
Englberger, Julian; Herrmann, Frank; Manitz, Michael

Article

Master production scheduling with scenario-based
capacity-load factors in a rolling planning environment

Logistics Research

Provided in Cooperation with:
Bundesvereinigung Logistik (BVL) e.V., Bremen

Suggested Citation: Englberger, Julian; Herrmann, Frank; Manitz, Michael (2022) : Master production
scheduling with scenario-based capacity-load factors in a rolling planning environment, Logistics
Research, ISSN 1865-0368, Bundesvereinigung Logistik (BVL), Bremen, Vol. 15, Iss. 1, pp. 1-16,
https://doi.org/10.23773/2022_12

This Version is available at:
https://hdl.handle.net/10419/297204

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.23773/2022_12%0A
https://hdl.handle.net/10419/297204
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Received: 30 May 2021 / Accepted: 8 November 2022 / Published online: 13 December 2022 
© The Author(s) 2022 This article is published with Open Access at www.bvl.de/lore

ABSTRACT

This paper proposes two stochastic programming
models for master production scheduling with capacity-
load factor scenarios. In contrast to other work on
production planning with load-dependent lead times
or dynamic capacity loads, we iteratively build a set of
realistic capacity-load factor scenarios by simulating
the realization of the master production schedules in a
rolling horizon environment. Therefore, we integrate
the models into a hierarchical production planning and
control system that is common in industrial practice
and measure the effective capacity-load factors.
With these factors, we resolve the master production
scheduling problem. Toa evaluate the performance of
the proposed models, we compare the stochastic models
with the common approach to reduce the nominally
available capacity for master production scheduling.
In our experiments, the stochastic models significantly
reduce the tardiness of production orders caused by
capacity bottlenecks.

KEYWORDS: Hierarchical Production Planning ·
Production Planning & Control · Master Production
Scheduling · Stochastic Optimization
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1. INTRODUCTION AND
PLANNING PROBLEM

Hierarchical production planning and control, as
proposed in Hax and Meal [1], is commonly used in
research and industry. Drexl, Fleischmann, Günther,
Stadtler, and Tempelmeier [2] extended hierarchical
production planning to the consideration of multiple
resource-capacity limitations, which is the conceptual
foundation for this paper. This concept usually considers
three stages of planning levels: (1) master production
scheduling, (2) material requirements planning and (3)
scheduling (see Figure 1). These levels are implemented
in a typical manufacturing resource planning (MRP II)
system as described in various papers – the most recent
summarization of such a hierarchically structured
framework is given by Vollmann, Berry, Whybark,
and Jacobs [3]. Vogel, Almada-Lobo, and Almeder [4]
present a comprehensive review of the literature about
hierarchical production planning.

Fig. 1: Hierarchical Production Planning
(see Günther and Tempelmeier [5])

‘‘‘This article is part of a focus collection on ‘‘Supply Chain
Analytics in the 2020s”.

Master production scheduling with scenario-based capacity-load factors
in a rolling planning environment

J. Englberger · F. Herrmann · M. Manitz

Julian Englberger
Innovation & Competence Centre for Production
Logistics & Factory Planning, OTH Regensburg,
Regensburg, Germany
Phone: +49 170 3344158
E-mail: julian.englberger@gmail.com
Frank Herrmann
Innovation & Competence Centre for Production
Logistics & Factory Planning, OTH Regensburg,
Regensburg, Germany
Michael Manitz
Mercator School of Management, University of
Duisburg-Essen, Duisburg, Germany



2

The remainder of this paper is structured as follows.
Firstly, we provide an overview of the existing research.
In Section 3, we define the considered optimization
models for master production scheduling. Then, we
provide the details of determination of the capacity-load
factors. In Section 5, we introduce the test design. The
numerical results are presented in Section 6. Section
7 provides the conclusion and an outlook on future
research.

2. LITERATURE REVIEW

The production lead times – and, consequently, the
capacity-load factors – depend on the load in the
production system. This dependency can be described
using queuing models (see Karmarkar [9]). Dobson,
Karmarkar and Rummel [10] analyze the effects of how
a workload distribution on multiple resources affects
the lead times. Zijm and Buitenhek [11] use queuing
models to estimate lead times depending on lot sizes,
product mix and production quantities.
Using the insights of queuing theory, recently

Clearing Functions have been used (see Graves [12]).
Asmundsson, Rardin, and Uzsoy integrate Clearing
Functions into optimization models for production
planning. They focus on improving the solvability of
the (non-linear) optimization models and determine
Clearing Functions from empirical data (see [13-16]).
Missbauer [17] states that the integration of stochastic

dependencies in the Clearing Functions relies on the
assumptions of a stationary state of the observed
production system. As the load of the production system
is actively controlled (using the Clearing Function), this
assumption cannot be upheld. Therefore, Missbauer
proposes a transient Clearing Function.
Lautenschläger [18] integrates load-dependent

lead times into a Multi-Level Capacitated Lot-Sizing
Problem for medium-term production planning. Pahl,
Voss and Woodruff [19] discuss the then-state-of-the-
art regarding the use of load-dependent lead times in
aggregate production planning. Aouam and Uzsoy [20]
combine the use of Clearing Functions with the use
of service level constraints. Albey, Bilge, and Uzsoy
[21] develop Clearing Functions for multi-product
applications. Meistering and Stadtler [22] propose a
stabilized cycle strategy to optimize setup and holding
costs under a product-specific fill-rate constraint.
Kriett, Eirich, and Grunow [23] address mid-term
production planning with uncertain lead times in the
context of semiconductor manufacturing by introducing
cycle-time targets and matching the scheduling rules
accordingly. They find increased service levels and
reduced cycle times compared to WIP order release
policies.
These approaches estimate production order lead

times based on the production load. They can be
used effectively e.g., to steer the release of production
orders (see Kurbel [24]). However, master production
scheduling determines the future production loads;

In this paper, we focus on master production
scheduling with uncertain capacity requirements. In
order to analyze the quality of the capacity restriction
isolated from the effects that result from uncertain
demands, ceteris paribus, we exclude demand
uncertainty from our experiments. Demand uncertainty
might be considered as shown in Englberger, Herrmann,
and Manitz [6].
Master production scheduling generally considers

a horizon of several weeks (or months) and relies on
estimations of demands and capacities. The capacity
requirements usually are determined by product-
specific capacity-load factors (the capacity consumption
per production-quantity unit, period, and production
segment, implicitly considering setup times) multiplied
by the production quantities. The capacity-load factors
comprise the products’ set-up and processing times
including their components. Their detailed measuring
is beyond the scope of master production scheduling
using (very-)big-bucket models on an aggregate level.
A production segment is a setting of machines or other

resources whatever production type this arrangement
might follow. It is in line with the aggregate view of
master production scheduling.
In the existing research, master production

scheduling is often analyzed as an isolated problem.
However, when it is integrated into the planning
hierarchy, the optimal production plans strongly depend
on the detailed schedules due to the large variation
of the capacity loads as shown in Tempelmeier and
Geselle [7]. Thus, the capacity-load factors have to
anticipate the lot sizes, sequences and schedules that are
determined later on in steps (2) and (3) of the planning
hierarchy. In fact, lot-sizing and scheduling rules and
sequencing constraints lead to an effective reduction of
the available capacity for production.
The existing models for master production scheduling

usually do this by technically reducing the available
capacity. To find the necessary level of reduction is
not an easy task: If the capacity is reduced too much,
the capacity utilization will not be satisfying; if it
is reduced to little, there might not exist a feasible
production schedule (see Almeder, Preusser, and Hartl
[8]).
We consider the capacity-load factors as uncertain.

We therefore improve hierarchical production-planning
and control (PPC) systems for industrial applications
by integrating a stochastic-programming model for
master production scheduling. To the knowledge of the
authors, this is a new approach. This model considers
different capacity-load scenarios that approximate the
unknown distribution of the capacity-load factors. To
find realistic capacity-load scenarios, we implement the
modified master production scheduling into a multi-
stage PPC simulation. In simulation experiments with
similar master production schedules, we measure the
real capacity-load factors and use them as scenarios in
our stochastic-programming model.
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lowest-possible production costs. Therefore, the
key performance indicators for master production
scheduling are the two main drivers for production
costs: the use of additional capacity and the level of
end-product inventory.
To ensure that the master production schedules fulfill

the customer demands in time, inventories are forced
to be non-negative. Note that due to uncertain capacity
requirements unplanned late deliveries might occur
during simulations. Therefore, tardiness of customer
order delivery is added as an additional performance
indicator when analyzing results.
As usual in hierarchical production planning, the

planning is done regularly (in this paper, week per
week on a weekly basis) within a rolling-planning
environment.
The capacity loads caused by the production

quantities are modeled using capacity-load factors.
The capacity-load factors represent the height and the
distribution of the capacity load of one unit of an end
product over the production segments and over the lead
time. Their determination is described in the following
section.
To reduce the planning nervousness caused by

short-term changes of the master production schedule,
a frozen horizon is installed in which the master
production schedule cannot be changed.
In a rolling planning environment with frozen

horizons, it is necessary to include the state of the
production system at planning time in the optimization
model. The production quantities at the beginning of
the planning interval have to share the capacity of the
production system with the production orders already
in the production system (work in progress). Therefore,
the lot-size inventory (i.e. released production orders
that are occupying production capacity in the frozen
horizon) is considered. In addition, the customer order
backlog has to be included as these customer orders
have to be fulfilled in addition to the future customer
demand.
Considering the effects of frozen horizons in a

rolling planning environment, the basic LP model for
master production scheduling MPS is as follows (see
Englberger, Herrmann and Manitz [6]):

Parametersܬ Number of production segments (ͳ  ݆  ܬ ܭ( Number of end products (ͳ  ݇  ܭ )ෘܶ First period of the planning intervalܶ Last period of the planning intervalܨ Length of the frozen horizonܼ Maximum lead time for product ݇
( Ͳ  ݖ  ܼ )ܾǡ௧ Production capacity of production segment ݆
in period ǡ௧݀ݐ Customer demand for product ݇ in period ݂ǡǡ௭ݐ Capacity-load factor of product ݇ on
production segment ݆with a lead time ݖ

thus, the resulting (load-dependent) lead times can only
be estimated once the master production schedule is
defined. Therefore, those approaches do not seem to be
appropriate for master production scheduling.
As an alternative to these analytic approaches,

simulation-based approaches have been developed
to cope with load-dependent lead times. In these
approaches, simulation models are used to parametrize
optimization models, often in iterative processes: Hung
and Leachman [25] use this approach to determine lead
times in the semiconductor industry; see also Ponsignon
and Mönch [26]. Byrne and Bakir [27] iteratively
determine the capacity limit in a multi-period multi-
product optimization model. Kim and Kim [28] and
Byrne and Hossain [29] further improve this approach.
Lee and Kim [30-31] and Almeder, Preusser, and Hartl
[8] use similar methods for extended problems. The
convergence of such iterative approaches is a very
relevant problem that has been analyzed in Missbauer
[32].
Kacar, Irdem and Uzsoy [33] compare analytic and

simulation-based approaches as basic techniques for
production planning and control and find the analytic
approaches being superior concerning optimality as
well as solution time.
The focus of the current paper is to generate scenarios

for the capacity-load factors for including them in a
stochastic-programming approach and for fine-tuning
them with a simulation model. In essence, our approach
is an analytical one combined with the fine-tuning
performance of a simulation-based approach. With
this, the approach of this paper both extends former
research, and considers a higher and more aggregated
planning level.

3. THE OPTIMIZATION PROBLEM

We use the linear-programming model MPS that
is established in research and industry for master
production scheduling. In this model, weekly
production quantities and the use of additional capacity
are determined subject to restricted capacity over a
planning interval of multiple weeks.
As every production has capacity limitations, the

capacity load caused by the production quantities has
to be feasible for the production system and therefore is
explicitly modeled. However, it is possible to increase
the capacity to a certain extent (i.e., overtime in the
practical applications), which leads to additional costs.
To fulfill the fluctuating customer demands under

restricted capacity, master production scheduling has
to decide between producing in advance building
up inventory, and the use of (a certain amount of)
additional capacity (i.e., overtime). Both inventory and
overtime lead to increased costs.
The objective of this model is to find weekly

production quantities over a planning interval
of multiple weeks that can be produced with the
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Model MPS ݁ݖ݅݉݅݊݅ܯ ܼ ൌ ݄ ڄ ǡ௧்ܫ
௧ୀ ෘ்


ୀଵ ݑǡ௧ ڄ ܷǡ௧்

௧ୀ ෘ்


ୀଵ (1)

Subject toݔǡ௧  ǡ௧ିଵܫ െ ݀ǡ௧ ൌ ǡ௧ܫ ͳ  ݇  Ǣܭ ෘܶ  ݐ  ܶ (2)

כܫ െ ௧ܫ െ ைܫ   ෘ்ିଵכǡ௧ݔ
௧ୀ ෘ்ିி െ  ݀ǡ௧ෘ்ିଵ

௧ୀ ෘ்ିி ൌ ǡܫ ෘ்ିଵ ͳ  ݇  ܭ (3)

 ݂ǡǡ௭ ڄ ǡ௧ା௭ೖݔ
௭ୀ


ୀଵ  ܾǡ௧  ܷǡ௧ ͳ  ݆  Ǣܬ  ෘܶ  ݐ  ܶ െ ���ଵஸஸሺܼሻ (4)

 ݂ǡǡ௭ ڄ ൫ݔǡ௧ା௭  כǡ௧ା௭ݔ ൯ೖ
௭ୀ


ୀଵ  ܾǡ௧  ܷǡ௧כ ͳ  ݆  Ǣܬ  ෘܶ െ ���ଵஸஸሺܼሻ  ݐ  ෘܶ െ ͳ (5)

ܷǡ௧  ܷǡ௧௫ ͳ  ݆  Ǣܬ  ෘܶ  ݐ  ܶ (6)

ǡ௧ǡݔ ǡ௧ܫ ǡ ܷǡ௧  Ͳ ͳ  ݇  ͳǢܭ  ݆  Ǣܬ  ෘܶ  ݐ  ܶ (7)

݄ Inventory holding costs for product ݇ per unit
and periodܷǡ௧௫ Maximum additional capacity in production
segment ݆ in period ǡ௧ݑݐ Costs for one unit of additional capacity of
production segment ݆ in period כܷǡ௧ݐ Additional capacities in the frozen horizon
(as a result of rolling horizon planning)ݔǡ௧כ Production quantities in the frozen horizon
(as a result of rolling horizon planning)ܫǡ௧כ Physical inventory for product ݇ at the end
of period ෘܶ െ ܨ െ ͳ (as a result of rolling
horizon planning)

The objective function (1) minimizes the costs for
inventory and additional capacity. It is subject to the
inventory balance equations (2) and (3). The capacity
is restricted by equations (4) and (5); note that due to
frozen-horizon planning and lead times ,ݖ the capacity
load in a period ݐ can result from production quantities
both within and outside of the frozen horizon. Equation
(6) limits the available additional capacity. All decision
variables must not be negative (Equation (7)).

To integrate capacity-load factor scenarios into
MPS, the capacity-load factors ݂ǡǡ௭ are replaced by
the scenario- and period-specific capacity-load factors௧݂ǡǡǡ௭௦ for a given scenario setȳ and planning horizon ܶ
(which means over the planning interval ෘܶ ǡ ǥ ǡ ܶ withݏ א ȳ and planning period ෘܶ  ݐ  ܶ ). The capacity
constraints can either require that all scenarios lead to
a feasible solution (i.e., a fat-solution model) or that only
most of the scenarios do so (i.e., a chance-constrained
model). The determination of capacity-load factor
scenarios is presented in detail in the following section.

ǡ௧௧ܫ Initial lot-size inventory for product ǡ௧ைܫ݇ Initial customer order backlog for product ݇
Variablesܷǡ௧ Used additional capacity in production

segment ݆ in period ǡ௧ݔݐ Production quantity of product ݇ that is
completed in period ǡ௧ܫݐ Inventory level of product ݇ at the end of
period ݐ
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The fat-solution model SC-MPS-FS is:

Parameters

௧݂ǡǡǡ௭௦ Scenario-dependent capacity-load factor of
product ݇ on production segment ݆ for finishing
period ݐ with a lead time ݖ

Model SC-MPS-FS ݁ݖ݅݉݅݊݅ܯ ܼ ൌ ݄ ڄ ǡ௧்ܫ
௧ୀ ෘ்


ୀଵ ݑǡ௧ ڄ ܷǡ௧்

௧ୀ ෘ்


ୀଵ (8)

Subject to restrictions (2), (3), (6), (7), and

 ௧݂ା௭ǡǡǡ௭௦ ڄ ǡ௧ା௭ೖݔ
௭ୀ


ୀଵ  ܾǡ௧  ܷǡ௧ ݏ א ȳǢ ͳ  ݆  Ǣܬ  ෘܶ  ݐ  ܶ െ ���ଵஸஸሺܼሻ (9)

 ௧݂ା௭ǡǡǡ௭௦ ڄ ൫ݔǡ௧ା௭  כǡ௧ା௭ݔ ൯ೖ
௭ୀ


ୀଵ  ܾǡ௧  ܷǡ௧כ ݏ א ȳǢ ͳ  ݆  Ǣܬ  ෘܶ െ ���ଵஸஸሺܼሻ  ݐ  ܶ െ ͳ (10)

The restrictions (9) and (10) require that the capacity
loads are feasible for all possible scenarios.

The chance-constraint model SC-MPS-CC is:

Parameters

௧݂ǡǡǡ௭௦ Scenario-dependent capacity-load factor of
product ݇ on production segment ݆ for demand
period ݐ with a lead time ߙݖ Share of the number of periods, scenarios, and
production segments in which the capacity
restriction may be violatedܯ Large number

Variablesݎǡ௧௦ Binary variable to allow for relaxation of the
capacity constraint

Model SC-MPS-CC ݁ݖ݅݉݅݊݅ܯ ܼ ൌ ݄ ڄ ǡ௧்ܫ
௧ୀ ෘ்


ୀଵ ݑǡ௧ ڄ ܷǡ௧்

௧ୀ ෘ்


ୀଵ (11)

Subject to restrictions (2), (3), (6), (7), and

 ௧݂ା௭ǡǡǡ௭௦ ڄ ǡ௧ା௭ೖݔ
௭ୀ


ୀଵ  ܾǡ௧  ܷǡ௧  ǡ௧௦ݎ ڄ ܯ ݏ א ȳǢ ͳ  ݆  Ǣܬ  ෘܶ  ݐ  ܶ െ ���ଵஸஸሺܼሻ (12)

 ௧݂ା௭ǡǡǡ௭௦ ڄ ൫ݔǡ௧ା௭  כǡ௧ା௭ݔ ൯ೖ
௭ୀ


ୀଵ  ܾǡ௧  ܷǡ௧כ  ǡ௧௦ݎ ڄ ܯ ݏ א ȳǢͳ  ݆  Ǣܬ ෘܶ െ ���ଵஸஸሺܼሻ  ݐ  ܶ െ ͳ (13)
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2. Due to the rolling planning and sub-optimal
solutions of the material requirements planning
and the scheduling, infeasible instances of the
master production scheduling planning problem
can occur. To avoid that the simulation runs are
interrupted by such instances, we introduce a
second, technical overtime to relax the capacity
constraints using a Big-M formulation. As any
relaxation has a large negative impact on the
objective function value, no relaxation will
occur unless technically necessary. Note that
this effect could also be achieved by allowing
backlog (e.g., allowing negative inventories that
are highly penalized).

The resulting operational optimization model (for
the model MPS – the models SC-MPS-FS and SC-
MPS-CC are modified analogously) is:

Parametersܯ Large numberܨܥ Correction factor

Variablesܷǡ௧ Relaxation capacity in production segment ݆
in period ݐ

ǡ௧௦ݎ א ሼͲǡͳሽ ݏ א ȳǢͳ  ݆  ܶǢܬ െ ���ଵஸஸሺܼሻෛ  ݐ  ܶ െ ���ଵஸஸሺܼሻ (14)

ݎǡ௧ି ୫ୟ୶భರೖರ಼ሺೖሻ௦்
௧ୀ ෘ்


ୀଵ௦אஐ ڄ ͳȁȳȁ ڄ ܬ ڄ ൫ ܶ െ ෘܶ  ͳ൯  ߙ (15)

The restrictions (12) and (13) require that the capacity
loads are feasible for all scenarios except when ݏݐǡ݆ݎ ൌ ͳ.
To ensure that this relaxation is done only in very
limited cases, restriction (15) limits it to the share of ߙ
of the total number of scenarios, production segments
and periods.

For the sake of simplicity, we do not explicitly
consider the costs of constraint violations, which can
lead to theoretical difficulties (see Blau [34]). However,
due to the practical focus of our paper, we consider
these issues as acceptable.

To make these models usable in our simulation
experiments, we modify them in two ways:
1. Even with a perfect capacity consideration in

master production scheduling and with optimal
solutions for the material requirements planning
and the scheduling, a capacity utilization of
100% is not realistic due to product-specific
production sequences that need to be considered
and cause idle time on some production assets.
To take this into account, we reduce the available
capacity in the optimization models for master
production scheduling using a correction factorܨܥ (with Ͳ  ܨܥ  ͳ ).

Model MPSoperational݁ݖ݅݉݅݊݅ܯ ܼ ൌ ݄ ڄ ǡ௧்ܫ
௧ୀ ෘ்


ୀଵ ݑǡ௧ ڄ ܷǡ௧்

௧ୀ ෘ்


ୀଵ  ܯ ڄ ܷǡ௧்
௧ୀ ෘ்


ୀଵ (16)

Subject to restrictions (2), (3), (6), (7), and

 ݂ǡǡ௭ ڄ ǡ௧ା௭ೖݔ
௭ୀ


ୀଵ  ൫ ܾǡ௧  ܷǡ௧  ܷǡ௧ ൯ ڄ ܨܥ ͳ  ݆  Ǣܬ  ෘܶ  ݐ  ܶ െ ���ଵஸஸሺܼሻ (17)

4. ADJUSTING THE CAPACITY-LOAD
FACTORS

For the model MPS, the capacity-load factor scenarios
are determined by aggregating the processing times
per unit over the bill of materials. Therefore, for each
end product and component, the processing times per
quantity unit and production segment are calculated
and distributed over the lead time. Lead times are
based on planned component lead times that represent
setup and process times as well as average lot sizes.

In line with the MRP II concept (see Section 1), no
capacity constraints are assumed to determine the lead
times. Then, along decreasing disposition levels, the
capacity loads of the components are aggregated onto
their successors (in the bill of materials). Note that for
the model MPS, setup times are not considered in the
capacity-load factors; instead, they are considered in
the correction factors.
In contrast, the capacity-load factors for SC-MPS

are determined using a simulation of a PPC system as
typically used in industrial practice. The simulation
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Algorithm 1 Determination of the set of
capacity-load factor scenarios

Set ȳ ൌ ǡȟ ൌ ͳ
Execute a simulation run with static capacity-load
factors and measure the resulting factors ௧݂ǡǡǡ௭௭ௗ
Add the measured capacity-load factors to the set of
scenarios ȳ
While ȟ  Ͳ (or the maximum iteration number is
not reached) and there is a feasible solution, do

Perform simulation run ݅with the set of scenariosȳ୧& measure the effective capacity-load factors
Set ݅ ՚ ݅  ͳ and ȳ ՚ ȳିଵ
Add the measured capacity-load factors ௧݂ǡǡǡ௭௭ௗǡ
to the set ȳ
Calculate the alteration of the capacity-load
factors ȟ

End while

5. IMPLEMENTATION AND TESTS

For the comparison of the three models MPS, SC-MPS-
FS and SC-MPS-CC, we simulate the realization of
the master production schedules in a rolling-planning
PPC system and a production. The customer orders
are known in advance. For the steps (2) and (3) of
the planning hierarchy (see Section 1), established
procedures are used (i.e., low-level coding and priority
rules).

We compare three planning configurations:

1) The master production scheduling is done using
the model MPSop. The capacity restriction
considers the processing times of the end
products via static capacity-load factors. All
other factors that reduce the available capacity
are considered using the correction factor CF.

2) The master production scheduling is done using
the fat-solution model SC-MPS-FSop. The
capacity-load factor scenarios are determined
using Algorithm 1. Other factors that may
reduce the available capacity (such as fixed
processing sequences) are considered using
the correction factor CF, which is adjusted in a
preliminary analysis.

3) The master production scheduling is done using
the chance-constrained model SC-MPS-CCop.
As in configuration (2), the capacity-load factor
scenarios are determined using Algorithm 1.
The probability α (that determines the share
of capacity restrictions that may be violated) is
set to 2%. Since the run time to solve model
SC-MPS-CCop may be significantly increased
due to the use of a binary decision variable, the
threshold to accept a solution as an optimum is

model is used to successively generate a realistic set of
capacity-load factor scenarios.
To generate a first capacity-load factor scenario, the

approach of aggregating the processing times per unit
over the bill of materials (exactly as for model MPS) is
used. With this scenario, a first simulation run using the
stochastic optimization models is performed.
After the first simulation run, the capacity-load

factors that are realized for each end product in the
simulated rolling-planning environment are calculated.
This calculation relies on a network structure between
the production quantities and all production orders
and measures the exact set-up and processing times
per production order. The realized capacity-load factors
are added to the set of capacity-load factor scenarios,
and the simulation is repeated with this new set of
scenarios. This approach does not rely on a sampling-
based selection of scenarios to represent a known
distribution of scenarios: we always use all capacity-
load factor scenarios that have occurred (and, thus, that
have been measured) during the execution of Algorithm
1.
Due to adding an additional capacity-load factor

scenario for each iteration, the solution space of the
optimization model is reduced with every iteration
or remains stable. However, as even with a stable
solution space, multiple optimal solutions could
be possible, this does not necessarily lead to the
convergence of Algorithm 1 (as long as there is
no termination criterion). We use the Euclidean
Distance between two successive capacity-load
factor scenarios as termination criterion (denoted as

ȟ ൌ ඩቀ ௧݂ǡǡǡ௭௭ௗǡ െ ௧݂ǡǡǡ௭௭ௗǡିଵቁଶೖ
௭ୀ


ୀଵ


ୀଵ

்
௧ୀଵ ).

We observed that this leads to termination of Algorithm
1 in many cases after a few iterations. However, there
might be some exceptions; in these cases, we limit
the maximum number of iterations. Comparable
convergence problems are also discussed in Missbauer
[32].

Parametersܭ Number of end products

Variables݅ Iteration of simulation runs ݅ȟ Alteration of two scenarios of capacity-load
factorsȳ Set of capacity-load factor scenarios at iteration ݅

௧݂ǡǡǡ௭௭ௗǡ Realized (measured) capacity-load
factors of iteration ݅



8

in ܬ ൌ Ͷ production segments: Production segment 1
consists of three identical milling machines. Segment
2 consists of 2 identical assembly stations. Segment 3
contains working stations for grinding, washing and
deburring. Production segment 4 only contains a saw.
The weekly capacities of the production machines and
segments as well as their costs for additional capacities
are shown in Table 1.
To produce the end products, 39 processing steps

have to be finished (called products .(ߢ The bill of
materials of the test problem is shown in Figure 2. The
set-up and processing times of the products are given
in Table 2.

set to within 5% of the optimal solution. As in
the other configurations, all other factors that
reduce the available capacity are considered
using the correction factor CF, which is adjusted
in a preliminary analysis.

To analyze the configurations, a test problem is used
that resembles the production system of a manufacturer
of high-voltage electronics equipment in Germany,
including the cost parameters. In this production
system, ܭ ൌ ͷ end products are produced on nine
production machines (indexed with ݉ per production
segment). These production machines are arranged

Table 1: Normal and additional capacities in the test problem

Segment ݆ Machine ݉ ܾǡǡ௧ [h] ܾǡ௧ೢ [h] ܷǡǡ௧௫ [h] ܷǡ௧ೢ௫ [h] ǡ௧ݑ [€/h]
1

1 16
336

8
168 3602 16 8

3 16 8

2
1 16

224
8

112 1800
2 16 8

3
1 16

336
8

168 10802 16 8
3 16 8

4 1 16 112 8 56 1800

Fig. 2: Bill of materials of the test problem
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Product ߢ Segment ݆ Machine ݉ Process time [s] Set-up time [s]

1 2 * 25 1800
2 2 * 25 1800
3 2 * 23 1800
4 2 * 31 1800
5 2 * 24 1800
6 2 * 60 1800
7 2 * 2700 1800
8 2 * 4500 1800
9 2 * 4200 1800
10 2 * 3000 1800
11 2 * 2700 1800
12 4 * 60 120
13 4 * 60 60
14 4 * 60 60
15 1 * 900 600
16 1 * 1080 600
17 4 * 60 60
18 1 * 840 600
19 1 * 1020 600
22 1 * 300 600
22 1 * 300 600
23 1 * 360 600
24 1 * 720 600
25 3 2 180 600
26 3 2 180 600
27 1 * 120 600
28 3 3 1200 1200
29 3 3 1200 1200
32 3 2 180 600
33 3 2 180 600
34 3 2 180 600
35 3 3 1080 1200
36 3 3 1080 1200
37 3 2 30 600
38 3 2 180 600
39 3 2 180 600
42 3 1 150 600
43 3 1 150 600
44 3 1 150 600
47 3 1 60 600

Note: Machine * stands for any machine within the production segment j

Table 2: Set-up and process time of the products in the test problem



10

Preliminary analysis For all three planning
configurations, the correction factor ܨܥ has to be
determined. In order to regard all set-up and waiting
times within the production system, the range betweenͲǤͷͲ  ܨܥ  ͳǤͲͲ is analyzed for Configuration 1.
For the Configurations 2 and 3, the range betweenͲǤͺͷ  ܨܥ  ͳǤͲͲis sufficient as the set-up and waiting
times are considered in the capacity-load factors and
not in the correction factor. These ranges are passed
through in steps of ͲǤͲͳ .
For the Configurations 2 and 3, Algorithm 1 is used

to determine the capacity-load factor scenarios. In a
preliminary study, we analyze the speed of convergence
of Algorithm 1 for Configuration 2 and 3. Therefore,
we measure the Euclidean Distances ȟ between
the realized capacity-load factor scenarios of two
consecutive iterations over the analyzed range of CF
and iterations. The results are shown in Figures 3 and 4.
The results for Configuration 2 indicate that

Algorithm 1 terminates more or less randomly and
abruptly, but in some cases, a large number of iterations
is needed. For ܨܥ ൌ ͲǤͻ, the algorithm already
terminates at iteration 22 while for ܨܥ ൌ ͲǤ, more
than the analyzed 60 iterations are needed.
For Configuration 3, no convergence is reached within

the first 100 iterations. In contrast to Configuration 2,
in Configuration 3 the Algorithm does not terminate
after some (many) iterations. This is caused by the
relaxation-based significantly enlarged solution space.
Therefore, convergence can only be expected after
much higher iteration numbers – if at all (see Section 4).
We set the maximum number of iterations to 60 for

Configuration 2 and to 100 for Configuration 3. Even
if we might not reach termination of Algorithm 1 in
some cases, the numerical results in section 6 will show

The accuracy of the capacity restriction is measured
using the tardiness of the production versus the master
production schedule and the resulting costs for pre-
production and the use of additional capacity:

– The capacity restriction shall ensure that a
master production schedule is feasible. If a
master production schedule is infeasible, the
production quantities are realized later than
planned. This is measured using the tardiness
of the production versus the master production
schedule .ǡ௧ೞݔ

– To ensure the feasibility of a master production
schedule, actions are often required to level
out demand peaks. These actions are pre-
production and the use of additional capacity.
Both actions lead to additional costs (i.e., pre-
production to higher inventory levels ǡ௧ೞ௭ௗܫ
and the use of additional capacity to costs for
additional capacity ǡ௧ݑ ڄ ܷǡ௧ೢ).

To ensure statistically significant results, we use
long-term simulation runs. Each simulation run has
200 days. To determine the length of the warm-up
period at the beginning of each simulation run, we use
the MSER-5 heuristic (see White, Cobb, and Spratt
[35]). The results within this warm-up period are not
considered for the analysis. For all average values, we
calculate confidence intervals with bounds ାܫܥ andିܫܥwith a coverage probability of ͳ െ ߙ ൌ ͲǤͻ and an
underlying t-distribution using the overlapping batch-
means heuristic originally proposed by Meketon and
Schmeiser [36] combined with the optimal batch-size
heuristic of Song [37].

Fig. 3: Convergence of Algorithm 1
for Configuration 2

Fig. 4 Convergence of Algorithm 1
for Configuration 3

Note: The colors in the figures shall facilitate the interpretation of the diagrams and have no precise meanings.
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low values of CF point to the high complexity
of the test problem: Our preliminary studies
have shown that for less complex test problems,
higher values of CF are sufficient to minimize
tardiness.

2) The numerical results of Configuration 2 are
shown in the Figures 8, 9 and 10; the numerical
values are also stated in Table 4. In the simulation
of the PPC system, 60 iterations of Algorithm
1 are used. As an additional information for
the reader, we also display the results of the
previous iterations of the algorithm. The
average tardiness already reaches its minimum
level for ܨܥ ൌ ͲǤͻͷ in iteration 60. Lower
correction factors do not lead to an additional
reduction of the tardiness. As in Configuration
1, the inventory levels and the use of additional
capacity also rise for decreasing correction
factors. Additionally, the end product inventory
levels and the use of additional capacity also rise
with increasing iteration numbers.

3) The numerical results of Configuration 3
are shown in the Figures 11, 12 and 13; the
numerical values are also stated in Table 5. The
average tardiness sinks to its minimum level
only below correction factors of ܨܥ ൌ ͲǤͺ.
The effects on the inventory levels and the use
of additional capacity for Configuration 3 are
structurally identical to Configuration 2.

that in such cases, only marginal improvements of the
objective criteria of the study can be achieved.

6. NUMERICAL RESULTS

The computational results of our experiments are
presented in the following. Firstly we analyze the
tardiness and the costs caused by the use of additional
capacity and end product inventory for each of the three
planning configurations. Then, we compare the results
of the three planning configurations.

1) For Configuration 1, the averages of the
tardiness, inventory and the use of additional
capacity over the analyzed range of correction
factors are shown in the Figures 5, 6 and 7; the
numerical values are also stated in Table 3.
Smaller values for CF artificially increase the
scarcity of the production capacity in master
production scheduling and thus extend the
available capacity for material requirements
planning and detailed scheduling. Hence, the
tardiness decreases with smaller values of
CF, and, on the other hand, the end product
inventories increase. The use of additional
capacity rises with smaller correction factors.
To reach the minimum levels of tardiness,
correction factorsܨܥ  ͲǤare necessary. Such

Table 3: Results for Configuration 1 (MPS)

Correction factor Tardiness Inventory Additional capacityܨܥ ߤ ቀݔǡ௧ೞቁ
[units]

ǡ௧ೢ௭ௗ൯ܫ൫ߤ
[units]

ǡ௧ೢ௭ௗܫ൫ߤ ڄ ݄൯
[105 €/week]

൫ߤ ܷǡ௧ೢ൯
[hours/week]

൫ߤ ܷǡ௧ೢ ڄ ൯ݑ
[105 €/week]

0.60 5.32 10.43 0.02 37.24 1.75
0.66 6.92 5.72 0.01 25.22 1.26
0.95 47.30 2.86 0.01 0.38 0.03
1.00 46.95 2.85 0.01 0.00 0.00

Table 4: Results for Configuration 2 (SC-MPS-FS)

Correction factor Tardiness Inventory Additional capacityܨܥ ߤ ቀݔǡ௧ೞቁ
[units]

ǡ௧ೢ௭ௗ൯ܫ൫ߤ
[units]

ǡ௧ೢ௭ௗܫ൫ߤ ڄ ݄൯
[105 €/week]

൫ߤ ܷǡ௧ೢ൯
[hours/week]

൫ߤ ܷǡ௧ೢ ڄ ൯ݑ
[105 €/week]

0.85 5.89 7.24 0.02 29.66 1.60
0.95 6.76 7.39 0.02 14.36 0.83
0.98 19.10 4.90 0.01 10.59 0.66
1.00 12.10 4.30 0.01 18.28 1.08
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The results show that the effects of the correction
factor and of the iterations of Algorithm 1 add up to
each other. In Configuration 1, all of the inaccuracy
of the capacity-load factors has to be covered by
thoughtfully choosing the correction factor. In
Configuration 2, however, Algorithm 1 covers most
of this inaccuracy automatically by adding realistic
capacity-load factor scenarios to the considered set.

Table 5: Results for Configuration 3 (SC-MPS-CC)

Correction factor Tardiness Inventory Additional capacityܨܥ ߤ ቀݔǡ௧ೞቁ
[units]

ǡ௧ೢ௭ௗ൯ܫ൫ߤ
[units]

ǡ௧ೢ௭ௗܫ൫ߤ ڄ ݄൯
[105 €/week]

൫ߤ ܷǡ௧ೢ൯
[hours/week]

൫ߤ ܷǡ௧ೢ ڄ ൯ݑ
[105 €/week]

0.85 6.33 7.72 0.02 22.70 1.26
0.95 11.24 4.13 0.01 12.59 0.78
0.98 31.99 4.00 0.01 7.96 0.51
1.00 25.70 3.41 0.01 8.66 0.55

Therefore, only very small adjustments for CF are
necessary. In Configuration 3, the relaxation of the
capacity restriction in the chance-constrained model
SC-MPS-CC leads to a less complete consideration
of the capacity-load factor scenarios compared to
the fat-solution model. These limitations have to be
compensated for by the use of lower correction factors.

Fig. 5: Tardiness for Configuration 1

Fig. 7: Additional capacity for Configuration 1

Fig. 6: Inventory for Configuration 1
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Fig. 8: Tardiness (CF and iterations inverted)
for Configuration 2

Fig. 11: Tardiness (CF and iterations inverted)
for Configuration 3

Fig. 10: Additional capacity for Configuration 2 Fig. 13: Additional capacity for Configuration 3

Fig. 9: Inventory for Configuration 2 Fig. 12: Inventory for Configuration 3

Note: The colors in the figures shall facilitate the interpretation of the diagrams and have no precise meanings



14

Configuration 2 shows to be more robust regarding a
too high setting of the correction factor--and also quite
robust regarding a too low setting of the correction
factor. At this point, slightly higher tardiness can be
observed as the convergence of Algorithm 1 is not
reached within the analyzed 60 iterations (also see
Figure 8). Robustness in this context means that the
solution quality regarding the tardiness objectives is
less sensitive towards the right setting of the correction
factors in Configuration 2.
The results of Configuration 3 are in the transition

range between the results of Configuration 1 and 2.
Most solutions cause costs between 50.000 and 100.000
monetary units and average tardiness between 10 and
30 quantity units.
There is no clear dominance of one configuration

over another. However, production systems are subject
to changes (e.g., the demands, product mix, processing
and set-up times). In these cases, for Configuration
1, an appropriate setting for the correction factor
has to be determined to avoid tardiness. In contrast,
Configuration 2 (and, to a certain extent, Configuration
3) is much more robust to the setting of the correction
factor: Algorithm 1 automatically determines the
correct capacity-load factor scenarios, and therefore
avoids tardiness. In this sense, the Configurations 2
and 3 are significantly more robust regarding changes
of the production environment than Configuration 1.

Cost-benefit considerations Crucial for the quality
of the master production scheduling are the resulting
tardiness as well as the costs caused by the master
production schedule. These objective criteria are shown
in the Figure 14 for the analyzed CF settings of the three
configurations. For Configuration 2 and 3, only the
selected iterations (i.e., iteration 60 for Configuration
2 and iteration 100 for Configuration 3) are shown.
In Configuration 1 a number of result data points (i.e.

CF settings) have very high levels of tardiness and low
costs. They result from high values of CF and, thus,
from insufficient consideration of resource scarcity. In
industrial practice, these settings are not satisfying as
customer orders cannot be delivered in time.
The lowest levels of average tardiness (approximately

7 units) are reached at total costs of approximately
100.000 monetary units per week. A further increase of
the total costs does not lead to an additional reduction
of tardiness.
In Configuration 2 only few settings with high

levels of average tardiness exist: Only 5 of 51 settings
lead to average tardiness of more than 10 units (in
Configuration 1, 28 of 51 settings do!). All further
settings lead to lower levels of tardiness. Hence,
Configuration 1 depends to a far larger extent on the
correct setting of the correction factor compared to
Configuration 2, and an insufficient setting of CF in
Configuration 1 causes a massively increased tardiness.

Fig. 14: Comparison of the Configurations 1-3 regarding additional costs and average tardiness
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7. CONCLUSION AND OUTLOOK

The model MPS needs a very exact setting of the
correction factor to find sufficient (feasible) master
production schedules. Our numerical results show
that this disadvantage can be resolved by the proposed
stochastic optimization models SC-MPS-FF and SC-
MPS-CC. These models are capable of providing
feasible master production schedules – relatively
independent of the exact adjustment of the correction
factor. This is a kind of robustness (see Configurations
2 and 3 in our examples).
The most challenging task will be the integration of

several planning stages within a hierarchical planning
environment and the parametrization of appropriate
optimization models. Our paper might contribute to this
research. In addition, the use of correction factors might
be combined with other stochastic modelling aspects
such as demand uncertainty and/or varying processing
times. Our approach might also be extended to derive
production cost functions and production functions
using a hybrid optimization-simulation approach.
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