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ABSTRACT

The tariff calculations of transport requests by carriers
often depend on distance, load, and/or time. In case
external carriers are used for shipping, these different
calculations can be used to minimize the shipper’s costs.
A selection of multiple carriers during an optimization
process can gain cost savings compared to the planning
of only single carriers. Therefore, this paper proposes
an exact formulation of carrier selection between
different carriers for the vehicle routing problem with
time windows using additional valid inequalities, which
are added in a branch-and-cut algorithm. We show that
the respective tariff calculation has an impact on the
solution structure and that these differences can be used
to generate synergies and achieve better results than the
separate consideration of single carriers.

KEYWORDS: Vehicle routing · Common carrier
selection · multiple common carrier

Logistics Research (2022) 15:2
DOI_10.23773/2022_2

1. INTRODUCTION

Currently, companies typically outsource distribution
to external carriers to reduce costs and increase
performance and flexibility. In the freight-transport
market, there are multiple carriers who compete.
Especially in Germany, the calculation of freight
rates as a pricing scheme for transported freight is
complicated. Up until 1993, the freight rates for road-
freight transport were set by law. Deregulation after
the law was repealed created a changed framework for
road-freight transport that resulted in a high level of
competition [2]. Now, freight rates depend on different
factors, and every carrier has its individual pricing
scheme for transportation. The pricing schemes often
depend, in a non-linear way, on distance, load, and/or
time [10].
In this paper, we consider a problem motivated by

practice and suggested by a partner in the corrugated-
packaging industry. Here, a company, as a shipper
of goods to its customers, develops an operational
transportation plan and subcontracts transportation
requests to external carriers with known tariffs. The
shipper selects the carriers and transportation requests
that its shipping costs be minimized. This situation is
depicted in Fig. 1.
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Fig. 2: Graph of the academic example with depot
and customer sites (inclusive order size µi ). Three
different routes are displayed: Tour 1 (solid line),
Tour 2 (dashed line), and Tour 3 (dotted line). For
each tour, the distances (δij ) between the sites are

given.

Table 1: Freight matrix of the carrier DQM with
distance and loading intervals and corresponding

cost factors γDQM

Finally, the third carrier, labeled DQP, uses a
distance-quantity product and calculates the tariff
for each order by multiplying the order size and the
distance traveled to serve the customer. This distance
depends on the customer’s position within a route. The
cost factor of carrier DQP is set to γDQP = 1.
For simplicity, in this example we consider only the

given routes from Fig. 2. Note that the optimal routes
for the single carriers may differ. For each given tour in
Fig. 2, the corresponding costs per carrier are displayed
in Table 2. Exemplarily, the costs for the first tour (solid
line) are calculated as follows: Carrier TD: (28 + 27) ·
40 = 2,200, Carrier DQM: f (28 + 27, 20 + 40) = f (55,
60) = 2,400, and Carrier DQP: 20 · 28 + 40 · 55 = 2,760.

Table 2: Cost comparison of carriers; lowest cost per
tour and total costs marked in bold.

The comparison of the single carriers shows that the
carrier DQM fulfills the tours in total with the lowest

The company has one depot site with opening hours.
Several orders have to be delivered to customers within
their delivery window. Each order has a given volume
and a service time for unloading at the customer’s site.
The company realizes the operative transportation
planning and generates routes for each vehicle used,
taking into account all time windows. The vehicles do
not need to return to the depot. All routes are fulfilled
by external carriers with known tariffs. Any customer
can be served by any carrier, but the assignment of
customers to a route and carrier strongly influences the
tariff for shipping.
The tariffs are negotiated in long-term agreements

with the carriers. These contracts usually also include
a maximum number of vehicles that can be requested.
However, not all vehicles need to be used by the shipper
and payment is only required for the vehicles actually
used [11]. When multiple carriers are available, the
expected utilization of a single carrier decreases.
Therefore, the negotiated vehicle contingents per carrier
are also reduced, as a carrier is less willing to provide
as many readily available vehicles as it would if it were
the only carrier. The company uses information about
the negotiated tariffs during its planning to minimize
its own shipping costs. The actual costs per route for
the carriers can be different. All vehicles have the
same capacity; they differ only in the ownership of the
carriers.
For a better understanding, an academic example is

introduced with five customers (1-5) and one depot (o).
The illustration in Fig. 2 includes the order sizes per
customer and the distances between the depot and the
different customers’ sites. To simplify the example,
delivery windows are excluded, and only feasible tours
are considered in the figure.
In this work, three different carriers are considered.

The first, labeled TD, calculates the tariff by using
the total distance traveled. A cost factor γTD is used to
calculate the tariff per route. In the academic example,
this is set to γTD = 40.
The second carrier, labeled DQM, uses a distance-

quantity matrix or freight matrix. The distance
traveled per route d and the total quantity of the orders
l determine a distance interval and a vehicle-loading
interval. The combination of these two intervals yields
to a fixed tariff γDQM. The cost value is calculated
with cost factors for the upper bounds of distance and
loading interval. In the academic example, the cost
values are calculated with γDQM = 20 · distance bound
+ 5 · loading bound. The cost values for carrier DQM
are given in Table 1 together with the bounds for the
distance and loading intervals. Note that the last bound
of both intervals must be chosen sufficiently high not
to exclude a feasible route.

�

1 �1 = 20

2 �2 = 40

3 �3 = 30

4 �4 = 20

5 �5 = 30
��1 = 28

�12 = 27

��5 = 36

��3 = 25

�34 = 21

Dist.
Load. 0 ≤ � ≤ 40 40 < � ≤ 80

0 ≤ � ≤ 50 1,200 1,400
50 < � ≤ 100 2,200 2,400

Tour 1 Tour 2 Tour 3
�

TD 2,200 1,840 1,440 5,480
DQM 2,400 1,400 1,200 5,000
DQP 2,760 1,670 1,080 5,510

Carrier selection TD DQM DQP 4,680
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carrier (see, e. g., [3, 7, 8, 15]), the work of Ceschia
et al. [4] considered four different carriers with their
own cost calculations. Factors such as the distance
of the customer farthest from the depot, the loading
intervals, and distance- and load-dependent cost factors
are introduced into the cost calculation. Due to non-
linear constraints and cost components, a tabu search
algorithm is used. More recently, the approach by Gahm
et al. [9] considered a VRPPC with multiple common
carriers and similar rental options as in Krajewska and
Kopfer [11], including volume discounts. The problem
is solved by a variable neighborhood search.
This paper takes the perspective of a shipper that

does not have a private fleet but does have a depot. The
shipper’s planning problem is similar to that of a carrier
with a depot. Since the private fleet in the VRPPC can
be considered as one carrier, this problem is related to
the VRPPC. Moreover, since the vehicles do not need
to return to the depot, we are faced with an open VRP.
In addition, we consider time windows and multiple
common carriers as introduced in Sect. 1. We propose
a formulation as a mixed-integer program (MIP) that is
based on a vehicle routing problem with time windows
(VRPTW), and we examine the impact of the selection
between different carriers in one optimization model
on the solution’s structure.

3. MATHEMATICAL FORMULATION

The definitions of the necessary sets of the MIP are
given in Table 3. In addition to the customer nodes
N, an origin node o as a depot node and an artificial
destination node d are introduced.

Table 3: Sets in the mathematical model

The parameters in the model are displayed in Table
4. When multiple carriers are considered, vehicles
differ in terms of carrier ownership. This leads to
vehicle-dependent routing costs and thus heterogeneous
vehicles, see Toth and Vigo [16]. Consequently, the
three-index vehicle flow formulation is used.

Table 4: Necessary parameters; all values are
continuous and positive

costs for the shipper and can be determined as the best
single carrier in this example. Note that this strongly
depends on the given cost factors.
In contrast to single carriers, with carrier selection

(CS) each tour can be fulfilled by a different carrier.
In the given example, all carriers are selected once in
the CS to achieve the lowest costs. This leads to total
tariff costs of 4,680, which is considerably lower than
the tariff costs of the best carrier, i. e., DQM at 5,000.
It can be seen that the carriers outperform each other
due to the different tour characteristics, and thus, the
combination of multiple carriers in one solution can
utilize each one’s specific advantages.
Our work is structured as follows. In Sect. 2, we

provide a short overview of the relevant literature. The
mathematical formulation of the problem is presented
in Sect. 3. Experimental tests are discussed in Sect. 4,
which is followed by a sensitivity analysis in Sect. 5.
Finally, a conclusion is presented in Sect. 6.

2. RELATEDWORK

Solving problems involving tour assignments of
vehicles, referred to as the vehicle routing problem
(VRP), is a well-known and well-studied field of
operations research; see Toth and Vigo [16]. In the field
of VRP, two main research streams address operational
transportation planning with subcontracting. The
integrated transportation planning problem (ITPP)
examines the problem from the perspective of a freight
forwarding company. The vehicle routing problem with
private fleet and common carrier (VRPPC) considers
the perspective of a carrier.
The ITPP was introduced by Krajewska and Kopfer

[11]. Here, a freight forwarding company is faced
with transportation requests with different pickup and
delivery locations, leading to a pickup and delivery
problem (PDP). The underlying PDP considering a
private fleet is extended by external carriers and two
rental options. The introduced rental options are based
on a fixed daily basis and a variable tour-length basis.
In addition, the costs for the external carriers are based
on a function of distance and weight of the service. The
problem is solved by a tabu search heuristic. Based on
the ITPP, Wang and Kopfer [17] and Wang et al. [18]
formulated the collaborative transportation planning
(CTP) problem, where several carriers form coalitions
to perform parts of their operations together. In the
CTP, the relationship is based on an equal partnership,
whereas in the ITPP (and also in the VRPPC), the
players have a hierarchical relationship.
The VRPPC was first examined by Chu [5]. In the

VRPPC, the vehicles of the private fleet start at the depot
with their loaded orders. The costs of subcontracting
customers to the common carrier are determined by a
linear function of the distance between the depot and
the customers but are independent of demand quantity.
In addition to several approaches with one common

N set of customer nodes; � d = � ∪ �; � o = � ∪ �
C set of available carriers
�� set of vehicles, which belong to carrier �
K set of all vehicles � =

�
�∈� ��

A set of all arcs � = {(�, 	) |� ∈ � o, 	 ∈ � d, � ≠ 	 }

�� 	 distance related to the arc (�, 	) ∈ �
�� 	 travel time related to the arc (�, 	) ∈ �
� time window start of node � ∈ � o

�� time window end of node � ∈ � o

�� demand of node � ∈ � ; �� = �� = 0
�� service time of node � ∈ � ; �� = �� = 0
� capacity of vehicles
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3.1. Total Distance (TD)
In the first model, TD, the set of all considered vehicles
is K = KTD. The model is adapted from the basic
VRPTW described in Toth and Vigo [16]. Since the
tariff is calculated by the length of each tour, it can be
calculated by the objective function (1) to minimize the
total distance traveled.

A binary flow variable xki j is introduced to indicate
whether a vehicle k uses an arc (i, j) ∈ A or not. In
addition, a time variable t kj is used to determine the
starting time of service for vehicle k at node i ∈ No.
The following three mathematical models are

described for every single carrier, and one mathematical
model is described for the carrier selection. �


∈�

�
(�, 	) ∈�

�TD�� 	�


� 	

�

∈�

�
	∈� d

�
� 	 = 1 ∀� ∈ ��
	∈� d

�
� 	 = 1 ∀
 ∈ ��
�∈� o

�
� 	 −
�
�∈� d

�
	� = 0 ∀
 ∈ �, 	 ∈ ��
�∈� o

�
�� = 1 ∀
 ∈ �

(
� + �� + �� 	 ) − �� 	 (1 − �
� 	 ) ≤ 
	 ∀
 ∈ �, (�, 	) ∈ �


� ≥ �� ∀
 ∈ �, � ∈ �o


� + �� ≤ �� ∀
 ∈ �, � ∈ �o�
(�, 	) ∈�

� 	�


� 	 ≤ � ∀
 ∈ �

�
� 	 ∈ {0, 1} ∀
 ∈ �, (�, 	) ∈ �

�

∈�

�
(�,�) ∈�

�DQM
�� �
��

constraints (2) – (10) with 
 ∈ �

�
�� +
�

(�,�) ∈�
�
�� = 1 ∀
 ∈ ��

(�, 	) ∈�
�� 	�



� 	 ≤

�
(�,�) ∈�

���


�� ∀
 ∈ ��

(�, 	) ∈�
� 	�



� 	 ≤

�
(�,�) ∈�

���


�� ∀
 ∈ �

�
�� ∈ {0, 1} ∀
 ∈ �, (�, �) ∈ �

The constraints (2) ensure that every customer node
is visited. The following constraints (3) to (5) define the
start and end of each tour and the flow conservation. If
a vehicle k is not used for delivery, o and d are directly
connected and xkod = 1. In constraints (6) the time
connection between two consecutively visited customer
nodes is considered. Based on Cordeau et al. [6], Mi j
can be defined asMi j = max(βi + τij − αi, 0). Note that
this formulation, similar to the Miller-Tucker-Zemlin
formulation [14], ensures that no subtours occur. The
constraints (7) and (8) determine the bounds for each
arrival time according to the time windows. The
capacity of the vehicles is considered in constraints (9).
Finally, the value range of xki j is defined in constraints
(10).

3.2. Distance-Quantity Matrix (DQM)
In the second model, DQM, the set of vehicles is
K = KDQM. To model the distance-quantity matrix the
sets Idist and I load are introduced as sets of all distance
and loading intervals. Each distance interval a ∈ Idist
has an upper bound, ϵa, and each loading interval
b∈ I load has an upper bound, λb as well. The interval
combinations are expressed by the set I = Idist × I load,
where (a, b) ∈ I yields to the cost factor γDab

QM. An
additional binary decision variable rkab rk is required
to indicate the correct tariff interval (a,b) for vehicle k
resulting from the distance interval a and the loading
interval b. The objective function (11) calculates the
tariff cost intervals for each vehicle used.

min

subject to:

min

subject to:

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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3.3. Distance-Quantity Product (DQP)
In the third single-carrier model, DQP, the set of
vehicles is K = KDQP. Since the traveled distance per
order as described in Sect. 1 cannot be easily expressed
in the model, the tariff for DQP is calculated in an
alternative manner by using the actual loading of the
vehicle on each arc. The variable zki j represents the
loading of a vehicle k on the arc (i, j) after leaving node
i. The loading is the sum of all order sizes of the loaded
orders. The costs can be calculated by the loading
multiplied by the distance of the arc used. Therefore,
the tariff for DQP can be calculated with a sum over
all arcs (i, j) ∈ A. See the objective function (16) in the
following model:

In addition to the previously described constraints
(2) to (10), the assignment of one interval combination
to a vehicle used is described in constraints (12). If a
vehicle k is not used, the variable xkod is equal to 1 and
no interval must be selected. The total distance and
loading are defined in constraints (13) and constraints
(14). Note that the last upper bound λb must be equal
to and the last upper bound ϵa must be chosen
sufficiently high not to exclude a feasible route length.
Constraints (15) determine the value range of rkab.

�

∈�

�
(�, 	) ∈�

�DQP�� 	 �


� 	

constraints (2) – (10) with 
 ∈ ��
	∈�

�
� 	 ≥
�

(�, 	) ∈�
� 	�



� 	 ∀
 ∈ ��

	∈� o

�
	� −
�
	∈�

�
� 	 ≥
�
	∈� o

���


	� ∀
 ∈ �, � ∈ �

0 ≤ �
� 	 ≤ (� − ��)�
� 	 ∀
 ∈ �, (�, 	) ∈ �

�

∈�TD

�
(�, 	) ∈�

�TD�� 	�


� 	 +

�

∈�DQM

�
(�,�) ∈�

�DQM
�� �
�� +

�

∈�DQP

�
(�, 	) ∈�

�DQP�� 	 �


� 	

In addition to the general constraints (2) to (10),
the initial loading for each vehicle after leaving the
depot is forced in constraints (17). If a vehicle visits a
customer, the difference of the loading before and after
the customer visit must be at least equal to the demand
of the customer visit; see constraints (18). The value
range of zki j is described in constraints (19). The upper
bound −µi results from the definition of zki j on the arc

used after leaving node i and depends on whether the
arc (i, j) is used by vehicle k or not.

3.4. Carrier selection
Finally, the three single-carrier models can be
integrated into one model of the carrier selection
(CS model). Here, the set of all considered vehicles is
K = KTD∪ KDQM∪ KDQP. The objective function (20)
is the sum of all carriers’ objective functions.

constraints (2) – (10) with k ∈ K
constraints (12) – (15) with k ∈ KDQM
constraints (17) – (19) with k ∈ KDQP

As previously described in the single-carrier models,
the first set of constraints (2) – (10) refers to all vehicles.
The additional constraints for DQM and DQP apply
only to the respective carrier.

3.5. Valid inequalities
Since the linear relaxation of the MIP model is very
weak, several valid inequalities are used to strengthen
the feasible solution space.

min

subject to:

min

subject to:

(16)

(17)

(18)

(19)

(20)
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have a maximal flow smaller than 1 indicate a violated
subset S and a cut is added according to (22) and (23).
Inequalities (24) are set as symmetry-breaking

conditions within the vehicles of one carrier so that the
vehicles are used in ascending order of indices. If one
vehicle is unused, the next vehicle must be unused, too.
The set L = {i∈N | µi > /2} is introduced to assign

“large” orders to the first vehicles. Adapted from a
simple lower bound calculation of the bin-packing
problem, see Martello and Toth [13], the orders in L
can not be combined on one single vehicle. Therefore,
each order in L can be assigned to a different vehicle, i.
e., the first vehicles because of the symmetry-breaking
conditions. In the case of the carrier selection, it is only
valid to assign large orders to one of the first vehicles
of every carrier’s fleet. Therefore, vehicle sets are
introduced with K̃j, which contains the j th vehicle of
the considered single carrier or the j th vehicles of all
carriers in the carrier selection.

Inequality (21) determines the lower bound of
vehicles to visit all customer nodes. Based on Bard
et al. [1], the rounded capacity cuts (22) and (23) are
used. Here, the usage of (22) and (23) depends on the
size of the subset S. The value r (S ) is calculated with
� (�) = ���∈� ��/��. The number of subsets S is an
exponential size with respect to the number of nodes.
Therefore, the inequalities are added in a branch-and-
cut algorithm. A separation algorithm identifies violated
subsets when an optimal solution x̃ of the relaxed linear
problem is found during the MIP solution process; see
Lysgaard et al. [12]. Here, a capacitated support graph is
constructed using the nodes No∪d and the arcs A. Each
arc (i, j) has a capacity equal to the values of the relaxed
solution �̃, i. e.

�

∈� �̃
� 	. In a feasible solution, the min-

cut of the support graph must be equal to 1. According
to the max-flow min-cut theorem, the same accounts to
the maximal flow to each customer, which also must be
equal to 1. Here, the maximal flow is calculated with
the Edmonds-Karp algorithm. All customer nodes that

∀
 ∈ �DQP, (�, 	) ∈ ��
� 	� 	 ≤ �
� 	

�

∈�

�
�∈�

�
�� ≥
��

�∈� ��
�

�
�

∈�

�
�∈�

�
	∈� \�

�
� 	 ≥ � (�) ∀� ⊆ � : |� | ≥ |� |
2�


∈�

�
�∈�

�
	∈�
�≠ 	

�
� 	 ≤ |� | − � (�) ∀� ⊆ � : |� | < |� |
2�

�∈�
�
�� ≥

�
�∈�

�
+1
�� ∀� ∈ �, 1 ≤ 
 ≤ |�� | − 1

�

∈�̃ 	

�
�∈� o

�
�� 	 = 1 ∀1 ≤ 	 ≤ min{min
�∈�

|�� |, |� |}, � 	 ∈ �

Equations (25) force an order fixing, where lj is the
jth element of L, to one of the jth vehicles of the carriers.
Inequalities (21) – (25) apply to every model. In

addition, one carrier-specific inequality for carrier DQP
can be defined in the DQP and the CS model:

Inequalities (26) define a lower bound for each
vehicle of carrier DQP. The vehicle’s loading on an
used arc must be at least equal to the node’s demand at
the end of the arc.

4. EXPERIMENTAL TESTS

In this section, two data sets based on real-world data
are used. After presenting the experimental design in
Sect. 4.1, first the usefulness of the valid inequalities
is validated in Sect. 4.2. Subsequently, the carriers

are compared with each other, and then the synergies
achieved through carrier selection are presented.

4.1. Experimental Design
Since proven optimality allows a detailed comparison
between different solutions, we decided to use an exact
solution approach. The optimization problems described
in Sect. 3 are implemented in C++ using Visual Studio
2019 as compiler. For solving the optimization problem,
we use the standard solver Gurobi (9.1.0). The rounded
capacity cuts described by constraints (22) and (23) are
added in a callback function offered by Gurobi. This
callback function is used at every node with optimal
relaxation in the MIP decision tree. All tests were run
with a limit of 4 parallel threads on an Intel(R) Xeon(R)
CPU E5-2630 v2 with 2.6 GHz clock speed and 384
GB RAM.
Two different data sets, A and B, are used. The

locations of depot and customers for both data sets
are presented in Fig. 3. Customers can originally hold
more than one order, but only one order per customer
is randomly selected per test instance.

(21)

(22)

(23)

(24)

(25)

(26)
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by distance. For example, a direct connection between
two customers can be selected according to the shortest
travel time, e. g. by highway. Consequently, a detour via
another customer may lead to a shorter route, e. g. by
country road. Since this can be a realistic situation, the
real data is used and no adjustment are made.
The size of the available vehicles per carrier is limited

to |K | = 12 for data set A and |K | = 9 for data set B with
= 80 to ensure feasibility for all instances. Since data

set B is more clustered, fewer vehicles are sufficient to
generate a feasible solution. The minimal number of
vehicles and used lower bounds per instance are given
in Table 11 in the Appendix. As described in Sect. 1, the
vehicle contingents per carrier are reduced in the carrier
selection. We assume the same number of vehicles for
each model. Therefore, the number of vehicles per
carrier is set to |Kc | = |K |/3 , ∀c ∈ C in the carrier
selection. Note that the results depend strongly on the
values of the cost factors. They are set deterministically
per each data set. The values were chosen to ensure that
no carrier is disadvantaged and that competitiveness
can be guaranteed; see Table 6. The choice of the cost
factors is discussed in more detail in Sect. 4.3. The cost
values in the freight matrices for carrier DQM depend
on the respective bound of loading and distance and are

It can be seen that data set B is more clustered
than data set A. In each data set, three instance
sizes are chosen, i. e., 10, 15, and 20 customers, with
five instances per size. The names of the instances
result from the following scheme: {A,B}-{10,15,20}-
{a,b,c,d,e}, e. g., A-10-a is the first instance with 10
customers of data set A. Thus, we consider 30 instances
in all.
The structure of all instances in both data sets is

summarized using quantiles for direct depot-customer
distances and travel times, time window lengths,
service times, and order sizes displayed in Table 5.
The distribution of locations has a high impact on
the distances and travel times between locations. For
example, due to the less densely distributed locations,
the median direct travel times from the depot to
customers in data set A are four times higher than the
median direct travel times in data set B. In contrast, the
data sets are quite similar regarding the length of time
windows, service times, and order size. It is therefore
likely that fewer orders can be combined on a route in
data set A than in data set B.
Note that some connections violate the triangular

inequality. These violated edges occur because the
shortest path by time may differ from the shortest path

Data set A
# customer: 29
# order: 62

Data set B
# customer: 82
# order: 108

Customers Depot

Data set Quantile ��� ��� �� − � �� ��

0% 94 5,580 12,600 180 0.23
25% 182 11,520 25,200 180 2.04

A 50% 293 17,020 28,800 720 8.93
75% 401 20,280 32,400 1,980 30.19

100% 793 35,740 36,000 6,660 65.71

0% 1 60 18,000 180 0.19
25% 24 2,300 28,800 360 4.05

B 50% 51 4,140 28,800 900 8.64
75% 104 6,760 28,800 1,800 20.54

100% 206 13,320 54,000 7,200 62.16

Fig. 3: Locations of depot and customers in data set A (dispersed) and data set B (clustered).
Both data sets are displayed with the same scale.

Table 5: Instance structure of both data sets with quantiles of direct depot-customer distances
and travel times, time window lengths, service times and order sizes.
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of optimally solved runs per instance size and data set
are presented in Table 7.
It becomes clear that the runs for carriers TD and

DQP can be solved in <30 s, even partially without
valid inequalities. In addition, the consideration of
valid inequalities has a positive impact on the solution
process, i. e., for the carrier DQM. For runs that are
not optimally solved, the remaining gaps can be
reduced. For those that are optimally solved, the run
time can be reduced as well. The detailed values for
each instance are displayed in Table 12. Therefore, the
valid inequalities are used for every further evaluation.
All single-carrier and carrier selection instances can be
solved to optimality with a runtime of 4 h. The results
are presented in Table 13 in the Appendix.
The influence of the different tariffs on the carrier’s

solution is evaluated in Table 8. Here, the differences in
the solution characteristics of each carrier are compared
over all instances per data set.

calculated as γDab
QM = γϵ ϵa + γ λ λb. Here, the values are

set to γϵ = 18 and γ λ = 18 in data set A and γϵ = 10 and
γ λ = 15 in data set B. Note that the last distance bound
is set sufficiently high (here: 10,000) not to exclude
any feasible route. For the cost calculation of the last
interval, 600 is used as distance bound instead.

4.2. Experimental results
First, we investigate the impact of the valid inequalities.
Then we analyze the impact of tariff calculations on
solution structures, and finally, the carrier selection is
evaluated.
The valid inequalities are evaluated by solving each

instance with each carrier considering valid inequalities
and without valid inequalities. The runtime is limited to
600 s. Each instance-carrier run is performed five times
with different seed values for the solver to account for
the performance variability of the solver. The average
runtimes, the average remaining gaps, and the numbers

Cost factors Data set A Data set B

�TD 22 25

�DQM
��

��

�� 20 40 60 80

150 3,060 3,420 3,780 4,140
300 5,760 6,120 6,480 6,840
450 8,460 8,820 9,180 9,540

10,000 11,160 11,520 11,880 12,240

��

�� 20 40 60 80

150 1,800 2,100 2,400 2,700
300 3,300 3,600 3,900 4,200
450 4,800 5,100 5,400 5,700

10,000 6,300 6,600 6,900 7,200

�DQP 1 0.8

TD DQM DQP

Data set
& size M M with VI M M with VI M M with VI

T G #O T G #O T G #O T G #O T G #O T G #O

A-10 0.4 0.0 5 0.3 0.0 5 220.2 1.3 4 63.6 0.0 5 0.2 0.0 5 0.2 0.0 5
A-15 0.7 0.0 5 0.6 0.0 5 492.3 10.3 1 291.9 3.5 3 0.6 0.0 5 0.5 0.0 5
A-20 8.1 0.0 5 1.0 0.0 5 600.0 16.4 0 558.3 6.9 1 112.0 0.1 5 1.8 0.0 5

B-10 14.8 0.0 5 0.7 0.0 5 10.3 0.0 5 1.6 0.0 5 1.5 0.0 5 0.4 0.0 5
B-15 194.9 2.2 4 4.9 0.0 5 160.3 1.1 5 11.7 0.0 5 7.4 0.0 5 0.9 0.0 5
B-20 336.4 6.8 3 23.4 0.0 5 161.7 4.1 4 130.2 2.2 4 261.2 0.0 4 13.4 0.0 5

Table 6: Cost factors for each carrier and data set. For carrier DQM,
the freight matrices with distance and loading upper bounds are given.

Table 7: Impact of valid inequalities (VI) in the models (M); comparison of average runtimes (T) in [s],
the average remaining gap G in [%] after 600 s, and the number of optimally solved runs (#O)

per data set and size.
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To illustrate the optimal routes of the carriers, the
solutions from instance B-10-c are visualized in Fig.
4. It can be seen that the routes between the carriers
differ due to the tariff calculations. While carriers TD
and DQM use three routes for delivering to customers,
carrier DQP uses five routes to reduce vehicle
utilization. Here, the solution for carrier DQM leads
to the lowest costs.
In addition, the simultaneous consideration of all

carriers in the carrier selection is also visualized in
Fig. 4. Here, one route of carrier TD and two routes
each of carrier DQM and carrier DQP are used. The
comparison of these routes with the single-carriers
routes shows that the route of carrier TD (0-5-1) and one
route each of carrier DQM (0-7-2-10) and carrier DQP
(0-8) are identical, as in the single-carrier solutions.
The other routes of carriers DQM (0-4-9-6) and DQP
(0-3) are adapted to gain minimal costs. The resulting
costs in the carrier selection are 7,877, which is 12.5%
lower than the costs of the best single carrier (DQM:
9,000).
The usage of the carriers in the carrier selection

is summarized in Fig. 5 by the average number of
vehicle used and the share of costs (SOC) in the carrier
selection aggregated for both data sets.
Interestingly, the vehicle usage among the carriers

differ significantly in the carrier selection. While
carrier DQP is chosen in almost all instances with the
maximum number of vehicles, carrier DQM is chosen
least due to the high interval costs in both data sets. The
opposite can be observed for the shares of costs, here
carrier DQP causes the lowest SOC in carrier selection.

Table 8: Comparison of the solution characteristics
per carrier (C); average number of vehicles (∅#V),
average distance (∅D), and volume utilization (∅VU)

per vehicle.

Data set A Data set B

C ∅ #V ∅D ∅VU ∅ #V ∅D ∅VU

TD 7.7 399 33.5% 3.9 96 63.7%
DQM 7.4 435 34.6% 3.2 147 75.3%
DQP 11.2 327 22.7% 7.9 72 31.0%

The solution characteristics of the carriers TD
and DQM are similar while carrier DQP stands out
in regard to the number of vehicles used and volume
utilization. The reason for this different behavior lies
in the cost calculation because carrier DQP minimizes
the volume utilization per vehicle implicitly. The
delivery of a customer’s order causes the least costs if
it is transported to the customer by the shortest route.
This is achieved either by direct deliveries or, if the
triangular inequality is violated, by a detour via another
customer. In addition, the average distance per vehicle
is lower for carrier DQP than for carrier TD, but the
number of vehicles is also higher, which thus leads
to a higher total distance, as expected. Carrier DQM
uses fewer vehicles compared to carrier TD, which
results in higher distance and volume utilization per
vehicle. Again, the observation is explained by the cost
calculation of carrier DQMwith relatively high interval
costs at low vehicle utilization in terms of loading and
distance.

Costs TD: 10,425
1

2
3

4

5

6 7
8
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0

Costs DQM: 9,000
1
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3

4

5

6 7
8
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Costs DQP: 13,515
1

2
3

4

5

6 7
8
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Costs carrier selection: 7,877
1

2
3

4

5

6 7
8

9

10

0

Fig. 4: Visualization of the optimal routes of the carriers TD (solid), DQM (dashed),
DQP (dotted), and the carrier selection in the instance B-10-c.
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The savings value (ΔTC) per instance is calculated by
the following equation:

The detailed evaluation of the carrier selection
compared to the single-carrier solutions is presented
in Table 9. For each instance, the solutions of the best
single carrier (BSC) and carrier selection are compared
regarding total costs (TC) and number of vehicles used.

A B
0
1
2
3
4
5
6
7
8
9

4.0

2.6
1.6

1.2
2.7

1.7

Data sets

Av
g.

#V

A B
0

20

40

60

80

100
21.7 13.5

32.3 51.3

46.0 35.2

Data sets

Av
g.

SO
C

in
%

TD DQM DQP

Δ�� =
���� − �����

�����
=

����

�����
− 1 (27)

Instance BSC #VBSC TCBSC TCCS #VTD #VDQM #VDQP ΔTC

A-10-a DQP 9 37,794 24,230 2 0 4 -35.9%
A-10-b DQP 10 27,385 24,330 1 1 4 -11.2%
A-10-c TD 4 34,320 24,703 2 0 4 -28.0%
A-10-d DQP 10 31,167 24,939 1 1 4 -20.0%
A-10-e TD 5 35,398 26,416 3 1 4 -25.4%
A-15-a DQP 12 53,863 41,097 2 1 4 -23.7%
A-15-b TD 6 56,364 38,631 2 2 4 -31.5%
A-15-c DQM 11 97,020 59,575 4 3 4 -38.6%
A-15-d DQM 7 67,860 46,413 2 3 4 -31.6%
A-15-e DQP 12 47,512 36,784 3 0 4 -22.6%
A-20-a DQM 9 88,560 61,566 4 2 4 -30.5%
A-20-b TD 11 98,648 66,810 4 4 4 -32.3%
A-20-c DQM 9 82,080 50,985 4 1 4 -37.9%
A-20-d DQM 9 87,480 54,127 4 1 4 -38.1%
A-20-e DQM 11 100,080 66,051 3 4 4 -34.0%

Avg. 9.0 63,035 43,111 2.7 1.6 4.0 -29.4%

B-10-a DQM 2 8,400 8,400 0 2 0 0.0%
B-10-b DQP 8 3,003 2,707 0 1 2 -9.8%
B-10-c DQM 3 9,000 7,877 1 2 2 -12.5%
B-10-d TD 3 3,600 2,330 1 0 3 -35.3%
B-10-e DQM 3 7,800 7,566 3 0 2 -3.0%
B-15-a DQP 9 4,911 3,905 3 0 3 -20.5%
B-15-b DQM 3 9,300 8,439 0 3 3 -9.3%
B-15-c DQP 8 3,716 3,506 2 1 3 -5.6%
B-15-d DQM 4 13,800 13,273 1 3 3 -3.8%
B-15-e DQP 8 3,212 2,902 2 0 3 -9.6%
B-20-a DQM 4 10,500 9,512 3 2 3 -9.4%
B-20-b TD 5 5,325 4,409 3 0 3 -17.2%
B-20-c DQP 9 5,692 5,006 2 1 3 -12.1%
B-20-d DQM 5 17,700 17,177 2 3 3 -3.0%
B-20-e DQP 9 4,080 3,586 2 0 3 -12.1%

Avg. 5.5 7,336 6,706 1.7 1.2 2.6 -10.9%

Fig. 5: Average utilization of carriers in the carrier selection per data set. The left side
shows the average number of vehicle used per carrier (#V) and the right side shows the

carriers’ share of costs (SOC) on average in carrier selection.

Table 9: Comparison of total costs of carrier selection TCCS with best single carrier TCBSC
with savings values ΔTC; in addition, the numbers of vehicles used per best single carrier

#VBSC and carrier selection separated into #VTD , #VDQM , and #VDQP are given.
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carriers and their cost factors used in the experiments
in Sect. 4.2.
Two simple metrics, the number of instances in

which a carrier is the best single carrier (#BSC) and
the average total costs, are shown in Table 10. Each
carrier is the BSC in some instance in data set A and in
data set B. Thus, all of them are included in the single
carrier consideration. The average total costs are fairly
equal in data set A, while they diverge more in data set
B. Although carrier TD seems to be less competitive
in data set B, as it is the BSC in only two out of 15
instances, it causes the lowest average total costs.

Table 10: Comparison of the solutions per carrier (C)
by number of instances as best single carrier (#BSC)

and the average total costs (TC).

We therefore introduce a more sophisticated metric
called post-optimization (PO) costs. Optimal solutions
of the carriers differ not only in their costs, but also in
the created routes. To obtain the PO costs, we evaluate
the optimal solution of a carrier with the tariffs of the
other carriers. The resulting costs are usually non-
optimal for the other carriers. However, they can be
used to determine the competitiveness of the carriers. If
the sub-optimal solutions of one carrier very often result
in lower costs than the optimal solutions of another
carrier, then the latter carrier is only rarely chosen
and therefore not very competitive. The calculation is
shown as example in the instance B-10-c, see Fig. 6.

The reason for the high cost savings is that each
carrier can serve a subset of customers with low costs,
but, of course, there is a subset where the costs are very
high. For example, a distant customer with a high order
volume leads to high costs for carrier DQP, while the
distance and loading can lead to an interval with lower
costs for carrier DQM. In the carrier selection, each
carrier is assigned to the subset of customers to which
it can deliver with cost efficiency.
The two data sets differ in the average value of the

cost savings, i. e., around −29% in data set A and −11%
in data set B. The differences in the cost savings can be
explained by the different number of feasible customer
combination in the two data sets. Since more customers
can be combined in data set B than in data set A (see
Sect. 4.1), the single-carrier solutions are consequently
more diverse than in data set A. This characteristic is
also evident in the carrier selection, as more routes of
the BSC are included in the carrier selection for more
diverse single-carrier solutions. Consequently, the
savings values compared to the BSC are worse in data
set B. In our experiments, carrier selection generates
better savings values in instances with dispersed
customers or fewer customer combinations.

4.3. Discussion of cost factors
The results in Sect. 4.2 are strongly dependent on the
chosen cost factors. The reasoning behind the cost
factors is therefore explained in more detail below.
Assume that the cost factors of one carrier are chosen
very high. This could result in this carrier never being
the best single carrier and also not being selected in
the carrier selection. In the opposite case of very low
cost factors, the carrier could always be the best single
carrier and would always be selected in the carrier
selection. Both cases are of little interest from an
optimization point of view. Therefore, different metrics
are presented below to verify the competitiveness of the

Data set A Data set B

C #BSC ∅TC #BSC ∅TC

TD 4 68,944 2 8,798
DQM 6 67,032 7 9,120
DQP 5 70,399 6 11,544

Opt. costs: TCTD = 10,425

PO costs: PODQM = 10,500 ↑ 0.7%
PODQP = 14,154 ↑ 35.8%

1
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6 7
8

9

10

0

Fig. 6: Example of PO cost calculation in the instance B-10-c. Optimal routes
of the carrier TD are used to calculate the PO costs for carrier DQM and DQP

to be compared with the optimal costs of TD.
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perform the one-at-a-time analysis. Note that for carrier
DQM all cost factors γDab

QM for (a, b) ∈ I are changed.
We use 14 scenarios per carrier, ±2%, ±5%, ±10%,

±15%, ±20%, ±25%, and ±30%, in our analysis to
reflect a wide range of changes. Since the cost factor
of each carrier are changed separately, this results in a
total of 42 sensitivity scenarios plus one base scenario
per data set. Note that the single-carrier solutions, i.e.,
the values of the decision variables, do not change
compared to the base scenario. This is due to the fact
that the objective function in each single-carrier model
is a sum of products of variables and cost factors, see the
objective functions (1), (11), and (16). Thus, when the
cost factor is multiplied by (1 + f %), the entire objective
function is linearly transformed by multiplying it by (1
+ f %), and only the optimal costs change. In contrast,
an additional optimization run is required in each
sensitivity scenario for the carrier selection.
To analyze how beneficial carrier selection is in

different scenarios, the changes in BSC solutions are
examined in Sect. 5.1, followed by the changes in the
carrier-selection solutions in Sect. 5.2. These results
are then combined to explain the changes in the savings
values in Sect. 5.3.

5.1. Best single-carrier solutions
The optimal solutions of the base scenario (0%) for
a carrier are used to calculate the adjusted costs for
the sensitivity scenarios as explained above. While the
solutions for each carrier do not change, the best single
carrier in an instance may change due to the increased
or decreased cost factors.
Fig. 8 shows the number of instances in which

a carrier is the best single carrier (#BSC) for each
sensitivity scenario and both data sets. The sensitivity
scenarios for a carrier in a data set are grouped in one
step area chart, e.g, the subfigure in the upper left
corner contains the #BSC instances for the variations
of the cost factor (−30% to +30%) of carrier TD in data
set A. As expected, with decreasing cost factor a carrier

The optimal solid routes of carrier TD are fixed
and used to calculate (non-optimal) PO costs for
the remaining carriers DQM and DQP. This leads
to PO costs for carrier DQM of 10,500. In addition,
the relative difference between PO costs and optimal
costs for carrier TD (10,425) is equal to 0.7% and is
referred hereafter as ΔPO. The detailed ΔPO values per
instance are given in Table 14 in the Appendix. Note
that negative values are difficult to avoid and only show
that a carrier is well suited to one specific instance.
The average ΔPO costs for each carrier solution are

displayed in Fig. 7. For example, the PO costs for carrier
DQM in data set A are, on average, 2.0% higher than
the (optimal) costs for carrier TD when both use the
optimal routes of carrier TD.
It can be seen that every average of ΔPO costs is

positive and, thus, each carrier is able to create most
cost-efficient routes for itself and no carrier dominates
another carrier over a complete data set. The higher
differences in data set B are explained by the customers’
locations and time windows, see Sect. 4.1. Since data
set B contains more feasible customer combinations
than data set A, the solutions become more diverse.
More diverse solutions lead to higher cost differences
between them.

5. SENSITIVITY ANALYSIS OF COST
FACTORS

The cost factors used in the previous experiments lead
to competitive carriers, as shown in Sect. 4.3. In the
following, we perform a sensitivity analysis for the cost
factors to gain further insight into the impact of the
chosen cost factors on the solutions. For this purpose,
the cost factors and solutions of the experiments in Sect.
4 are used as base scenario for both data sets. The base
cost factor of one carrier are changed by f % in each
scenario, while the cost factors of the other carriers
remain unchanged from the base scenario. Hence, we
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Fig. 7: Average relative differences between the PO costs of the respective other
carriers and the optimal costs of each carrier using the carrier’s solution.
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4 instances in data set A since carrier TD is the BSC
in 4 out of all 15 instances (see Fig. 8 upper left chart).
Therefore, the average BSC costs increase by 4/15 ·
2% = 0.53%. The average BSC costs do not change if
the cost factor of TD is increased by more than 5%,
because in these cases carrier TD does not provide the
best solution in any instance.
In general, average BSC costs in data set B are less

sensitive to reductions in cost factors than in data set
A. This is a direct result of the smaller changes in
the number of BSC instances in data set B. When the
number of BSC instances is more evenly distributed
among the carriers, the change in the cost factor of
a single carrier has a smaller impact on the average
costs. Increasing cost factors of carriers TD and DQM
have almost no impact in data set A because they are
replaced by other carriers even with small cost factor
increases.

is more often the best single carrier and vice versa with
increasing cost factor. For example, if TD’s cost factor
is decreased by 30% (scenario −30%) in data set A
while the other carriers’ cost factors remain the same,
TD is the best carrier in all 15 instances. If, in contrast,
TD’s cost factor is increased by 5% (scenario +5%), it
is not the best single carrier in any instance in data set
A. We observe that carriers TD and DQM often replace
each other for small changes in cost factors. This effect
is especially prominent in data set A. Carrier DQP,
however, is the best carrier in some instances in both
data sets, even if the cost factor is increased by 30%.
Consequently, these replacements also affect the costs

of the best single-carrier solutions. Fig. 9 shows the
average relative cost changes in the best single-carrier
solutions with changes in the carriers’ cost factors for
data sets A and B. For example, a 2% increase in the
cost factor of carrier TD results in 2% higher costs in
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Fig. 8: Number of instances in which a carrier has the lowest costs (#BSC) for
each sensitivity scenario with a carrier’s cost factor changed by f %. Note that one

subfigure groups the sensitivity scenarios of one carrier in a data set.
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Fig. 9: Average relative change of total costs in best single-carrier solutions
ΔTCBSC for each sensitivity scenario with a carrier’s cost factor changed by f %.

Fig. 10: Average number of carriers’ vehicles used (#V) in carrier selection for
each sensitivity scenario with a carrier’s cost factor changed by f %. Note that
one subfigure groups the sensitivity scenarios of one carrier in a data set.
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Although DQP is used very frequently, on average it
has the smallest share of total costs, as shown in Fig. 11.
Similar to the usage of vehicles, a carrier’s share of

the total costs increases with decreasing cost factors in
the carrier selection. Thus, although a carrier becomes
cheaper, its share of the cost increases because it is
used more frequently. For example, in data set A, the
average cost share of carrier TD is 32% in the base
scenario. This cost share rises to 60% when the cost
factor decreases and drops to 20% when the cost factor
is increased by 30%.
In the following, we consider the sensitivity of the

costs of the carrier selection with respect to changing
cost factors. Note that the sensitivity strongly depends
on the carrier’s share of the total costs: Varying the cost
factor of a carrier with a high share of costs also leads
to large changes in the cost of the carrier selection. Fig.
12 displays the relative change of the carrier selection
costs for data sets A and B using the cost values of
Table 9 as basic scenario.
In general, it can be observed that a cost increase for

one carrier can be compensated by the other carriers
in the carrier selection. Thus, even if a carrier’s cost

5.2. Carrier selection
In the carrier selection, the optimal solutions may
change because, for example, customers may be
swapped between carriers, creating new routes. We
examine the impact on carrier usage in the carrier
selection in terms of vehicles used per carrier and
carriers’ share of costs.
Fig. 10 shows the number of vehicles used per carrier

for the sensitivity scenarios and both data sets. The
sensitivity scenarios for a carrier in a data set are
grouped as in Fig. 8. The number of vehicles used in
the base scenarios is already presented in Fig. 5.
The average number of routes performed by a carrier

decreases with increasing cost factors. However, this
effect is more noticeable for carriers TD and DQM than
for DQP. Carriers TD and DQM frequently replace each
other with increasing and decreasing cost factors. Small
changes (< ±5%) lead to higher substitution in data set
A, while in data set B the substitution rate is less steep
when cost factors are changed. In addition, carrier DQP
is almost constantly used with the maximum number
of vehicles in all sensitivity levels and is in general the
carrier with the most vehicles used.
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Fig. 11: Average Carriers’ share of costs (SOC) in carrier selection for each
sensitivity scenario with a carrier’s cost factor changed by f %. Note that one
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decrease or increase relatively more than CS costs as
cost factors increase.
Fig. 13 shows the different savings values for each

scenario. The values of the base scenarios in A and B
are marked with horizontal lines. Different behavior
can be observed.
For example, in the case of carrier DQP, the costs

of the carrier-selection solutions increase only slightly
as cost factors increase compared to the base scenario
because of its low share of costs. As a result, the
nominator in equation (27) increases relatively less
than denominator. Thus, the savings value improves
with increased cost factors of carrier DQP. Conversely,
an increase in carrier TD’s cost factor results in large
changes in CS costs and less in BSC costs – the savings
values deteriorate.
The sensitivity analysis shows that different scenarios

lead to different savings values and that there are local
extrema, which of course depend on the instances
and cost factors. Better savings values can usually be
achieved if no carrier is particularly cheap or expensive.
Moreover, in the instances used in these experiments,
carrier selection is beneficial in terms of costs in all
scenarios, although fewer vehicles are available per
carrier. For example, if TD’s cost factor is reduced by
30%, TD provides the solution with the lowest costs in
all 15 instances of data set A (see Fig. 8). Nevertheless,
carrier selection can reduce costs by about 27% on
average compared to these solutions, even though TD
only provides four instead of 12 vehicles.

factors are increased by 30%, total costs in both data
sets increase by less than 10%. In contrast, the costs
in the carrier selection decrease much more when cost
factors are reduced. This asymmetry is less pronounced
for the carrier DQP because its cost share remains
nearly the same as cost factors change. Since the shares
of costs are the smallest for DQP, the change in the
costs of carrier selection is also the smallest here.
In summary, the sensitivity analysis shows that

carrier DQP plays an important role in the carrier
selection. It is frequently used with the highest number
of vehicles and its cost share is only slightly affected
by changes in the cost factors. The reason for this
difficult substitution of carrier DQP is a more specific
characteristic of its routes than those of carriers TD and
DQM. Short routes with small order volumes remain
attractive with carrier DQP, even if its cost factors are
greatly increased.

5.3. Savings
Finally, the benefits of carrier selection compared to a
single carrier are evaluated in terms of the sensitivity
of the savings values. Since the savings values depend
on the costs of the BSC solutions and the costs of the
carrier-selection solutions, they are closely related to
the results presented in the previous two sections. In
general, the savings value defined in equation (27)
becomes smaller, i.e., better, as the absolute value
increases when BSC costs (denominator) decrease
relatively less than CS costs (nominator) as cost factors
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DQP. It is used with a high number of vehicles and a
low share of costs. Furthermore, higher cost savings
can be achieved with dispersed customers than with
clustered customers with more customer combinations.
In a sensitivity analysis, we are able to show that carrier
DQP is almost constantly used in carrier selection even
with greatly increased cost factors, since its routes have
more specific characteristics than the other carriers.
Meanwhile, carrier TD and carrier DQM replace each
other when the cost factors change respectively. In
addition, we show that even when cost factors change,
carrier selection is cost beneficial compared to single
carriers. However, better savings values can usually be
achieved if no carrier is particularly cheap or expensive.
The generic structure of the mathematical models

motivates the adaptation of cost calculations in
future research and a further comparison of cost
models. Another important aspect is the integration
of additional carrier-dependent constraints, e. g.,
minimal utilization of vehicles or carrier-customer
compatibilities. Moreover, the long runtimes, especially
for solving freight-matrix functions as objective,
motivate the development of other solution methods
such as metaheuristics to solve larger instances with a
higher number of customers and, thus, greater variation
in the solutions.

6. CONCLUSION

In this paper, we study a VRPTW with carrier
selection. We consider three different types of carriers
with limited available vehicles and individual freight
cost calculations. While carrier TD uses distance
based costs, the carrier DQM uses distance-quantity
(freight) matrix based costs, and carrier DQP uses
distance-quantity product based costs. To solve the
vehicle routing problems for each carrier and their
integration in a carrier selection model, we develop MIP
formulations with valid inequalities. Experimental tests
with real-world data sets show that the consideration of
different tariff cost calculations during the optimization
process has an effect on the structure of optimal
solutions. Furthermore, considering different cost
calculations simultaneously leads to a cost-efficient
allocation of customers among the different carriers
and results in high cost savings compared to using only
one single carrier. In our experiments, carrier DQM
is the most often chosen carrier with the lowest costs
in the single-carrier model, and thus, carrier DQM
is considered to be very attractive. Due to the high
interval costs, only few vehicles of the carrier DQM
are used in the carrier selection. However, carrier DQM
has a major share in the costs of carrier selection due to
high vehicle utilization. The opposite occurs for carrier
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APPENDIX

Table 11: Lower bounds for minimum number of vehicles by total
order size (#V LB) and minimum number of vehicles required to serve

customers in feasible routes (#V Min). The minimum number of vehicles is
determined by additional optimization runs of the modified DQM model,

using fixed costs per vehicle in the objective function.

Data set A Data set B

Instance #VLB #VMin Instance #VLB #VMin

A-10-a 2 5 B-10-a 2 2
A-10-b 2 4 B-10-b 2 2
A-10-c 2 4 B-10-c 3 3
A-10-d 2 5 B-10-d 2 2
A-10-e 2 5 B-10-e 3 3
A-15-a 3 7 B-15-a 4 4
A-15-b 3 6 B-15-b 3 3
A-15-c 4 11 B-15-c 3 3
A-15-d 4 7 B-15-d 4 4
A-15-e 3 7 B-15-e 3 3
A-20-a 4 9 B-20-a 4 4
A-20-b 6 11 B-20-b 4 4
A-20-c 4 9 B-20-c 3 3
A-20-d 4 9 B-20-d 5 5
A-20-e 5 11 B-20-e 3 3
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Table 12: Impact of valid inequalities (VI) in the models (M);
comparison of average runtimes (T) in [s], the average remaining gap
(G) in [%] after 600 s, and the number of optimally solved runs (#O).

TD DQM DQP

Instance M M with VI M M with VI M M with VI

T G #O T G #O T G #O T G #O T G #O T G #O

A-10-a 0.1 0.0 5 0.1 0.0 5 274.0 0.4 4 17.5 0.0 5 0.2 0.0 5 0.3 0.0 5
A-10-b 0.6 0.0 5 0.5 0.0 5 86.4 0.0 5 72.2 0.0 5 0.3 0.0 5 0.1 0.0 5
A-10-c 0.4 0.0 5 0.2 0.0 5 132.7 0.0 5 8.4 0.0 5 0.1 0.0 5 0.1 0.0 5
A-10-d 0.4 0.0 5 0.4 0.0 5 85.6 0.0 5 134.2 0.0 5 0.1 0.0 5 0.1 0.0 5
A-10-e 0.4 0.0 5 0.5 0.0 5 522.4 6.3 1 85.7 0.0 5 0.1 0.0 5 0.3 0.0 5
A-15-a 1.1 0.0 5 1.4 0.0 5 600.0 18.5 0 600.0 10.6 0 0.7 0.0 5 0.6 0.0 5
A-15-b 0.7 0.0 5 0.8 0.0 5 600.0 9.4 0 600.0 7.0 0 0.8 0.0 5 0.6 0.0 5
A-15-c 0.1 0.0 5 0.1 0.0 5 61.6 0.0 5 6.6 0.0 5 0.6 0.0 5 0.1 0.0 5
A-15-d 0.8 0.0 5 0.3 0.0 5 600.0 14.6 0 26.4 0.0 5 0.2 0.0 5 0.2 0.0 5
A-15-e 0.9 0.0 5 0.6 0.0 5 600.0 8.8 0 226.4 0.0 5 0.7 0.0 5 1.0 0.0 5
A-20-a 1.8 0.0 5 0.6 0.0 5 600.0 13.3 0 398.0 0.3 3 18.4 0.0 5 0.6 0.0 5
A-20-b 1.5 0.0 5 0.4 0.0 5 600.0 16.7 0 600.0 5.7 0 42.4 0.0 5 1.4 0.0 5
A-20-c 13.0 0.0 5 1.9 0.0 5 600.0 20.1 0 600.0 11.4 0 32.1 0.0 5 1.9 0.0 5
A-20-d 22.9 0.0 5 2.0 0.0 5 600.0 23.5 0 600.0 14.0 0 438.9 0.3 3 3.7 0.0 5
A-20-e 1.2 0.0 5 0.3 0.0 5 600.0 8.2 0 593.6 3.0 1 28.3 0.0 5 1.6 0.0 5

B-10-a 36.1 0.0 5 0.7 0.0 5 15.0 0.0 5 6.1 0.0 5 1.9 0.0 5 0.4 0.0 5
B-10-b 1.0 0.0 5 0.7 0.0 5 1.1 0.0 5 0.3 0.0 5 0.3 0.0 5 0.3 0.0 5
B-10-c 6.7 0.0 5 0.2 0.0 5 27.3 0.0 5 1.1 0.0 5 2.7 0.0 5 0.3 0.0 5
B-10-d 0.7 0.0 5 0.8 0.0 5 5.4 0.0 5 0.3 0.0 5 2.3 0.0 5 0.8 0.0 5
B-10-e 29.3 0.0 5 0.9 0.0 5 2.6 0.0 5 0.4 0.0 5 0.4 0.0 5 0.2 0.0 5
B-15-a 3.8 0.0 5 2.1 0.0 5 22.8 0.0 5 1.7 0.0 5 4.6 0.0 5 1.0 0.0 5
B-15-b 600.0 10.8 0 13.0 0.0 5 421.5 3.2 4 14.5 0.0 5 15.0 0.0 5 0.8 0.0 5
B-15-c 8.2 0.0 5 2.5 0.0 5 20.2 0.0 5 3.7 0.0 5 2.2 0.0 5 0.6 0.0 5
B-15-d 361.7 0.0 5 6.4 0.0 5 321.5 2.2 4 37.8 0.0 5 13.1 0.0 5 1.2 0.0 5
B-15-e 0.8 0.0 5 0.4 0.0 5 15.7 0.0 5 0.7 0.0 5 2.2 0.0 5 0.8 0.0 5
B-20-a 600.0 9.1 0 58.0 0.0 5 77.2 0.0 5 17.3 0.0 5 142.1 0.0 5 3.9 0.0 5
B-20-b 253.7 1.6 4 5.4 0.0 5 75.9 0.0 5 7.7 0.0 5 118.0 0.0 5 12.7 0.0 5
B-20-c 225.2 0.0 5 21.7 0.0 5 26.6 0.0 5 17.7 0.0 5 256.8 0.0 4 10.1 0.0 5
B-20-d 600.0 23.5 0 27.5 0.0 5 600.0 20.3 0 600.0 11.1 0 526.6 0.2 2 6.2 0.0 5
B-20-e 3.0 0.0 5 4.2 0.0 5 28.7 0.0 5 8.5 0.0 5 262.4 0.0 5 34.1 0.0 5
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Table 13 Total costs (TC) and runtimes (T) in [s] of all models (TD,
DQM, DQP, and CS). The lowest costs per instance are marked in bold.
In addition, the lowest costs of all single carriers are marked in italic.

TD DQM DQP CS

Instance TC T TC T TC T TC T

A-10-a 38,786 0.2 41,400 13.3 37,794 0.4 24,230 2.5
A-10-b 36,784 0.6 37,620 70.6 27,385 0.4 24,330 3.4
A-10-c 34,320 0.4 35,280 9.2 35,480 0.7 24,703 1.8
A-10-d 42,900 0.6 43,740 191.6 31,167 0.4 24,939 3.0
A-10-e 35,398 0.6 38,340 87.0 37,074 0.4 26,416 2.7
A-15-a 63,734 2.4 64,080 5,397.4 53,863 1.5 41,097 23.7
A-15-b 56,364 1.0 59,040 2,830.0 66,990 0.9 38,631 12.9
A-15-c 103,730 0.3 97,020 4.5 105,166 0.7 59,575 1.3
A-15-d 73,700 0.4 67,860 18.0 85,440 0.5 46,413 2.3
A-15-e 65,538 0.7 61,740 119.2 47,512 1.0 36,784 15.5
A-20-a 96,052 0.6 88,560 410.2 106,226 2.0 61,566 24.0
A-20-b 98,648 0.4 101,160 5,690.8 131,097 2.5 66,810 9.0
A-20-c 87,164 1.6 82,080 6,664.1 89,202 2.4 50,985 56.7
A-20-d 91,520 2.2 87,480 12,913.8 87,754 3.8 54,127 163.6
A-20-e 109,516 1.0 100,080 2,522.0 113,836 2.3 66,051 43.2

Average 68,944 0.9 67,032 2,462.8 70,399 1.3 43,110 24.4

B-10-a 11,700 0.8 8,400 7.4 16,239 0.8 8,400 23.5
B-10-b 4,125 0.5 4,500 0.3 3,003 0.5 2,707 2.5
B-10-c 10,425 0.3 9,000 0.6 13,515 0.7 7,877 12.8
B-10-d 3,600 0.7 4,800 0.6 4,590 0.9 2,330 0.4
B-10-e 8,125 1.1 7,800 1.0 14,393 0.4 7,566 2.0
B-15-a 5,325 1.6 10,200 4.1 4,911 1.6 3,905 5.5
B-15-b 11,700 19.3 9,300 11.4 15,166 1.7 8,439 269.0
B-15-c 6,150 3.4 7,500 3.6 3,716 1.2 3,506 3.4
B-15-d 16,000 7.1 13,800 26.5 25,237 1.9 13,273 197.8
B-15-e 3,275 0.4 7,800 1.0 3,212 1.3 2,902 2.0
B-20-a 10,925 44.3 10,500 9.6 17,112 7.2 9,512 2,687.2
B-20-b 5,325 5.0 10,200 11.7 5,809 14.9 4,409 82.1
B-20-c 7,150 18.3 7,800 19.2 5,692 13.1 5,006 439.2
B-20-d 23,200 19.1 17,700 2,844.1 36,483 7.6 17,177 1,973.3
B-20-e 4,950 4.0 7,500 6.5 4,080 26.8 3,586 153.8

Average 8,798 8.4 9,120 196.5 11,544 5.4 6,706 390.3
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Table 14: Relative differences in [%] between the post-optimization
costs (ΔPO) of the respective other carriers and the optimal costs of

each carrier using the carrier’s solution per each instance.

Routes TD Routes DQM Routes DQP

Instance ΔPODQM ΔPODQP ΔPOTD ΔPODQP ΔPOTD ΔPODQM

A-10-a 6.74 24.34 -6.31 16.49 27.13 49.07
A-10-b 3.25 -8.67 6.90 -20.50 115.06 142.54
A-10-c 3.85 38.04 1.77 32.56 30.71 41.55
A-10-d 9.93 -24.16 1.75 -20.95 74.63 95.78
A-10-e 16.96 8.27 5.18 5.25 24.73 37.40
A-15-a 4.78 5.31 5.54 -7.28 53.62 61.08
A-15-b 4.75 37.37 1.36 37.08 18.26 26.56
A-15-c -3.52 3.42 9.68 9.76 9.32 2.87
A-15-d -7.44 25.03 10.91 40.15 7.79 6.81
A-15-e -1.68 -19.08 7.29 -15.61 70.54 71.24
A-20-a -4.61 17.71 12.48 28.67 -3.43 -2.90
A-20-b 3.28 34.75 8.74 41.52 -19.23 -16.11
A-20-c 0.78 12.29 9.54 14.18 10.02 11.39
A-20-d -1.46 6.83 14.20 22.29 20.59 21.63
A-20-e -6.15 16.80 13.03 32.08 2.31 -7.02

B-10-a -28.21 86.96 64.58 182.55 37.78 3.45
B-10-b 89.09 30.05 33.33 13.41 198.87 389.52
B-10-c 0.72 35.77 28.33 59.88 4.70 -20.09
B-10-d 83.33 36.73 46.35 25.67 43.80 194.14
B-10-e -0.31 91.54 25.64 136.52 -21.66 -8.29
B-15-a 136.62 6.18 6.37 53.98 59.34 284.86
B-15-b -5.13 65.10 37.10 118.23 29.07 8.80
B-15-c 56.10 -27.58 27.00 7.13 163.05 344.03
B-15-d -13.75 87.74 25.36 123.49 -5.10 -16.79
B-15-e 193.13 26.57 -7.37 42.94 61.10 413.65
B-20-a 15.33 78.69 21.67 108.84 5.77 12.20
B-20-b 125.35 22.28 13.48 42.61 39.43 225.33
B-20-c 59.44 41.68 39.10 48.38 95.89 216.23
B-20-d -15.95 76.77 41.10 169.11 -11.12 -28.46
B-20-e 87.88 55.23 23.67 20.28 116.33 341.23


