-energy industrial goods, and services (for

which we do not have any weekly indicators). This translates to a reduction in the RMSE of

headline inflation by 18% compared to the benchmark. The informational advantage increases

to levels close to 32% for headline inflation as more information accumulates over days 14,

21, and 28, mainly because nowcasts of the energy component and package holidays become

more accurate. In fact, using the OLS match approach with monthly aggregated estimates of

price changes – see Table C5 in Appendix C – leads to slightly improved performance for most

components and headline inflation.

The right panel of Table 5 shows how the machine learning approach performs. Recall that it

directly models the inflation rates of the six components as a function of all underlying weekly

data and then aggregates these six nowcasts to headline inflation. Except for unprocessed food,

the nowcasts generally deteriorate when compared to the bottom-up U-MIDAS both for the

components (especially processed food) and to a smaller extent, for headline inflation. This result

suggests that – in a setting where official aggregation schemes are known and easy to implement

– there is no systematic advantage of employing machine learning models to estimate data-

dependent aggregation weights. While the latter may, in theory, better reflect the dependence

structure of the target series and its underlying predictors, we conjecture that in our case, the

time series used to estimate them are neither long nor stable enough to outweigh the associated
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increase in estimation and thus nowcasting variance.

Table 5: RMSE of headline inflation and its components: bottom-up U-MIDAS and direct
machine learning approaches relative to the benchmark approach

Sources: GfK household panel; European Commission’s Weekly Oil Bulletin; AMADEUS; own calculations.
Note: The figure shows heatmaps of RMSEs for nowcasts based on (i) the bottom-up U-MIDAS approach with
aggregation via HICP weights and (ii) the direct machine learning relative to the benchmark approach, which
is a bottom-up nowcast based on SD-AR models fitted at the COICOP-10 level. Results for the Diebold and
Mariano (1995) test in the event of outperformance relative to the benchmark are indicated by the symbols ∗

(5% level) and ∗∗ (1% level).

Is this disadvantage of the direct machine learning approach related to specific periods? To shed

light on this issue, Figure 4 displays the squared forecast errors of the six components of headline

inflation over time, where we focus on day 28. Note that we multiply these squared forecast

errors with their COICOP weights, which we use to aggregate the component-wise forecasts

to the headline forecast, in order to obtain an impression of their overall relevance – keeping

in mind, of course, that the weighted sum of the six squared forecast errors (which we show

in the figure) is not equal to the square of the weighted sum of the six forecast errors (which

amounts to the headline forecast error). Nevertheless, comparing the top and bottom panels

shows that the energy shocks of the year 2022 are the main source of forecast errors for the

U-MIDAS approach, but even more so for the direct machine learning approach. On a smaller

scale but still relevant are the forecast errors relating to non-energy industrial goods – where the

direct machine learning in particular exhibits weaknesses during the pandemic and thereafter

– while package holidays account for the majority of the errors throughout normal times like

those prior to the pandemic, especially around 2018. 29 These findings indicate that estimating

data-dependent aggregation weights is particularly detrimental in turbulent times.

Finally, we benchmark our model-based nowcasting results with expectations surveyed by Bloomberg

and Consensus Economics among market participants. To that end, we report the cumulative

29See Figure C3 in Appendix C for a period-wise illustration of these forecast errors for GFK:FCMG groups.
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Figure 4: Contribution of HICP components to squared headline forecast errors

Sources: GfK household panel; European Commission’s Weekly Oil Bulletin; AMADEUS; own calculations.
Notes: The figure shows the weighted squared forecast errors of the six components of headline inflation on day
28 of a month for the bottom-up U-MIDAS approach (top panel) and the direct machine learning approach
(bottom panel).

sum of the loss differential of our model-based nowcasts versus the median survey expectations.

Using the squared forecast error as our loss measure, we calculate the differential as

Dt,ij = −
t∑

τ=1

(e2τ,Mi
− e2τ,Sj

), t = 1, . . . , T, (7)

where et,Mi denotes the nowcast error of model Mi (either U-MIDAS or direct machine learn-

ing) and et,Sj denotes the nowcast error of market survey Sj (either Bloomberg or Consensus

Economics). A positive value of Dt,ij indicates that model i outperforms survey j while negative

values imply the opposite.

Figure 5 shows the evolution of the loss differentials over time for nowcast days 14, 21, and
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28 which are competitive to the Bloomberg survey.30 The bottom-up U-MIDAS is roughly on

par with Bloomberg expectations until the pandemic hits, while the direct machine learning ap-

proach even outperforms consistently during this period if at least high-frequency information

up to day 21 is used. In fact, the modest underperformance of the bottom-up U-MIDAS com-

pared to direct ML until 2020 stems primarily from larger nowcast errors for unprocessed food

(see Figure 4). Following the pandemic period, forecasting gains in relation to the Bloomberg

benchmark accumulate gradually and consistently over time so that our modeling strategies

clearly outperform if at least information up to day 14 is included for the bottom-up U-MIDAS

and day 28 for the direct ML.

Surprisingly, in January 2021, our simple ex-ante assumption for the VAT impact (see Section

4.5) led to a considerable jump in the performance of the bottom-up U-MIDAS compared to

Bloomberg expectations. Moreover, the rising inflation scenario following the pandemic in 2021

reveals itself to be a challenging period for the direct machine learning approach in terms of

keeping its cumulative advantage, especially using only the information set of days 14 and 21.

Similarly, Russia’s invasion of Ukraine favors the Bloomberg survey on impact irrespective of

the information set; nevertheless, the bottom-up U-MIDAS and the direct ML on day 28 quickly

catch up with previous advantage levels. This means that efficiently exploiting daily and weekly

external information from energy markets allows us to maintain the edge in relation to Bloomberg

expectations throughout 2022. Across information sets, marginal gains in loss differential mostly

persist when information up to days 21 and 28 are included. Overall, these findings suggest that

estimating data-dependent aggregation weights based on ML methods improves the nowcasting

precision of headline inflation in normal times but can be detrimental in unstable environments.

The survey results published by Consensus Economics have only been reported since March

2021, which precludes a comparison over the whole nowcasting sample. Nevertheless, in the 20

months available, the bottom-up U-MIDAS and the direct machine learning approaches strongly

outperform the survey expectations, as shown in Figure C4 in Appendix C.

30We leave out loss differentials for day 7 because the Bloomberg survey outperforms any model based on this
very limited information set by far during the post-pandemic sample, compressing the scale of the axis measuring
the loss differential so that the differences between days 14, 21, and 28 become difficult to distinguish. Figures
that include day 7 are available upon request.
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Figure 5: Cumulative sum of the squared forecast error differentials: models versus Bloomberg
survey-based expectations

Sources: GfK household panel; European Commission’s Weekly Oil Bulletin; AMADEUS; Bloomberg survey;
own calculations.
Notes: The figure shows, on the left axis, the cumulative sum of the squared forecast error differential of
the bottom-up U-MIDAS approach (top panel) and the direct machine learning in relation (bottom panel),
respectively, in comparison to Bloomberg survey-based expectations on days 14, 21 and 28. The gray bars
represent official month-over-month percentage changes in headline inflation.
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6 Robustness analysis

We evaluate the robustness of the results reported in the previous section with respect to three

aspects. First, we focus on the data input and investigate whether alternative methods of

compiling GFK:FMCG price indices at the COICOP-10 level lead to different outcomes when

compared to the (weighted) TPD regression described in Section 3.1. Second, given the high

weekly volatility of some COICOP-10 item indices, we assess whether their predictive content

improves by smoothing out volatile time series. Finally, we focus on the modeling strategy: (i)

the robustness of the baseline U-MIDAS setting to alternative model specifications, extending

the information set by non-contemporaneous weekly inflation rates and quantity indices; and (ii)

the stability of product group-specific results to different folds of the cross-validation procedure

in machine learning tools and different degrees of the sg-LASSO Legendre polynomial.

6.1 Alternative methods of compiling COICOP-10 price indices

In our baseline setting, we compute weekly price indices from the granular GFK:FMCG data

employing a (weighted) TPD regression. In doing so, we follow the practice of statistical agencies

worldwide that rely on this method due to its good results with respect to in-sample fit and

nowcasting. To examine the extent to which this also holds for our GFK:FMCG data, we have

implemented various alternative methods of computing weekly price indices.

We start by transforming daily prices into weekly aggregates using the arithmetic mean, the

geometric mean and the median price. We do this both for the raw price data and the data ex-

cluding outliers. We consider several choices for the product sample underlying the computation

of each price index constructed following the above-mentioned approaches. Due to the constant

replacement and entry of new products in the GFK:FMCG dataset, price series can be highly

volatile, with sudden spikes and jumps. Official price statistics address this issue by regularly

selecting a basket of goods and services that is kept fixed for a specific period of time. Hence,

we follow a similar approach by considering only prices of products that are available in each

month of the entire sample since 2003, or within each month of the preceding two years. Next,

we follow a standard time-dependent rule in official price collection and include only prices of

products that have been bought between the 12th and the 18th of each month. Additionally, we

focus on goods sold in discount shops, as these shops hold significant pricing power in Germany,
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causing other shops to adjust their prices accordingly. Finally, we employ a top-seller approach

by selecting only those products with the highest market share that cover 50% of the market in

the previous two years prior to the current year.

In total, combining the alternative aggregation methods and selection strategies described above,

we end up with more than 50 different price indices for each COICOP-10 item. Using only “pre-

sample” data dating back to before January 2016, the start of our nowcasting experiment, we

then compare the month-over-month inflation correlations of the various methods with their

official counterparts. This allows us to rank them and determine the best method based on the

highest in-sample correlation for each COICOP-10 series.

Next, we use the respectively best method for each COICOP-10 item to replicate the analysis in

Section 5.1. The results in Figure C5 of Appendix C show that the predictive properties found

using the TPD-based GFK:FMCG indicators are, across all nowcast horizons, generally not

affected when implementing the best pre-sample method by COICOP-10 instead. In fact, the

comparison reveals a slight decay in the predictive ability of the best method compared to the

TPD approach, especially in cases where the baseline U-MIDAS combined with TPD indicators

substantially outperforms the SD-AR benchmark. Overall, the findings support the use of the

TPD method as the baseline method since the in-sample fit can only be marginally improved

by alternative methods while delivering the best solution from an out-of-sample perspective.

6.2 Smoothing out volatile inflation series

As described in Section 3.3, some COICOP-10 price indices can be highly volatile, which is a

common property exhibited by high-frequency data. To filter out short-term noise of volatile

GFK:FMCG price series and then reassess their predictive properties, we consider moving aver-

age filters using one to four weeks of past data. Figure C6 in Appendix C plots the changes in

terms of nowcast RMSE when applying the four-week moving average smoother as a function

of the weekly volatility level of each COICOP-10 item. It turns out that the predictive ability

of smoothed inflation series worsens on average for the most volatile group, namely unprocessed

food items, on days 7 and 14. By contrast, as we approach end-of-month nowcast horizons,

changes in RMSEs become less pronounced. These findings indicate that it is difficult to reduce

the noise in GFK:FMCG prices without affecting the signal that is related to official inflation

dynamics.
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6.3 Alternative U-MIDAS specifications and ML hyperparameter choices

In the first robustness check, we enrich the U-MIDAS information set in (6) by including non-

contemporaneous GFK:FMCG weekly inflation rates from periods t− 1 and t− 2. The results

are summarized in Figure C7 in Appendix C. They show that the RMSE is generally stable

across COICOP-10 items and nowcasting days after accounting for the weekly inflation rates of

t − 1. Modest RMSE improvements in the range of 10% to 15% can be mostly attributed to

items in which U-MIDAS already outperforms, to some extent, the SD-AR benchmark in the

baseline scenario, especially when nowcasting on day 7. Unsurprisingly, the same pattern can

be identified when additionally accounting for the high-frequency inflation lags of period t− 2.

Hence, incorporating past high-frequency information only leads to minor predictive gains, and

mostly does so for processed food and NEIG items. This suggests that the autoregressive compo-

nent in (6) sufficiently accounts for recent price dynamics while contemporaneous GFK:FMCG

information constitutes the key signal for well-performing nowcasts. Moreover, a higher number

of distributed lags in the U-MIDAS setting goes hand in hand with an increased nowcasting

variance.

The second robustness check investigates whether GFK:FMCG quantity indices improve the

quality of disaggregate inflation nowcasts beyond contemporaneous information of price indices.

To this end, we add the month-over-month quantity indices at the weekly frequency, and their

lags, as regressors in model (6). The RMSE practically remains unchanged across all COICOP-10

series, indicating that the inclusion of quantity information does not enhance the predictability

of disaggregate inflation rates beyond what is already conveyed by GFK:FMCG price indices.

As an exception, results for the COICOP-10 series “flour” display a noteworthy improvement

when nowcasting days 22 and 28. This most likely reflects that the start of the war in Ukraine

had strong effects on the average quantity-price relationship of “flour”.

With the third robustness check, we examine whether the product group-specific nowcasting

results discussed in Section 5.2 hold irrespective of our hyperparameter choices for the estimation

of shrinkage methods. We start by increasing the degree of the sg-LASSO Legendre polynomial

from L = 0 to L = 1, 2. The findings suggest a slight improvement in the precision of the

nowcast in only a small number of cases where statistically significant outperformance is already

achieved by sg-LASSO with L = 0 compared to SD-AR. Hence, it represents the optimal choice

given that it promotes a higher dimensionality reduction and carries a smaller computational
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burden when estimating sg-LASSO coefficients. Similarly, we test for different folds of the

cross-validation considering the grid set k ∈ {5, 10, 15, 20, 25}. Overall, these choices favor

similar tuning parameters and model architectures, thus not altering the results for group-

specific targets.

7 Conclusion

The recent decade has witnessed a burst in granular high-frequency information stemming from

all parts of the economy. To be useful for policymakers and society at large, this vast amount

of data needs to be processed with care and fed into appropriate models.

This paper demonstrates how pairing millions of household scanner data with state-of-the-art

machine learning techniques yields highly competitive real-time inflation nowcasts for Germany,

both at a very disaggregate level as well as for major product groups and headline inflation. The

guiding principle of our approach is to use the economic structure inherent in the construction

of official price indices to organize and condense the information carried by granular purchase

decisions at the household level before we open up the machine learning toolkit. This strategy

is reflected in the three steps of our analysis: we start at the most disaggregate level possible,

proceed to an intermediate level of product groups, and finally turn to headline inflation.

In the first step, we construct a set of more than 180 weekly price indices at the COICOP-10

level from the granular scanner data. The virtue of this approach is that the mapping from the

detailed product descriptions available in the scanner data to the official consumption basket

underlying German inflation is straightforward as the COICOP-10 level includes items such

as “butter”, “coffee beans”, and “sanitary cleaner”. We show that the scanner-based indices

obtained in this way track their official counterparts well, especially for food items (with an

average correlation of 0.9 for year-over-year inflation rates). When fed into a MIDAS model,

they also improve disaggregate monthly inflation nowcasts, notably as soon as after the first

seven days of a month.

In the second step, we turn to nowcasting product groups like unprocessed and processed food,

taking all available weekly scanner-based indices into account. To this end, we apply shrinkage

estimators to cope with the high-dimensional predictor set. Relative to a time series benchmark

model, we obtain substantial predictive gains of up to 25% in terms of relative RMSE.
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In the final step, we nowcast headline inflation. Once again, we use the COICOP architecture

to do so. Specifically, we split headline inflation into six components which exhibit very het-

erogeneous time series properties and for which we can come up with different types of weekly

predictors. We demonstrate that this approach yields highly competitive nowcasting models

that are on par with, or even outperform, survey-based expectations, which are notoriously

difficult to beat.

In summary, our strategy to combine fixed economic structures like the COICOP classification

system with flexible machine learning tools turned out to provide us with accurate inflation now-

casts at different levels of aggregation. Our approach thereby exploits the virtue of granular data

to provide an understanding of the disaggregate dynamics underlying overall inflation, whilst at

the same time yielding valuable high-frequency real-time information about price developments

of aggregates closely monitored by policymakers and market participants.

Looking ahead, given the considerable value added of high-frequency scanner data for inflation

nowcasting documented in this paper, there is an urgent need to identify and exploit high-

frequency information concerning those parts of the consumption basket underlying German

inflation that are not covered by scanner data on fast-moving consumer goods. These include

services, clothing and footwear, and the large range of items typically referred to as slow-moving

consumer goods such as furniture, household appliances and the like.
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Appendix

A Supplementary information on data, descriptive statistics and

data construction

A.1 Overview of data sources

Table A1: Data sources

Variable Source Description

Consumer Prices

Headline inflation DESTATIS Harmonised index of consumer prices (HICP), unadjusted data.
10-digit series DESTATIS German national consumer price index (CPI), unadjusted data.

Fast-moving consumer goods (GFK:FMCG)

Prices GFK Scanner data recorded by private households on daily purchases.

Travel services

Prices AMADEUS Transaction data on daily bookings of package holidays by German
travelers.

Energy prices

Euro super Weekly Oil Bulletin Average Monday pump price including duties and taxes
Diesel Weekly Oil Bulletin Average Monday pump price including duties and taxes
LPG motor fuel Weekly Oil Bulletin Average Monday pump price including duties and taxes
Heating oil Weekly Oil Bulletin Average price for deliveries of 2,000 to 5,000 liters incl. duties/taxes
Euro super Tankerkoenig Real-time prices of all gasoline stations in Germany
Diesel Tankerkoenig Real-time prices of all gasoline stations in Germany
Heating oil Heizoel 24 Average daily heating oil price of participating delivery firms
Wood pellets Holzpellets.net Average daily wood pellets price of participating delivery firms
European Gas
Spot Index
(EGSI)

European Energy
Exchange AG

Volume-weighted average price of all spot transactions concluded on
the trading day. Values before October 2021 are mean values of
the gas prices from the two former market areas GASPOOL and
NetConnect Germany.

Market expectations

HICP nowcast BLOOMBERG Survey among market participants and professional forecasters.
HICP nowcast CONSENSUS Survey among market participants and professional forecasters.

Note: DESTATIS : Federal Statistical Office of Germany, GFK : Growth from Knowledge, AMADEUS :
AMADEUS IT group, HAVER: Haver Analytics
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A.2 Additional descriptive statistics of high-frequency data

Table A2 summarizes some basic characteristics of the GFK:FMCG data. Overall, we observe an

average price of 1.7 euro, with the highest prices being paid for durables, and the lowest for dairy

products and fat. Over the full sample, we observe about 100,000 distinct products by month

distributed fairly equally across HICP subcomponents. The only exceptions are unprocessed fish

and durables, where product coverage is relatively low; however, in more recent years, product

variety has increased for these products, too. On average, a product stays in the sample for

about 190 days, whereas dairy products have the longest lifetime with about 407 days compared

to 47 days for durable goods. About 43% of all purchases are made in discount shops, with

the largest discounter share attributable to unprocessed fish, followed by unprocessed meat and

fruit. The availability of consumption data in discount shops is very important for nowcasting

official inflation in Germany, since large discounters typically act as price leaders in the market.

Finally, about 74.4% of household purchases are spend on processed food, in particular beverages

and dairy products and fats, followed by non-energy industrial goods (15.5%) and unprocessed

food (9.6%).

Finally, Figure A1 displays our supplementary high-frequency indicators on energy and pack-

age holidays, together with their official counterpart. For energy, comovement at the monthly

frequency is nearly perfect, with a correlation coefficient of 0.93. The correlation for package

holidays is also fairly high, at 0.45 if one adjusts the official inflation rate for a large jump in

2016 that reflects a statistical break due to the current HICP chain-linking practice (Dietrich

et al., 2021).
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Figure A1: HICP inflation and high-frequency counterparts

Energy Package Holidays
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Note: The figure shows year-over-year inflation rates (% change) for HICP subcomponents aggregated using all of
the corresponding COICOP 10-digit level series for which we have high-frequency data available. ”HICP” refers
to the aggregates using official COICOP 10-digit series, “WOB” refers to the data from the weekly oil bulletin
and from commodity prices, and “amadeus” refers to the transaction data for package holidays. Note that the
official inflation rate for package holidays has been adjusted for a large jump in 2015 caused by a statistical break
due to chain-linking. ρ reports the correlation coefficient between both series.
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Table A2: Summary statistics of GFK:FMCG

Prices

Component mean median 10th 90th #ID #T #discount #expenses

Unprocessed food 2.2 1.8 0.9 3.8 5,853 150 0.53 9.6

Fruit 1.7 1.7 0.9 2.8 1,124 110 0.56 1.8
Vegetables 1.4 1.3 0.8 2.1 1,594 210 0.46 1.8
Meat & eggs 2.9 2.3 1.1 5.0 3,024 146 0.56 5.9
Fish 3.1 2.7 1.8 5.0 111 166 0.66 0.2

Processed food 1.5 1.1 0.5 2.7 66,459 271 0.46 74.4

Fruit 1.7 1.5 0.7 3.0 1,941 256 0.44 1.8
Vegetables 1.4 1.1 0.6 2.2 4,102 245 0.43 3.8
Meat 1.7 1.5 0.9 2.8 8,436 300 0.53 9.1
Fish 2.3 1.8 0.8 4.0 2,119 218 0.48 2.3

Bread & cereals 1.4 1.2 0.6 2.5 10,399 271 0.48 9.5
Dairy products & fat 1.1 0.9 0.4 2.0 10,167 407 0.46 16.4
Beverages 1.8 1.0 0.3 4.2 12,303 236 0.42 18.0
Other food products 1.4 1.1 0.5 2.6 16,991 226 0.46 13.5
Tobacco

Non-energy industrial goods 2.3 1.5 0.5 4.5 24,509 87 0.27 15.5

Non-durables 2.3 1.5 0.5 4.5 23,752 87 0.27 14.9
Semi-durables 3.5 1.9 0.7 8.7 674 105 0.22 0.4
Durables 13.9 10.0 5.0 23.3 83 47 0.10 0.2

Total HICP 1.7 1.3 0.5 3.0 96,551 190 0.43 100

Note: This table reports the mean, the median, and the 10th and 90th percentile of the daily scanner
prices. Column #ID shows the average number of unique products per month, #T the average lifetime
of products in days, #discount the share of products bought in discount shops and #expenses the share
of consumption purchases for each product category.
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Figure A2: Selected inflation rates of COICOP-10 items and weekly scanner-based counterparts
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A.3 Construction of transaction-based price indicators for package holidays

The German HICP subindex on package holidays mainly consists of international flight holidays.

Importantly, prices for package holidays enter the HICP on the day of travel rather than the

day of booking, contrary to other products such as food, where prices are recorded on the day

the price is recorded in-store. Therefore, in the case of package holidays, we can exploit advance

booking for forecasting purposes, since we are already able to observe the bulk of bookings for

a future package holiday in a given month well in advance.

We aggregate the AMADEUS micro dataset on package holidays in various stages. First, we

omit all bookings in the dataset that have been canceled by the traveler or the travel agencies

and select only those holiday regions which have been entered into the official price index up to

2022 (Turkey, Spain including Balearic Islands and Canary Islands, Greece, Dominican Republic

and Egypt).31 Second, since micro prices refer to the overall price of a booking, we perform a

quantity adjustment and define the price by traveler and travel days:

praw,amadeus
i,t = sales expamadeus

i,t

1

Ni,t

1

Di,t
(A1)

In addition, we compute the advance booking in days as the difference between the day of

booking and the day of travel. To correct for outliers, we omit prices which are smaller than 20

euro and larger than 600 euro per traveler and day and with advance booking of more than one

year. Third, similar to official price statistics, we categorize the bookings by advance booking

to differentiate between different pricing schemes of early (last-minute) bookings, regular and

early bookings. We opt for five different booking categories (bookings up to 14 days before

departure, bookings between 15-30, 31-90, 91-180 and 181-270 days, as well as more than 270

days before departure), whereas last-minute bookings convey the most helpful signal to nowcast

our target series. Finally, to meet the structure of the weekly nowcasts, we aggregate daily prices

into weeks 1 to 4, but in addition, each week now consists of price indices categorized by five

different categories of booking advances.

31The German price index for package holidays includes additional price representatives such as domestic
package holidays, cruises and city trips. However, the bulk of the index represents those five regions above. See
Henn et al. (2019) for a description of the underlying HICP methodology.
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A.4 Modeling the impact of policy measures during our evaluation period

2016-2022

To keep our nowcasting models on a competitive level with expert opinions, we extend their

information set by a priori knowledge on three non-standard policy measures implemented by

the German government which affected consumer prices. All these measures were announced well

before taking effect and were hence known to professional forecasters when they were nowcasting

for the corresponding month.

First, to mitigate the negative economic effects of the COVID-19 pandemic, the German govern-

ment announced on 4 June 2020 that the VAT rate would temporarily be cut in the period July

to December 2020. Specifically, it decreased the regular VAT rate (which applies to about 65%

of prices collected in the HICP) from 19% to 16%, and the reduced rate that mainly applies to

food (excluding beverages), newspapers and books from 7% to 5%. We implement this a priori

information in our nowcasting models as follows. First, all COICOP 10-digit items are classified

according to their VAT category (regular, reduced, or VAT-free). Next, while the dates and the

extent of the VAT changes were announced beforehand and were thus known to forecasters, the

pass-through to actual prices was not (see, for example, Deutsche Bundesbank, 2020). We thus

include in our forecasts an ex-ante pass-through of 50% applied uniformly to all products, which

mimics a Bayesian forecaster with a flat prior and symmetric loss function. This ex-ante VAT

impact is subtracted from the target variable prior to model estimation and then added to the

model’s forecast. To account for the VAT changes ex-post, we fit a dummy variable that takes

the value -1 in July 2020 and +1 in January 2021.

Second, we consider a reduction in the price of public transport tickets, which was passed by

the German government on 21 May 2022 as a response to soaring energy prices after Russia’s

invasion of Ukraine.32 Known as the 9 euro ticket, it allowed consumers to travel by local and

regional public transport for 9 euros per month from June to August 2022. It reduced public

transport prices considerably and in a foreseeable manner. We thus assume that forecasters were

able to predict the corresponding changes in the affected price indices in June and September

2022.33

32See note by Deutscher Bundestag.
33The affected COICOP-10 categories are “Train journey, short-distance” (0731111100), “Transport association,

single or day ticket for adults” (0735011000), “Transport association, season ticket for apprentices” (0735013100),
and “Transport association, monthly ticket for adults” (0735015000).
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Third, the German government announced on 19 November 2022 a one-off emergency aid package

for natural gas and heating taking effect in December 2022 (“December aid”).34 The government

assumed the December installment of the households’ contracts with their natural gas and

district heating suppliers. Due to the complex and heterogeneous contract designs in Germany,

it was unclear by how much this measure would affect the relevant HICP price indices. Similarly

to our strategy for the temporary VAT cut, we apply a simple forecasting rule that a professional

forecaster may have followed in real time. Specifically, we distinguish between homeowners and

tenants. According to the latest EU-SILC survey, 46.7% of German households own their house

or apartment. These households typically have a contract with a supplier of gas or district

heating and thus directly benefited from the “December aid”. The remaining households are

tenants who typically pay their household energy via the landlord, from whom they receive

an annual energy bill. Hence, they typically did not benefit (in December 2022) from the

“December aid”. We thus assume that in December 2022, the price for natural gas supply

(COICOP 0452103000) and district heating (COICOP 0455002200) was zero for homeowners

and unreduced for tenants. This implies an overall reduction by 46.7% for the December 2022

prices of natural gas supply and district heating.

34See note by Deutsche Bundesregierung.
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B Supplementary information on the econometric methodology

B.1 Nowcasting item-level inflation

To set the scene, let us assume that the latest official data on inflation of a COICOP-10 item c

has been released for a given month t. For convenience of notation, however, we stop referring to

the item c. Next, conditional on high-frequency data available up to period t and a pre-sample

observation πM
0 , our baseline U-MIDAS (6), neglecting seasonal dummies and autoregressive

lags greater than one, can be estimated via OLS following the matrix representation


πM
1

πM
2

...

πM
t

 =



1 πM
0 x

(m)
1 x

(m)
1−1/m x

(m)
1−2/m x

(m)
1−3/m

1 πM
1 x

(m)
2 x

(m)
2−1/m x

(m)
2−2/m x

(m)
2−3/m

...
...

...
...

...

1 πM
t−1 x

(m)
t︸︷︷︸

4th week

x
(m)
t−1/m︸ ︷︷ ︸

3rd week

x
(m)
t−2/m︸ ︷︷ ︸

2nd week

x
(m)
t−3/m︸ ︷︷ ︸

1st week





α0

ρ1

b1

b2

b3

b4


+


ε1

ε2
...

εt

 (B2)

Note that the matrix representation (B2) makes explicit the transformation of the high-frequency

predictor x
(m)
t−k/m into m low-frequency vectors (x

(m)
1−k/m, . . . , x

(m)
t−k/m)′, for k = 0, . . . ,m − 1.

Hence, model (6) is estimated in the low-frequency dimension, but our nowcasts can be updated

each time high-frequency increments become available after t, whereas random walk forecasts of

the most recent high-frequency information are used to deal with the “ragged-edge problem”.

Finally, note that B(L1/m; θ) =
∑K

k=0B(k; θ)Lk/m is a polynomial of length (K+1) in the L1/m

operator with Lk/mx
(m)
t = x

(m)
t−k/m. Despite we assume K = m − 1 for simplicity, leading to

a static model in the high-frequency component for h = 0, one might include high-frequency

distributed lags K > m − 1 that span over past low-frequency periods (see robustness section

6).

B.2 Nowcasting product group-specific inflation

To nowcast product groups covered by the GFK:FMCG dataset such as unprocessed food,

processed food and non-energy industrial goods, let us assume a set of monthly aggregated

inflation indicators xt = (x1t, . . . , xqt)
′ such that x = (x1, . . . ,xt)

′, where q denotes an abundant
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number of COICOP-10 series belonging to a given product group. Hence, conditional on official

inflation data available at t, we model our higher-level product group πM = (πM
g,1, . . . , π

M
g,t)

′ as a

function of X = (ι,x) using standard shrinkage methods such as LASSO, ridge and elastic net

regression, where ι is a t-dimensional vector of ones. The hybrid elastic net estimator solves the

following penalized least squares problem:

β̂ = min
β̂

||πM −Xβ||2 + λ

(
α |β|1 +

(1 − α)

2
||β||2

)
, (B3)

where α ∈ (0, 1] is a weight parameter that interpolates between LASSO (α = 1) and ridge

regression (as α → 0) while the regularization parameter λ controls the amount of shrinkage in

β.35 Hence, the idea is to shrink coefficients bg,c to or towards zero if the c-th COICOP-10 series

is not relevant. Finally, we construct the monthly aggregated estimate of x using the available

contemporaneous weekly information at the time of the nowcast and compute it based on the

estimated parameters b̂g.

As a second class of models, we construct a nowcast for πM
g,t+h using the sg-LASSO-MIDAS

framework (Babii et al., 2022, see) that handles high-dimensional mixed-frequency prediction

problems. Let the matrix of covariates now be defined as:

X = (ι,X
(m)
1 W, . . . ,X

(m)
q W ), (B4)

where X
(m)
j = (X

(m)
c1 , . . . , X

(m)
ct )′ is a t×m matrix of the c-th high-frequency covariate and W

denotes a predetermined m × L matrix of weights based on Legendre polynomials of degree L

that aggregate over the high-frequency lags. Then, the sg-LASSO estimator solves the penalized

least squares problem:

β̂ = min
β̂

||πM −Xβ||2 + 2λ (α |β|1 + (1 − α) ||β||2,1) , (B5)

where ||β||2,1 =
∑

G∈G |βG|2 is the group LASSO norm for a group structure G that hereby

constitutes all high-frequency lags of a single covariate. Thus, in this case, α ∈ [0, 1] determines

the relative importance of LASSO sparsity and the group structure.36 This implies that sg-

35Both tuning parameters λ and α are determined via expanding cross-validation.
36Note that α = 0 leads to the group LASSO estimator, which is reminiscent of the elastic net regressor.
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LASSO promotes sparsity between and within COICOP-10 items, allowing us not only to select

the relevant COICOP-10 series but also the appropriate lag structure of each item.
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C Supplementary results

C.1 Nowcasting of product-level, group-specific and headline inflation

Table C3: RMSE for FMCG product-level inflation: OLS-match relative to the SD-AR bench-
mark

Sources: GfK household panel; own calculations.
Notes: The figure shows heatmaps of RMSE values for the OLS match model relative to the SD-AR benchmark
at nowcasting days 7, 14, 21 and 28 for the best-performing COICOP-10 items within selected FMCG product
groups. Results for the Diebold and Mariano (1995) test in the event of outperformance relative to the SD-AR
model are indicated by the symbols ∗ (5% level) and ∗∗ (1% level).
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Table C4: Absolute RMSE of the U-MIDAS model for FMCG product-level inflation

Unprocessed food
Product COICOP ID day 7 day 14 day 21 day 28 Product COICOP ID day 7 day 14 day 21 day 28
Beef for boiling 0112101100 2.61 1.57 1.58 1.58 Citrus fruits 0116111000 3.92 2.63 2.57 2.58
Roulade or loin of beef 0112107100 2.33 1.80 1.80 1.79 Bananas 0116120100 2.54 2.03 2.02 2.00
Beef 0112107200 2.04 1.32 1.32 1.32 Apples 0116130200 3.54 2.19 2.12 2.09
Minced beef 0112107300 3.32 2.20 2.20 2.15 Pears 0116140100 4.16 3.02 3.02 2.99
Veal 0112109100 1.14 1.02 1.01 1.01 Grapes 0116165100 7.98 5.12 4.93 5.09
Smoked pork chop 0112200100 1.91 1.29 1.25 1.27 Kiwis. melons or the like 0116170000 3.53 2.57 2.56 2.55
Minced pork 0112200200 3.48 2.22 2.21 2.21 Butterhead Lettuce 0117111100 12.49 10.27 9.52 10.30
Roast pork 0112200300 2.30 1.58 1.57 1.57 Lambs lettuce 0117119000 7.09 4.87 4.87 4.88
Pork chop or cutlet 0112200500 2.42 1.75 1.75 1.71 Cauliflower or cabbage 0117121000 7.79 6.04 6.01 5.91
Lamb 0112300100 1.61 0.95 0.97 0.98 Tomatoes 0117131100 10.71 8.52 8.14 8.12
Fresh poultry 0112410100 2.36 1.41 1.40 1.41 Sweet peppers 0117133100 6.73 5.69 5.62 5.74
Frozen poultry 0112410200 2.66 1.66 1.65 1.66 Onion or garlic 0117141100 5.50 3.73 3.55 3.46
Rabbit or game meat 0112500100 1.25 0.91 0.92 0.89 Mushrooms 0117142100 1.76 1.45 1.47 1.46
Liver or other edible offal 0112600100 1.16 0.93 0.93 0.93 Carrots 0117145100 3.93 3.02 3.06 3.06
Eggs 0114701100 1.74 1.20 1.00 0.99 Aspargus or the like 0117149100 7.26 5.53 5.44 5.52

Processed food
Product COICOP ID day 7 day 14 day 21 day 28 Product COICOP ID day 7 day 14 day 21 day 28
Rice 0111101100 1.42 0.98 1.00 1.00 Frozen vegetables 0117209100 1.36 0.87 0.87 0.88
Flour 0111201100 3.72 2.31 2.34 2.31 Dried vegetables 0117310200 1.17 0.72 0.73 0.72
Semolina 0111203100 2.79 1.60 1.58 1.60 Tinned gherkins 0117321100 1.69 1.04 1.03 1.03
White bread 0111311100 1.06 0.68 0.68 0.68 Tinned sauerkraut 0117323100 1.87 1.43 1.39 1.41
Rye bread or brown bread 0111312100 0.92 0.57 0.57 0.57 Tinned mushrooms 0117324100 1.25 0.77 0.79 0.79
Granary bread 0111313200 1.24 0.77 0.78 0.78 Tinned peas 0117325100 1.63 0.94 0.92 0.92
Ready to bake rolls 0111320200 1.31 0.77 0.78 0.78 Asparagus 0117328400 3.21 2.20 2.25 2.23
Fresh bread rolls 0111320300 1.58 1.02 1.01 0.99 Potatoes 0117401300 5.24 3.91 3.73 3.67
Sponge flan case 0111421100 1.25 0.74 0.74 0.73 Frozen chips or the like 0117402100 1.88 1.55 1.51 1.48
Frozen cake. tart or pie 0111423100 1.37 0.93 0.93 0.94 Potato crisps 0117500200 2.11 1.47 1.48 1.48
Fresh cake. tart or pie 0111424300 1.16 0.69 0.69 0.69 Sugar 0118100100 4.91 4.38 4.16 4.17
Biscuits 0111431200 1.88 1.51 1.51 1.52 Marmalade. jam or jelly 0118201100 1.91 1.60 1.59 1.60
Muffins or waffles 0111433100 1.51 0.86 0.85 0.85 Honey 0118203100 1.44 0.93 0.90 0.91
Crisp bread 0111442100 2.13 1.34 1.33 1.38 Cocoa based spread 0118205100 1.30 1.29 1.27 1.27
Toasted bread 0111444200 1.55 1.17 1.17 1.17 Slab of chocolate 0118301100 2.31 2.11 2.09 2.09
Rusk 0111446100 2.38 1.34 1.36 1.35 Chocolate 0118309100 1.48 1.17 1.17 1.17
Savoury biscuits 0111450100 2.05 1.70 1.70 1.67 Filled chocolates 0118401100 0.78 0.66 0.66 0.66
Pizza or quiches 0111500100 2.13 1.49 1.49 1.49 Boiled sweets 0118405100 0.83 0.66 0.67 0.67
Pasta 0111610100 2.18 1.34 1.34 1.38 Ice cream 0118500100 1.47 1.23 1.21 1.22
Pasta preparations 0111621200 2.51 1.94 1.93 1.93 Sweetener 0118601100 3.66 1.82 1.74 1.76
Oatflakes 0111701100 2.16 1.42 1.41 1.42 Vinegar 0119101100 1.43 0.89 0.89 0.89
Cornflakes and muesli 0111703100 0.98 0.81 0.82 0.81 Mustard 0119102100 2.05 1.19 1.18 1.18
Cake mix 0111801100 1.73 1.11 1.11 1.11 Ketchup 0119103200 2.95 1.70 1.68 1.69
Salami or sausage 0112710200 1.22 0.81 0.80 0.80 Sauce mix 0119103300 1.84 1.56 1.52 1.51
Ham or bacon 0112710300 1.09 0.74 0.75 0.75 Mayonnaise 0119104100 1.96 1.11 1.12 1.11
Lyoner pork sausage 0112721100 2.09 1.48 1.45 1.46 Salt 0119201100 2.56 1.57 1.57 1.57
Fried sausage 0112721200 1.67 1.17 1.14 1.13 Spices 0119203100 0.79 0.50 0.51 0.51
Cold meat 0112721300 2.02 1.46 1.46 1.47 Powdered infant milk 0119302100 0.82 0.52 0.53 0.53
Liver sausage 0112722100 1.42 1.01 1.00 1.01 Food for infants 0119303100 1.18 0.70 0.72 0.72
Tinned sausage 0112723100 1.57 0.91 0.91 0.91 Meat ready meal 0119406100 0.93 0.78 0.78 0.78
Meat based speciality salad 0112801100 1.61 0.92 0.92 0.92 Instant soup 0119911100 1.94 1.50 1.49 1.48
Frozen meat 0112805100 1.69 1.08 1.09 1.09 Tinned soup 0119913100 2.04 1.55 1.55 1.54
Meat-based ready meal 0112807200 1.14 0.73 0.73 0.72 Baking powder 0119930100 3.22 1.71 1.73 1.72
Prepared minced meat 0112808200 2.30 1.54 1.51 1.50 Blancmange powder 0119940100 1.89 1.14 1.12 1.14
Smoked fish 0113500100 1.82 1.24 1.21 1.21 Vitamin tablets or the like 0119990200 0.88 0.62 0.62 0.62
Tinned fish 0113601200 1.25 0.93 0.93 0.91 Pure coffee 0121110300 1.95 1.60 1.56 1.56
Fish marinade 0113602100 1.35 0.82 0.84 0.84 Instant coffee 0121121100 1.40 1.16 1.11 1.11
Fish fingers 0113603000 2.14 1.33 1.29 1.34 Black tea or green tea 0121201100 0.52 0.41 0.41 0.41
Whole milk 0114110100 1.75 1.20 1.15 1.16 Fruit tea or herbal tea 0121203100 0.94 0.79 0.79 0.79
Low fat milk 0114210100 2.02 1.31 1.30 1.31 Cocoa powder 0121300100 1.18 0.87 0.87 0.87
Condensed milk 0114300100 1.45 1.04 1.03 1.03 Sparkling mineral water 0122100100 1.22 0.89 0.88 0.88
Yoghurt 0114400200 1.91 1.45 1.54 1.54 Still mineral water 0122100200 1.18 0.93 0.92 0.92
Hard cheese 0114501100 2.22 1.38 1.39 1.36 Cola drink 0122211100 1.58 1.32 1.34 1.34
Sliced cheese 0114502100 2.35 1.73 1.72 1.73 Soft drink 0122219100 1.76 1.26 1.27 1.27
Soft cheese 0114503100 1.14 0.90 0.89 0.88 Apple juice 0122311100 1.73 1.35 1.28 1.25
Curd 0114507100 4.09 2.96 2.89 2.84 Orange juice 0122312200 1.46 1.03 1.03 1.04
Cream 0114601100 2.79 1.91 1.89 1.90 Multi vitamin juice 0122315100 1.25 0.97 0.96 0.97
Milk based dessert 0114604100 2.20 1.67 1.65 1.66 Vegetable juice 0122320300 1.40 0.79 0.80 0.82
Butter 0115100100 3.68 2.58 2.36 2.37 Liqueur 0211110100 0.59 0.45 0.44 0.45
Margarine 0115201100 2.65 2.14 2.07 2.05 Whisky 0211120100 0.75 0.60 0.60 0.59
Vegetable fat 0115209100 2.54 1.67 1.63 1.63 Brandy or cognac 0211130100 0.64 0.54 0.52 0.51
Sunflower oil 0115400100 6.72 3.26 3.18 3.25 Other spirits 0211140100 0.53 0.42 0.41 0.40
Dried fruit 0116301100 1.68 1.03 1.03 1.03 Red wine or rose wine 0212110200 0.75 0.52 0.52 0.52
Peanuts or trail mix 0116303100 0.95 0.82 0.81 0.81 White wine 0212120100 0.64 0.41 0.41 0.41
Apple sauce 0116401100 2.16 1.35 1.31 1.31 Sparkling wine 0212140100 1.29 1.02 1.03 1.03
Sour cherries 0116402100 2.15 1.81 1.78 1.75 Pils. dark or lager beer 0213100100 1.45 1.14 1.14 1.14
Tinned pineapple 0116403100 2.11 1.45 1.42 1.44 Wheat beer or Altbier 0213200100 1.03 0.87 0.87 0.87
Frozen spinach 0117201100 1.70 1.22 1.22 1.21 Non-alcoholic beer 0213300100 1.23 0.95 0.95 0.95

NEIG
Product COICOP ID day 7 day 14 day 21 day 28 Product COICOP ID day 7 day 14 day 21 day 28
Baby bottle or the like 0540326100 1.39 0.98 0.98 0.99 Hair spray or gel 1213212100 2.65 1.67 1.66 1.68
Heavy duty detergent 0561101100 1.37 0.91 0.91 0.91 Toothpaste 1213213100 1.36 0.85 0.85 0.85
Mild detergent 0561101200 1.84 1.17 1.17 1.17 Mouthwash or dental floss 1213214100 1.26 0.79 0.79 0.80
Fabric softener or starch 0561101300 1.91 1.17 1.17 1.17 Shaving foam 1213215100 1.07 0.75 0.75 0.75
Dishwashing detergent 0561103100 1.63 1.01 1.00 1.01 Toilet soap 1213216100 2.29 1.44 1.44 1.45
Sanitary cleaner 0561105100 1.39 0.84 0.85 0.85 Shower gel or foam 1213217100 1.50 1.06 1.07 1.07
Glass or furniture cleaner 0561105200 0.84 0.52 0.52 0.52 Toilet tissue 1213221100 1.72 0.98 0.98 0.98
All purpose cleaners 0561105300 1.56 0.97 0.97 0.97 Paper handkerchiefs 1213222100 1.75 0.95 0.94 0.95
Shoe polish 0561107100 1.74 1.10 1.09 1.10 Nappies for babies 1213223200 1.15 0.73 0.73 0.73
Filter paper 0561211100 1.04 0.64 0.63 0.64 Tampons or facial tissues 1213229100 1.67 1.03 1.03 1.03
Aluminium foil 0561211200 2.05 1.06 1.04 1.04 Perfume 1213231100 1.22 1.06 1.05 1.06
Candles 0561241100 1.73 1.16 1.16 1.15 Lipstick or lip care 1213232100 1.21 1.14 1.15 1.14
Scrubbing brushes or brooms 0561291000 0.71 0.47 0.47 0.47 Nail varnish 1213232200 1.14 1.00 0.99 0.99
Melissengeist tonic 0611032100 0.56 0.41 0.42 0.42 Make up 1213232300 1.31 1.18 1.18 1.19
Bird food 0934201200 1.24 0.81 0.81 0.81 Kajal pencil or mascara 1213232400 1.33 1.27 1.31 1.31
Dog food or cat food 0934201400 1.32 0.84 0.85 0.86 Hand cream 1213233100 1.16 0.93 0.93 0.93
Cat litter or bird sand 0934209100 1.10 0.67 0.68 0.68 Day cream or night cream 1213233200 0.95 0.82 0.82 0.82
Non electric toothbrush 1213105200 1.11 0.76 0.76 0.76 Baby cream 1213233300 1.23 0.77 0.77 0.78
Razor blades 1213105300 1.12 0.81 0.81 0.81 Deo spray or deo roll on 1213240100 1.57 1.20 1.18 1.17
Hair shampoo 1213211100 1.56 1.20 1.25 1.21

Sources: GfK household panel; own calculations.
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Figure C3: Absolute forecast errors over time: tracking the nowcasting performance of
GFK:FMCG product groups

Sources: GfK household panel; own calculations.
Note: The figure shows the evolution over time of the official inflation rates and the absolute forecast errors of
the best-performing models on days 7, 14, 21 and 28.
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Table C5: RMSE of headline inflation and its components: bottom-up OLS match approach
relative to the benchmark approach

Sources: GfK household panel; European Commission’s Weekly Oil Bulletin; AMADEUS; own calculations.
Note: The figure shows heatmaps of RMSEs for nowcasts based on the bottom-up OLS match approach with
aggregation via HICP weights relative to the benchmark approach, which is a bottom-up nowcast based on
SD-AR models fitted at the COICOP-10 level. Results for the Diebold and Mariano (1995) test in the event of
outperformance relative to the benchmark are indicated by the symbols ∗ (5% level) and ∗∗ (1% level).
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Figure C4: Cumulative sum of the squared forecast error differentials: models versus Consensus
market expectations

Sources: GfK household panel; European Commission’s Weekly Oil Bulletin ; AMADEUS; Consensus survey;
own calculations.
Notes: The figure shows, on the left axis, the cumulative sum of the squared forecast error differential of
the bottom-up U-MIDAS approach (top panel) and the direct machine learning in relation (bottom panel),
respectively, in comparison to Consensus market expectations on days 14, 21 and 28. The gray bars (right axis)
represent official month-over-month percentage changes in headline inflation.
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C.2 Robustness checks

Figure C5: RMSE change of implementing the best compiled COICOP-10 price indices

Sources: GfK household panel; own calculations.
Note: For each GFK:FMCG COICOP-10 item, the figure shows the percentage change in RMSE of implementing
the best-compiled price index (based on month-over-month inflation correlations), compared to the baseline U-
MIDAS (6) as a function of its relative performance to SD-AR.

Figure C6: RMSE change of a moving average smoother as a function of the volatility level

Sources: GfK household panel; own calculations.
Note: For each GFK:FMCG COICOP-10 item, the figure shows the percentage change in RMSE of applying a
four-week moving average smoother, compared to the baseline U-MIDAS (6) as a function of the weekly volatility
levels (standard deviation of GFK:FMCG month-over-month inflation rates).
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Figure C7: RMSE change of additional high-frequency distributed lags

(a) Contemporaneous + high-frequency inflation rates at t− 1

(b) Contemporaneous + high-frequency inflation rates at t− 1 and t− 2

Sources: GfK household panel; own calculations.
Note: For each GFK:FMCG COICOP-10 item, the figure shows the percentage change in RMSE of adding past
high-frequency lags of GFK:FMCG indicators compared to the baseline static U-MIDAS (6) as a function of its
relative performance to SD-AR.
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